1
|
McCarthy BE, Feng R, Torigian DA, Tong Y, Fritz JS, Minhas JK, Mazurek JA, Smith KA, Palevsky HI, Pugliese SC, Homer NZ, MacLean MR, Udupa JK, Al-Naamani N. Epicardial Adipose Tissue as an Independent Risk Factor for Mortality in Pulmonary Arterial Hypertension. Chest 2025; 167:1481-1492. [PMID: 39613149 DOI: 10.1016/j.chest.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Increased epicardial adipose tissue (EAT) has adverse effects in cardiovascular diseases, independent of BMI. Estrogen levels may affect EAT accumulation. Little is known about the predictors and potential impact of EAT in pulmonary arterial hypertension (PAH). RESEARCH QUESTION Is EAT associated with estrogen levels, disease severity, and mortality in PAH? STUDY DESIGN AND METHODS We conducted a retrospective cohort study of patients with PAH enrolled in the Penn Pulmonary Hypertension registry and used chest CT scans to quantify EAT. Serum estrone and estradiol levels were also measured. RESULTS A total of 221 patients were included in the analysis, with median follow-up of 88 months. Mean age was 55.1 years, 74.7% were female, mean BMI was 27.20 kg/m2, and the most common PAH etiology was connective tissue disease-associated PAH (43.0%) followed by idiopathic or heritable PAH (35.3%). Median EAT volume was 52.1 mL/m2. Of the 102 patients with a follow-up chest CT scan, EAT increased over time in 74 (71.8%). High EAT volume (hazard ratio, 2.62; 95% CI, 1.62-4.24; P < .001) and greater accumulation of EAT over time (hazard ratio, 1.09; 95% CI, 1.01-1.17; P = .03) were both independently associated with worse survival. Patients with high EAT volume had lower serum estrone (13.70 vs 30.60 pg/mL; P = .009) and estradiol (6.05 vs 19.40 pg/mL; P = .002) levels compared with those with low EAT volume. INTERPRETATION In patients with PAH, high EAT and a greater rate of accumulation of EAT volume were independently associated with worse survival. Higher EAT volume was also associated with lower estrogen levels. The association of EAT volume with survival was independent of BMI and disease severity, suggesting that EAT may be a marker for a unique PAH phenotype. Future research should investigate the role of EAT-modifying therapies in PAH and consider incorporating EAT into PAH risk models.
Collapse
Affiliation(s)
- Breanne E McCarthy
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Rui Feng
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Drew A Torigian
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Yubing Tong
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jason S Fritz
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jasleen K Minhas
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jeremy A Mazurek
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - K Akaya Smith
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Harold I Palevsky
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Steven C Pugliese
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Natalie Z Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Jayaram K Udupa
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Nadine Al-Naamani
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
2
|
Pang S, Huang H, Luo H, Peng H, Wu M. Clinical trial landscape for pulmonary arterial hypertension targeted therapy: Beyond vasodilators. Eur J Intern Med 2025:S0953-6205(25)00123-2. [PMID: 40175270 DOI: 10.1016/j.ejim.2025.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Affiliation(s)
- Si Pang
- Department of Cardiology, Xiangtan Central Hospital (The affiliated hospital of Hunan university), Xiangtan, China
| | - Haobo Huang
- Department of Cardiology, Xiangtan Central Hospital (The affiliated hospital of Hunan university), Xiangtan, China
| | - Hui Luo
- Department of Cardiology, Xiangtan Central Hospital (The affiliated hospital of Hunan university), Xiangtan, China
| | - Huibing Peng
- Department of Cardiology, Xiangtan Central Hospital (The affiliated hospital of Hunan university), Xiangtan, China
| | - Mingxing Wu
- Department of Cardiology, Xiangtan Central Hospital (The affiliated hospital of Hunan university), Xiangtan, China.
