1
|
Delshad M, Sanaei MJ, Mohammadi MH, Sadeghi A, Bashash D. Exosomal Biomarkers: A Comprehensive Overview of Diagnostic and Prognostic Applications in Malignant and Non-Malignant Disorders. Biomolecules 2025; 15:587. [PMID: 40305328 PMCID: PMC12024574 DOI: 10.3390/biom15040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
Exosomes are small extracellular vesicles, ranging from 30 to 150 nm, that are essential in cell biology, mediating intercellular communication and serving as biomarkers due to their origin from cells. Exosomes as biomarkers for diagnosing various illnesses have gained significant investigation due to the high cost and invasive nature of current diagnostic procedures. Exosomes have a clear advantage in the diagnosis of diseases because they include certain signals that are indicative of the genetic and proteomic profile of the ailment. This feature gives them the potential to be useful liquid biopsies for real-time, noninvasive monitoring, enabling early cancer identification for the creation of individualized treatment plans. According to our analysis, the trend toward utilizing exosomes as diagnostic and prognostic tools has raised since 2012. In this regard, the proportion of malignant indications is higher compared with non-malignant ones. To be precise, exosomes have been used the most in gastrointestinal, thoracic, and urogenital cancers, along with cardiovascular, diabetic, breathing, infectious, and brain disorders. To the best of our knowledge, this is the first research to examine all registered clinical trials that look at exosomes as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan 1411718541, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| |
Collapse
|
2
|
Brugière O, Dreyfuss D, Guilet R, Rong S, Hirschi S, Renaud-Picard B, Reynaud-Gaubert M, Coiffard B, Bunel V, Messika J, Demant X, Le Pavec J, Dauriat G, Saint Raymond C, Falque L, Mornex JF, Tissot A, Lair D, Le Borgne Krams A, Bousseau V, Magnan A, Picard C, Roux A, Glorion M, Carmagnat M, Gazeau F, Aubertin K, Carosella E, Vallée A, Landais C, Rouas-Freiss N, LeMaoult J. Circulating Vesicular-bound HLA-G as Noninvasive Predictive Biomarker of CLAD After Lung Transplantation. Transplantation 2025; 109:736-745. [PMID: 39294868 DOI: 10.1097/tp.0000000000005175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
BACKGROUND Circulating extracellular vesicles (EVs) have shown promising results as noninvasive biomarkers for predicting disease outcomes in solid organ transplantation. Because in situ graft cell expression of the tolerogenic molecule HLA-G is associated with acceptance after lung transplantation (LTx), we hypothesized that plasma EV-bound HLA-G (HLA-G EV ) levels could predict chronic lung allograft dysfunction (CLAD) development. METHODS We analyzed 78 LTx recipients from the Cohort-for-Lung-Transplantation cohort, all in a stable (STA) state within the first year post-LTx. At 3 y, 41 patients remained STA, and 37 had CLAD (bronchiolitis obliterans syndrome, BOS, [n = 32] or restrictive allograft syndrome [n = 5]). HLA-G EV plasma levels were measured at month 6 (M6) and M12 in 78 patients. CLAD occurrence and graft failure at 3 y post-LTx were assessed according to early HLA-G EV plasma levels. RESULTS In patients with subsequent BOS, (1) HLA-G EV levels at M12 were significantly lower than those in STA patients ( P = 0.013) and (2) also significantly lower than their previous levels at M6 ( P = 0.04).A lower incidence of CLAD and BOS and higher graft survival at 3 y were observed in patients with high HLA-G EV plasma levels at M12 (high versus low HLA-G EVs patients [cutoff 21.3 ng/mL]: freedom from CLAD, P = 0.002; freedom from BOS, P < 0.001; and graft survival, P = 0.04, [log-rank]). Furthermore, in multivariate analyses, low HLA-G EV levels at M12 were independently associated with a subsequent risk of CLAD, BOS, and graft failure at 3 y ( P = 0.015, P = 0.036, and P = 0.026, respectively [Cox models]). CONCLUSIONS This exploratory study suggests the potential of EV-bound HLA-G plasma levels as a liquid biopsy in predicting CLAD/BOS onset and subsequent graft failure.
Collapse
Affiliation(s)
- Olivier Brugière
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| | - Dora Dreyfuss
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| | - Ronan Guilet
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| | - Sophie Rong
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| | - Sandrine Hirschi
- Department of Pneumology, Strasbourg Lung Transplant Program, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Benjamin Renaud-Picard
- Department of Pneumology, Strasbourg Lung Transplant Program, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | | | - Benjamin Coiffard
- Service de Pneumologie et Transplantation Pulmonaire, CHU de Marseille, Marseille, France
| | - Vincent Bunel
- APHP.Nord-Université de Paris, Hôpital Bichat-Claude Bernard, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
| | - Jonathan Messika
- APHP.Nord-Université de Paris, Hôpital Bichat-Claude Bernard, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
| | - Xavier Demant
- Service de Pneumologie et Transplantation Pulmonaire, CHU de Bordeaux, Bordeaux, France
| | - Jérôme Le Pavec
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Gaelle Dauriat
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Christel Saint Raymond
- Service Hospitalier Universitaire de Pneumologie et Physiologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Échirolles, France
| | - Loic Falque
- Service Hospitalier Universitaire de Pneumologie et Physiologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Échirolles, France
| | - Jean-Francois Mornex
- Université Claude Bernard Lyon1, INRAE, IVPC, Lyon, France
- Hospices Civils de Lyon, Inserm CIC1407, Bron, France
| | - Adrien Tissot
- Nantes Université, CHU Nantes, INSERM, Service de Pneumologie, l'institut du thorax, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - David Lair
- Nantes Université, CHU Nantes, INSERM, Service de Pneumologie, l'institut du thorax, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | | | - Veronique Bousseau
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital HEGP, Paris, France
| | - Antoine Magnan
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
| | - Clément Picard
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
| | - Antoine Roux
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
| | | | | | - Florence Gazeau
- Université Paris Cité, MSC et intégrateur IVETh, CNRS UMR7057, Paris, France
| | - Kelly Aubertin
- Université Paris Cité, MSC et intégrateur IVETh, CNRS UMR7057, Paris, France
| | - Edgardo Carosella
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| | - Alexandre Vallée
- Service d'épidémiologie et santé publique, Hôpital Foch, Suresnes, France
| | - Cecile Landais
- Departement de biostatistiques, DRCI Hôpital Foch, Suresnes, France
| | - Nathalie Rouas-Freiss
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| | - Joel LeMaoult
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Hickman E, Carberry V, Carberry C, Cooper B, Mordant AL, Mills A, Sokolsky M, Herring LE, Alexis NE, Rebuli ME, Jaspers I, Sheats K, Rager JE. Respiratory extracellular vesicle isolation optimization through proteomic profiling of equine samples and identification of candidates for cell-of-origin studies. PLoS One 2025; 20:e0315743. [PMID: 39854355 PMCID: PMC11760557 DOI: 10.1371/journal.pone.0315743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/01/2024] [Indexed: 01/26/2025] Open
Abstract
Growing evidence supports the importance of extracellular vesicle (EV) as mediators of communication in pathological processes, including those underlying respiratory disease. However, establishing methods for isolating and characterizing EVs remains challenging, particularly for respiratory samples. This study set out to address this challenge by comparing different EV isolation methods and evaluating their impacts on EV yield, markers of purity, and proteomic signatures, utilizing equine/horse bronchoalveolar lavage samples. Horses can serve as effective translational animal models for respiratory studies due to similarities with human immune responses, shared environmental exposures, and naturally occurring respiratory diseases including asthma. Further, horses are long-lived large animals that allow for longitudinal sample collection, and provide large sample volume and cell yield, which are particularly useful since EV research is commonly limited by low sample yields. Here, EVs were isolated from horse bronchoalveolar lavage fluid (BALF) using four different methods (ultracentrifugation, microcentrifugation, and two sizes of size exclusion chromatography columns) and characterized by measuring particle counts, EV purity, total protein yield, and proteomic cargo, with a specific focus on vesicle surface marker expression potentially informing cell type of origin. We found that size exclusion chromatography yielded the highest particle counts, greatest EV purity markers and elevated vesicle surface marker expression. Overall proteomic profiles differed across isolation methods, with size exclusion chromatography clustering separately from centrifugation. Taken together, our results demonstrate that different isolation methods impact characteristics of EVs, notably that size exclusion chromatography, compared to centrifugation methods, resulted in higher EV purity and better characterized proteomic diversity, including information on EV cell-of-origin. This is the first study to characterize proteomic profiles of EVs following different isolation methods using equine BALF. The results of this study will pave the way for future studies using equine and human samples to characterize respiratory tract EVs.
Collapse
Affiliation(s)
- Elise Hickman
- Curriculum in Toxicology & Environmental Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Victoria Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Celeste Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bethanie Cooper
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Angie L. Mordant
- UNC Michael Hooker Proteomics Core, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Allie Mills
- UNC Michael Hooker Proteomics Core, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Marina Sokolsky
- Center for Nanotechnology in Drug Delivery, UNC School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Laura E. Herring
- UNC Michael Hooker Proteomics Core, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Neil E. Alexis
- Curriculum in Toxicology & Environmental Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pediatrics, UNC School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Meghan E. Rebuli
- Curriculum in Toxicology & Environmental Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pediatrics, UNC School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ilona Jaspers
- Curriculum in Toxicology & Environmental Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pediatrics, UNC School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Katie Sheats
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Julia E. Rager
- Curriculum in Toxicology & Environmental Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
4
|
Cai Y, Li Q, Wesselmann U, Zhao C. Exosomal Bupivacaine: Integrating Nerve Barrier Penetration Capability and Sustained Drug Release for Enhanced Potency in Peripheral Nerve Block and Reduced Toxicity. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2406876. [PMID: 40027274 PMCID: PMC11870390 DOI: 10.1002/adfm.202406876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Indexed: 03/05/2025]
Abstract
Peripherally injected local anesthetics exhibit limited ability to penetrate peripheral nerve barriers (PNBs), which limits their effectiveness in peripheral nerve block and increases the risk of adverse effects. In this work, we demonstrated that exosomes derived from Human Embryo Kidney (HEK) 293 cells can effectively traverse the perineurium, which is the rate-limiting barrier within PNBs that local anesthetics need to cross before acting on axons. Based on this finding, we use these exosomes as a carrier for bupivacaine (BUP), a local anesthetic commonly used in clinical settings. The in vitro assessments revealed that the prepared exosomal bupivacaine (BUP@EXO) achieves a BUP loading capacity of up to 82.33% and sustained release of BUP for over 30 days. In rats, a single peripheral injection of BUP@EXO, containing 0.75 mg of BUP, which is ineffective for BUP alone, induced a 2-hour sensory nerve blockade without significant motor impairments. Increasing the BUP dose in BUP@EXO to 2.5 mg, a highly toxic dose for BUP alone, extended the sensory nerve blockade to 12 hours without causing systemic cardiotoxicity and local neurotoxicity and myotoxicity.
