1
|
Douglas LE, Reihill JA, Martin SL. BOS-318 treatment enhances elexacaftor-tezacaftor-ivacaftor-mediated improvements in airway hydration and mucociliary transport. ERJ Open Res 2025; 11:00445-2024. [PMID: 40013020 PMCID: PMC11863070 DOI: 10.1183/23120541.00445-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/13/2024] [Indexed: 02/28/2025] Open
Abstract
Background Cystic fibrosis transmembrane conductance regulator (CFTR) triple modulator therapy, elexacaftor-tezacaftor-ivacaftor (ETI) has transformed care for people with cystic fibrosis (CF) who have eligible mutations. It is, however, not curative. Response to treatment also varies and lung disease, although slowed, remains progressive. We have previously demonstrated inhibition of the epithelial sodium channel (ENaC) by selective furin inhibition to be an alternative, mutation-agnostic approach that can enhance airways hydration and restore mucociliary transport (MCT) in CF. Inhibition of furin therefore, offers a potential therapeutic strategy for those ineligible, intolerant or nonresponsive to ETI and may provide a further opportunity for clinical benefit for those currently treated with ETI. The aim of this study was to determine the impact of furin inhibition on ETI responses to assess its utility as an adjunct therapy. Methods Differentiated primary CF human bronchial epithelial cells (HBECs) were treated with the highly selective furin inhibitor BOS-318 and with ETI. Ion channel function was measured using a 24-channel Transepithelial Current Clamp (TECC-24) system and airways surface hydration was investigated by measuring airway surface liquid (ASL) height and MCT rate. Results The presence of BOS-318 had no effect on the ability of ETI to stimulate CFTR-mediated Cl- secretion but contributed a reduced Na+ transport via robust inhibition of ENaC. This altered ion transport profile effected an improved ASL height and MCT rate, which were significantly greater than improvements observed with ETI alone, demonstrating the benefits of the dual approach. Conclusions Selective furin inhibition has the potential to further improve clinical outcomes for all people with CF and offers opportunity as an adjunct to improve responses to currently available CFTR modulator therapies.
Collapse
|
2
|
Harvey BJ, McElvaney NG. Sex differences in airway disease: estrogen and airway surface liquid dynamics. Biol Sex Differ 2024; 15:56. [PMID: 39026347 PMCID: PMC11264786 DOI: 10.1186/s13293-024-00633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Biological sex differences exist for many airway diseases in which females have either worse or better health outcomes. Inflammatory airway diseases such as cystic fibrosis (CF) and asthma display a clear male advantage in post-puberty while a female benefit is observed in asthma during the pre-puberty years. The influence of menstrual cycle stage and pregnancy on the frequency and severity of pulmonary exacerbations in CF and asthma point to a role for sex steroid hormones, particularly estrogen, in underpinning biological sex differences in these diseases. There are many ways by which estrogen may aggravate asthma and CF involving disturbances in airway surface liquid (ASL) dynamics, inappropriate hyper-immune and allergenic responses, as well as exacerbation of pathogen virulence. The deleterious effect of estrogen on pulmonary function in CF and asthma contrasts with the female advantage observed in airway diseases characterised by pulmonary edema such as pneumonia, acute respiratory distress syndrome (ARDS) and COVID-19. Airway surface liquid hypersecretion and alveolar flooding are hallmarks of ARDS and COVID-19, and contribute to the morbidity and mortality of severe forms of these diseases. ASL dynamics encompasses the intrinsic features of the thin lining of fluid covering the airway epithelium which regulate mucociliary clearance (ciliary beat, ASL height, volume, pH, viscosity, mucins, and channel activating proteases) in addition to innate defence mechanisms (pathogen virulence, cytokines, defensins, specialised pro-resolution lipid mediators, and metabolism). Estrogen regulation of ASL dynamics contributing to biological sex differences in CF, asthma and COVID-19 is a major focus of this review.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland.
- Department of Medicine, RCSI ERC, Beaumont Hospital, Dublin 2, Ireland.
| | - Noel G McElvaney
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland
| |
Collapse
|
3
|
Ehrhardt B, Angstmann H, Höschler B, Kovacevic D, Hammer B, Roeder T, Rabe KF, Wagner C, Uliczka K, Krauss-Etschmann S. Airway specific deregulation of asthma-related serpins impairs tracheal architecture and oxygenation in D. melanogaster. Sci Rep 2024; 14:16567. [PMID: 39019933 PMCID: PMC11255251 DOI: 10.1038/s41598-024-66752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/03/2024] [Indexed: 07/19/2024] Open
Abstract
Serine proteases are important regulators of airway epithelial homeostasis. Altered serum or cellular levels of two serpins, Scca1 and Spink5, have been described for airway diseases but their function beyond antiproteolytic activity is insufficiently understood. To close this gap, we generated fly lines with overexpression or knockdown for each gene in the airways. Overexpression of both fly homologues of Scca1 and Spink5 induced the growth of additional airway branches, with more variable results for the respective knockdowns. Dysregulation of Scca1 resulted in a general delay in fruit fly development, with increases in larval and pupal mortality following overexpression of this gene. In addition, the morphological changes in the airways were concomitant with lower tolerance to hypoxia. In conclusion, the observed structural changes of the airways evidently had a strong impact on the airway function in our model as they manifested in a lower physical fitness of the animals. We assume that this is due to insufficient tissue oxygenation. Future work will be directed at the identification of key molecular regulators following the airway-specific dysregulation of Scca1 and Spink5 expression.
Collapse
Affiliation(s)
- Birte Ehrhardt
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Hanna Angstmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Beate Höschler
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Draginja Kovacevic
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Barbara Hammer
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University Kiel, Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Klaus F Rabe
- Department of Pneumology, LungenClinic, Grosshansdorf, Germany
- Department of Medicine, Christian Albrechts University, Kiel, Germany
| | - Christina Wagner
- Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| | - Karin Uliczka
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| | - Susanne Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany.
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.
- Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany.
| |
Collapse
|
4
|
Fagunwa O, Davies K, Bradbury J. The Human Gut and Dietary Salt: The Bacteroides/ Prevotella Ratio as a Potential Marker of Sodium Intake and Beyond. Nutrients 2024; 16:942. [PMID: 38612976 PMCID: PMC11013828 DOI: 10.3390/nu16070942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The gut microbiota is a dynamic ecosystem that plays a pivotal role in maintaining host health. The perturbation of these microbes has been linked to several health conditions. Hence, they have emerged as promising targets for understanding and promoting good health. Despite the growing body of research on the role of sodium in health, its effects on the human gut microbiome remain under-explored. Here, using nutrition and metagenomics methods, we investigate the influence of dietary sodium intake and alterations of the human gut microbiota. We found that a high-sodium diet (HSD) altered the gut microbiota composition with a significant reduction in Bacteroides and inverse increase in Prevotella compared to a low-sodium diet (LSD). However, there is no clear distinction in the Firmicutes/Bacteroidetes (F/B) ratio between the two diet types. Metabolic pathway reconstruction revealed the presence of sodium reabsorption genes in the HSD, but not LSD. Since it is currently difficult in microbiome studies to confidently associate the F/B ratio with what is considered healthy (e.g., low sodium) or unhealthy (e.g., high sodium), we suggest that the use of a genus-based ratio such as the Bacteroides/Prevotella (B/P) ratio may be more beneficial for the application of microbiome studies in health.
Collapse
Affiliation(s)
- Omololu Fagunwa
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK
| | - Kirsty Davies
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK;
| | - Jane Bradbury
- School of Medicine, Edge Hill University, Ormskirk L39 4QP, UK;
| |
Collapse
|
5
|
Abrami M, Biasin A, Tescione F, Tierno D, Dapas B, Carbone A, Grassi G, Conese M, Di Gioia S, Larobina D, Grassi M. Mucus Structure, Viscoelastic Properties, and Composition in Chronic Respiratory Diseases. Int J Mol Sci 2024; 25:1933. [PMID: 38339210 PMCID: PMC10856136 DOI: 10.3390/ijms25031933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The respiratory mucus, a viscoelastic gel, effectuates a primary line of the airway defense when operated by the mucociliary clearance. In chronic respiratory diseases (CRDs), such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF), the mucus is overproduced and its solid content augments, changing its structure and viscoelastic properties and determining a derangement of essential defense mechanisms against opportunistic microbial (virus and bacteria) pathogens. This ensues in damaging of the airways, leading to a vicious cycle of obstruction and infection responsible for the harsh clinical evolution of these CRDs. Here, we review the essential features of normal and pathological mucus (i.e., sputum in CF, COPD, and asthma), i.e., mucin content, structure (mesh size), micro/macro-rheology, pH, and osmotic pressure, ending with the awareness that sputum biomarkers (mucins, inflammatory proteins and peptides, and metabolites) might serve to indicate acute exacerbation and response to therapies. There are some indications that old and novel treatments may change the structure, viscoelastic properties, and biomarker content of sputum; however, a wealth of work is still needed to embrace these measures as correlates of disease severity in association with (or even as substitutes of) pulmonary functional tests.
Collapse
Affiliation(s)
- Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| | - Alice Biasin
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| | - Fabiana Tescione
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, I-80055 Portici, Italy; (F.T.); (D.L.)
| | - Domenico Tierno
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.)
| | - Barbara Dapas
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy;
| | - Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Gabriele Grassi
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.)
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Domenico Larobina
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, I-80055 Portici, Italy; (F.T.); (D.L.)
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| |
Collapse
|
6
|
Aufy M, Hussein AM, Stojanovic T, Studenik CR, Kotob MH. Proteolytic Activation of the Epithelial Sodium Channel (ENaC): Its Mechanisms and Implications. Int J Mol Sci 2023; 24:17563. [PMID: 38139392 PMCID: PMC10743461 DOI: 10.3390/ijms242417563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Epithelial sodium channel (ENaC) are integral to maintaining salt and water homeostasis in various biological tissues, including the kidney, lung, and colon. They enable the selective reabsorption of sodium ions, which is a process critical for controlling blood pressure, electrolyte balance, and overall fluid volume. ENaC activity is finely controlled through proteolytic activation, a process wherein specific enzymes, or proteases, cleave ENaC subunits, resulting in channel activation and increased sodium reabsorption. This regulatory mechanism plays a pivotal role in adapting sodium transport to different physiological conditions. In this review article, we provide an in-depth exploration of the role of proteolytic activation in regulating ENaC activity. We elucidate the involvement of various proteases, including furin-like convertases, cysteine, and serine proteases, and detail the precise cleavage sites and regulatory mechanisms underlying ENaC activation by these proteases. We also discuss the physiological implications of proteolytic ENaC activation, focusing on its involvement in blood pressure regulation, pulmonary function, and intestinal sodium absorption. Understanding the mechanisms and consequences of ENaC proteolytic activation provides valuable insights into the pathophysiology of various diseases, including hypertension, pulmonary disorders, and various gastrointestinal conditions. Moreover, we discuss the potential therapeutic avenues that emerge from understanding these mechanisms, offering new possibilities for managing diseases associated with ENaC dysfunction. In summary, this review provides a comprehensive discussion of the intricate interplay between proteases and ENaC, emphasizing the significance of proteolytic activation in maintaining sodium and fluid balance in both health and disease.