| |
Collapse
|
3
|
Ghofrani HA, Gomberg-Maitland M, Zhao L, Grimminger F. Mechanisms and treatment of pulmonary arterial hypertension. Nat Rev Cardiol 2025; 22:105-120. [PMID: 39112561 DOI: 10.1038/s41569-024-01064-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 11/28/2024]
Abstract
Substantial progress has been made in the management of pulmonary arterial hypertension (PAH) in the past 25 years, but the disease remains life-limiting. Established therapies for PAH are mostly limited to symptomatic relief by correcting the imbalance of vasoactive factors. The tyrosine kinase inhibitor imatinib, the first predominantly non-vasodilatory drug to be tested in patients with PAH, improved exercise capacity and pulmonary haemodynamics compared with placebo but at the expense of adverse events such as subdural haematoma. Given that administration by inhalation might reduce the risk of systemic adverse effects, inhaled formulations of tyrosine kinase inhibitors are currently in clinical development. Other novel therapeutic approaches for PAH include suppression of activin receptor type IIA signalling with sotatercept, which has shown substantial efficacy in clinical trials and was approved for use in the USA in 2024, but the long-term safety of the drug remains unclear. Future advances in the management of PAH will focus on right ventricular function and involve deep phenotyping and the development of a personalized medicine approach. In this Review, we summarize the mechanisms underlying PAH, provide an overview of available PAH therapies and their limitations, describe the development of newer, predominantly non-vasodilatory drugs that are currently being tested in phase II or III clinical trials, and discuss future directions for PAH research.
Collapse
Affiliation(s)
- Hossein-Ardeschir Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany.
| | - Mardi Gomberg-Maitland
- George Washington University School of Medicine and Health Sciences, Department of Medicine, Washington, DC, USA
| | - Lan Zhao
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Friedrich Grimminger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
4
|
Toshner M. Searching for an Elusive Phantom - Targeting Estrogen in Pulmonary Hypertension. Am J Respir Crit Care Med 2024; 210:1077-1078. [PMID: 38924495 PMCID: PMC11544367 DOI: 10.1164/rccm.202405-1029ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Affiliation(s)
- Mark Toshner
- VPD Heart and Lung Research Institute University of Cambridge Cambridge, United Kingdom
| |
Collapse
|
5
|
Kawut SM, Feng R, Ellenberg SS, Zamanian R, Bull T, Chakinala M, Mathai SC, Hemnes A, Lin G, Doyle M, Andrew R, MacLean M, Stasinopoulos I, Austin E, DeMichele A, Shou H, Minhas J, Song N, Moutchia J, Ventetuolo CE. Pulmonary Hypertension and Anastrozole (PHANTOM): A Randomized, Double-Blind, Placebo-Controlled Trial. Am J Respir Crit Care Med 2024; 210:1143-1151. [PMID: 38747680 PMCID: PMC11544352 DOI: 10.1164/rccm.202402-0371oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/15/2024] [Indexed: 11/02/2024] Open
Abstract
Rationale: Inhibition of aromatase with anastrozole reduces pulmonary hypertension in experimental models. Objectives: We aimed to determine whether anastrozole improved the 6-minute-walk distance (6MWD) at 6 months in pulmonary arterial hypertension (PAH). Methods: We performed a randomized, double-blind, placebo-controlled phase II clinical trial of anastrozole in subjects with PAH at seven centers. Eighty-four postmenopausal women with PAH and men with PAH were randomized in a 1:1 ratio to receive anastrozole 1 mg or placebo by mouth daily, stratified by sex using permuted blocks of variable sizes. All subjects and study staff were masked. The primary outcome was the change from baseline in 6MWD at 6 months. By intention-to-treat analysis, we estimated the treatment effect of anastrozole using linear regression models adjusted for sex and baseline 6MWD. Assuming 10% loss to follow-up, we anticipated having 80% power to detect a difference in the change in 6MWD of 22 meters. Measurements and Main Results: Forty-one subjects were randomized to placebo and 43 to anastrozole, and all received the allocated treatment. Three subjects in the placebo group and two in the anastrozole group discontinued the study drug. There was no significant difference in the change in 6MWD at 6 months (placebo-corrected treatment effect, -7.9 m; 95% confidence interval, -32.7 to 16.9; P = 0.53). There was no difference in adverse events between the groups. Conclusions: Anastrozole did not show a significant effect on 6MWD compared with placebo in postmenopausal women with PAH and in men with PAH. Anastrozole was safe and did not have adverse effects. Clinical trial registered with www.clincialtrials.gov (NCT03229499).