Collapse
Affiliation(s)
- Yuhao Cai
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Qi Li
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Ursula Wesselmann
- Departments of Anesthesiology and Perioperative Medicine/Division of Pain Medicine, Neurology and Psychology, and Consortium for Neuroengineering and Brain-Computer Interfaces, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao Zhao
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
5
|
Akabane M, Imaoka Y, Kawashima J, Endo Y, Schenk A, Sasaki K, Pawlik TM. Innovative Strategies for Liver Transplantation: The Role of Mesenchymal Stem Cells and Their Cell-Free Derivatives. Cells 2024; 13:1604. [PMID: 39404368 PMCID: PMC11475694 DOI: 10.3390/cells13191604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Despite being the standard treatment for end-stage liver disease, liver transplantation has limitations like donor scarcity, high surgical costs, and immune rejection risks. Mesenchymal stem cells (MSCs) and their derivatives offer potential for liver regeneration and transplantation. MSCs, known for their multipotency, low immunogenicity, and ease of obtainability, can differentiate into hepatocyte-like cells and secrete bioactive factors that promote liver repair and reduce immune rejection. However, the clinical application of MSCs is limited by risks such as aberrant differentiation and low engraftment rates. As a safer alternative, MSC-derived secretomes and extracellular vesicles (EVs) offer promising therapeutic benefits, including enhanced graft survival, immunomodulation, and reduced ischemia-reperfusion injury. Current research highlights the efficacy of MSC-derived therapies in improving liver transplant outcomes, but further studies are necessary to standardize clinical applications. This review highlights the potential of MSCs and EVs to address key challenges in liver transplantation, paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Miho Akabane
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Yuki Imaoka
- Division of Abdominal Transplant, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (Y.I.); (K.S.)
| | - Jun Kawashima
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Yutaka Endo
- Department of Transplant Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Austin Schenk
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Kazunari Sasaki
- Division of Abdominal Transplant, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (Y.I.); (K.S.)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| |
Collapse
|
6
|
Napoli C, Benincasa G, Fiorelli A, Strozziero MG, Costa D, Russo F, Grimaldi V, Hoetzenecker K. Lung transplantation: Current insights and outcomes. Transpl Immunol 2024; 85:102073. [PMID: 38889844 DOI: 10.1016/j.trim.2024.102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Until now, the ability to predict or retard immune-mediated rejection events after lung transplantation is still limited due to the lack of specific biomarkers. The pressing need remains to early diagnose or predict the onset of chronic lung allograft dysfunction (CLAD) and its differential phenotypes that is the leading cause of death. Omics technologies (mainly genomics, epigenomics, and transcriptomics) combined with advanced bioinformatic platforms are clarifying the key immune-related molecular routes that trigger early and late events of lung allograft rejection supporting the biomarker discovery. The most promising biomarkers came from genomics. Both unregistered and NIH-registered clinical trials demonstrated that the increased percentage of donor-derived cell-free DNA in both plasma and bronchoalveolar lavage fluid showed a good diagnostic performance for clinically silent acute rejection events and CLAD differential phenotypes. A further success arose from transcriptomics that led to development of Molecular Microscope® Diagnostic System (MMDx) to interpret the relationship between molecular signatures of lung biopsies and rejection events. Other immune-related biomarkers of rejection events may be exosomes, telomer length, DNA methylation, and histone-mediated neutrophil extracellular traps (NETs) but none of them entered in registered clinical trials. Here, we discuss novel and existing technologies for revealing new immune-mediated mechanisms underlying acute and chronic rejection events, with a particular focus on emerging biomarkers for improving precision medicine of lung transplantation field.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli,", Naples, Italy
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Alfonso Fiorelli
- Thoracic Surgery Unit, Department of Translation Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Dario Costa
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli,", Naples, Italy
| | | | - Vincenzo Grimaldi
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli,", Naples, Italy
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
7
|
Hanks J, Girard C, Sehgal S. Acute rejection post lung transplant. Curr Opin Pulm Med 2024; 30:391-397. [PMID: 38656281 DOI: 10.1097/mcp.0000000000001078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW To review what is currently known about the pathogenesis, diagnosis, treatment, and prevention of acute rejection (AR) in lung transplantation. RECENT FINDINGS Epigenomic and transcriptomic methods are gaining traction as tools for earlier detection of AR, which still remains primarily a histopathologic diagnosis. SUMMARY Acute rejection is a common cause of early posttransplant lung graft dysfunction and increases the risk of chronic rejection. Detection and diagnosis of AR is primarily based on histopathology, but noninvasive molecular methods are undergoing investigation. Two subtypes of AR exist: acute cellular rejection (ACR) and antibody-mediated rejection (AMR). Both can have varied clinical presentation, ranging from asymptomatic to fulminant ARDS, and can present simultaneously. Diagnosis of ACR requires transbronchial biopsy; AMR requires the additional measuring of circulating donor-specific antibody (DSA) levels. First-line treatment in ACR is increased immunosuppression (pulse-dose or tapered dose glucocorticoids); refractory cases may need antibody-based lymphodepletion therapy. First line treatment in AMR focuses on circulating DSA removal with B and plasma cell depletion; plasmapheresis, intravenous human immunoglobulin (IVIG), bortezomib, and rituximab are often employed.
Collapse
Affiliation(s)
- Justin Hanks
- Department of Pulmonary Medicine, Integrated Hospital Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | |
Collapse
|
8
|
Pan W, Li S, Li K, Zhou P. Mesenchymal Stem Cells and Extracellular Vesicles: Therapeutic Potential in Organ Transplantation. Stem Cells Int 2024; 2024:2043550. [PMID: 38708382 PMCID: PMC11068458 DOI: 10.1155/2024/2043550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
At present, organ transplantation remains the most appropriate therapy for patients with end-stage organ failure. However, the field of organ transplantation is still facing many challenges, including the shortage of organ donors, graft function damage caused by organ metastasis, and antibody-mediated immune rejection. It is therefore urgently necessary to find new and effective treatment. Stem cell therapy has been regarded as a "regenerative medicine technology." Mesenchymal stem cells (MSCs), as the most common source of cells for stem cell therapy, play an important role in regulating innate and adaptive immune responses and have been widely used in clinical trials for the treatment of autoimmune and inflammatory diseases. Increasing evidence has shown that MSCs mainly rely on paracrine pathways to exert immunomodulatory functions. In addition, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are the main components of paracrine substances of MSCs. Herein, an overview of the application of the function of MSCs and MSC-EVs in organ transplantation will focus on the progress reported in recent experimental and clinical findings and explore their uses for graft preconditioning and recipient immune tolerance regulation. Additionally, the limitations on the use of MSC and MSC-EVs are also discussed, covering the isolation of exosomes and preservation techniques. Finally, the opportunities and challenges for translating MSCs and MSC-EVs into clinical practice of organ transplantation are also evaluated.
Collapse
Affiliation(s)
- Wennuo Pan
- Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shaohan Li
- Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Kunsheng Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
9
|
Pei Y, Guo Y, Wang W, Wang B, Zeng F, Shi Q, Xu J, Guo L, Ding C, Xie X, Ren T, Guo W. Extracellular vesicles as a new frontier of diagnostic biomarkers in osteosarcoma diseases: a bibliometric and visualized study. Front Oncol 2024; 14:1359807. [PMID: 38500663 PMCID: PMC10944918 DOI: 10.3389/fonc.2024.1359807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
The use of liquid biopsy in cancer research has grown exponentially, offering potential for early detection, treatment stratification, and monitoring residual disease and recurrence. Exosomes, released by cancer cells, contain tumor-derived materials and are stable in biofluids, making them valuable biomarkers for clinical evaluation. Bibliometric research on osteosarcoma (OS) and exosome-derived diagnostic biomarkers is scarce. Therefore, we aimed to conduct a bibliometric evaluation of studies on OS and exosome-derived biomarkers. Using the Web of Science Core Collection database, Microsoft Excel, the R "Bibliometrix" package, CiteSpace, and VOSviewer software, quantitative analyses of the country, author, annual publications, journals, institutions, and keywords of studies on exosome-derived biomarkers for OS from 1995 to 2023 were performed. High-quality records (average citation rate ≥ 10/year) were filtered. The corresponding authors were mainly from China, the USA, Australia, and Canada. The University of Kansas Medical Center, National Cancer Center, Japan, and University of Kansas were major institutions, with limited cooperation reported by the University of Kansas Medical Center. Keyword analysis revealed a shift from cancer progression to mesenchymal stem cells, exosome expression, biogenesis, and prognostic biomarkers. Qualitative analysis highlighted exosome cargo, including miRNAs, circRNAs, lncRNAs, and proteins, as potential diagnostic OS biomarkers. This research emphasizes the rapid enhancement of exosomes as a diagnostic frontier, offering guidance for the clinical application of exosome-based liquid biopsy in OS, contributing to the evolving landscape of cancer diagnosis.
Collapse
Affiliation(s)
- Yanhong Pei
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Yu Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Wei Wang
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Boyang Wang
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Fanwei Zeng
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Qianyu Shi
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Jiuhui Xu
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Lei Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Chaowei Ding
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Xiangpang Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Cangnan, Zhejiang, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| |
Collapse
|
10
|
Bansal S, Rahman M, Ravichandran R, Canez J, Fleming T, Mohanakumar T. Extracellular Vesicles in Transplantation: Friend or Foe. Transplantation 2024; 108:374-385. [PMID: 37482627 DOI: 10.1097/tp.0000000000004693] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The long-term function of transplanted organs, even under immunosuppression, is hindered by rejection, especially chronic rejection. Chronic rejection occurs more frequently after lung transplantation, termed chronic lung allograft dysfunction (CLAD), than after transplantation of other solid organs. Pulmonary infection is a known risk factor for CLAD, as transplanted lungs are constantly exposed to the external environment; however, the mechanisms by which respiratory infections lead to CLAD are poorly understood. The role of extracellular vesicles (EVs) in transplantation remains largely unknown. Current evidence suggests that EVs released from transplanted organs can serve as friend and foe. EVs carry not only major histocompatibility complex antigens but also tissue-restricted self-antigens and various transcription factors, costimulatory molecules, and microRNAs capable of regulating alloimmune responses. EVs play an important role in antigen presentation by direct, indirect, and semidirect pathways in which CD8 and CD4 cells can be activated. During viral infections, exosomes (small EVs <200 nm in diameter) can express viral antigens and regulate immune responses. Circulating exosomes may also be a viable biomarker for other diseases and rejection after organ transplantation. Bioengineering the surface of exosomes has been proposed as a tool for targeted delivery of drugs and personalized medicine. This review focuses on recent studies demonstrating the role of EVs with a focus on exosomes and their dual role (immune activation or tolerance induction) after organ transplantation, more specifically, lung transplantation.
Collapse
Affiliation(s)
- Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | | | | | | | | | | |
Collapse
|
11
|
Bansal S, Arjuna A, Franz B, Guerrero-Alba A, Canez J, Fleming T, Rahman M, Hachem R, Mohanakumar T. Extracellular vesicles: a potential new player in antibody-mediated rejection in lung allograft recipients. FRONTIERS IN TRANSPLANTATION 2023; 2:1248987. [PMID: 38993876 PMCID: PMC11235353 DOI: 10.3389/frtra.2023.1248987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/22/2023] [Indexed: 07/13/2024]
Abstract
Identification of recipients with pre-existing antibodies and cross-matching of recipient sera with donor lymphocytes have reduced the incidence of antibody-mediated rejection (AMR) after human lung transplantation. However, AMR is still common and requires not only immediate intervention but also has long-term consequences including an increased risk of chronic lung allograft dysfunction (CLAD). The mechanisms resulting in AMR remain largely unknown due to the variation in clinical and histopathological features among lung transplant recipients; however, several reports have demonstrated a strong association between the development of antibodies against mismatched donor human leucocyte antigens [donor-specific antibodies (DSAs)] and AMR. In addition, the development of antibodies against lung self-antigens (K alpha1 tubulin and collagen V) also plays a vital role in AMR pathogenesis, either alone or in combination with DSAs. In the current article, we will review the existing literature regarding the association of DSAs with AMR, along with clinical diagnostic features and current treatment options for AMR. We will also discuss the role of extracellular vesicles (EVs) in the immune-related pathogenesis of AMR, which can lead to CLAD.