Collapse
Affiliation(s)
- Mohammed Aufy
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
| | - Ahmed M. Hussein
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Tamara Stojanovic
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Christian R. Studenik
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
| | - Mohamed H. Kotob
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
7
|
Douglas LEJ, Reihill JA, Montgomery BM, Martin SL. Furin as a therapeutic target in cystic fibrosis airways disease. Eur Respir Rev 2023; 32:32/168/220256. [PMID: 37137509 PMCID: PMC10155048 DOI: 10.1183/16000617.0256-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/22/2023] [Indexed: 05/05/2023] Open
Abstract
Clinical management of cystic fibrosis (CF) has been greatly improved by the development of small molecule modulators of the CF transmembrane conductance regulator (CFTR). These drugs help to address some of the basic genetic defects of CFTR; however, no suitable CFTR modulators exist for 10% of people with CF (PWCF). An alternative, mutation-agnostic therapeutic approach is therefore still required. In CF airways, elevated levels of the proprotein convertase furin contribute to the dysregulation of key processes that drive disease pathogenesis. Furin plays a critical role in the proteolytic activation of the epithelial sodium channel; hyperactivity of which causes airways dehydration and loss of effective mucociliary clearance. Furin is also responsible for the processing of transforming growth factor-β, which is increased in bronchoalveolar lavage fluid from PWCF and is associated with neutrophilic inflammation and reduced pulmonary function. Pathogenic substrates of furin include Pseudomonas exotoxin A, a major toxic product associated with Pseudomonas aeruginosa infection and the spike glycoprotein of severe acute respiratory syndrome coronavirus 2, the causative pathogen for coronavirus disease 2019. In this review we discuss the importance of furin substrates in the progression of CF airways disease and highlight selective furin inhibition as a therapeutic strategy to provide clinical benefit to all PWCF.
Collapse
Affiliation(s)
- Lisa E J Douglas
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - James A Reihill
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | - S Lorraine Martin
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
8
|
Lemmens-Gruber R, Tzotzos S. The Epithelial Sodium Channel-An Underestimated Drug Target. Int J Mol Sci 2023; 24:ijms24097775. [PMID: 37175488 PMCID: PMC10178586 DOI: 10.3390/ijms24097775] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Epithelial sodium channels (ENaC) are part of a complex network of interacting biochemical pathways and as such are involved in several disease states. Dependent on site and type of mutation, gain- or loss-of-function generated symptoms occur which span from asymptomatic to life-threatening disorders such as Liddle syndrome, cystic fibrosis or generalized pseudohypoaldosteronism type 1. Variants of ENaC which are implicated in disease assist further understanding of their molecular mechanisms in order to create models for specific pharmacological targeting. Identification and characterization of ENaC modifiers not only furthers our basic understanding of how these regulatory processes interact, but also enables discovery of new therapeutic targets for the disease conditions caused by ENaC dysfunction. Numerous test compounds have revealed encouraging results in vitro and in animal models but less in clinical settings. The EMA- and FDA-designated orphan drug solnatide is currently being tested in phase 2 clinical trials in the setting of acute respiratory distress syndrome, and the NOX1/ NOX4 inhibitor setanaxib is undergoing clinical phase 2 and 3 trials for therapy of primary biliary cholangitis, liver stiffness, and carcinoma. The established ENaC blocker amiloride is mainly used as an add-on drug in the therapy of resistant hypertension and is being studied in ongoing clinical phase 3 and 4 trials for special applications. This review focuses on discussing some recent developments in the search for novel therapeutic agents.
Collapse
Affiliation(s)
- Rosa Lemmens-Gruber
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | | |
Collapse
|
9
|
Ramos-Llorca A, Decraecker L, Cacheux VMY, Zeiburlina I, De bruyn M, Battut L, Moreno-Cinos C, Ceradini D, Espinosa E, Dietrich G, Berg M, De Meester I, Van Der Veken P, Boeckxstaens G, Lambeir AM, Denadai-Souza A, Augustyns K. Chemically diverse activity-based probes with unexpected inhibitory mechanisms targeting trypsin-like serine proteases. Front Chem 2023; 10:1089959. [PMID: 36688031 PMCID: PMC9849758 DOI: 10.3389/fchem.2022.1089959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Activity-based probes (ABP) are molecules that bind covalently to the active form of an enzyme family, making them an attractive tool for target and biomarker identification and drug discovery. The present study describes the synthesis and biochemical characterization of novel activity-based probes targeting trypsin-like serine proteases. We developed an extensive library of activity-based probes with "clickable" affinity tags and a diaryl phosphonate warhead. A wide diversity was achieved by including natural amino acid analogs as well as basic polar residues as side chains. A detailed enzymatic characterization was performed in a panel of trypsin-like serine proteases. Their inhibitory potencies and kinetic profile were examined, and their IC50 values, mechanism of inhibition, and kinetic constants were determined. The activity-based probes with a benzyl guanidine side chain showed the highest inhibitory effects in the panel. Surprisingly, some of the high-affinity probes presented a reversible inhibitory mechanism. On the other hand, probes with different side chains exhibited the expected irreversible mechanism. For the first time, we demonstrate that not only irreversible probes but also reversible probes can tightly label recombinant proteases and proteases released from human mast cells. Even under denaturing SDS-PAGE conditions, reversible slow-tight-binding probes can label proteases due to the formation of high-affinity complexes and slow dissociation rates. This unexpected finding will transform the view on the required irreversible nature of activity-based probes. The diversity of this library of activity-based probes combined with a detailed enzyme kinetic characterization will advance their applications in proteomic studies and drug discovery.
Collapse
Affiliation(s)
- Alba Ramos-Llorca
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Lisse Decraecker
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Valérie M. Y. Cacheux
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Irena Zeiburlina
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Michelle De bruyn
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Louise Battut
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Carlos Moreno-Cinos
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Eric Espinosa
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Maya Berg
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Guy Boeckxstaens
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Alexandre Denadai-Souza
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Ferguson TEG, Reihill JA, Martin SL, Walker B. Novel inhibitors and activity-based probes targeting serine proteases. Front Chem 2022; 10:1006618. [PMID: 36247662 PMCID: PMC9555310 DOI: 10.3389/fchem.2022.1006618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Serine proteases play varied and manifold roles in important biological, physiological, and pathological processes. These include viral, bacterial, and parasitic infection, allergic sensitization, tumor invasion, and metastasis. The use of activity-based profiling has been foundational in pinpointing the precise roles of serine proteases across this myriad of processes. A broad range of serine protease-targeted activity-based probe (ABP) chemotypes have been developed and we have recently introduced biotinylated and "clickable" peptides containing P1 N-alkyl glycine arginine N-hydroxy succinimidyl (NHS) carbamates as ABPs for detection/profiling of trypsin-like serine proteases. This present study provides synthetic details for the preparation of additional examples of this ABP chemotype, which function as potent irreversible inhibitors of their respective target serine protease. We describe their use for the activity-based profiling of a broad range of serine proteases including trypsin, the trypsin-like protease plasmin, chymotrypsin, cathepsin G, and neutrophil elastase (NE), including the profiling of the latter protease in clinical samples obtained from patients with cystic fibrosis.
Collapse
Affiliation(s)
| | | | | | - Brian Walker
- Biomolecular Sciences Research Group, School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
11
|
Douglas LEJ, Reihill JA, Ho MWY, Axten JM, Campobasso N, Schneck JL, Rendina AR, Wilcoxen KM, Martin SL. A highly selective, cell-permeable furin inhibitor BOS-318 rescues key features of cystic fibrosis airway disease. Cell Chem Biol 2022; 29:947-957.e8. [PMID: 35202587 DOI: 10.1016/j.chembiol.2022.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
In cystic fibrosis (CF), excessive furin activity plays a critical role in the activation of the epithelial sodium channel (ENaC), dysregulation of which contributes to airway dehydration, ineffective mucociliary clearance (MCC), and mucus obstruction. Here, we report a highly selective, cell-permeable furin inhibitor, BOS-318, that derives selectivity by eliciting the formation of a new, unexpected binding pocket independent of the active site catalytic triad. Using human ex vivo models, BOS-318 showed significant suppression of ENaC, which led to enhanced airway hydration and an ∼30-fold increase in MCC rate. Furin inhibition also protected ENaC from subsequent activation by neutrophil elastase, a soluble protease dominant in CF airways. Additional therapeutic benefits include protection against epithelial cell death induced by Pseudomonas aeruginosa exotoxin A. Our findings demonstrate the utility of selective furin inhibition as a mutation-agnostic approach that can correct features of CF airway pathophysiology in a manner expected to deliver therapeutic value.
Collapse
Affiliation(s)
- Lisa E J Douglas
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - James A Reihill
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Melisa W Y Ho
- GlaxoSmithKline Research and Development, Collegeville, PA 19426, USA
| | - Jeffrey M Axten
- GlaxoSmithKline Research and Development, Collegeville, PA 19426, USA
| | - Nino Campobasso
- GlaxoSmithKline Research and Development, Collegeville, PA 19426, USA
| | - Jessica L Schneck
- GlaxoSmithKline Research and Development, Collegeville, PA 19426, USA
| | - Alan R Rendina
- GlaxoSmithKline Research and Development, Collegeville, PA 19426, USA
| | | | - S Lorraine Martin
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
12
|
Ferguson TEG, Reihill JA, Martin SL, Walker B. Novel Inhibitors and Activity-Based Probes Targeting Trypsin-Like Serine Proteases. Front Chem 2022; 10:782608. [PMID: 35529696 PMCID: PMC9068901 DOI: 10.3389/fchem.2022.782608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The trypsin-like proteases (TLPs) play widespread and diverse roles, in a host of physiological and pathological processes including clot dissolution, extracellular matrix remodelling, infection, angiogenesis, wound healing and tumour invasion/metastasis. Moreover, these enzymes are involved in the disruption of normal lung function in a range of respiratory diseases including allergic asthma where several allergenic proteases have been identified. Here, we report the synthesis of a series of peptide derivatives containing an N-alkyl glycine analogue of arginine, bearing differing electrophilic leaving groups (carbamate and triazole urea), and demonstrate their function as potent, irreversible inhibitors of trypsin and TLPs, to include activities from cockroach extract. As such, these inhibitors are suitable for use as activity probes (APs) in activity-based profiling (ABP) applications.