Collapse
Affiliation(s)
- Steven M Kawut
- Department of Medicine
- Department of Biostatistics, Epidemiology, and Informatics, and
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rui Feng
- Department of Biostatistics, Epidemiology, and Informatics, and
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan S Ellenberg
- Department of Biostatistics, Epidemiology, and Informatics, and
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Roham Zamanian
- Department of Medicine, Stanford University, Stanford, California
| | - Todd Bull
- Pulmonary Vascular Disease Center, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Denver, Colorado
| | - Murali Chakinala
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Stephen C Mathai
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | | | - Grace Lin
- Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Margaret Doyle
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Ruth Andrew
- University/British Heart Foundation, Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Margaret MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom; and
| | - Ioannis Stasinopoulos
- University/British Heart Foundation, Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Eric Austin
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee
| | - Angela DeMichele
- Department of Medicine
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Haochang Shou
- Department of Biostatistics, Epidemiology, and Informatics, and
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Nianfu Song
- Department of Biostatistics, Epidemiology, and Informatics, and
| | - Jude Moutchia
- Department of Biostatistics, Epidemiology, and Informatics, and
| | - Corey E Ventetuolo
- Department of Medicine and
- Department of Health Services, Policy and Practice, Brown University, Providence, Rhode Island
| |
Collapse
|
6
|
Krzyżewska A, Kurakula K. Sex Dimorphism in Pulmonary Arterial Hypertension Associated With Autoimmune Diseases. Arterioscler Thromb Vasc Biol 2024; 44:2169-2190. [PMID: 39145392 DOI: 10.1161/atvbaha.124.320886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Pulmonary hypertension is a rare, incurable, and progressive disease. Although there is increasing evidence that immune disorders, particularly those associated with connective tissue diseases, are a strong predisposing factor in the development of pulmonary arterial hypertension (PAH), there is currently a lack of knowledge about the detailed molecular mechanisms responsible for this phenomenon. Exploring this topic is crucial because patients with an immune disorder combined with PAH have a worse prognosis and higher mortality compared with patients with other PAH subtypes. Moreover, data recorded worldwide show that the prevalence of PAH in women is 2× to even 4× higher than in men, and the ratio of PAH associated with autoimmune diseases is even higher (9:1). Sexual dimorphism in the pathogenesis of cardiovascular disease was explained for many years by the action of female sex hormones. However, there are increasing reports of interactions between sex hormones and sex chromosomes, and differences in the pathogenesis of cardiovascular disease may be controlled not only by sex hormones but also by sex chromosome pathways that are not dependent on the gonads. This review discusses the role of estrogen and genetic factors including the role of genes located on the X chromosome, as well as the potential protective role of the Y chromosome in sexual dimorphism, which is prominent in the occurrence of PAH associated with autoimmune diseases. Moreover, an overview of animal models that could potentially play a role in further investigating the aforementioned link was also reviewed.
Collapse
Affiliation(s)
- Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Poland (A.K.)
| | - Kondababu Kurakula
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Free University Medical Center, the Netherlands (K.K.)
| |
Collapse
|
7
|
Corboz MR, Nguyen TL, Stautberg A, Cipolla D, Perkins WR, Chapman RW. Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats. J Aerosol Med Pulm Drug Deliv 2024; 37:241-283. [PMID: 39388691 PMCID: PMC11502635 DOI: 10.1089/jamp.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/03/2024] [Indexed: 10/12/2024] Open
Abstract
The Sugen 5416/hypoxia (Su/Hx) rat model of pulmonary arterial hypertension (PAH) demonstrates most of the distinguishing features of PAH in humans, including increased wall thickness and obstruction of the small pulmonary arteries along with plexiform lesion formation. Recently, significant advancement has been made describing the epidemiology, genomics, biochemistry, physiology, and pharmacology in Su/Hx challenge in rats. For example, there are differences in the overall reactivity to Su/Hx challenge in different rat strains and only female rats respond to estrogen treatments. These conditions are also encountered in human subjects with PAH. Also, there is a good translation in both the biochemical and metabolic pathways in the pulmonary vasculature and right heart between Su/Hx rats and humans, particularly during the transition from the adaptive to the nonadaptive phase of right heart failure. Noninvasive techniques such as echocardiography and magnetic resonance imaging have recently been used to evaluate the progression of the pulmonary vascular and cardiac hemodynamics, which are important parameters to monitor the efficacy of drug treatment over time. From a pharmacological perspective, most of the compounds approved clinically for the treatment of PAH are efficacious in Su/Hx rats. Several compounds that show efficacy in Su/Hx rats have advanced into phase II/phase III studies in humans with positive results. Results from these drug trials, if successful, will provide additional treatment options for patients with PAH and will also further validate the excellent translation that currently exists between Su/Hx rats and the human PAH condition.