Collapse
Affiliation(s)
- Sandhya Bansal
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Ashwini Arjuna
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Brian Franz
- HLA Laboratory, Vitalant, Phoenix, AZ, United States
| | - Alexa Guerrero-Alba
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Jesse Canez
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Mohammad Rahman
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Ramsey Hachem
- Department of Surgery, Washington University, St. Louis, MO, United States
| | - T. Mohanakumar
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
12
|
Kapellos TS, Baßler K, Fujii W, Nalkurthi C, Schaar AC, Bonaguro L, Pecht T, Galvao I, Agrawal S, Saglam A, Dudkin E, Frishberg A, de Domenico E, Horne A, Donovan C, Kim RY, Gallego-Ortega D, Gillett TE, Ansari M, Schulte-Schrepping J, Offermann N, Antignano I, Sivri B, Lu W, Eapen MS, van Uelft M, Osei-Sarpong C, van den Berge M, Donker HC, Groen HJM, Sohal SS, Klein J, Schreiber T, Feißt A, Yildirim AÖ, Schiller HB, Nawijn MC, Becker M, Händler K, Beyer M, Capasso M, Ulas T, Hasenauer J, Pizarro C, Theis FJ, Hansbro PM, Skowasch D, Schultze JL. Systemic alterations in neutrophils and their precursors in early-stage chronic obstructive pulmonary disease. Cell Rep 2023; 42:112525. [PMID: 37243592 PMCID: PMC10320832 DOI: 10.1016/j.celrep.2023.112525] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/18/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023] Open
Abstract
Systemic inflammation is established as part of late-stage severe lung disease, but molecular, functional, and phenotypic changes in peripheral immune cells in early disease stages remain ill defined. Chronic obstructive pulmonary disease (COPD) is a major respiratory disease characterized by small-airway inflammation, emphysema, and severe breathing difficulties. Using single-cell analyses we demonstrate that blood neutrophils are already increased in early-stage COPD, and changes in molecular and functional neutrophil states correlate with lung function decline. Assessing neutrophils and their bone marrow precursors in a murine cigarette smoke exposure model identified similar molecular changes in blood neutrophils and precursor populations that also occur in the blood and lung. Our study shows that systemic molecular alterations in neutrophils and their precursors are part of early-stage COPD, a finding to be further explored for potential therapeutic targets and biomarkers for early diagnosis and patient stratification.
Collapse
Affiliation(s)
- Theodore S Kapellos
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Kevin Baßler
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Wataru Fujii
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Christina Nalkurthi
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Anna C Schaar
- Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, 85748 Garching, Germany
| | - Lorenzo Bonaguro
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany
| | - Tal Pecht
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Izabela Galvao
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Shobhit Agrawal
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Adem Saglam
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany
| | - Erica Dudkin
- Computational Life Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Amit Frishberg
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Elena de Domenico
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany
| | - Arik Horne
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Chantal Donovan
- University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia; Immune Health, Hunter Medical Research Institute, New Lambton and The University of Newcastle, Newcastle, NSW 2305, Australia
| | - Richard Y Kim
- University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia; Immune Health, Hunter Medical Research Institute, New Lambton and The University of Newcastle, Newcastle, NSW 2305, Australia
| | - David Gallego-Ortega
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Garvan Institute of Medical Research, and St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Tessa E Gillett
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; GRIAC Research Institute, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Jonas Schulte-Schrepping
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Nina Offermann
- Immunregulation, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Ignazio Antignano
- Immunregulation, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Burcu Sivri
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7250 TAS, Australia
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7250 TAS, Australia
| | - Martina van Uelft
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Collins Osei-Sarpong
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Maarten van den Berge
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Hylke C Donker
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Harry J M Groen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7250 TAS, Australia
| | - Johanna Klein
- Department of Internal Medicine II, Pneumology, University Hospital Bonn, 53127 Bonn, Germany
| | - Tina Schreiber
- Department of Internal Medicine II, Pneumology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andreas Feißt
- University Clinics for Radiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Martijn C Nawijn
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; GRIAC Research Institute, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Matthias Becker
- Modular HPC and AI, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Kristian Händler
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany; Institute of Human Genetics, University of Lübeck, 23562 Lübeck, Germany
| | - Marc Beyer
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany; Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Melania Capasso
- Immunregulation, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Thomas Ulas
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany
| | - Jan Hasenauer
- Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, 85748 Garching, Germany; Computational Life Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Carmen Pizarro
- Department of Internal Medicine II, Pneumology, University Hospital Bonn, 53127 Bonn, Germany
| | - Fabian J Theis
- Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, 85748 Garching, Germany
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia; University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Dirk Skowasch
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7250 TAS, Australia
| | - Joachim L Schultze
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, 85748 Garching, Germany.
| |
Collapse
|
13
|
Saravanan PB, Kalivarathan J, Khan F, Shah R, Levy MF, Kanak MA. Exosomes in transplantation: Role in allograft rejection, diagnostic biomarker, and therapeutic potential. Life Sci 2023; 324:121722. [PMID: 37100379 DOI: 10.1016/j.lfs.2023.121722] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Exosomes are 50-200 nm-sized extracellular vesicles that are secreted by cells to transfer signals and communicate with other cells. Recent research has revealed that allograft-specific exosomes containing proteins, lipids, and genetic materials are released into circulation post-transplantation which are powerful indicators of graft failure in solid-organ and tissue transplantations. The macromolecular content of exosomes released by the allograft and the immune cells serve as potential biomarkers for assessing the function and the acceptance/rejection status of the transplanted grafts. Identifying these biomarkers could aid in the development of therapeutic strategies to improve graft longevity. Exosomes can be used to deliver therapeutic agonists/antagonists to grafts and prevent rejection. Inducing long-term graft tolerance has been demonstrated in many studies using exosomes from immunomodulatory cells such as immature DCs, T regulatory cells, and MSCs. The use of graft-specific exosomes for targeted drug therapy has the potential to reduce the unwanted side effects of immunosuppressive drugs. Overall, in this review, we have explored the critical role of exosomes in the recognition and cross-presentation of donor organ-specific antigens during allograft rejection. Additionally, we have discussed the potential of exosomes as a biomarker for monitoring graft function and damage, as well as their potential therapeutic applications in mitigating allograft rejection.
Collapse
Affiliation(s)
| | - Jagan Kalivarathan
- VCU Hume-Lee Transplant Institute, VCU health system, Richmond, VA, United States of America
| | - Faizaan Khan
- Department of Surgery, School of Medicine, VCU, Richmond, VA, United States of America
| | - Rashi Shah
- Department of Surgery, School of Medicine, VCU, Richmond, VA, United States of America
| | - Marlon F Levy
- VCU Hume-Lee Transplant Institute, VCU health system, Richmond, VA, United States of America; Department of Surgery, School of Medicine, VCU, Richmond, VA, United States of America
| | - Mazhar A Kanak
- VCU Hume-Lee Transplant Institute, VCU health system, Richmond, VA, United States of America; Department of Surgery, School of Medicine, VCU, Richmond, VA, United States of America
| |
Collapse
|
14
|
Extracellular Vesicles: The Future of Diagnosis in Solid Organ Transplantation? Int J Mol Sci 2023; 24:ijms24065102. [PMID: 36982182 PMCID: PMC10048932 DOI: 10.3390/ijms24065102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
Solid organ transplantation (SOT) is a life-saving treatment for end-stage organ failure, but it comes with several challenges, the most important of which is the existing gap between the need for transplants and organ availability. One of the main concerns in this regard is the lack of accurate non-invasive biomarkers to monitor the status of a transplanted organ. Extracellular vesicles (EVs) have recently emerged as a promising source of biomarkers for various diseases. In the context of SOT, EVs have been shown to be involved in the communication between donor and recipient cells and may carry valuable information about the function of an allograft. This has led to an increasing interest in exploring the use of EVs for the preoperative assessment of organs, early postoperative monitoring of graft function, or the diagnosis of rejection, infection, ischemia-reperfusion injury, or drug toxicity. In this review, we summarize recent evidence on the use of EVs as biomarkers for these conditions and discuss their applicability in the clinical setting.
Collapse
|
15
|
Extracellular Vesicles' Genetic Cargo as Noninvasive Biomarkers in Cancer: A Pilot Study Using ExoGAG Technology. Biomedicines 2023; 11:biomedicines11020404. [PMID: 36830940 PMCID: PMC9953104 DOI: 10.3390/biomedicines11020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The two most developed biomarkers in liquid biopsy (LB)-circulating tumor cells and circulating tumor DNA-have been joined by the analysis of extracellular vesicles (EVs). EVs are lipid-bilayer enclosed structures released by all cell types containing a variety of molecules, including DNA, mRNA and miRNA. However, fast, efficient and a high degree of purity isolation technologies are necessary for their clinical routine implementation. In this work, the use of ExoGAG, a new easy-to-use EV isolation technology, was validated for the isolation of EVs from plasma and urine samples. After demonstrating its efficiency, an analysis of the genetic material contained in the EVs was carried out. Firstly, the sensitivity of the detection of point mutations in DNA from plasma EVs isolated by ExoGAG was analyzed. Then, a pilot study of mRNA expression using the nCounter NanoString platform in EV-mRNA from a healthy donor, a benign prostate hyperplasia patient and metastatic prostate cancer patient plasma and urine samples was performed, identifying the prostate cancer pathway as one of the main ones. This work provides evidence for the value of using ExoGAG for the isolation of EVs from plasma and urine samples, enabling downstream applications of the analysis of their genetic cargo.
Collapse
|
16
|
Burke H, Cellura D, Freeman A, Hicks A, Ostridge K, Watson A, Williams NP, Spalluto CM, Staples KJ, Wilkinson TMA. Pulmonary EV miRNA profiles identify disease and distinct inflammatory endotypes in COPD. Front Med (Lausanne) 2022; 9:1039702. [PMID: 36590967 PMCID: PMC9797812 DOI: 10.3389/fmed.2022.1039702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/28/2022] [Indexed: 12/16/2022] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is a heterogeneous condition without effective disease modifying therapies. Identification of novel inflammatory endotype markers such as extracellular vesicles (EVs), which are important intercellular messengers carrying microRNA (miRNA), may enable earlier diagnosis and disease stratification for a targeted treatment approach. Our aim was to identify differentially expressed EV miRNA in the lungs of COPD patients compared with healthy ex-smokers and determine whether they can help define inflammatory COPD endotypes. Methods EV miRNA were isolated and sequenced from ex-smoking COPD patients and healthy ex-smoker bronchoalveolar lavage fluid. Results were validated with RT-qPCR and compared to differential inflammatory cell counts. Results Expression analysis identified five upregulated miRNA in COPD (miR-223-3p, miR-2110, miR-182-5p, miR-200b-5p and miR-625-3p) and three downregulated miRNA (miR-138-5p, miR-338-3p and miR-204-5p), all with a log2 fold change of >1/-1, FDR < 0.05. These miRNAs correlated with disease defining characteristics such as FEF 25-75% (a small airways disease measure) and DLCO% (a surrogate measure of emphysema). Receiver operator curve analysis demonstrated miR-2110, miR-223-3p, and miR-182-5p showed excellent combinatory predictive ability (AUC 0.91, p < 0.0001) in differentiating between health and mild COPD. Furthermore, miR-223-3p and miR-338-3p correlated with airway eosinophilia and were able to distinguish "pure eosinophilic" COPD from other airway inflammatory subtypes (AUC 0.94 and 0.85, respectively). Discussion This is the first study to identify differentially expressed miRNA in COPD bronchoalveolar lavage fluid EVs. These findings suggest specific lung derived EV miRNA are a strong predictor of disease presence even in mild COPD. Furthermore, specific miRNA correlated with inflammatory cell numbers in COPD, and may have a role in defining inflammatory endotypes for future treatment stratification.