Collapse
Affiliation(s)
- Timothy E G Ferguson
- Biomolecular Sciences Research Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - James A Reihill
- Biomolecular Sciences Research Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - S Lorraine Martin
- Biomolecular Sciences Research Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Brian Walker
- Biomolecular Sciences Research Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
13
|
Sure F, Bertog M, Afonso S, Diakov A, Rinke R, Madej MG, Wittmann S, Gramberg T, Korbmacher C, Ilyaskin AV. Transmembrane serine protease 2 (TMPRSS2) proteolytically activates the epithelial sodium channel (ENaC) by cleaving the channel's γ-subunit. J Biol Chem 2022; 298:102004. [PMID: 35504352 PMCID: PMC9163703 DOI: 10.1016/j.jbc.2022.102004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023] Open
Abstract
The epithelial sodium channel (ENaC) is a heterotrimer consisting of α-, β-, and γ-subunits. Channel activation requires proteolytic release of inhibitory tracts from the extracellular domains of α-ENaC and γ-ENaC; however, the proteases involved in the removal of the γ-inhibitory tract remain unclear. In several epithelial tissues, ENaC is coexpressed with the transmembrane serine protease 2 (TMPRSS2). Here, we explored the effect of human TMPRSS2 on human αβγ-ENaC heterologously expressed in Xenopus laevis oocytes. We found that coexpression of TMPRSS2 stimulated ENaC-mediated whole-cell currents by approximately threefold, likely because of an increase in average channel open probability. Furthermore, TMPRSS2-dependent ENaC stimulation was not observed using a catalytically inactive TMPRSS2 mutant and was associated with fully cleaved γ-ENaC in the intracellular and cell surface protein fractions. This stimulatory effect of TMPRSS2 on ENaC was partially preserved when inhibiting its proteolytic activity at the cell surface using aprotinin but was abolished when the γ-inhibitory tract remained attached to its binding site following introduction of two cysteine residues (S155C–Q426C) to form a disulfide bridge. In addition, computer simulations and site-directed mutagenesis experiments indicated that TMPRSS2 can cleave γ-ENaC at sites both proximal and distal to the γ-inhibitory tract. This suggests a dual role of TMPRSS2 in the proteolytic release of the γ-inhibitory tract. Finally, we demonstrated that TMPRSS2 knockdown in cultured human airway epithelial cells (H441) reduced baseline proteolytic activation of endogenously expressed ENaC. Thus, we conclude that TMPRSS2 is likely to contribute to proteolytic ENaC activation in epithelial tissues in vivo.
Collapse
Affiliation(s)
- Florian Sure
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Marko Bertog
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Sara Afonso
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Alexei Diakov
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Ralf Rinke
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - M Gregor Madej
- Department of Biophysics II/Structural Biology, University of Regensburg, Regensburg, Germany
| | - Sabine Wittmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Institute of Clinical and Molecular Virology, Erlangen, Germany
| | - Thomas Gramberg
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Institute of Clinical and Molecular Virology, Erlangen, Germany
| | - Christoph Korbmacher
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany.
| | - Alexandr V Ilyaskin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| |
Collapse
|
14
|
Kota P. Sustained inhibition of ENaC in CF: Potential RNA-based therapies for mutation-agnostic treatment. Curr Opin Pharmacol 2022; 64:102209. [PMID: 35483215 DOI: 10.1016/j.coph.2022.102209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
Abstract
Disruption of the equilibrium between ion secretion and absorption processes by the airway epithelium is central to many muco-obstructive lung diseases including cystic fibrosis (CF). Besides correction of defective folding and function of CFTR, inhibition of amiloride-sensitive epithelia sodium channels (ENaC) has emerged as a bona fide therapeutic strategy to improve mucociliary clearance in patients with CF. The short half-life of amiloride-based ENaC blockers and hyperosmotic therapies have led to the development of novel RNA-based interventions for targeted and sustained reduction of ENaC expression and function in preclinical models of CF. This review summarizes the recent advances in RNA therapeutics targeting ENaC for mutation-agnostic treatment of CF.
Collapse
Affiliation(s)
- Pradeep Kota
- Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Wang XP, Balchak DM, Gentilcore C, Clark NL, Kashlan OB. Activation by cleavage of the epithelial Na + channel α and γ subunits independently coevolved with the vertebrate terrestrial migration. eLife 2022; 11:75796. [PMID: 34984981 PMCID: PMC8791634 DOI: 10.7554/elife.75796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
Vertebrates evolved mechanisms for sodium conservation and gas exchange in conjunction with migration from aquatic to terrestrial habitats. Epithelial Na+ channel (ENaC) function is critical to systems responsible for extracellular fluid homeostasis and gas exchange. ENaC is activated by cleavage at multiple specific extracellular polybasic sites, releasing inhibitory tracts from the channel’s α and γ subunits. We found that proximal and distal polybasic tracts in ENaC subunits coevolved, consistent with the dual cleavage requirement for activation observed in mammals. Polybasic tract pairs evolved with the terrestrial migration and the appearance of lungs, coincident with the ENaC activator aldosterone, and appeared independently in the α and γ subunits. In summary, sites within ENaC for protease activation developed in vertebrates when renal Na+ conservation and alveolar gas exchange were required for terrestrial survival.
Collapse
Affiliation(s)
- Xue-Ping Wang
- Department of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Deidra M Balchak
- Department of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Clayton Gentilcore
- Department of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Nathan L Clark
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Ossama B Kashlan
- Department of Medicine, University of Pittsburgh, Pittsburgh, United States.,Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
16
|
Artunc F, Bohnert BN, Schneider JC, Staudner T, Sure F, Ilyaskin AV, Wörn M, Essigke D, Janessa A, Nielsen NV, Birkenfeld AL, Etscheid M, Haerteis S, Korbmacher C, Kanse SM. Proteolytic activation of the epithelial sodium channel (ENaC) by factor VII activating protease (FSAP) and its relevance for sodium retention in nephrotic mice. Pflugers Arch 2021; 474:217-229. [PMID: 34870751 PMCID: PMC8766372 DOI: 10.1007/s00424-021-02639-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
Proteolytic activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases is thought to contribute to renal sodium retention in nephrotic syndrome. However, the identity of the responsible proteases remains elusive. This study evaluated factor VII activating protease (FSAP) as a candidate in this context. We analyzed FSAP in the urine of patients with nephrotic syndrome and nephrotic mice and investigated its ability to activate human ENaC expressed in Xenopus laevis oocytes. Moreover, we studied sodium retention in FSAP-deficient mice (Habp2−/−) with experimental nephrotic syndrome induced by doxorubicin. In urine samples from nephrotic humans, high concentrations of FSAP were detected both as zymogen and in its active state. Recombinant serine protease domain of FSAP stimulated ENaC-mediated whole-cell currents in a time- and concentration-dependent manner. Mutating the putative prostasin cleavage site in γ-ENaC (γRKRK178AAAA) prevented channel stimulation by the serine protease domain of FSAP. In a mouse model for nephrotic syndrome, active FSAP was present in nephrotic urine of Habp2+/+ but not of Habp2−/− mice. However, Habp2−/− mice were not protected from sodium retention compared to nephrotic Habp2+/+ mice. Western blot analysis revealed that in nephrotic Habp2−/− mice, proteolytic cleavage of α- and γ-ENaC was similar to that in nephrotic Habp2+/+ animals. In conclusion, active FSAP is excreted in the urine of nephrotic patients and mice and activates ENaC in vitro involving the putative prostasin cleavage site of γ-ENaC. However, endogenous FSAP is not essential for sodium retention in nephrotic mice.
Collapse
Affiliation(s)
- Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany. .,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany. .,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany.
| | - Bernhard N Bohnert
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany
| | - Jonas C Schneider
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany
| | - Tobias Staudner
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Sure
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandr V Ilyaskin
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Wörn
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany
| | - Daniel Essigke
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany
| | - Andrea Janessa
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany
| | - Nis V Nielsen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Andreas L Birkenfeld
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany
| | | | - Silke Haerteis
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Institute of Anatomy, University of Regensburg, Regensburg, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sandip M Kanse
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Rickert-Zacharias V, Schultz M, Mall MA, Schultz C. Visualization of Ectopic Serine Protease Activity by Förster Resonance Energy Transfer-Based Reporters. ACS Chem Biol 2021; 16:2174-2184. [PMID: 34726893 DOI: 10.1021/acschembio.1c00168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Channel-activating proteases (CAPs) play a fundamental role in the regulation of sodium transport across epithelial tissues mainly via cleavage-mediated fine-tuning of the activity of the epithelial sodium channel (ENaC). Hyperactivity of CAPs and subsequently increased ENaC activity have been associated with various diseases, including cystic fibrosis (CF). To date, there is only a limited number of tools available to investigate CAP activity. Here, we developed ratiometric, peptide-based Förster resonance energy transfer (FRET) reporters useful to visualize and quantify the activity of ectopic serine proteases including the CAPs prostasin and matriptase in human and murine samples in a temporally and spatially resolved manner. Lipidated varieties were inserted into the outer leaflet of the plasma membrane to detect enzyme activity on the surface of individual cells, that is, close to the protease substrates. The FRET reporters (termed CAPRee) selectively detected the activity of ectopic serine proteases such as CAPs in solution and on the surface of human and murine cells. We found increased CAP activity on the surface of cells with a genetic background of CF. The new reporters will contribute to a better understanding of ectopic serine protease activity and their regulation under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Verena Rickert-Zacharias
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL) and University of Heidelberg, 69117 Heidelberg, Germany
- Faculty of Biosciences, Collaboration for Joint Ph.D. Degree between EMBL and Heidelberg University, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Madeleine Schultz
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Marcus A. Mall
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL) and University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité─Universitätsmedizin Berlin, 13353 Berlin, Germany
- Berlin Institute of Health, 10178 Berlin, Germany
- German Center for Lung Research (DZL), Associated
Partner Site, 13353 Berlin, Germany
| | - Carsten Schultz
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL) and University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon 97239, United States
| |
Collapse
|
18
|
Laselva O, Guerra L, Castellani S, Favia M, Di Gioia S, Conese M. Small-molecule drugs for cystic fibrosis: Where are we now? Pulm Pharmacol Ther 2021; 72:102098. [PMID: 34793977 DOI: 10.1016/j.pupt.2021.102098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023]
Abstract
The cystic fibrosis (CF) lung disease is due to the lack/dysfunction of the CF Transmembrane Conductance Regulator (CFTR), a chloride channel expressed by epithelial cells as the main regulator of ion and fluid homeostasis. More than 2000 genetic variation in the CFTR gene are known, among which those with identified pathomechanism have been divided into six VI mutation classes. A major advancement in the pharmacotherapy of CF has been the development of small-molecule drugs hitting the root of the disease, i.e. the altered ion and fluid transport through the airway epithelium. These drugs, called CFTR modulators, have been advanced to the clinics to treat nearly 90% of CF patients, including the CFTR potentiator ivacaftor, approved for residual function mutations (Classes III and IV), and combinations of correctors (lumacaftor, tezacaftor, elexacaftor) and ivacaftor for patients bearing at least one the F508del mutation, the most frequent mutation belonging to class II. To cover the 10% of CF patients without etiological therapies, other novel small-molecule CFTR modulators are in evaluation of their effectiveness in all the CFTR mutation classes: read-through agents for Class I, correctors, potentiators and amplifiers from different companies for Class II-V, stabilizers for Class VI. In alternative, other solute carriers, such as SLC26A9 and SLC6A14, are the focus of intensive investigation. Finally, other molecular targets are being evaluated for patients with no approved CFTR modulator therapy or as means of enhancing CFTR modulatory therapy, including small molecules forming ion channels, inhibitors of the ENaC sodium channel and potentiators of the calcium-activated chloride channel TMEM16A. This paper aims to give an up-to-date overview of old and novel CFTR modulators as well as of novel strategies based on small-molecule drugs. Further investigations in in-vivo and cell-based models as well as carrying out large prospective studies will be required to determine if novel CFTR modulators, stabilizers, amplifiers, and the ENaC inhibitors or TMEM16A potentiators will further improve the clinical outcomes in CF management.