Collapse
|
8
|
Rasheed A, Aslam S, Sadiq HZ, Ali S, Syed R, Panjiyar BK. New and Emerging Therapeutic Drugs for the Treatment of Pulmonary Arterial Hypertension: A Systematic Review. Cureus 2024; 16:e68117. [PMID: 39347150 PMCID: PMC11438555 DOI: 10.7759/cureus.68117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a serious, progressive, and potentially fatal lung disease characterized by a gradual increase in mean pulmonary arterial pressure to over 20 mmHg at rest. The pathogenesis of PAH is multifactorial. It involves dynamic obstruction of the pulmonary vasculature through vasoconstriction, structural obstruction due to adverse vascular remodeling, and pathological obstruction caused by vascular fibrosis and stiffening, which reduces compliance. PAH often presents with vague initial symptoms and is frequently diagnosed at an advanced stage. The increased pulmonary arterial pressure leads to vascular remodeling, eventually resulting in right ventricular hypertrophy and failure. PAH is a rare condition with a median life expectancy of three years, underscoring the need for effective treatment alternatives. Several FDA-approved therapeutic options are available, including prostacyclin analogs (epoprostenol, iloprost, and treprostinil), the non-prostanoid IP receptor agonist selexipag, selective endothelin receptor antagonists (ERA) (ambrisentan, bosentan, and macitentan), phosphodiesterase 5 inhibitors (sildenafil and tadalafil), and the soluble guanylate cyclase (sGC) stimulator riociguat. Despite these advancements, current medications do not provide a permanent cure. This study presents an overview of current and emerging PAH therapies through a systematic literature review. It involved an analysis of nine studies and a review of 800 papers from reputable journals published between 2013 and June 2023. The research focused on drug effects on the six-minute walk distance (6-MWD) and associated side effects in randomized controlled trials. The review found that while udenafil, imatinib, racecadotril, sotatercept, anastrozole, riociguat, tacrolimus, and ralinepag were evaluated, imatinib was notably associated with adverse side effects. Conversely, udenafil, racecadotril, sotatercept, anastrozole, riociguat, tacrolimus, and ralinepag were found to be safe, well-tolerated, and effective in improving hemodynamic measures and 6-MWDs. This study aims to summarize the developing treatment options currently under clinical trials, highlighting the need for further trials before their application in clinical practice.
Collapse
Affiliation(s)
- Amir Rasheed
- Internal Medicine, Aziz Bhatti Shaheed Teaching Hospital, Gujrat, PAK
| | | | | | - Salamat Ali
- General Surgery, Aziz Bhatti Shaheed Teaching Hospital, Gujrat, PAK
| | - Rizwana Syed
- Internal Medicine, Apollo Institute of Medical Sciences and Research, Chittoor, Chittoor, IND
| | - Binay K Panjiyar
- Research, Ventolini's Lab, Texas Tech University Health Sciences Center, Odessa, USA
- Global Clinical Scholars Research Training, Harvard Medical School, Boston, USA
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
9
|
Bruck O, Pandit LM. Pulmonary Hypertension and Hyperglycemia-Not a Sweet Combination. Diagnostics (Basel) 2024; 14:1119. [PMID: 38893645 PMCID: PMC11171670 DOI: 10.3390/diagnostics14111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Hyperglycemia and pulmonary hypertension (PH) share common pathological pathways that lead to vascular dysfunction and resultant cardiovascular complications. These shared pathologic pathways involve endothelial dysfunction, inflammation, oxidative stress, and hormonal imbalances. Individuals with hyperglycemia or pulmonary hypertension also possess shared clinical factors that contribute to increased morbidity from both diseases. This review aims to explore the relationship between PH and hyperglycemia, highlighting the mechanisms underlying their association and discussing the clinical implications. Understanding these common pathologic and clinical factors will enable early detection for those at-risk for complications from both diseases, paving the way for improved research and targeted therapeutics.