Collapse
Affiliation(s)
- Hannah Burke
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Doriana Cellura
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Anna Freeman
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Alex Hicks
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Kris Ostridge
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alastair Watson
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Nicholas P. Williams
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - C. Mirella Spalluto
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Karl J. Staples
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Tom M. A. Wilkinson
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| |
Collapse
|
17
|
Calabrese F, Roden AC, Pavlisko E, Lunardi F, Neil D, Adam B, Hwang D, Goddard M, Berry GJ, Ivanovic M, Thüsen JVD, Gibault L, Lin CY, Wassilew K, Glass C, Westall G, Zeevi A, Levine DJ, Roux A. LUNG ALLOGRAFT STANDARDIZED HISTOLOGICAL ANALYSIS (LASHA) TEMPLATE: A RESEARCH CONSENSUS PROPOSAL. J Heart Lung Transplant 2022; 41:1487-1500. [DOI: 10.1016/j.healun.2022.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
|
18
|
Lazana I, Vassilopoulos G. A 'waste product' to save the day in the field of transplantation: the evolving potential of extracellular vesicles. Immunology 2022; 167:154-164. [PMID: 35751500 DOI: 10.1111/imm.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
Graft rejection and graft-versus-host disease constitute the leading causes of morbidity and early mortality after solid organ and hematopoietic stem cell transplantation, respectively. Despite the current advances in immunotherapy, their incidence remains significant, underlying the need for new therapies to be developed. Extracellular vesicles (EV), and particularly small EV (sEV), have emerged as significant mediators of intercellular communication and immune modulation. Depending on the parental cell, they may exert potent immunostimulatory or immunosuppressive functions, attracting a major interest in field of transplantation. An increasing number of publications, studying their role in graft dysfunction pathophysiology, early detection of graft failure and in prevention and/or therapy of graft rejection, have emerged in recent years with enthusiastic results. In this review, we discuss the role and various applications of sEV in the transplant setting and present their huge potential for clinical translation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ioanna Lazana
- Cell and Gene Therapy Laboratory, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Hematology Department, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - George Vassilopoulos
- Cell and Gene Therapy Laboratory, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Division of Hematology, University of Thessaly Medical School, Larissa, Greece
| |
Collapse
|
19
|
Ravichandran R, Bansal S, Rahman M, Sureshbabu A, Sankpal N, Fleming T, Bharat A, Mohanakumar T. Extracellular Vesicles Mediate Immune Responses to Tissue-Associated Self-Antigens: Role in Solid Organ Transplantations. Front Immunol 2022; 13:861583. [PMID: 35572510 PMCID: PMC9094427 DOI: 10.3389/fimmu.2022.861583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Transplantation is a treatment option for patients diagnosed with end-stage organ diseases; however, long-term graft survival is affected by rejection of the transplanted organ by immune and nonimmune responses. Several studies have demonstrated that both acute and chronic rejection can occur after transplantation of kidney, heart, and lungs. A strong correlation has been reported between de novo synthesis of donor-specific antibodies (HLA-DSAs) and development of both acute and chronic rejection; however, some transplant recipients with chronic rejection do not have detectable HLA-DSAs. Studies of sera from such patients demonstrate that immune responses to tissue-associated antigens (TaAgs) may also play an important role in the development of chronic rejection, either alone or in combination with HLA-DSAs. The synergistic effect between HLA-DSAs and antibodies to TaAgs is being established, but the underlying mechanism is yet to be defined. We hypothesize that HLA-DSAs damage the transplanted donor organ resulting in stress and leading to the release of extracellular vesicles, which contribute to chronic rejection. These vesicles express both donor human leukocyte antigen (HLA) and non-HLA TaAgs, which can activate antigen-presenting cells and lead to immune responses and development of antibodies to both donor HLA and non-HLA tissue-associated Ags. Extracellular vesicles (EVs) are released by cells under many circumstances due to both physiological and pathological conditions. Primarily employing clinical specimens obtained from human lung transplant recipients undergoing acute or chronic rejection, our group has demonstrated that circulating extracellular vesicles display both mismatched donor HLA molecules and lung-associated Ags (collagen-V and K-alpha 1 tubulin). This review focuses on recent studies demonstrating an important role of antibodies to tissue-associated Ags in the rejection of transplanted organs, particularly chronic rejection. We will also discuss the important role of extracellular vesicles released from transplanted organs in cross-talk between alloimmunity and autoimmunity to tissue-associated Ags after solid organ transplantation.
Collapse
Affiliation(s)
| | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Mohammad Rahman
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Angara Sureshbabu
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Narendra Sankpal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Ankit Bharat
- Department of Surgery-Thoracic, Northwestern University, Chicago, IL, United States
| | | |
Collapse
|
20
|
Zhang X, Xu D, Song Y, He R, Wang T. Research Progress in the Application of Exosomes in Immunotherapy. Front Immunol 2022; 13:731516. [PMID: 35242126 PMCID: PMC8885989 DOI: 10.3389/fimmu.2022.731516] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Exosomes are nanoscale extracellular vesicles (EVs), which are present in all body fluids tested. They are secreted by a variety of cells including macrophages, dendritic cells, mast cells, granulocytes, lymphocytes, and tumor cells. Exosomes secreted by different cells have different biological components and functional characteristics and play an important role in many pathophysiological activities. Recent studies have revealed that exosomes can regulate the occurrence and development of inflammatory immune diseases and tumors by transmitting their unique proteins, lipids, and nucleic acids as signaling molecules to other cells. Exosomes serve as a novel class of diagnostic biomarkers and drug delivery systems with promising applications in immunotherapy, particularly because breakthroughs in nanotechnology have led to the development and exploration of engineered exosomes for immunotargeted therapies. Therefore, here we review the progress being made on the application of exosomes in immunotherapy and its multiple regulatory mechanisms and explore the potential application of exosomes in immunotherapy in the future.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Donggang Xu
- Second Clinical Department, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Rong He
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
21
|
Habertheuer A, Ram C, Schmierer M, Chatterjee S, Hu R, Freas A, Zielinski P, Rogers W, Silvestro EM, McGrane M, Moore JS, Korutla L, Siddiqui S, Xin Y, Rizi R, Qin Tao J, Kreisel D, Naji A, Ochiya T, Vallabhajosyula P. Circulating Donor Lung-specific Exosome Profiles Enable Noninvasive Monitoring of Acute Rejection in a Rodent Orthotopic Lung Transplantation Model. Transplantation 2022; 106:754-766. [PMID: 33993180 DOI: 10.1097/tp.0000000000003820] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND There is a critical need for development of biomarkers to noninvasively monitor for lung transplant rejection. We investigated the potential of circulating donor lung-specific exosome profiles for time-sensitive diagnosis of acute rejection in a rat orthotopic lung transplant model. METHODS Left lungs from Wistar transgenic rats expressing human CD63-GFP, an exosome marker, were transplanted into fully MHC-mismatched Lewis recipients or syngeneic controls. Recipient blood was collected between 4 h and 10 d after transplantation, and plasma was processed for exosome isolation by size exclusion column chromatography and ultracentrifugation. Circulating donor exosomes were profiled using antihuman CD63 antibody quantum dot on the nanoparticle detector and via GFP trigger on the nanoparticle flow cytometer. RESULTS In syngeneic controls, steady-state levels of circulating donor exosomes were detected at all posttransplant time points. Allogeneic grafts lost perfusion by day 8, consistent with acute rejection. Levels of circulating donor exosomes peaked on day 1, decreased significantly by day 2, and then reached baseline levels by day 3. Notably, decrease in peripheral donor exosome levels occurred before grafts had histological evidence of acute rejection. CONCLUSIONS Circulating donor lung-specific exosome profiles enable an early detection of acute rejection before histologic manifestation of injury to the pulmonary allograft. As acute rejection episodes are a major risk factor for the development of chronic lung allograft dysfunction, this biomarker may provide a novel noninvasive diagnostic platform that can translate into earlier therapeutic intervention for lung transplant patients.
Collapse
Affiliation(s)
- Andreas Habertheuer
- Division of Cardiovascular Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Cardiac Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Chirag Ram
- Division of Cardiovascular Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Shampa Chatterjee
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Robert Hu
- Division of Cardiovascular Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Andrew Freas
- Division of Cardiovascular Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Patrick Zielinski
- Division of Cardiovascular Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Wade Rogers
- Still Pond Cytomics LLC, West Chester, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Eva M Silvestro
- Still Pond Cytomics LLC, West Chester, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Jonni S Moore
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Laxminarayana Korutla
- Division of Cardiovascular Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Cardiac Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Yi Xin
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jian Qin Tao
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Daniel Kreisel
- Departments of Surgery, Pathology & Immunology, Washington University, St. Louis, MI
| | - Ali Naji
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan
| | - Prashanth Vallabhajosyula
- Division of Cardiovascular Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Cardiac Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
22
|
Sailliet N, Ullah M, Dupuy A, Silva AKA, Gazeau F, Le Mai H, Brouard S. Extracellular Vesicles in Transplantation. Front Immunol 2022; 13:800018. [PMID: 35185891 PMCID: PMC8851566 DOI: 10.3389/fimmu.2022.800018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have been extensively studied in the last two decades. It is now well documented that they can actively participate in the activation or regulation of immune system functions through different mechanisms, the most studied of which include protein–protein interactions and miRNA transfers. The functional diversity of EV-secreting cells makes EVs potential targets for immunotherapies through immune cell-derived EV functions. They are also a potential source of biomarkers of graft rejection through donor cells or graft environment-derived EV content modification. This review focuses on preclinical studies that describe the role of EVs from different cell types in immune suppression and graft tolerance and on the search for biomarkers of rejection.