Collapse
Affiliation(s)
- Onofrio Laselva
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stefano Castellani
- Department of Medical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
19
|
Bayarri MA, Milara J, Estornut C, Cortijo J. Nitric Oxide System and Bronchial Epithelium: More Than a Barrier. Front Physiol 2021; 12:687381. [PMID: 34276407 PMCID: PMC8279772 DOI: 10.3389/fphys.2021.687381] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Airway epithelium forms a physical barrier that protects the lung from the entrance of inhaled allergens, irritants, or microorganisms. This epithelial structure is maintained by tight junctions, adherens junctions and desmosomes that prevent the diffusion of soluble mediators or proteins between apical and basolateral cell surfaces. This apical junctional complex also participates in several signaling pathways involved in gene expression, cell proliferation and cell differentiation. In addition, the airway epithelium can produce chemokines and cytokines that trigger the activation of the immune response. Disruption of this complex by some inflammatory, profibrotic, and carcinogens agents can provoke epithelial barrier dysfunction that not only contributes to an increase of viral and bacterial infection, but also alters the normal function of epithelial cells provoking several lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) or lung cancer, among others. While nitric oxide (NO) molecular pathway has been linked with endothelial function, less is known about the role of the NO system on the bronchial epithelium and airway epithelial cells function in physiological and different pathologic scenarios. Several data indicate that the fraction of exhaled nitric oxide (FENO) is altered in lung diseases such as asthma, COPD, lung fibrosis, and cancer among others, and that reactive oxygen species mediate uncoupling NO to promote the increase of peroxynitrite levels, thus inducing bronchial epithelial barrier dysfunction. Furthermore, iNOS and the intracellular pathway sGC-cGMP-PKG are dysregulated in bronchial epithelial cells from patients with lung inflammation, fibrosis, and malignancies which represents an attractive drug molecular target. In this review we describe in detail current knowledge of the effect of NOS-NO-GC-cGMP-PKG pathway activation and disruption in bronchial epithelial cells barrier integrity and its contribution in different lung diseases, focusing on bronchial epithelial cell permeability, inflammation, transformation, migration, apoptosis/necrosis, and proliferation, as well as the specific NO molecular pathways involved.
Collapse
Affiliation(s)
- María Amparo Bayarri
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Pharmacy Unit, University General Hospital Consortium of Valencia, Valencia, Spain
| | - Cristina Estornut
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Research and Teaching Unit, University General Hospital Consortium of Valencia, Valencia, Spain
| |
Collapse
|
20
|
Carroll EL, Bailo M, Reihill JA, Crilly A, Lockhart JC, Litherland GJ, Lundy FT, McGarvey LP, Hollywood MA, Martin SL. Trypsin-Like Proteases and Their Role in Muco-Obstructive Lung Diseases. Int J Mol Sci 2021; 22:5817. [PMID: 34072295 PMCID: PMC8199346 DOI: 10.3390/ijms22115817] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Trypsin-like proteases (TLPs) belong to a family of serine enzymes with primary substrate specificities for the basic residues, lysine and arginine, in the P1 position. Whilst initially perceived as soluble enzymes that are extracellularly secreted, a number of novel TLPs that are anchored in the cell membrane have since been discovered. Muco-obstructive lung diseases (MucOLDs) are characterised by the accumulation of hyper-concentrated mucus in the small airways, leading to persistent inflammation, infection and dysregulated protease activity. Although neutrophilic serine proteases, particularly neutrophil elastase, have been implicated in the propagation of inflammation and local tissue destruction, it is likely that the serine TLPs also contribute to various disease-relevant processes given the roles that a number of these enzymes play in the activation of both the epithelial sodium channel (ENaC) and protease-activated receptor 2 (PAR2). More recently, significant attention has focused on the activation of viruses such as SARS-CoV-2 by host TLPs. The purpose of this review was to highlight key TLPs linked to the activation of ENaC and PAR2 and their association with airway dehydration and inflammatory signalling pathways, respectively. The role of TLPs in viral infectivity will also be discussed in the context of the inhibition of TLP activities and the potential of these proteases as therapeutic targets.
Collapse
Affiliation(s)
- Emma L. Carroll
- School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK; (E.L.C.); (J.A.R.)
| | - Mariarca Bailo
- Institute for Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (M.B.); (A.C.); (J.C.L.); (G.J.L.)
| | - James A. Reihill
- School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK; (E.L.C.); (J.A.R.)
| | - Anne Crilly
- Institute for Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (M.B.); (A.C.); (J.C.L.); (G.J.L.)
| | - John C. Lockhart
- Institute for Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (M.B.); (A.C.); (J.C.L.); (G.J.L.)
| | - Gary J. Litherland
- Institute for Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (M.B.); (A.C.); (J.C.L.); (G.J.L.)
| | - Fionnuala T. Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, Belfast BT9 7BL, UK; (F.T.L.); (L.P.M.)
| | - Lorcan P. McGarvey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, Belfast BT9 7BL, UK; (F.T.L.); (L.P.M.)
| | - Mark A. Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, A91 HRK2 Dundalk, Ireland;
| | - S. Lorraine Martin
- School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK; (E.L.C.); (J.A.R.)
| |
Collapse
|
21
|
Essigke D, Ilyaskin AV, Wörn M, Bohnert BN, Xiao M, Daniel C, Amann K, Birkenfeld AL, Szabo R, Bugge TH, Korbmacher C, Artunc F. Zymogen-locked mutant prostasin (Prss8) leads to incomplete proteolytic activation of the epithelial sodium channel (ENaC) and severely compromises triamterene tolerance in mice. Acta Physiol (Oxf) 2021; 232:e13640. [PMID: 33650216 DOI: 10.1111/apha.13640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/15/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
AIM The serine protease prostasin (Prss8) is expressed in the distal tubule and stimulates proteolytic activation of the epithelial sodium channel (ENaC) in co-expression experiments in vitro. The aim of this study was to explore the role of prostasin in proteolytic ENaC activation in the kidney in vivo. METHODS We used genetically modified knockin mice carrying a Prss8 mutation abolishing proteolytic activity (Prss8-S238A) or a mutation leading to a zymogen-locked state (Prss8-R44Q). Mice were challenged with low sodium diet and diuretics. Regulation of ENaC activity by Prss8-S238A and Prss8-R44Q was studied in vitro using the Xenopus laevis oocyte expression system. RESULTS Co-expression of murine ENaC with Prss8-wt or Prss8-S238A in oocytes caused maximal proteolytic ENaC activation, whereas ENaC was activated only partially in oocytes co-expressing Prss8-R44Q. This was paralleled by a reduced proteolytic activity at the cell surface of Prss8-R44Q expressing oocytes. Sodium conservation under low sodium diet was preserved in Prss8-S238A and Prss8-R44Q mice but with higher plasma aldosterone concentrations in Prss8-R44Q mice. Treatment with the ENaC inhibitor triamterene over four days was tolerated in Prss8-wt and Prss8-S238A mice, whereas Prss8-R44Q mice developed salt wasting and severe weight loss associated with hyperkalemia and acidosis consistent with impaired ENaC function and renal failure. CONCLUSION Unlike proteolytically inactive Prss8-S238A, zymogen-locked Prss8-R44Q produces incomplete proteolytic ENaC activation in vitro and causes a severe renal phenotype in mice treated with the ENaC inhibitor triamterene. This indicates that Prss8 plays a role in proteolytic ENaC activation and renal function independent of its proteolytic activity.
Collapse
Affiliation(s)
- Daniel Essigke
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tuebingen Germany
| | - Alexandr V. Ilyaskin
- Institute of Cellular and Molecular Physiology Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Matthias Wörn
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tuebingen Germany
| | - Bernhard N. Bohnert
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tuebingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tuebingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tuebingen Germany
| | - Mengyun Xiao
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tuebingen Germany
| | - Christoph Daniel
- Institute of Pathology Department of Nephropathology Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Kerstin Amann
- Institute of Pathology Department of Nephropathology Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Andreas L. Birkenfeld
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tuebingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tuebingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tuebingen Germany
| | - Roman Szabo
- Proteases and Tissue Remodeling Section National Institute of Dental and Craniofacial ResearchNational Institutes of Health Bethesda MD USA
| | - Thomas H. Bugge
- Proteases and Tissue Remodeling Section National Institute of Dental and Craniofacial ResearchNational Institutes of Health Bethesda MD USA
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Ferruh Artunc
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tuebingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tuebingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tuebingen Germany
| |
Collapse
|
22
|
Azouz NP, Klingler AM, Callahan V, Akhrymuk IV, Elez K, Raich L, Henry BM, Benoit JL, Benoit SW, Noé F, Kehn-Hall K, Rothenberg ME. Alpha 1 Antitrypsin is an Inhibitor of the SARS-CoV-2-Priming Protease TMPRSS2. Pathog Immun 2021; 6:55-74. [PMID: 33969249 PMCID: PMC8097828 DOI: 10.20411/pai.v6i1.408] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Host proteases have been suggested to be crucial for dissemination of MERS, SARS-CoV, and SARS-CoV-2 coronaviruses, but the relative contribution of membrane versus intracellular proteases remains controversial. Transmembrane serine protease 2 (TMPRSS2) is regarded as one of the main proteases implicated in the coronavirus S protein priming, an important step for binding of the S protein to the angiotensin-converting enzyme 2 (ACE2) receptor before cell entry. METHODS We developed a cell-based assay to identify TMPRSS2 inhibitors. Inhibitory activity was established in SARS-CoV-2 viral load systems. RESULTS We identified the human extracellular serine protease inhibitor (serpin) alpha 1 anti-trypsin (A1AT) as a novel TMPRSS2 inhibitor. Structural modeling revealed that A1AT docked to an extracellular domain of TMPRSS2 in a conformation that is suitable for catalysis, resembling similar serine protease inhibitor complexes. Inhibitory activity of A1AT was established in a SARS-CoV-2 viral load system. Notably, plasma A1AT levels were associated with COVID-19 disease severity. CONCLUSIONS Our data support the key role of extracellular serine proteases in SARS CoV-2 infections and indicate that treatment with serpins, particularly the FDA-approved drug A1AT, may be effective in limiting SARS-CoV-2 dissemination by affecting the surface of the host cells.