Collapse
Affiliation(s)
- Or Bruck
- Section of Pulmonary, Critical Care, Sleep Medicine, Baylor College of Medicine, Houston, TX 77024, USA;
| | - L. M. Pandit
- Section of Pulmonary, Critical Care, Sleep Medicine, Baylor College of Medicine, Houston, TX 77024, USA;
- Michael E. DeBakey Veterans Affairs Medical Center, Center for Translational Research on Inflammatory Diseases (CTRID), Houston, TX 77030, USA
| |
Collapse
|
10
|
Dignam JP, Sharma S, Stasinopoulos I, MacLean MR. Pulmonary arterial hypertension: Sex matters. Br J Pharmacol 2024; 181:938-966. [PMID: 37939796 DOI: 10.1111/bph.16277] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex disease of multifactorial origin. While registries have demonstrated that women are more susceptible to the disease, females with PAH have superior right ventricle (RV) function and a better prognosis than their male counterparts, a phenomenon referred to as the 'estrogen paradox'. Numerous pre-clinical studies have investigated the involvement of sex hormones in PAH pathobiology, often with conflicting results. However, recent advances suggest that abnormal estrogen synthesis, metabolism and signalling underpin the sexual dimorphism of this disease. Other sex hormones, such as progesterone, testosterone and dehydroepiandrosterone may also play a role. Several non-hormonal factor including sex chromosomes and epigenetics have also been implicated. Though the underlying pathophysiological mechanisms are complex, several compounds that modulate sex hormones levels and signalling are under investigation in PAH patients. Further elucidation of the estrogen paradox will set the stage for the identification of additional therapeutic targets for this disease.
Collapse
Affiliation(s)
- Joshua P Dignam
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Smriti Sharma
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Ioannis Stasinopoulos
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|
11
|
Nabeh OA, Saud AI, Amin B, Khedr AS, Amr A, Faoosa AM, Esmat E, Mahmoud YM, Hatem A, Mohamed M, Osama A, Soliman YMA, Elkorashy RI, Elmorsy SA. A Systematic Review of Novel Therapies of Pulmonary Arterial Hypertension. Am J Cardiovasc Drugs 2024; 24:39-54. [PMID: 37945977 PMCID: PMC10805839 DOI: 10.1007/s40256-023-00613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive, cureless disease, characterized by increased pulmonary vascular resistance and remodeling, with subsequent ventricular dilatation and failure. New therapeutic targets are being investigated for their potential roles in improving PAH patients' symptoms and reversing pulmonary vascular pathology. METHOD We aimed to address the available knowledge from the published randomized controlled trials (RCTs) regarding the role of Rho-kinase (ROCK) inhibitors, bone morphogenetic protein 2 (BMP2) inhibitors, estrogen inhibitors, and AMP-activated protein kinase (AMPK) activators on the PAH evaluation parameters. This systematic review (SR) was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (CDR42022340658) and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Overall, 5092 records were screened from different database and registries; 8 RCTs that met our inclusion criteria were included. The marked difference in the study designs and the variability of the selected outcome measurement tools among the studies made performing a meta-analysis impossible. However, the main findings of this SR relate to the powerful potential of the AMPK activator and the imminent antidiabetic drug metformin, and the BMP2 inhibitor sotatercept as promising PAH-modifying therapies. There is a need for long-term studies to evaluate the effect of the ROCK inhibitor fasudil and the estrogen aromatase inhibitor anastrozole in PAH patients. The role of tacrolimus in PAH is questionable. The discrepancy in the hemodynamic and clinical parameters necessitates defining cut values to predict improvement. The differences in the PAH etiologies render the judgment of the therapeutic potential of the tested drugs challenging. CONCLUSION Metformin and sotatercept appear as promising therapeutic drugs for PAH. CLINICAL TRIALS REGISTRATION This work was registered in PROSPERO (CDR42022340658).