Collapse
Affiliation(s)
- Nicolas Sailliet
- Nantes Université, INSERM, Centeer for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Matti Ullah
- MSC-med, INSERM U7057, Universite de Paris, Paris, France
| | - Amandine Dupuy
- Nantes Université, INSERM, Centeer for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | | | | | - Hoa Le Mai
- Nantes Université, INSERM, Centeer for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Sophie Brouard
- Nantes Université, INSERM, Centeer for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.,Labex IGO, Nantes, France
| |
Collapse
|
23
|
Qian R, Jing B, Jiang D, Gai Y, Zhu Z, Huang X, Gao Y, Lan X, An R. Multi-antitumor therapy and synchronous imaging monitoring based on exosome. Eur J Nucl Med Mol Imaging 2022; 49:2668-2681. [DOI: 10.1007/s00259-022-05696-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/19/2022] [Indexed: 02/06/2023]
|
24
|
Gupta S, Mazumder P. Exosomes as diagnostic tools. Adv Clin Chem 2022; 110:117-144. [DOI: 10.1016/bs.acc.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Hovhannisyan L, Czechowska E, Gutowska-Owsiak D. The Role of Non-Immune Cell-Derived Extracellular Vesicles in Allergy. Front Immunol 2021; 12:702381. [PMID: 34489951 PMCID: PMC8417238 DOI: 10.3389/fimmu.2021.702381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), and especially exosomes, have been shown to mediate information exchange between distant cells; this process directly affects the biological characteristics and functionality of the recipient cell. As such, EVs significantly contribute to the shaping of immune responses in both physiology and disease states. While vesicles secreted by immune cells are often implicated in the allergic process, growing evidence indicates that EVs from non-immune cells, produced in the stroma or epithelia of the organs directly affected by inflammation may also play a significant role. In this review, we provide an overview of the mechanisms of allergy to which those EVs contribute, with a particular focus on small EVs (sEVs). Finally, we also give a clinical perspective regarding the utilization of the EV-mediated communication route for the benefit of allergic patients.
Collapse
Affiliation(s)
- Lilit Hovhannisyan
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Gdansk, Poland
| | - Ewa Czechowska
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Danuta Gutowska-Owsiak
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Iasella CJ, Hoji A, Popescu I, Wei J, Snyder ME, Zhang Y, Xu W, Iouchmanov V, Koshy R, Brown M, Fung M, Langelier C, Lendermon EA, Dugger D, Shah R, Lee J, Johnson B, Golden J, Leard LE, Kleinhenz ME, Kilaru S, Hays SR, Singer JP, Sanchez PG, Morrell MR, Pilewski JM, Greenland JR, Chen K, McDyer JF. Type-1 immunity and endogenous immune regulators predominate in the airway transcriptome during chronic lung allograft dysfunction. Am J Transplant 2021; 21:2145-2160. [PMID: 33078555 PMCID: PMC8607839 DOI: 10.1111/ajt.16360] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/25/2023]
Abstract
Chronic lung allograft dysfunction (CLAD) remains the major complication limiting long-term survival among lung transplant recipients (LTRs). Limited understanding of CLAD immunopathogenesis and a paucity of biomarkers remain substantial barriers for earlier detection and therapeutic interventions for CLAD. We hypothesized the airway transcriptome would reflect key immunologic changes in disease. We compared airway brush-derived transcriptomic signatures in CLAD (n = 24) versus non-CLAD (n = 21) LTRs. A targeted assessment of the proteome using concomitant bronchoalveolar lavage (BAL) fluid for 24 cytokines/chemokines and alloimmune T cell responses was performed to validate the airway transcriptome. We observed an airway transcriptomic signature of differential genes expressed (DGEs) in CLAD marked by Type-1 immunity and striking upregulation of two endogenous immune regulators: indoleamine 2, 3 dioxygenase 1 (IDO-1) and tumor necrosis factor receptor superfamily 6B (TNFRSF6B). Advanced CLAD staging was associated with a more intense airway transcriptome signature. In a validation cohort using the identified signature, we found an area under the curve (AUC) of 0.77 for CLAD LTRs. Targeted proteomic analyses revealed a predominant Type-1 profile with detection of IFN-γ, TNF-α, and IL-1β as dominant CLAD cytokines, correlating with the airway transcriptome. The airway transcriptome provides novel insights into CLAD immunopathogenesis and biomarkers that may impact diagnosis of CLAD.
Collapse
Affiliation(s)
- Carlo J. Iasella
- Department of Pharmacy and Therapeutics, University of
Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Aki Hoji
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Iulia Popescu
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Jianxin Wei
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Mark E. Snyder
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Yingze Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Wei Xu
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Vera Iouchmanov
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Ritchie Koshy
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Mark Brown
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Monica Fung
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Charles Langelier
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Elizabeth A. Lendermon
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Daniel Dugger
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Rupal Shah
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Joyce Lee
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Bruce Johnson
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Jeffrey Golden
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Lorriana E. Leard
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Mary Ellen Kleinhenz
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Silpa Kilaru
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Steven R. Hays
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Jonathan P. Singer
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Pablo G. Sanchez
- Department of Cardiothoracic Surgery, University of
Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew R. Morrell
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Joseph M. Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - John R. Greenland
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Kong Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - John F. McDyer
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| |
Collapse
|
27
|
Renaud-Picard B, Koutsokera A, Cabanero M, Martinu T. Acute Rejection in the Modern Lung Transplant Era. Semin Respir Crit Care Med 2021; 42:411-427. [PMID: 34030203 DOI: 10.1055/s-0041-1729542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acute cellular rejection (ACR) remains a common complication after lung transplantation. Mortality directly related to ACR is low and most patients respond to first-line immunosuppressive treatment. However, a subset of patients may develop refractory or recurrent ACR leading to an accelerated lung function decline and ultimately chronic lung allograft dysfunction. Infectious complications associated with the intensification of immunosuppression can also negatively impact long-term survival. In this review, we summarize the most recent evidence on the mechanisms, risk factors, diagnosis, treatment, and prognosis of ACR. We specifically focus on novel, promising biomarkers which are under investigation for their potential to improve the diagnostic performance of transbronchial biopsies. Finally, for each topic, we highlight current gaps in knowledge and areas for future research.
Collapse
Affiliation(s)
- Benjamin Renaud-Picard
- Division of Respirology and Toronto Lung Transplant Program, University of Toronto and University Health Network, Toronto, Canada
| | - Angela Koutsokera
- Division of Pulmonology, Lung Transplant Program, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michael Cabanero
- Department of Pathology, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Tereza Martinu
- Division of Respirology and Toronto Lung Transplant Program, University of Toronto and University Health Network, Toronto, Canada
| |
Collapse
|
28
|
Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, Breakefield XO, Skog JK. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol 2021; 32:466-477. [PMID: 33548389 PMCID: PMC8268076 DOI: 10.1016/j.annonc.2021.01.074] [Citation(s) in RCA: 532] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Liquid biopsy in cancer has gained momentum in clinical research and is experiencing a boom for a variety of applications. There are significant efforts to utilize liquid biopsies in cancer for early detection and treatment stratification, as well as residual disease and recurrence monitoring. Although most efforts have used circulating tumor cells and circulating tumor DNA for this purpose, exosomes and other extracellular vesicles have emerged as a platform with potentially broader and complementary applications. Exosomes/extracellular vesicles are small vesicles released by cells, including cancer cells, into the surrounding biofluids. These exosomes contain tumor-derived materials such as DNA, RNA, protein, lipid, sugar structures, and metabolites. In addition, exosomes carry molecules on their surface that provides clues regarding their origin, making it possible to sort vesicle types and enrich signatures from tissue-specific origins. Exosomes are part of the intercellular communication system and cancer cells frequently use them as biological messengers to benefit their growth. Since exosomes are part of the disease process, they have become of tremendous interest in biomarker research. Exosomes are remarkably stable in biofluids, such as plasma and urine, and can be isolated for clinical evaluation even in the early stages of the disease. Exosome-based biomarkers have quickly become adopted in the clinical arena and the first exosome RNA-based prostate cancer test has already helped >50 000 patients in their decision process and is now included in the National Comprehensive Cancer Network guidelines for early prostate cancer detection. This review will discuss the advantages and challenges of exosome-based liquid biopsies for tumor biomarkers and clinical implementation in the context of circulating tumor DNA and circulating tumor cells.
Collapse
Affiliation(s)
- W Yu
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA
| | - J Hurley
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA
| | - D Roberts
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA
| | | | - D Enderle
- Exosome Diagnostics GmbH, a Bio-Techne brand, Martinsried, Germany
| | - M Noerholm
- Exosome Diagnostics GmbH, a Bio-Techne brand, Martinsried, Germany
| | - X O Breakefield
- Department of Neurology, Massachusetts General Hospital, Boston, USA; Neuroscience Program, Harvard Medical School, Boston, USA
| | - J K Skog
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA.
| |
Collapse
|
29
|
Elliott RO, He M. Unlocking the Power of Exosomes for Crossing Biological Barriers in Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13010122. [PMID: 33477972 PMCID: PMC7835896 DOI: 10.3390/pharmaceutics13010122] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
Since the 2013 Nobel Prize was awarded for the discovery of vesicle trafficking, a subgroup of nanovesicles called exosomes has been driving the research field to a new regime for understanding cellular communication. This exosome-dominated traffic control system has increased understanding of many diseases, including cancer metastasis, diabetes, and HIV. In addition to the important diagnostic role, exosomes are particularly attractive for drug delivery, due to their distinctive properties in cellular information transfer and uptake. Compared to viral and non-viral synthetic systems, the natural, cell-derived exosomes exhibit intrinsic payload and bioavailability. Most importantly, exosomes easily cross biological barriers, obstacles that continue to challenge other drug delivery nanoparticle systems. Recent emerging studies have shown numerous critical roles of exosomes in many biological barriers, including the blood–brain barrier (BBB), blood–cerebrospinal fluid barrier (BCSFB), blood–lymph barrier (BlyB), blood–air barrier (BAB), stromal barrier (SB), blood–labyrinth barrier (BLaB), blood–retinal barrier (BRB), and placental barrier (PB), which opens exciting new possibilities for using exosomes as the delivery platform. However, the systematic reviews summarizing such discoveries are still limited. This review covers state-of-the-art exosome research on crossing several important biological barriers with a focus on the current, accepted models used to explain the mechanisms of barrier crossing, including tight junctions. The potential to design and engineer exosomes to enhance delivery efficacy, leading to future applications in precision medicine and immunotherapy, is discussed.
Collapse
Affiliation(s)
- Rebekah Omarkhail Elliott
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
| | - Mei He
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
30
|
Characterization and Transcriptome Analysis of Exosomal and Nonexosomal RNAs in Bovine Adipocytes. Int J Mol Sci 2020; 21:ijms21239313. [PMID: 33297338 PMCID: PMC7730049 DOI: 10.3390/ijms21239313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Exosomes are endosome-derived extracellular vesicles that allow intercellular communication. However, the biological significance of adipocyte exosomal RNAs remains unclear. To determine the role of RNAs from bovine adipocytes and exosomes in bovine adipogenesis, exosomal and nonexosomal RNAs were extracted from three bovine primary white adipocyte samples and then profiles were generated using DNBSEQ/BGISEQ-500 technology. The RNAome of adipocytes consisted of 12,082 mRNAs, 8589 lncRNAs, and 378 miRNAs for a higher complexity that that detected in exosomes, with 1083 mRNAs, 105 lncRNAs, and 48 miRNAs. Exosomal miRNA-mRNA and lncRNA–miRNA–mRNA networks were constructed and enrichment analysis was performed to predict functional roles and regulatory mechanisms. Our study provides the first characterization of RNAs from bovine adipocyte and exosomes. The findings reveal that some RNAs are specifically packaged in adipocyte-derived exosomes, potentially enabling crosstalk between adipocytes and/or other cells that is mediated by exosomes. Our results greatly expand our understanding of exosomal RNAs from bovine adipocytes, and provide a reference for future functional investigations of adipocyte exosomal RNAs under normal physiological conditions.