Collapse
Affiliation(s)
- Nurit P. Azouz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Andrea M. Klingler
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Victoria Callahan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA
| | - Ivan V. Akhrymuk
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Katarina Elez
- Freie Universität Berlin, Department of Mathematics and Computer Science, Berlin, Germany
| | - Lluís Raich
- Freie Universität Berlin, Department of Mathematics and Computer Science, Berlin, Germany
| | - Brandon M. Henry
- Cardiac Intensive Care Unit, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Justin L. Benoit
- Department of Emergency Medicine, University of Cincinnati, Cincinnati, OH
| | - Stefanie W. Benoit
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Frank Noé
- Freie Universität Berlin, Department of Mathematics and Computer Science, Berlin, Germany
- Freie Universität Berlin, Department of Physics, Berlin, Germany
- Rice University, Department of Chemistry, Houston, TX
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
23
|
Reihill JA, Douglas LEJ, Martin SL. Modulation of Ion Transport to Restore Airway Hydration in Cystic Fibrosis. Genes (Basel) 2021; 12:genes12030453. [PMID: 33810137 PMCID: PMC8004921 DOI: 10.3390/genes12030453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is a life-limiting genetic disorder caused by loss-of-function mutations in the gene which codes for the CF transmembrane conductance regulator (CFTR) Cl- channel. Loss of Cl- secretion across the apical membrane of airway lining epithelial cells results in dehydration of the airway surface liquid (ASL) layer which impairs mucociliary clearance (MCC), and as a consequence promotes bacterial infection and inflammation of the airways. Interventions that restore airway hydration are known to improve MCC. Here we review the ion channels present at the luminal surface of airway epithelial cells that may be targeted to improve airway hydration and MCC in CF airways.
Collapse
|
24
|
Nguyen JP, Kim Y, Cao Q, Hirota JA. Interactions between ABCC4/MRP4 and ABCC7/CFTR in human airway epithelial cells in lung health and disease. Int J Biochem Cell Biol 2021; 133:105936. [PMID: 33529712 DOI: 10.1016/j.biocel.2021.105936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/13/2020] [Accepted: 01/07/2021] [Indexed: 12/26/2022]
Abstract
ATP binding cassette (ABC) transporters are present in all three domains of life - Archaea, Bacteria, and Eukarya. The conserved nature is a testament to the importance of these transporters in regulating endogenous and exogenous substrates required for life to exist. In humans, 49 ABC transporters have been identified to date with broad expression in different lung cell types with multiple transporter family members contributing to lung health and disease. The ABC transporter most commonly known to be linked to lung pathology is ABCC7, also known as cystic fibrosis transmembrane conductance regulator - CFTR. Closely related to the CFTR genomic sequence is ABCC4/multi-drug resistance protein-4. Genomic proximity is shared with physical proximity, with ABCC4 and CFTR physically coupled in cell membrane microenvironments of epithelial cells to orchestrate functional consequences of cyclic-adenosine monophosphate (cAMP)-dependent second messenger signaling and extracellular transport of endogenous and exogenous substrates. The present concise review summarizes the emerging data defining a role of the (ABCC7/CFTR)-ABCC4 macromolecular complex in human airway epithelial cells as a physiologically important pathway capable of impacting endogenous and exogenous mediator transport and ion transport in both lung health and disease.
Collapse
Affiliation(s)
- Jenny P Nguyen
- Department of Medicine, McMaster University, Canada; Firestone Institute for Respiratory Health, St. Joseph's Hospital, Canada
| | - Yechan Kim
- Department of Medicine, McMaster University, Canada; Firestone Institute for Respiratory Health, St. Joseph's Hospital, Canada
| | - Quynh Cao
- Department of Medicine, McMaster University, Canada; Firestone Institute for Respiratory Health, St. Joseph's Hospital, Canada
| | - Jeremy A Hirota
- Department of Medicine, McMaster University, Canada; Firestone Institute for Respiratory Health, St. Joseph's Hospital, Canada; McMaster Immunology Research Centre, McMaster University, Canada; Department of Biology, University of Waterloo, Canada; Department of Medicine, University of British Columbia, Canada.
| |
Collapse
|
25
|
Chen D, Liu J, Wu J, Suk JS. Enhancing nanoparticle penetration through airway mucus to improve drug delivery efficacy in the lung. Expert Opin Drug Deliv 2020; 18:595-606. [PMID: 33218265 DOI: 10.1080/17425247.2021.1854222] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Airway mucus gel layer serves as a key delivery barrier that limits the performance of inhaled drug delivery nanoparticles. Conventional nanoparticles are readily trapped by the airway mucus and rapidly cleared from the lung via mucus clearance mechanisms. These nanoparticles cannot distribute throughout the lung airways, long-reside in the lung and/or reach the airway epithelium. To address this challenge, strategies to enhance particle penetration through the airway mucus have been developed and proof-of-concept has been established using mucus model systems..Areas covered: In this review, we first overview the biochemical and biophysical characteristics that render the airway mucus a challenging delivery barrier. We then introduce strategies to improve particle penetration through the airway mucus. Specifically, we walk through two classes of approaches, including modification of physicochemical properties of nanoparticles and modulation of barrier properties of airway mucus.Expert opinion: State-of-the-art strategies to overcome the airway mucus barrier have been introduced and experimentally validated. However, data should be interpreted in the comprehensive context of therapeutic delivery from the site of administration to the final destination to determine clinically-relevant approaches. Further, safety should be carefully monitored, particularly when it comes to mucus-altering strategies that may perturb physiological functions of airway mucus.
Collapse
Affiliation(s)
- Daiqin Chen
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - Jinhao Liu
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jerry Wu
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jung Soo Suk
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
26
|
Mall MA. ENaC inhibition in cystic fibrosis: potential role in the new era of CFTR modulator therapies. Eur Respir J 2020; 56:2000946. [PMID: 32732328 PMCID: PMC7758539 DOI: 10.1183/13993003.00946-2020] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/18/2020] [Indexed: 01/07/2023]
Abstract
Small-molecule cystic fibrosis transmembrane conductance regulator (CFTR) modulator drugs for cystic fibrosis are the first therapies since the disease was initially described by Fanconi et al. [1] in 1936 to target and partially restore the function of the CFTR Cl− channel. CFTR modulator therapy is expected to have significant clinical benefits for many, but it does not result in a cure and is not appropriate or available for all patients with cystic fibrosis [2, 3]. In this review, evidence is described suggesting that inhibiting the epithelial Na+ channel (ENaC) responsible for the Na+/fluid absorption that contributes to airway surface dehydration and impaired mucociliary clearance (MCC) observed in cystic fibrosis airways may significantly improve clinical outcomes irrespective of the CFTR genotype, and may synergise with currently approved CFTR modulators to further improve clinical outcomes. ENaC inhibition with BI 1265162 is a promising strategy to optimise outcomes in patients with CF either eligible, or ineligible, for CFTR modulator therapy. Phase II clinical trials of BI 1265162 must now show this translates into clinical benefit. https://bit.ly/2OQ1IUI
Collapse
Affiliation(s)
- Marcus A Mall
- Dept of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| |
Collapse
|
27
|
Azouz NP, Klingler AM, Callahan V, Akhrymuk IV, Elez K, Raich L, Henry BM, Benoit JL, Benoit SW, Noé F, Kehn-Hall K, Rothenberg ME. Alpha 1 Antitrypsin is an Inhibitor of the SARS-CoV-2-Priming Protease TMPRSS2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.05.04.077826. [PMID: 33052338 PMCID: PMC7553163 DOI: 10.1101/2020.05.04.077826] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Host proteases have been suggested to be crucial for dissemination of MERS, SARS-CoV, and SARS-CoV-2 coronaviruses, but the relative contribution of membrane versus intracellular proteases remains controversial. Transmembrane serine protease 2 (TMPRSS2) is regarded as one of the main proteases implicated in the coronavirus S protein priming, an important step for binding of the S protein to the angiotensin-converting enzyme 2 (ACE2) receptor before cell entry. The main cellular location where the SARS-CoV-2 S protein priming occurs remains debatable, therefore hampering the development of targeted treatments. Herein, we identified the human extracellular serine protease inhibitor (serpin) alpha 1 antitrypsin (A1AT) as a novel TMPRSS2 inhibitor. Structural modeling revealed that A1AT docked to an extracellular domain of TMPRSS2 in a conformation that is suitable for catalysis, resembling similar serine protease-inhibitor complexes. Inhibitory activity of A1AT was established in a SARS-CoV-2 viral load system. Notably, plasma A1AT levels were associated with COVID-19 disease severity. Our data support the key role of extracellular serine proteases in SARS-CoV-2 infections and indicate that treatment with serpins, particularly the FDA-approved drug A1AT, may be effective in limiting SARS-CoV-2 dissemination by affecting the surface of the host cells. SUMMARY Delivery of extracellular serine protease inhibitors (serpins) such as A1AT has the capacity to reduce SARS-CoV-2 dissemination by binding and inhibiting extracellular proteases on the host cells, thus, inhibiting the first step in SARS-CoV-2 cell cycle (i.e. cell entry).