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Alaa I Saud
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma Amin
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Alaa Amr
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Eshraka Esmat
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Aya Hatem
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mariam Mohamed
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alaa Osama
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Reem Ibrahim Elkorashy
- Pulmonology, Pulmonary Medicine Department, Kasr Alainy Hospital, Cairo University, Cairo, Egypt
| | - Soha Aly Elmorsy
- Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
12
|
Zhao C, Le X, Li M, Hu Y, Li X, Chen Z, Hu G, Hu L, Li Q. Inhibition of Hsp110-STAT3 interaction in endothelial cells alleviates vascular remodeling in hypoxic pulmonary arterial Hypertension model. Respir Res 2023; 24:289. [PMID: 37978368 PMCID: PMC10655391 DOI: 10.1186/s12931-023-02600-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive and devastating disease characterized by pulmonary vascular remodeling which is associated with the malignant phenotypes of pulmonary vascular cells. Recently, the effects of heat shock protein 110 (Hsp110) in human arterial smooth muscle cells were reported. However, the underlying roles and mechanisms of Hsp110 in human pulmonary arterial endothelial cells (HPAECs) that was disordered firstly at the early stage of PAH remain unknown. METHODS In this research, the expression of Hsp110 in PAH human patients and rat models was investigated, and the Hsp110 localization was determined both in vivo and in vitro. The roles and mechanism of elevated Hsp110 in excessive cell proliferation and migration of HPAECs were assessed respectively exposed to hypoxia. Small molecule inhibitors targeting Hsp110-STAT3 interaction were screened via fluorescence polarization, anti-aggregation and western blot assays. Moreover, the effects of compound 6 on HPAECs abnormal phenotypes in vitro and pulmonary vascular remodeling of hypoxia-indued PAH rats in vivo by interrupting Hsp110-STAT3 interaction were evaluated. RESULTS Our studies demonstrated that Hsp110 expression was increased in the serum of patients with PAH, as well as in the lungs and pulmonary arteries of PAH rats, when compared to their respective healthy subjects. Moreover, Hsp110 levels were significantly elevated in HPAECs under hypoxia and mediated its aberrant phenotypes. Furthermore, boosted Hsp110-STAT3 interaction resulted in abnormal proliferation and migration via elevating p-STAT3 and c-Myc in HPAECs. Notably, we successfully identified compound 6 as potent Hsp110-STAT3 interaction inhibitor, which effectively inhibited HPAECs proliferation and migration, and significantly ameliorated right heart hypertrophy and vascular remodeling of rats with PAH. CONCLUSIONS Our studies suggest that elevated Hsp110 plays a vital role in HPAECs and inhibition of the Hsp110-STAT3 interaction is a novel strategy for improving vascular remodeling. In addition, compound 6 could serve as a promising lead compound for developing first-in-class drugs against PAH.
Collapse
Affiliation(s)
- Congke Zhao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Xiangyang Le
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Mengqi Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Yuanbo Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Liqing Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China.
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China.
| |
Collapse
|
13
|
Eichstaedt CA, Bikou O, Sommer N, Schermuly RT, Pullamsetti SS, Weissmann N, Harbaum L, Tabeling C, Wißmüller M, Foris V, Kuebler WM, Hinderhofer K, Olschewski A, Kwapiszewska G. [Genetic diagnostics and molecular approaches in pulmonary arterial hypertension]. Pneumologie 2023; 77:862-870. [PMID: 37963476 DOI: 10.1055/a-2145-4663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The recently published new European guidelines for diagnosis and treatment of pulmonary hypertension now offer the so far most extensive description of genetic testing and counselling for pulmonary arterial hypertension patients. In addition, the importance of a clinical screening of healthy mutation carriers is highlighted as well as the genetic testing of patients with a suspicion of pulmonary veno-occlusive disease. We frame the respective parts of the guidelines on genetic testing and counselling in the context of recent data and provide comments. Finally, we give an outlook on novel molecular approaches starting from Sotatercept, addressing ion channels and novel therapeutic developments.