Collapse
|
31
|
Papadopoulos S, Kazepidou E, Antonelou MH, Leondaritis G, Tsapinou A, Koulouras VP, Avgeropoulos A, Nakos G, Lekka ME. Secretory Phospholipase A 2-IIA Protein and mRNA Pools in Extracellular Vesicles of Bronchoalveolar Lavage Fluid from Patients with Early Acute Respiratory Distress Syndrome: A New Perception in the Dissemination of Inflammation? Pharmaceuticals (Basel) 2020; 13:ph13110415. [PMID: 33238426 PMCID: PMC7700412 DOI: 10.3390/ph13110415] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 01/08/2023] Open
Abstract
Secretory phospholipase-IIA A2 (sPLA2-IIA) is expressed in a variety of cell types under inflammatory conditions. Its presence in the bronchoalveolar lavage (BAL) fluid of patients with acute respiratory distress syndrome (ARDS) is associated with the severity of the injury. Exosomal type extracellular vesicles, (EVs), are recognized to perform intercellular communication. They may alter the immune status of recipient target cells through cargo shuttling. In this work, we characterized the exosomal type EVs isolated from BAL fluid of patients with early and late ARDS as compared to control/non-ARDS patients, through morphological (confocal and electron microscopy) and biochemical (dynamic light scattering, qRT-PCR, immunoblotting) approaches. We provide evidence for the presence of an sPLA2-IIA-carrying EV pool that coprecipitates with exosomes in the BAL fluid of patients with ARDS. PLA2G2A mRNA was present in all the samples, although more prominently expressed in early ARDS. However, the protein was found only in EVs from early phase ARDS. Under both forms, sPLA2-IIA might be involved in inflammatory responses of recipient lung cells during ARDS. The perception of the association of sPLA2-IIA to the early diagnosis of ARDS or even with a mechanism of development and propagation of lung inflammation can help in the adoption of appropriate and innovative therapeutic strategies.
Collapse
Affiliation(s)
- Stylianos Papadopoulos
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina, Greece; (S.P.); (E.K.); (A.T.)
| | - Eleftheria Kazepidou
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina, Greece; (S.P.); (E.K.); (A.T.)
| | - Marianna H. Antonelou
- Section of Cell Biology & Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis, 15784 Athens, Greece;
| | - George Leondaritis
- Laboratory of Pharmacology, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece;
| | - Alexia Tsapinou
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina, Greece; (S.P.); (E.K.); (A.T.)
| | - Vasilios P. Koulouras
- Department of Intensive Care Medicine, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (V.P.K.); (G.N.)
| | | | - George Nakos
- Department of Intensive Care Medicine, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (V.P.K.); (G.N.)
| | - Marilena E. Lekka
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina, Greece; (S.P.); (E.K.); (A.T.)
- Correspondence: ; Tel.: +30-6972247374
| |
Collapse
|
32
|
Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther 2020; 5:144. [PMID: 32747657 PMCID: PMC7400738 DOI: 10.1038/s41392-020-00258-9] [Citation(s) in RCA: 431] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/05/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Liquid biopsy refers to the sampling and molecular analysis of the biofluids of circulating tumor cells, extracellular vesicles, nucleic acids, and so forth. Exosomes are small extracellular vesicles with sizes between 30–150 nm. They are secreted by multivesicular bodies through exocytosis in live cells and can participate in intercellular communication due to their contents, including nucleic acids, proteins, and lipids. Herein, we investigate publication frequencies on exosomes over the past 10 years, and review recent clinical studies on liquid biopsy of exosomes in the fields of oncology, pregnancy disorders, cardiovascular diseases, and organ transplantation. We also describe the advantages of exosomes as an effective liquid biopsy tool and the progression of exosome extraction methods. Finally, we depict the commercial development of exosome research and discuss the future role of exosomes in liquid biopsy.
Collapse
|
33
|
Sharma M, Gunasekaran M, Ravichandran R, Fisher CE, Limaye AP, Hu C, McDyer J, Kaza V, Bharat A, Tokman S, Omar A, Arjuna A, Walia R, Bremner RM, Smith MA, Hachem RR, Mohanakumar T. Circulating exosomes with lung self-antigens as a biomarker for chronic lung allograft dysfunction: A retrospective analysis. J Heart Lung Transplant 2020; 39:1210-1219. [PMID: 32713614 DOI: 10.1016/j.healun.2020.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Exosomes isolated from plasma of lung transplant recipients (LTxRs) with bronchiolitis obliterans syndrome (BOS) contain human leukocyte antigens and lung self-antigens (SAgs), K-alpha 1 tubulin (Kα1T) and collagen type V (Col-V). The aim was to determine the use of circulating exosomes with lung SAgs as a biomarker for BOS. METHODS Circulating exosomes were isolated retrospectively from plasma from LTxRs at diagnosis of BOS and at 6 and 12 months before the diagnosis (n = 41) and from stable time-matched controls (n = 30) at 2 transplant centers by ultracentrifugation. Exosomes were validated using Nanosight, and lung SAgs (Kα1T and Col-V) were detected by immunoblot and semiquantitated using ImageJ software. RESULTS Circulating exosomes from BOS and stable LTxRs demonstrated 61- to 181-nm vesicles with markers Alix and CD9. Exosomes from LTxRs with BOS (n = 21) showed increased levels of lung SAgs compared with stable (n = 10). A validation study using 2 separate cohorts of LTxRs with BOS and stable time-matched controls from 2 centers also demonstrated significantly increased lung SAgs-containing exosomes at 6 and 12 months before BOS. CONCLUSIONS Circulating exosomes isolated from LTxRs with BOS demonstrated increased levels of lung SAgs (Kα1T and Col-V) 12 months before the diagnosis (100% specificity and 90% sensitivity), indicating that circulating exosomes with lung SAgs can be used as a non-invasive biomarker for identifying LTxRs at risk for BOS.
Collapse
Affiliation(s)
- Monal Sharma
- Norton Thoracic Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| | | | | | - Cynthia E Fisher
- Deparment of Medicine, University of Washington, Seattle, Washington
| | - Ajit P Limaye
- Deparment of Medicine, University of Washington, Seattle, Washington
| | - Chengcheng Hu
- Department of Epidemiology and Biostatistics, University of Arizona, Phoenix, Arizona
| | - John McDyer
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vaidehi Kaza
- Internal Medicine-Pulmonary Disease, University of Texas Southwestern, Dallas, Texas
| | - Ankit Bharat
- Department of Surgery-Thoracic, Northwestern University, Chicago, Illinois
| | - Sofya Tokman
- Norton Thoracic Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Ashraf Omar
- Norton Thoracic Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Ashwini Arjuna
- Norton Thoracic Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Rajat Walia
- Norton Thoracic Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Ross M Bremner
- Norton Thoracic Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Michael A Smith
- Norton Thoracic Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Ramsey R Hachem
- Department of Internal Medicine, Washington University Medical School, St Louis, Missouri
| | | |
Collapse
|
34
|
Cheung TS, Bertolino GM, Giacomini C, Bornhäuser M, Dazzi F, Galleu A. Mesenchymal Stromal Cells for Graft Versus Host Disease: Mechanism-Based Biomarkers. Front Immunol 2020; 11:1338. [PMID: 32670295 PMCID: PMC7330053 DOI: 10.3389/fimmu.2020.01338] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
The immunosuppressive activity of mesenchymal stromal cells (MSCs) in graft versus host disease (GvHD) is well-documented, but their therapeutic benefit is rather unpredictable. Prospective randomized clinical trials remain the only means to address MSC clinical efficacy. However, the imperfect understanding of MSC biological mechanisms has undermined patients' stratification and the successful design of clinical studies. Furthermore, although MSC efficacy seems to be dependent on patient-associated factors, the role of patients' signature to predict and/or monitor clinical outcomes remains poorly elucidated. The analysis of GvHD patient serum has identified a set of molecules that are associated with high mortality. However, despite their importance in defining GvHD severity, their role in predicting or monitoring response to MSCs has not been confirmed. A new perspective on the use of MSCs for GvHD has been prompted by the recent findings that MSCs are actively induced to undergo apoptosis by recipient cytotoxic cells and that this process is essential to initiate MSC-induced immunosuppression. This discovery has not only reconciled the conundrum between MSC efficacy and their lack of engraftment, but also highlighted the determinant role of the patient in promoting and delivering MSC immunosuppression. In this review we will revisit the extensive use of MSCs for the treatment of GvHD and will elaborate on the need that future clinical trials must depend on mechanistic approaches that facilitate the development of robust and consistent assays to stratify patients and monitor clinical outcomes.
Collapse
Affiliation(s)
- Tik Shing Cheung
- School of Cancer and Pharmacological Sciences and KHP Cancer Research UK Centre, King's College London, London, United Kingdom
| | - Giuliana Minani Bertolino
- School of Cancer and Pharmacological Sciences and KHP Cancer Research UK Centre, King's College London, London, United Kingdom
| | - Chiara Giacomini
- School of Cancer and Pharmacological Sciences and KHP Cancer Research UK Centre, King's College London, London, United Kingdom
| | | | - Francesco Dazzi
- School of Cancer and Pharmacological Sciences and KHP Cancer Research UK Centre, King's College London, London, United Kingdom
| | - Antonio Galleu
- School of Cancer and Pharmacological Sciences and KHP Cancer Research UK Centre, King's College London, London, United Kingdom
| |
Collapse
|
35
|
Hsin MKY, Liu M. Commentary: It's time for exosomes to get the limelight in lung transplant. J Thorac Cardiovasc Surg 2020; 161:e136-e137. [PMID: 32534751 DOI: 10.1016/j.jtcvs.2020.04.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Michael K Y Hsin
- Department of Cardiothoracic Surgery, Queen Mary Hospital, Hong Kong.
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Isolation and characterization of extracellular vesicles from Broncho-alveolar lavage fluid: a review and comparison of different methods. Respir Res 2019; 20:240. [PMID: 31666080 PMCID: PMC6822481 DOI: 10.1186/s12931-019-1210-z] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membranous vesicles secreted by cells into the extracellular space, which play a role in cell to cell communication. EVs are categorized into 3 groups depending on their size, surface marker, and method of release from the host cell. Recently, EVs have become of interest in the study of multiple disease etiologies and are believed to be potential biomarkers for many diseases. Multiple different methods have been developed to isolate EVs from different samples such as cell culture medium, serum, blood, and urine. Once isolated, EVs can be characterized by technology such as nanotracking analysis, dynamic light scattering, and nanoscale flow cytometry. In this review, we summarize the current methods of EV isolation, provide details into the three methods of EV characterization, and provide insight into which isolation approaches are most suitable for EV isolation from bronchoalveolar lavage fluid (BALF).