Collapse
Affiliation(s)
- Nurit P. Azouz
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3026, USA
| | - Andrea M. Klingler
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3026, USA
| | - Victoria Callahan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Ivan V. Akhrymuk
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Katarina Elez
- Freie Universität Berlin, Department of Mathematics and Computer Science, Berlin, Germany
| | - Lluís Raich
- Freie Universität Berlin, Department of Mathematics and Computer Science, Berlin, Germany
| | - Brandon M. Henry
- Cardiac Intensive Care Unit, The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Justin L. Benoit
- Department of Emergency Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Stefanie W. Benoit
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, OH, USA
| | - Frank Noé
- Freie Universität Berlin, Department of Mathematics and Computer Science, Berlin, Germany
- Freie Universität Berlin, Department of Physics, Berlin, Germany
- Rice University, Department of Chemistry, Houston, TX
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3026, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, OH, USA
| |
Collapse
|
28
|
Mall MA, Mayer-Hamblett N, Rowe SM. Cystic Fibrosis: Emergence of Highly Effective Targeted Therapeutics and Potential Clinical Implications. Am J Respir Crit Care Med 2020; 201:1193-1208. [PMID: 31860331 DOI: 10.1164/rccm.201910-1943so] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) remains the most common life-shortening hereditary disease in white populations, with high morbidity and mortality related to chronic airway mucus obstruction, inflammation, infection, and progressive lung damage. In 1989, the discovery that CF is caused by mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) gene that encodes a cAMP-dependent anion channel vital for proper Cl- and HCO3- transport across epithelial surfaces provided a solid foundation for unraveling underlying disease mechanisms and the development of therapeutics targeting the basic defect in people with CF. In this review, we focus on recent advances in our understanding of the molecular defects caused by different classes of CFTR mutations, implications for pharmacological rescue of mutant CFTR, and insights into how CFTR dysfunction impairs key host defense mechanisms, such as mucociliary clearance and bacterial killing in CF airways. Furthermore, we review the path that led to the recent breakthrough in the development of highly effective CFTR-directed therapeutics, now applicable for up to 90% of people with CF who carry responsive CFTR mutations, including those with just a single copy of the most common F508del mutation. Finally, we discuss the remaining challenges and strategies to develop highly effective targeted therapies for all patients and the unprecedented potential of these novel therapies to transform CF from a fatal to a treatable chronic condition.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Pediatric Pulmonology, Immunology, and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Center for Lung Research (DZL), Berlin, Germany
| | - Nicole Mayer-Hamblett
- Department of Pediatrics and.,Department of Biostatistics, University of Washington, Seattle, Washington.,Seattle Children's Hospital, Seattle, Washington
| | - Steven M Rowe
- Department of Medicine.,Department of Pediatrics, and.,Department of Cell, Developmental and Integrative Biology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
29
|
Reihill J, Moffitt K, Douglas L, Stuart Elborn J, Jones A, Lorraine Martin S. Sputum trypsin-like protease activity relates to clinical outcome in cystic fibrosis. J Cyst Fibros 2020; 19:647-653. [DOI: 10.1016/j.jcf.2019.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
|
30
|
Türsen Ü, Türsen B, Lotti T. Cutaneous sıde-effects of the potential COVID-19 drugs. Dermatol Ther 2020; 33:e13476. [PMID: 32358890 PMCID: PMC7262017 DOI: 10.1111/dth.13476] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 04/26/2020] [Indexed: 12/11/2022]
Abstract
COVID‐19 disease is a highly contagious and particularly popular problem in all countries. A variety of repurposed drugs and investigational drugs such as remdesivir, chloroquine, hydroxychloroquine, ritonavir, lopinavir, interferon‐beta, and other potential drugs have been studied for COVID19 treatment. We reviewed the potential dermatological side‐effects of these drugs.
Collapse
Affiliation(s)
- Ümit Türsen
- Department of Dermatology, School of Medicine, Mersin University, Mersin, Turkey
| | - Belma Türsen
- Department of Health Science, Toros University, Mersin, Turkey
| | - Torello Lotti
- Department of Dermatology, School of Medicine, Marconi University, Rome, Italy
| |
Collapse
|
31
|
Oral prevalence and antifungal susceptibility of Candida species in cystic fibrosis patients. Arch Oral Biol 2020; 116:104772. [PMID: 32474212 DOI: 10.1016/j.archoralbio.2020.104772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study aimed at assessing the oral prevalence ofCandida species in cystic fibrosis patients and the antifungal susceptibility of the isolates. DESIGN One hundred patients aged 3-20 years old were included in the study and were divided into three groups: G1 (low severity disease): 25 cystic fibrosis patients with Shwachman-Kulczycki score (SK) between 100 and 71; G2 (high severity disease): 25 cystic fibrosis patients with SK score under 40; and G3 (control): 50 healthy patients age- and gender-matched to cystic fibrosis patients. Stimulated saliva samples were collected and the oral fungal concentrations were assessed. Isolates were identified by phenotypic and genotypic tests. Antifungal susceptibilities to amphotericin B, flucytosine and fluconazole were determined by CLSI methodology. Fungal counts were compared by Kruskal Wallis and Dunn's test (5%). RESULTS A total of 68 % of Group 1, 80 % of Group 2, and 44 % of controls yielded positive Candida cultures. Oral concentrations of fungi were significantly higher in cystic fibrosis patients in relation to the control group (p < 0.0005). No significant difference was observed between low and high severity cystic fibrosis groups (p > 0.05). C. albicans was most frequently isolated species in all groups. Higher variability of Candida species was observed in the control group. C. dubliniensis and C. tropicalis were only detected among cystic fibrosis groups. All the isolates were susceptible to flucytosine and fluconazole. CONCLUSIONS Patients with cystic fibrosis were more frequently colonized by Candida species and showed higher oral fungal burden. No antifungal resistant isolates were detected.
Collapse
|
32
|
Giacalone VD, Dobosh BS, Gaggar A, Tirouvanziam R, Margaroli C. Immunomodulation in Cystic Fibrosis: Why and How? Int J Mol Sci 2020; 21:ijms21093331. [PMID: 32397175 PMCID: PMC7247557 DOI: 10.3390/ijms21093331] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/09/2023] Open
Abstract
Cystic fibrosis (CF) lung disease is characterized by unconventional mechanisms of inflammation, implicating a chronic immune response dominated by innate immune cells. Historically, therapeutic development has focused on the mutated cystic fibrosis transmembrane conductance regulator (CFTR), leading to the discovery of small molecules aiming at modulating and potentiating the presence and activity of CFTR at the plasma membrane. However, treatment burden sustained by CF patients, side effects of current medications, and recent advances in other therapeutic areas have highlighted the need to develop novel disease targeting of the inflammatory component driving CF lung damage. Furthermore, current issues with standard treatment emphasize the need for directed lung therapies that could minimize systemic side effects. Here, we summarize current treatment used to target immune cells in the lungs, and highlight potential benefits and caveats of novel therapeutic strategies.
Collapse
Affiliation(s)
- Vincent D. Giacalone
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Brian S. Dobosh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.G.); (C.M.)
- Pulmonary Section, Birmingham VA Medical Center, Birmingham, AL 35233, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Correspondence:
| | - Camilla Margaroli
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.G.); (C.M.)
| |
Collapse
|
33
|
Membrane-anchored serine proteases as regulators of epithelial function. Biochem Soc Trans 2020; 48:517-528. [PMID: 32196551 PMCID: PMC9869603 DOI: 10.1042/bst20190675] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Cleavage of proteins in the extracellular milieu, including hormones, growth factors and their receptors, ion channels, and various cell adhesion and extracellular matrix molecules, plays a key role in the regulation of cell behavior. Among more than 500 proteolytic enzymes encoded by mammalian genomes, membrane-anchored serine proteases (MASPs), which are expressed on the surface of epithelial cells of all major organs, are excellently suited to mediate signal transduction across the epithelia and are increasingly being recognized as important regulators of epithelial development, function, and disease [ 1-3]. In this minireview, we summarize current knowledge of the in vivo roles of MASPs in acquisition and maintenance of some of the defining functions of epithelial tissues, such as barrier formation, ion transport, and sensory perception.
Collapse
|
34
|
Jaques R, Shakeel A, Hoyle C. Novel therapeutic approaches for the management of cystic fibrosis. Multidiscip Respir Med 2020; 15:690. [PMID: 33282281 PMCID: PMC7706361 DOI: 10.4081/mrm.2020.690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic condition characterised by the build-up of thick, sticky mucus that can damage many of the body's organs. It is a life-long disease that results in a shortened life expectancy, often due to the progression of advanced lung disease. Treatment has previously targeted the downstream symptoms such as diminished mucus clearance and recurrent infection. More recently, significant advances have been made in treating the cause of the disease by targeting the faulty gene responsible. Hope for the development of potential therapies lies with ongoing research into new pharmacological agents and gene therapy. This review gives an overview of CF, and summarises the current evidence regarding the disease management and upcoming strategies aimed at treating or potentially curing this condition.
Collapse
Affiliation(s)
- Ryan Jaques
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, UK
| | | | | |
Collapse
|
35
|
Kleyman TR, Eaton DC. Regulating ENaC's gate. Am J Physiol Cell Physiol 2020; 318:C150-C162. [PMID: 31721612 PMCID: PMC6985836 DOI: 10.1152/ajpcell.00418.2019] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Epithelial Na+ channels (ENaCs) are members of a family of cation channels that function as sensors of the extracellular environment. ENaCs are activated by specific proteases in the biosynthetic pathway and at the cell surface and remove embedded inhibitory tracts, which allows channels to transition to higher open-probability states. Resolved structures of ENaC and an acid-sensing ion channel revealed highly organized extracellular regions. Within the periphery of ENaC subunits are unique domains formed by antiparallel β-strands containing the inhibitory tracts and protease cleavage sites. ENaCs are inhibited by Na+ binding to specific extracellular site(s), which promotes channel transition to a lower open-probability state. Specific inositol phospholipids and channel modification by Cys-palmitoylation enhance channel open probability. How these regulatory factors interact in a concerted manner to influence channel open probability is an important question that has not been resolved. These various factors are reviewed, and the impact of specific factors on human disorders is discussed.
Collapse
Affiliation(s)
- Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, and Departments of Cell Biology and of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Douglas C Eaton
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
36
|
Mroz MS, Harvey BJ. Ursodeoxycholic acid inhibits ENaC and Na/K pump activity to restore airway surface liquid height in cystic fibrosis bronchial epithelial cells. Steroids 2019; 151:108461. [PMID: 31344409 DOI: 10.1016/j.steroids.2019.108461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/15/2019] [Indexed: 01/22/2023]
Abstract
Cystic fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) that in the airways result in reduced Cl- secretion and increased Na+ absorption, airway surface liquid (ASL) dehydration, decreased mucociliary clearance, infection and inflammation leading to lung injury. Cystic fibrosis patients often present with bile acids in the lower airways, however the effects of bile acids on ASL and ion transport in CF airways are not known. Secondary bile acids, such as ursodeoxycholic acid (UDCA), have been shown to modulate immune responses and epithelial ion transport. Here we investigated the effects of UDCA in normal and CF airway epithelial cell models. NuLi-1 (normal genotype) and CuFi-1 (CF genotype, Δ508/Δ508) primary immortalized airway epithelial cells were grown under an air-liquid interface. Electrogenic transepithelial ion transport was measured by short-circuit current (Isc) across cell monolayers mounted in Ussing chambers. We observed that UDCA (500 μM, 60 min, bilateral) decreased the basal Isc and ENaC currents in both NuLi-1 and CuFi-1 cells. UDCA inhibited the amiloride-sensitive ENaC current by 44% in NulI-1 monolayers and by 30% in CuFi-1 cells. Interestingly, UDCA also inhibited currents through the basolateral Na/K pump in both Nuli-1 and CuFi-1 monolayers without alterting the expression of ENaC or Na+/K+-ATPase proteins. The airway surface liquid height is regulated by transpeithelial Na+ absorption (ENaC) and Cl- secretion (CFTR) in normal airway but mainly by ENaC activity in CF epithelia when Cl- secretion is compromised by CFTR mutations. UDCA increased ASL height by 50% in Nuli-1 and by 40% in CUFI-1 monolayers. In conclusion, we demonstrate a previously unknown effect of UDCA to inhibit ENaC activity and increase ASL height in normal and CF human airway epithelial cells suggesting a therapeutic potential for UDCA in CF lung disease.