Collapse
Affiliation(s)
- Christina A Eichstaedt
- Thoraxklinik Heidelberg gGmbH am Universitätsklinikum Heidelberg und TLRC am Deutschen Zentrum für Lungenforschung (DZL), Heidelberg, Deutschland
- Institut für Humangenetik, Universität Heidelberg, Heidelberg, Deutschland
| | - Olympia Bikou
- Medizinische Klinik und Poliklinik I, LMU Klinikum, LMU München, Deutschland
| | - Natascha Sommer
- Pneumologie und Intensivmedizin, Medizinische Klinik II, Universitätsklinikum Gießen und Marburg und UGMLC am Deutschen Zentrum für Lungenforschung (DZL), Gießen, Deutschland
| | - Ralph T Schermuly
- Zentrum für Innere Medizin, Justus-Liebig-Universität, Gießen, UGMLC Deutsches Zentrum für Lungenforschung (DZL), Gießen, Deutschland
| | - Soni S Pullamsetti
- Medizinische Klinik II, Cardio-Pulmonary Institute (CPI), UGMLC Deutsches Zentrum für Lungenforschung (DZL), Justus-Liebig-Universität, Gießen, Deutschland
- Max-Planck-Institut für Herz- und Lungenforschung und UGMLC am Deutschen Zentrum für Lungenforschung (DZL), Bad Nauheim, Deutschland
| | - Norbert Weissmann
- Medizinische Klinik II, Cardio-Pulmonary Institute (CPI), UGMLC Deutsches Zentrum für Lungenforschung (DZL), Justus-Liebig-Universität, Gießen, Deutschland
| | - Lars Harbaum
- Abteilung für Pneumologie, II. Medizinische Klinik und Poliklinik, zzt. Klinik für Intensivmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Christoph Tabeling
- Fächerverbund Infektiologie, Pneumologie und Intensivmedizin, Klinik für Pneumologie, Beatmungsmedizin und Intensivmedizin mit dem Arbeitsbereich Schlafmedizin, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Max Wißmüller
- Klinik III für Innere Medizin, Herzzentrum der Universität zu Köln und Cologne Cardiovascular Research Center (CCRC), Universität zu Köln, Köln, Deutschland
| | - Vasile Foris
- Universitätsklinik für Innere Medizin, Klinische Abteilung für Pneumologie, Medizinische Universität Graz, Graz, Österreich
- Ludwig Boltzmann Institut für Lungengefäßforschung, Graz, Österreich
| | - Wolfgang M Kuebler
- Institut für Physiologie, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Katrin Hinderhofer
- Institut für Humangenetik, Universität Heidelberg, Heidelberg, Deutschland
| | - Andrea Olschewski
- Ludwig Boltzmann Institut für Lungengefäßforschung, Graz, Österreich
- Experimentelle Anästhesiologie, Universitätsklinik für Anästhesiologie und Intensivmedizin, Medizinische Universität Graz, Graz, Österreich
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institut für Lungengefäßforschung, Graz, Österreich
- Otto Loewi Research Center, Medizinische Universität Graz, Graz, Österreich
- Institute for Lung Health, Giessen, Germany
| |
Collapse
|
14
|
Wits M, Becher C, de Man F, Sanchez-Duffhues G, Goumans MJ. Sex-biased TGFβ signalling in pulmonary arterial hypertension. Cardiovasc Res 2023; 119:2262-2277. [PMID: 37595264 PMCID: PMC10597641 DOI: 10.1093/cvr/cvad129] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare cardiovascular disorder leading to pulmonary hypertension and, often fatal, right heart failure. Sex differences in PAH are evident, which primarily presents with a female predominance and increased male severity. Disturbed signalling of the transforming growth factor-β (TGFβ) family and gene mutations in the bone morphogenetic protein receptor 2 (BMPR2) are risk factors for PAH development, but how sex-specific cues affect the TGFβ family signalling in PAH remains poorly understood. In this review, we aim to explore the sex bias in PAH by examining sex differences in the TGFβ signalling family through mechanistical and translational evidence. Sex hormones including oestrogens, progestogens, and androgens, can determine the expression of receptors (including BMPR2), ligands, and soluble antagonists within the TGFβ family in a tissue-specific manner. Furthermore, sex-related genetic processes, i.e. Y-chromosome expression and X-chromosome inactivation, can influence the TGFβ signalling family at multiple levels. Given the clinical and mechanistical similarities, we expect that the conclusions arising from this review may apply also to hereditary haemorrhagic telangiectasia (HHT), a rare vascular disorder affecting the TGFβ signalling family pathway. In summary, we anticipate that investigating the TGFβ signalling family in a sex-specific manner will contribute to further understand the underlying processes leading to PAH and likely HHT.