Collapse
|
37
|
Sureshbabu A, Fleming T, Mohanakumar T. Autoantibodies in lung transplantation. Transpl Int 2019; 33:41-49. [PMID: 31393646 DOI: 10.1111/tri.13487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/22/2019] [Accepted: 08/04/2019] [Indexed: 12/12/2022]
Abstract
Chronic lung allograft dysfunction (CLAD) comprises both bronchiolitis obliterans syndrome and restrictive allograft syndrome as subtypes. After lung transplantation, CLAD remains a major limitation for long-term survival, and lung transplant recipients therefore have poorer outcomes compared with recipients of other solid organ transplants. Although the number of lung transplants continues to increase globally, the field demands detailed understanding of immunoregulatory mechanisms and more effective individualized therapies to combat CLAD. Emerging evidence suggests that CLAD is multifactorial and involves a complex, delicate interplay of multiple factors, including perioperative donor characteristics, inflammation induced immediately following transplant, post-transplant infection and interplay between allo- and autoimmunity directed to donor antigens. Recently, identification of stress-induced exosome release from the transplanted organ has emerged as an underlying mechanism in the development of chronic rejection and promises to prompt novel strategies for future therapeutic interventions. In this review, we will discuss recent studies and ongoing research into the mechanisms for the development of CLAD, with emphasis on immune responses to lung-associated self-antigens-that is, autoimmunity.
Collapse
Affiliation(s)
- Angara Sureshbabu
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | | |
Collapse
|
38
|
Macrophages exposed to HIV viral protein disrupt lung epithelial cell integrity and mitochondrial bioenergetics via exosomal microRNA shuttling. Cell Death Dis 2019; 10:580. [PMID: 31371699 PMCID: PMC6675785 DOI: 10.1038/s41419-019-1803-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022]
Abstract
Antiretroviral therapy extends survival but does not eliminate HIV from its cellular reservoirs. Between immune and stromal cells in the tissue microenvironment, a dynamic intercellular communication might influence host viral immune responses via intercellular transfer of extracellular vehicles (EVs) (microvesicles, exosome, or apoptotic bodies). It is increasingly recognized that HIV-infected macrophage-secreted nucleotide-rich exosomes might play a critical role in mediating communication between macrophages and other structural cells; however, molecular mechanisms underlying cell–cell crosstalk remain unknown. Here we show that HIV-1-infected macrophages and HIV-1 proteins Tat or gp120-treated macrophages express high levels of microRNAs, including miR-23a and miR-27a. Identical miRNAs expression patterns were detected in macrophage-secreted exosomes isolated from bronchoalveolar lavage fluid of HIV transgenic rats. Tat-treated macrophage-derived exosomal miR-23a attenuated posttranscriptional modulation of key tight junction protein zonula occludens (ZO-1) 3′-UTR in epithelial cells. In parallel, exosomal miR-27a released from Tat-treated macrophages altered the mitochondrial bioenergetics of recipient lung epithelial cells by targeting peroxisome proliferator-activated receptor gamma (PPARγ), while simultaneously stimulating glycolysis. Together, exosomal miRNAs shuttle from macrophages to epithelial cells and thereby explain in part HIV-mediated lung epithelial barrier dysfunction. These studies suggest that targeting miRNAs may be of therapeutic value to enhance lung health in HIV.
Collapse
|
39
|
Paladini SV, Pinto GH, Bueno RH, Calloni R, Recamonde-Mendoza M. Identification of Candidate Biomarkers for Transplant Rejection from Transcriptome Data: A Systematic Review. Mol Diagn Ther 2019; 23:439-458. [PMID: 31054051 DOI: 10.1007/s40291-019-00397-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Traditional methods for rejection control in transplanted patients are considered invasive, risky, and prone to sampling errors. Using molecular biomarkers as an alternative protocol to biopsies, for monitoring rejection may help to mitigate some of these problems, increasing the survival rates and well-being of patients. Recent advances in omics technologies provide an opportunity for screening new molecular biomarkers to identify those with clinical utility. OBJECTIVE This systematic literature review (SLR) aimed to summarize existing evidence derived from large-scale expression profiling regarding differentially expressed mRNA and miRNA in graft rejection, highlighting potential molecular biomarkers in transplantation. METHODS The study was conducted following PRISMA methodology and the BiSLR guide for performing SLR in bioinformatics. PubMed, ScienceDirect, and EMBASE were searched for publications from January 2001 to January 2018, and studies (i) aiming at the identification of transplant rejection biomarkers, (ii) including human subjects, and (iii) applying methodologies for differential expression analysis from large-scale expression profiling were considered eligible. Differential expression patterns reported for genes and miRNAs in rejection were summarized from both cross-organ and organ-specific perspectives, and pathways enrichment analysis was performed for candidate biomarkers to interrogate their functional role in transplant rejection. RESULTS A total of 821 references were collected, resulting in 604 studies after removal of duplicates. After application of inclusion and exclusion criteria, 33 studies were included in our analysis. Among the 1517 genes and 174 miRNAs identifed, CXCL9, CXCL10, STAT1, hsa-miR-142-3p, and hsa-miR-155 appeared to be particularly promising as biomarkers in transplantation, with an increased expression associated with transplant rejection in multiple organs. In addition, hsa-miR-28-5p was consistently decreased in samples taken from rejected organs. CONCLUSION Despite the need for further research to fill existing knowledge gaps, transcriptomic technologies have a relevant role in the discovery of accurate biomarkers for transplant rejection diagnostics. Studies have reported consistent evidence of differential expression associated with transplant rejection, although issues such as experimental heterogeneity hinder a more systematic characterization of observed molecular changes. Special attention has been giving to large-scale mRNA expression profiling in rejection, whereas there is still room for improvements in the characterization of miRnome in this condition. PROSPERO REGISTRATION NUMBER CRD42018083321.
Collapse
Affiliation(s)
- Sheyla Velasques Paladini
- Experimental and Molecular Cardiovascular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Post-Graduate Program in Cardiology and Cardiovascular Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Graziela Hünning Pinto
- Experimental and Molecular Cardiovascular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Post-Graduate Program in Cardiology and Cardiovascular Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo Haas Bueno
- Experimental and Molecular Cardiovascular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Raquel Calloni
- Instituto Federal de Educação, Ciência e Tecnologia Sul-Rio Grandense-Campus Gravataí, Gravataí, RS, Brazil
| | - Mariana Recamonde-Mendoza
- Post-Graduate Program in Cardiology and Cardiovascular Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Institute of Informatics, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Setor IV, Building 43424, Office 225, Porto Alegre, RS, 91501-970, Brazil.
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
40
|
Compelling scientific and clinical evidence that non-HLA specific antibodies impact graft outcome independently and in concert with donor HLA specific antibodies. Hum Immunol 2019; 80:555-560. [PMID: 31279533 DOI: 10.1016/j.humimm.2019.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Mirzakhani M, Mohammadnia-Afrouzi M, Shahbazi M, Mirhosseini SA, Hosseini HM, Amani J. The exosome as a novel predictive/diagnostic biomarker of rejection in the field of transplantation. Clin Immunol 2019; 203:134-141. [PMID: 31077803 DOI: 10.1016/j.clim.2019.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/12/2019] [Accepted: 04/22/2019] [Indexed: 01/08/2023]
Abstract
Finding a non-invasive biomarker to monitor allograft status after transplantation could contribute to better control of the post-transplant status of transplant recipients and, if possible, could be used instead of invasive biopsy for proving rejection. On the other hand, reducing the dosage of immunosuppression or stopping lifelong use of them because of their severe side effects is an important goal in order to dispose of their severe side effects. The ability of exosomes as a biomarker of rejection and as a therapeutic strategy was investigated in the human kidney, heart, and lung transplantation or in transplantation models with interesting results. Moreover, the ability of exosome was assessed as antigen-presenting vesicles (APVs), in which exosomes can either participate in immune stimulation (semi-direct recognition) or immune suppression thereby, influence on the transplantation outcome. In this paper, authors try to provide comprehensive information about triple role of exosomes in the transplantation medicine.
Collapse
Affiliation(s)
- Mohammad Mirzakhani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mousa Mohammadnia-Afrouzi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Shahbazi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Huang MB, Xia M, Gao Z, Zhou H, Liu M, Huang S, Zhen R, Wu JY, Roth WW, Bond VC, Xiao J, Leng J. Characterization of Exosomes in Plasma of Patients with Breast, Ovarian, Prostate, Hepatic, Gastric, Colon, and Pancreatic Cancers. JOURNAL OF CANCER THERAPY 2019; 10:382-399. [PMID: 33833900 PMCID: PMC8025783 DOI: 10.4236/jct.2019.105032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Detection of circulating tumor-specific DNA, RNA or proteins can be difficult due to relative scarcity. Exosomes are extracellular vesicles, 30 - 150 nm in diameter derived from fusion of multivesicular bodies with the plasma membrane. They are composed of a lipid bilayer membrane and contain proteins, mRNA and miRNA. Exosomes are secreted by multiple cell types, including cancer cells. However, there is a relative lack of information concerning the contents of exosomes secreted by various tumor cell types. To examine exosomes in cancer, we collected blood plasma samples from patients with breast, ovarian, prostate, hepatic, gastric, colon, and pancreatic cancers. Exosomes were isolated from plasma and confirmed by AchE assay, transmission electron microscopy and expression of the CD63 exosomal marker. Expression of AFP, CA724, CA153, CEA, CA125, CA199 and PSA antigens were determined using an automated electro-chemiluminescence assay. Expression of the tumor-related chaperone protein, mortalin, was determined by Western blot analysis. Levels of exosome secretion were variable among the different tumor types. Both exosome levels and mortalin expression within tumor cell exosomes were higher than in healthy donors, except in pancreatic carcinoma, where exosomes were elevated but mortalin expression was not significantly different from healthy donors. Exosomes provide unique opportunities for the enrichment of tumor-specific materials and may be useful as biomarkers and possibly as tools of cancer therapies. Mortalin, which has been linked to cell proliferation and induction of epithelial-mesenchymal transition of cancer cells, may be useful as a prognostic bio-marker and as a possible therapeutic target.
Collapse
Affiliation(s)
- Ming-Bo Huang
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Meng Xia
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhao Gao
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hu Zhou
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Min Liu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Shan Huang
- Tumor hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China
| | - Rong Zhen
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jennifer Y. Wu
- Columbia College, Columbia University, New York, NY, USA
| | - William W. Roth
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Vincent C. Bond
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Jian Xiao
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jing Leng
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
43
|
Akbarpour M, Bharat A. Lung Injury and Loss of Regulatory T Cells Primes for Lung-Restricted Autoimmunity. Crit Rev Immunol 2019; 37:23-37. [PMID: 29431077 DOI: 10.1615/critrevimmunol.2017024944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lung transplantation is a life-saving therapy for several end-stage lung diseases. However, lung allografts suffer from the lowest survival rate predominantly due to rejection. The pathogenesis of alloimmunity and its role in allograft rejection has been extensively studied and multiple approaches have been described to induce tolerance. However, in the context of lung transplantation, dysregulation of mechanisms, which maintain tolerance against self-antigens, can lead to lung-restricted autoimmunity, which has been recently identified to drive the immunopathogenesis of allograft rejection. Indeed, both preexisting as well as de novo lung-restricted autoimmunity can play a major role in the development of lung allograft rejection. The three most widely studied lung-restricted self-antigens include collagen type I, collagen type V, and k-alpha 1 tubulin. In this review, we discuss the role of lung-restricted autoimmunity in the development of both early as well as late lung allograft rejection and recent literature providing insight into the development of lung-restricted autoimmunity through the dysfunction of immune mechanisms which maintain peripheral tolerance.