Collapse
Affiliation(s)
- Magdalena S Mroz
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI ERC Beaumont Hospital, Dublin 9, Ireland
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI ERC Beaumont Hospital, Dublin 9, Ireland; Centro di Estudios Cientificos CECs, Valdivia, Chile.
| |
Collapse
|
37
|
Couroux P, Farias P, Rizvi L, Griffin K, Hudson C, Crowder T, Tarran R, Tullis E. First clinical trials of novel ENaC targeting therapy, SPX-101, in healthy volunteers and adults with cystic fibrosis. Pulm Pharmacol Ther 2019; 58:101819. [PMID: 31302339 DOI: 10.1016/j.pupt.2019.101819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/13/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND ENaC inhibition has been investigated as a CF treatment; however, small molecule inhibitors of ENaC lack efficacy and/or have shown dose-limiting hyperkalemia. SPX-101 is a novel, investigational small peptide (SPLUNC1 mimetic) that regulates ENaC density with the potential for efficacy without systemic effects. METHODS Two trials are presented: The first was a Phase 1, 2-part, randomized, double-blind, placebo-controlled, ascending-dose study of nebulized SPX-101 in healthy adults. Part 1 evaluated 4 single doses of SPX-101 ranging from 20 to 240 mg. Part 2 evaluated a 14-day regimen of SPX-101 at 4 doses of SPX-101 ranging from 10 to 120 mg BID. Pharmacokinetics, adverse events, spirometry, vital signs, electrocardiograms, pulse oximetry, and clinical laboratory values were assessed. The second trial was a tolerability-confirming, Phase 1b, open-label study conducted in 5 adult subjects with CF. Ascending doses of SPX-101 inhalation solution (10 mg-120 mg BID) were administered for 7 days. Safety was assessed as described above. RESULTS All 64 healthy volunteers (32 in each Part) completed the single and multiple dose study. SPX-101 was well tolerated with little/no systemic exposure and with no hyperkalemia. Adverse events were generally mild with reported respiratory events associated with the purported pharmacological activity of SPX-101. Tolerability of SPX-101 was similarly observed in adults with CF; all 5 subjects treated with SPX-101 completed the study. CONCLUSIONS SPX-101 was well-tolerated across a range of doses and had little/no systemic exposure in healthy adults and adults with CF, thus supporting further study in patients with CF. CLINICALTRIAL. GOV REGISTRATION NCT03056989.
Collapse
Affiliation(s)
- Peter Couroux
- Inflamax Research Limited, Mississauga, Ontario, Canada
| | | | - Leena Rizvi
- Toronto Adult Cystic Fibrosis Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Katherine Griffin
- Toronto Adult Cystic Fibrosis Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | | - Robert Tarran
- Marsico Lung Institute, Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth Tullis
- Toronto Adult Cystic Fibrosis Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
38
|
Nguyen JP, Hirota JA. Ion the Prize: Defining the Complexities of Airway Epithelial Cell Ion Transport Functions. Am J Respir Cell Mol Biol 2019; 60:618-620. [PMID: 30768913 PMCID: PMC6543751 DOI: 10.1165/rcmb.2018-0414ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jenny P Nguyen
- 1 Firestone Institute for Respiratory Health McMaster University Hamilton, Ontario, Canada
| | - Jeremy A Hirota
- 1 Firestone Institute for Respiratory Health McMaster University Hamilton, Ontario, Canada
| |
Collapse
|
39
|
Carroll EL, Douglas LE, Reihill JA, Zhou M, Chen T, McGarvey LP, Lundy FT, Hollywood MA, Lockhart JC, Martin SL. Inhibition of ENaC Activity by Novel Peptide Trypsin‐Like Inhibitors Derived from Amphibian Skin Secretions. FASEB J 2019. [DOI: 10.1096/fasebj.2019.33.1_supplement.127.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Emma L. Carroll
- School of PharmacyQueen's University BelfastBelfastUnited Kingdom
| | | | - James A. Reihill
- School of PharmacyQueen's University BelfastBelfastUnited Kingdom
| | - Mei Zhou
- School of PharmacyQueen's University BelfastBelfastUnited Kingdom
| | - Tianbao Chen
- School of PharmacyQueen's University BelfastBelfastUnited Kingdom
| | | | | | - Mark A. Hollywood
- Smooth Muscle Research CentreDundalk Institute of TechnologyDundalkIreland
| | - John C. Lockhart
- Institute of Biomedical & Environmental Health ResearchUniversity of the West of ScotlandScotlandUnited Kingdom
| | | |
Collapse
|
40
|
Sesma JI, Wu B, Stuhlmiller TJ, Scott DW. SPX-101 is stable in and retains function after exposure to cystic fibrosis sputum. J Cyst Fibros 2019; 18:244-250. [DOI: 10.1016/j.jcf.2018.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/16/2022]
|
41
|
Shei RJ, Peabody JE, Kaza N, Rowe SM. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis. Curr Opin Pharmacol 2018; 43:152-165. [PMID: 30340955 PMCID: PMC6294660 DOI: 10.1016/j.coph.2018.09.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/11/2018] [Indexed: 01/28/2023]
Abstract
Cystic fibrosis (CF) is a monogenic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR dysfunction is characterized by abnormal mucociliary transport due to a dehydrated airway surface liquid (ASL) and hyperviscous mucus, among other pathologies of host defense. ASL depletion is caused by the absence of CFTR mediated chloride secretion along with continued activity of the epithelial sodium channel (ENaC) activity, which can also be affected by CFTR mediated anion conductance. Therefore, ENaC has been proposed as a therapeutic target to ameliorate ASL dehydration and improve mucus transport. Inhibition of ENaC has been shown to restore ASL hydration and enhance mucociliary transport in induced models of CF lung disease. To date, no therapy inhibiting ENaC has successfully translated to clinical efficacy, in part due to concerns regarding off-target effects, systemic exposure, durability of effect, and adverse effects. Recent efforts have been made to develop novel, rationally designed therapeutics to produce-specific, long-lasting inhibition of ENaC activity in the airways while simultaneously minimizing off target fluid transport effects, systemic exposure and side effects. Such approaches comprise next-generation small molecule direct inhibitors, indirect channel-activating protease inhibitors, synthetic peptide analogs, and oligonucleotide-based therapies. These novel therapeutics represent an exciting step forward in the development of ENaC-directed therapies for CF.
Collapse
Affiliation(s)
- Ren-Jay Shei
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacelyn E Peabody
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Medical Scientist (MD/PhD) Training Program, University of Alabama at Birmingham, Birmingham, AL, USA; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Niroop Kaza
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
42
|
Webster MJ, Reidel B, Tan CD, Ghosh A, Alexis NE, Donaldson SH, Kesimer M, Ribeiro CMP, Tarran R. SPLUNC1 degradation by the cystic fibrosis mucosal environment drives airway surface liquid dehydration. Eur Respir J 2018; 52:13993003.00668-2018. [PMID: 30190268 DOI: 10.1183/13993003.00668-2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
The multi-organ disease cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane regulator gene (CFTR) that lead to diminished transepithelial anion transport. CF lungs are characterised by airway surface liquid (ASL) dehydration, chronic infection/inflammation and neutrophilia. Dysfunctional CFTR may upregulate the epithelial Na+ channel (ENaC), further exacerbating dehydration. We previously demonstrated that short palate lung and nasal epithelial clone 1 (SPLUNC1) negatively regulates ENaC in normal airway epithelia.Here, we used pulmonary tissue samples, sputum and human bronchial epithelial cells (HBECs) to determine whether SPLUNC1 could regulate ENaC in a CF-like environment.We found reduced endogenous SPLUNC1 in CF secretions, and rapid degradation of recombinant SPLUNC1 (rSPLUNC1) by CF secretions. Normal sputum, containing SPLUNC1 and SPLUNC1-derived peptides, inhibited ENaC in both normal and CF HBECs. Conversely, CF sputum activated ENaC, and rSPLUNC1 could not reverse this phenomenon. Additionally, we observed upregulation of ENaC protein levels in human CF bronchi. Unlike SPLUNC1, the novel SPLUNC1-derived peptide SPX-101 resisted protease degradation, bound apically to HBECs, inhibited ENaC and prevented ASL dehydration following extended pre-incubation with CF sputum.Our data indicate that CF mucosal secretions drive ASL hyperabsorption and that protease-resistant peptides, e.g. SPX-101, can reverse this effect to rehydrate CF ASL.
Collapse
Affiliation(s)
- Megan J Webster
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Boris Reidel
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Chong D Tan
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Arunava Ghosh
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Neil E Alexis
- Center for Asthma and Lung Biology, The University of North Carolina, Chapel Hill, NC, USA
| | - Scott H Donaldson
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA.,Division of Pulmonary and Critical Care Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Mehmet Kesimer
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Carla M P Ribeiro
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA.,Dept of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC, USA
| | - Robert Tarran
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA .,Dept of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
43
|
Strug LJ, Stephenson AL, Panjwani N, Harris A. Recent advances in developing therapeutics for cystic fibrosis. Hum Mol Genet 2018; 27:R173-R186. [PMID: 30060192 PMCID: PMC6061831 DOI: 10.1093/hmg/ddy188] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/23/2022] Open
Abstract
Despite hope that a cure was imminent when the causative gene was cloned nearly 30 years ago, cystic fibrosis (CF [MIM: 219700]) remains a life-shortening disease affecting more than 70 000 individuals worldwide. However, within the last 6 years the Food and Drug Administration's approval of Ivacaftor, the first drug that corrects the defective cystic fibrosis transmembrane conductance regulator protein [CFTR (MIM: 602421)] in patients with the G551D mutation, marks a watershed in the development of novel therapeutics for this devastating disease. Here we review recent progress in diverse research areas, which all focus on curing CF at the genetic, biochemical or physiological level. In the near future it seems probable that development of mutation-specific therapies will be the focus, since it is unlikely that any one approach will be efficient in correcting the more than 2000 disease-associated variants. We discuss the new drugs and combinations of drugs that either enhance delivery of misfolded CFTR protein to the cell membrane, where it functions as an ion channel, or that activate channel opening. Next we consider approaches to correct the causative genetic lesion at the DNA or RNA level, through repressing stop mutations and nonsense-mediated decay, modulating splice mutations, fixing errors by gene editing or using novel routes to gene replacement. Finally, we explore how modifier genes, loci elsewhere in the genome that modify CF disease severity, may be used to restore a normal phenotype. Progress in all of these areas has been dramatic, generating enthusiasm that CF may soon become a broadly treatable disease.
Collapse
Affiliation(s)
- Lisa J Strug
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anne L Stephenson
- Department of Respirology, Adult Cystic Fibrosis Program, St. Michael’s Hospital, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Naim Panjwani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
44
|
Gentzsch M, Mall MA. Ion Channel Modulators in Cystic Fibrosis. Chest 2018; 154:383-393. [PMID: 29750923 PMCID: PMC6113631 DOI: 10.1016/j.chest.2018.04.036] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/15/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and remains one of the most common life-shortening genetic diseases affecting the lung and other organs. CFTR functions as a cyclic adenosine monophosphate-dependent anion channel that transports chloride and bicarbonate across epithelial surfaces, and disruption of these ion transport processes plays a central role in the pathogenesis of CF. These findings provided the rationale for pharmacologic modulation of ion transport, either by targeting mutant CFTR or alternative ion channels that can compensate for CFTR dysfunction, as a promising therapeutic approach. High-throughput screening has supported the development of CFTR modulator compounds. CFTR correctors are designed to improve defective protein processing, trafficking, and cell surface expression, whereas potentiators increase the activity of mutant CFTR at the cell surface. The approval of the first potentiator ivacaftor for the treatment of patients with specific CFTR mutations and, more recently, the corrector lumacaftor in combination with ivacaftor for patients homozygous for the common F508del mutation, were major breakthroughs on the path to causal therapies for all patients with CF. The present review focuses on recent developments and remaining challenges of CFTR-directed therapies, as well as modulators of other ion channels such as alternative chloride channels and the epithelial sodium channel as additional targets in CF lung disease. We further discuss how patient-derived precision medicine models may aid the translation of emerging next-generation ion channel modulators from the laboratory to the clinic and tailor their use for optimal therapeutic benefits in individual patients with CF.
Collapse
Affiliation(s)
- Martina Gentzsch
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC
| | - Marcus A Mall
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
45
|
Moore PJ, Tarran R. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis lung disease. Expert Opin Ther Targets 2018; 22:687-701. [PMID: 30028216 DOI: 10.1080/14728222.2018.1501361] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Cystic fibrosis is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that codes for the CFTR anion channel. In the absence of functional CFTR, the epithelial Na+ channel is also dysregulated. Airway surface liquid (ASL) hydration is maintained by a balance between epithelial sodium channel (ENaC)-led Na+ absorption and CFTR-dependent anion secretion. This finely tuned homeostatic mechanism is required to maintain sufficient airway hydration to permit the efficient mucus clearance necessary for a sterile lung environment. In CF airways, the lack of CFTR and increased ENaC activity lead to ASL/mucus dehydration that causes mucus obstruction, neutrophilic infiltration, and chronic bacterial infection. Rehydration of ASL/mucus in CF airways can be achieved by inhibiting Na+ absorption with pharmacological inhibitors of ENaC. Areas covered: In this review, we discuss ENaC structure and function and its role in CF lung disease and focus on ENaC inhibition as a potential therapeutic target to rehydrate CF mucus. We also discuss the failure of the first generation of pharmacological inhibitors of ENaC and recent alternate strategies to attenuate ENaC activity in the CF lung. Expert opinion: ENaC is an attractive therapeutic target to rehydrate CF ASL that may serve as a monotherapy or function in parallel with other treatments. Given the increased number of strategies being employed to inhibit ENaC, this is an exciting and optimistic time to be in this field.
Collapse
Affiliation(s)
- Patrick J Moore
- a Marsico Lung Institute , University of North Carolina , Chapel Hill , NC , USA
| | - Robert Tarran
- a Marsico Lung Institute , University of North Carolina , Chapel Hill , NC , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
46
|
Tagalakis AD, Munye MM, Ivanova R, Chen H, Smith CM, Aldossary AM, Rosa LZ, Moulding D, Barnes JL, Kafetzis KN, Jones SA, Baines DL, Moss GWJ, O'Callaghan C, McAnulty RJ, Hart SL. Effective silencing of ENaC by siRNA delivered with epithelial-targeted nanocomplexes in human cystic fibrosis cells and in mouse lung. Thorax 2018; 73:847-856. [PMID: 29748250 PMCID: PMC6109249 DOI: 10.1136/thoraxjnl-2017-210670] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Loss of the cystic fibrosis transmembrane conductance regulator in cystic fibrosis (CF) leads to hyperabsorption of sodium and fluid from the airway due to upregulation of the epithelial sodium channel (ENaC). Thickened mucus and depleted airway surface liquid (ASL) then lead to impaired mucociliary clearance. ENaC regulation is thus a promising target for CF therapy. Our aim was to develop siRNA nanocomplexes that mediate effective silencing of airway epithelial ENaC in vitro and in vivo with functional correction of epithelial ion and fluid transport. METHODS We investigated translocation of nanocomplexes through mucus and their transfection efficiency in primary CF epithelial cells grown at air-liquid interface (ALI).Short interfering RNA (SiRNA)-mediated silencing was examined by quantitative RT-PCR and western analysis of ENaC. Transepithelial potential (Vt), short circuit current (Isc), ASL depth and ciliary beat frequency (CBF) were measured for functional analysis. Inflammation was analysed by histological analysis of normal mouse lung tissue sections. RESULTS Nanocomplexes translocated more rapidly than siRNA alone through mucus. Transfections of primary CF epithelial cells with nanocomplexes targeting αENaC siRNA, reduced αENaC and βENaC mRNA by 30%. Transfections reduced Vt, the amiloride-sensitive Isc and mucus protein concentration while increasing ASL depth and CBF to normal levels. A single dose of siRNA in mouse lung silenced ENaC by approximately 30%, which persisted for at least 7 days. Three doses of siRNA increased silencing to approximately 50%. CONCLUSION Nanoparticle-mediated delivery of ENaCsiRNA to ALI cultures corrected aspects of the mucociliary defect in human CF cells and offers effective delivery and silencing in vivo.
Collapse
Affiliation(s)
- Aristides D Tagalakis
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mustafa M Munye
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Rositsa Ivanova
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Hanpeng Chen
- Institute of Pharmaceutical Science, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Claire M Smith
- Respiratory, Critical Care and Anaesthesia, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Ahmad M Aldossary
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Luca Z Rosa
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dale Moulding
- UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Konstantinos N Kafetzis
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Stuart A Jones
- Institute of Pharmaceutical Science, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Deborah L Baines
- Institute of Infection and Immunity, St George's University of London, London, UK
| | - Guy W J Moss
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Christopher O'Callaghan
- Respiratory, Critical Care and Anaesthesia, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Robin J McAnulty
- UCL Respiratory Centre for Inflammation and Tissue Repair, London, UK
| | - Stephen L Hart
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
47
|
Collawn JF, Bartoszewski R, Lazrak A, Matalon S. Therapeutic attenuation of the epithelial sodium channel with a SPLUNC1-derived peptide in airway diseases. Am J Physiol Lung Cell Mol Physiol 2018; 314:L239-L242. [PMID: 29351436 DOI: 10.1152/ajplung.00516.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama.,Pulmonary Injury and Repair Center, University of Alabama at Birmingham , Birmingham, Alabama.,Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk , Gdansk , Poland
| | | | - Sadis Matalon
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama.,Pulmonary Injury and Repair Center, University of Alabama at Birmingham , Birmingham, Alabama.,Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Anesthesiology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
48
|
Rickert-Zacharias V, Schultz C, Mall MA. A Protease Inhibitor Tackles Epithelial Sodium Channels in Cystic Fibrosis. Am J Respir Crit Care Med 2017; 194:650-2. [PMID: 27628073 DOI: 10.1164/rccm.201604-0781ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Verena Rickert-Zacharias
- 1 Department of Translational Pulmonology University of Heidelberg Heidelberg, Germany.,2 Molecular Medicine Partnership Unit European Molecular Biology Laboratory and University of Heidelberg Heidelberg, Germany.,3 Translational Lung Research Center Heidelberg German Center for Lung Research Heidelberg, Germany and
| | - Carsten Schultz
- 2 Molecular Medicine Partnership Unit European Molecular Biology Laboratory and University of Heidelberg Heidelberg, Germany.,3 Translational Lung Research Center Heidelberg German Center for Lung Research Heidelberg, Germany and.,4 Cell Biology and Biophysics Unit European Molecular Biology Laboratory Heidelberg, Germany
| | - Marcus A Mall
- 1 Department of Translational Pulmonology University of Heidelberg Heidelberg, Germany.,2 Molecular Medicine Partnership Unit European Molecular Biology Laboratory and University of Heidelberg Heidelberg, Germany.,3 Translational Lung Research Center Heidelberg German Center for Lung Research Heidelberg, Germany and
| |
Collapse
|
49
|
Kleyman TR, Kashlan OB, Hughey RP. Epithelial Na + Channel Regulation by Extracellular and Intracellular Factors. Annu Rev Physiol 2017; 80:263-281. [PMID: 29120692 DOI: 10.1146/annurev-physiol-021317-121143] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial Na+ channels (ENaCs) are members of the ENaC/degenerin family of ion channels that evolved to respond to extracellular factors. In addition to being expressed in the distal aspects of the nephron, where ENaCs couple the absorption of filtered Na+ to K+ secretion, these channels are found in other epithelia as well as nonepithelial tissues. This review addresses mechanisms by which ENaC activity is regulated by extracellular factors, including proteases, Na+, and shear stress. It also addresses other factors, including acidic phospholipids and modification of ENaC cytoplasmic cysteine residues by palmitoylation, which enhance channel activity by altering interactions of the channel with the plasma membrane.
Collapse
Affiliation(s)
- Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA; .,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Ossama B Kashlan
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA; .,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Rebecca P Hughey
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA; .,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| |
Collapse
|
50
|
Ion channels as targets to treat cystic fibrosis lung disease. J Cyst Fibros 2017; 17:S22-S27. [PMID: 29102290 DOI: 10.1016/j.jcf.2017.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 11/21/2022]
Abstract
Lung health relies on effective mucociliary clearance and innate immune defence mechanisms. In cystic fibrosis (CF), an imbalance in ion transport due to an absence of chloride ion secretion, caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) and a concomitant sodium hyperabsorption, caused by dyregulation of the epithelial sodium channel (ENaC), results in mucus stasis which predisposes the lungs to cycles of chronic infection and inflammation leading to lung function decline. An increased understanding of CFTR structure and function has provided opportunity for the development of a number of novel modulators targeting mutant CFTR however, it is important to also consider other ion channels and transporters present in the airways as putative targets for drug development. In this review, we discuss recent advances in CFTR biology which will contribute to further drug discovery in the field. We also examine developments to inhibit the epithelial sodium channel (ENaC) and potentially activate alternative chloride channels and transporters as a multi-tracked strategy to hydrate CF airways and restore normal mucociliary clearance mechanisms in a manner independent of CFTR mutation.
Collapse
|