Collapse
Affiliation(s)
- Mahzad Akbarpour
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ankit Bharat
- Division of Thoracic Surgery, Department of Surgery; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
44
|
Ravichandran R, Bansal S, Rahman M, Sharma M, Liu W, Bharat A, Hachem R, Omar A, Smith MA, Mohanakumar T. The role of donor-derived exosomes in lung allograft rejection. Hum Immunol 2019; 80:588-594. [PMID: 30898684 DOI: 10.1016/j.humimm.2019.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/12/2019] [Accepted: 03/17/2019] [Indexed: 12/20/2022]
Abstract
Lung transplant recipients (LTxRs) with acute or chronic rejection release circulating exosomes that mostly originate from donor lung tissue and express mismatched human leucocyte antigens (HLA) and lung-associated self-antigens (SAgs), Collagen-V and K alpha 1 Tubulin. During lung transplant (LTx), donor lungs often undergo injuries that increase the antigenicity of the transplanted organ. 30% of LTxRs also have pre-transplant antibodies (Abs) to HLA and lung SAgs, which may induce conditions that increase the risk of chronic lung allograft dysfunction (CLAD). Post-transplant, some recipients experience de novo development of Abs to mismatched donor HLA (donor-specific antibody [DSA]) and Abs to lung SAgs, which have been implicated in CLAD pathogenesis. Because most LTxRs who develop DSA also develop Abs to SAgs, some have suggested a synergistic relationship between alloimmunity and autoimmunity in CLAD immunopathogenesis. These processes likely occur from stress-induced exosome release. Exosomes carry allo-antigens, lung SAgs, several micro RNAs, proteasome, co-stimulatory molecules, and pro-inflammatory transcription factors-resulting in efficient antigen presentation by direct, semidirect, and indirect pathways, leading to immune responses to both allo-antigens and lung-associated SAgs. This review summarizes recent findings on the role of exosomes, and processes triggering immune responses to allo-antigens and lung SAgs that ultimately culminate in CLAD.
Collapse
Affiliation(s)
| | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Mohammad Rahman
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Monal Sharma
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Wei Liu
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Ankit Bharat
- Department of Surgery, Northwestern Feinberg School of Medicine, Chicago, IL, United States
| | - Ramsey Hachem
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Ashraf Omar
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Michael A Smith
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - T Mohanakumar
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States.
| |
Collapse
|
45
|
Gézsi A, Kovács Á, Visnovitz T, Buzás EI. Systems biology approaches to investigating the roles of extracellular vesicles in human diseases. Exp Mol Med 2019; 51:1-11. [PMID: 30872567 PMCID: PMC6418293 DOI: 10.1038/s12276-019-0226-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed structures secreted by cells. In the past decade, EVs have attracted substantial attention as carriers of complex intercellular information. They have been implicated in a wide variety of biological processes in health and disease. They are also considered to hold promise for future diagnostics and therapy. EVs are characterized by a previously underappreciated heterogeneity. The heterogeneity and molecular complexity of EVs necessitates high-throughput analytical platforms for detailed analysis. Recently, mass spectrometry, next-generation sequencing and bioinformatics tools have enabled detailed proteomic, transcriptomic, glycomic, lipidomic, metabolomic, and genomic analyses of EVs. Here, we provide an overview of systems biology experiments performed in the field of EVs. Furthermore, we provide examples of how in silico systems biology approaches can be used to identify correlations between genes involved in EV biogenesis and human diseases. Using a knowledge fusion system, we investigated whether certain groups of proteins implicated in the biogenesis/release of EVs were associated with diseases and phenotypes. Furthermore, we investigated whether these proteins were enriched in publicly available transcriptomic datasets using gene set enrichment analysis methods. We found associations between key EV biogenesis proteins and numerous diseases, which further emphasizes the key role of EVs in human health and disease.
Collapse
Affiliation(s)
- András Gézsi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Árpád Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary.
| |
Collapse
|
46
|
A novel mechanism for immune regulation after human lung transplantation. J Thorac Cardiovasc Surg 2019; 157:2096-2106. [PMID: 31288367 PMCID: PMC6625531 DOI: 10.1016/j.jtcvs.2018.12.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/13/2018] [Accepted: 12/02/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Lung transplantation is therapeutic for end-stage lung disease, but survival is limited due to bronchiolitis obliterans syndrome and restrictive chronic lung allograft dysfunction. We sought a common denominator in lung transplant recipients, analyzing risk factors that trigger immune responses that lead to bronchiolitis obliterans syndrome. METHODS We collected blood from patients who underwent lung transplant at our institution. Exosomes were isolated from the sera of recipients with risk factors for chronic rejection and from stable recipients. Exosomes were analyzed with western blot, using antibodies to lung self-antigens K alpha 1 tubulin and collagen-V, costimulatory molecules (costimulatory molecule 80, costimulatory molecule 86), transcription factors (nuclear factor kappa-light-chain-enhancer of activated B cells, hypoxia-inducible factor 1α, Class II Major Histocompatibility Complex Transactivator), and 20S proteasome. RESULTS Of the 90 patients included, we identified 5 with grade 3 primary graft dysfunction, 5 without, 15 with respiratory viral infection, 10 with acute rejection, 10 with donor-specific antibodies (DSA), 5 without DSA, and 10 who were stable for exosome isolation. Recipients with grade 3 primary graft dysfunction, respiratory viral infection, acute rejection, and DSA had exosomes containing self-antigens; exosomes from stable recipients did not. Exosomes from recipients with grade 3 primary graft dysfunction, acute rejection, and DSA also demonstrated costimulatory molecule 80, costimulatory molecule 86, major histocompatibility complex class II, transcription factor, and 20S proteasome. CONCLUSIONS Transplanted lungs with grade 3 primary graft dysfunction, symptomatic respiratory viral infection, acute rejection, and immune responses induce exosomes that contain self-antigens, costimulatory molecules, major histocompatibility complex class II, transcription factors, and 20S proteasome. Release of circulating exosomes post-transplant from the aforementioned stress-inducing insults augment immunity and may play an important role in the pathogenesis of bronchiolitis obliterans syndrome.
Collapse
|
47
|
Chambers DC, Carew AM, Lukowski SW, Powell JE. Transcriptomics and single‐cell RNA‐sequencing. Respirology 2018; 24:29-36. [DOI: 10.1111/resp.13412] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Daniel C. Chambers
- Queensland Lung Transplant ProgramThe Prince Charles Hospital Brisbane QLD Australia
- Faculty of HealthThe University of Queensland Brisbane QLD Australia
| | - Alan M. Carew
- Department of Thoracic MedicineThe Prince Charles Hospital Brisbane QLD Australia
| | - Samuel W. Lukowski
- Institute for Molecular BioscienceThe University of Queensland Brisbane QLD Australia
- The University of Queensland Diamantina InstituteTranslational Research Institute Brisbane QLD Australia
| | - Joseph E. Powell
- Institute for Molecular BioscienceThe University of Queensland Brisbane QLD Australia
- Garvan‐Weizmann Centre for Cellular GenomicsGarvan Institute of Medical Research Sydney NSW Australia
- St Vincent's Clinical SchoolUniversity of New South Wales Sydney NSW Australia
| |
Collapse
|
48
|
Sharma M, Ravichandran R, Bansal S, Bremner RM, Smith MA, Mohanakumar T. Tissue-associated self-antigens containing exosomes: Role in allograft rejection. Hum Immunol 2018; 79:653-658. [PMID: 29908844 PMCID: PMC6098724 DOI: 10.1016/j.humimm.2018.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
Exosomes are extracellular vesicles that express self-antigens (SAgs) and donor human leukocyte antigens. Tissue-specific exosomes can be detected in the circulation following lung, heart, kidney and islet cell transplantations. We collected serum samples from patients who had undergone lung (n = 30), heart (n = 8), or kidney (n = 15) transplantations to isolate circulating exosomes. Exosome purity was analyzed by Western blot, using CD9 exosome-specific markers. Tissue-associated lung SAgs, collagen V (Col-V) and K-alpha 1 tubulin (Kα1T), heart SAgs, myosin and vimentin, and kidney SAgs, fibronectin and collagen IV (Col-IV), were identified using western blot. Lung transplant recipients diagnosed with bronchiolitis obliterans syndrome had exosomes with higher expression of Col-V (4.2-fold) and Kα1T (37.1-fold) than stable. Exosomes isolated from heart transplant recipients diagnosed with coronary artery vasculopathy had a 3.9-fold increase in myosin and a 4.7-fold increase in vimentin compared with stable. Further, Kidney transplant recipients diagnosed with transplant glomerulopathy had circulating exosomes with a 2-fold increased expression of fibronectin and 2.5-fold increase in Col-IV compared with stable. We conclude that circulating exosomes with tissue associated SAgs have the potential to be a noninvasive biomarker for allograft rejection.
Collapse
Affiliation(s)
- Monal Sharma
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Ross M Bremner
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Michael A Smith
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - T Mohanakumar
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA.
| |
Collapse
|
49
|
Rosso L, Zanella A, Righi I, Barilani M, Lazzari L, Scotti E, Gori F, Mendogni P. Lung transplantation, ex-vivo reconditioning and regeneration: state of the art and perspectives. J Thorac Dis 2018; 10:S2423-S2430. [PMID: 30123580 DOI: 10.21037/jtd.2018.04.151] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lung transplantation is the only therapeutic option for end-stage pulmonary failure. Nevertheless, the shortage of donor pool available for transplantation does not allow to satisfy the requests, thus the mortality on the waiting list remains high. One of the tools to overcome the donor pool shortage is the use of ex-vivo lung perfusion (EVLP) to preserve, evaluate and recondition selected lung grafts not otherwise suitable for transplantation. EVLP is nowadays a clinical reality and have several destinations of use. After a narrative review of the literature and looking at our experience we can assume that one of the chances to improve the outcome of lung transplantation and to overcome the donor pool shortage could be the tissue regeneration of the graft during EVLP and the immunomodulation of the recipient. Both these strategies are performed using mesenchymal stem cells (MSC). The results of the models of lung perfusion with MSC-based cell therapy open the way to a new innovative approach that further increases the potential for using of the lung perfusion platform.
Collapse
Affiliation(s)
- Lorenzo Rosso
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Alberto Zanella
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ilaria Righi
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Mario Barilani
- Unit of Regenerative Medicine-Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Lorenza Lazzari
- Unit of Regenerative Medicine-Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eleonora Scotti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Francesca Gori
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Mendogni
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
50
|
Bansal S, Sharma M, R R, Mohanakumar T. The role of exosomes in allograft immunity. Cell Immunol 2018; 331:85-92. [PMID: 29907298 DOI: 10.1016/j.cellimm.2018.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/17/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles are emerging as potent vehicles of intercellular communication. In this review, we focus on a subclass of extracellular vesicles called exosomes. Previously considered an unimportant catch-all, exosomes have recently been recognized for their role in various diseases and their potential for therapeutic use. We have examined the role of exosomes after human lung transplantation and have delineated the composition of circulating exosomes isolated from lung transplant recipients diagnosed with acute and chronic rejection, primary graft dysfunction, and respiratory viral infection. The presence of lung-associated self-antigens (K-alpha 1 Tubulin and collagen V) and mismatched donor HLA in exosomes isolated from lung transplant recipients signifies that these exosomes originated in the transplanted lungs, and therefore dramatically affect transplant biology and immune pathways. Exosomes released from transplanted organs also carry other proteins, costimulatory molecules, and nucleic acids. Therefore, these molecules may be used as biomarkers for allograft rejection and immunity.
Collapse
|