Collapse
Affiliation(s)
- Marius Wits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Clarissa Becher
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Frances de Man
- Department of Pulmonary Medicine, Amsterdam University Medical Center (UMC) (Vrije Universiteit), 1081 HV Amsterdam, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
15
|
Auth R, Klinger JR. Emerging pharmacotherapies for the treatment of pulmonary arterial hypertension. Expert Opin Investig Drugs 2023; 32:1025-1042. [PMID: 37881882 DOI: 10.1080/13543784.2023.2274439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease. Approved treatment options currently primarily target abnormal cell signaling pathways involved in vasoconstriction and proliferation, such as those mediated by prostacyclin, cyclic guanosine monophosphate, and endothelin. AREAS COVERED Recent advancements have led to new applications and modes of delivery of currently approved PAH medications. At the same time, novel drugs targeting specific molecular pathways involved in PAH pathogenesis have been developed and are being investigated in clinical trials. This review summarizes investigational drug trials for PAH gathered from a comprehensive search using PubMed and ClinicalTrials.gov between 2003 and 2023. It includes both currently approved medications studied at different doses or new administration forms and experimental drugs that have not yet been approved. EXPERT OPINION Approved treatments for PAH target imbalances in pulmonary vasoactive pathways that work primarily on enhancing pulmonary vasodilation with less salient effects on pulmonary vascular remodeling. The advent of more locally acting inhaled medications offers additional therapeutic options that may improve the ease of drug delivery and reduce adverse systemic effects. The more recent emphasis on developing and applying therapeutics that directly impact the aberrant signaling pathways implicated in PAH appears more likely to advance the treatment of this devastating disease.
Collapse
Affiliation(s)
- Roger Auth
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - James R Klinger
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
16
|
New Drugs and Therapies in Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24065850. [PMID: 36982922 PMCID: PMC10058689 DOI: 10.3390/ijms24065850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Pulmonary arterial hypertension is a chronic, progressive disorder of the pulmonary vasculature with associated pulmonary and cardiac remodeling. PAH was a uniformly fatal disease until the late 1970s, but with the advent of targeted therapies, the life expectancy of patients with PAH has now considerably improved. Despite these advances, PAH inevitably remains a progressive disease with significant morbidity and mortality. Thus, there is still an unmet need for the development of new drugs and other interventional therapies for the treatment of PAH. One shortcoming of currently approved vasodilator therapies is that they do not target or reverse the underlying pathogenesis of the disease process itself. A large body of evidence has evolved in the past two decades clarifying the role of genetics, dysregulation of growth factors, inflammatory pathways, mitochondrial dysfunction, DNA damage, sex hormones, neurohormonal pathways, and iron deficiency in the pathogenesis of PAH. This review focuses on newer targets and drugs that modify these pathways as well as novel interventional therapies in PAH.
Collapse
|
17
|
Novel Molecular Mechanisms Involved in the Medical Treatment of Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24044147. [PMID: 36835558 PMCID: PMC9965798 DOI: 10.3390/ijms24044147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe condition with a high mortality rate despite advances in diagnostic and therapeutic strategies. In recent years, significant scientific progress has been made in the understanding of the underlying pathobiological mechanisms. Since current available treatments mainly target pulmonary vasodilation, but lack an effect on the pathological changes that develop in the pulmonary vasculature, there is need to develop novel therapeutic compounds aimed at antagonizing the pulmonary vascular remodeling. This review presents the main molecular mechanisms involved in the pathobiology of PAH, discusses the new molecular compounds currently being developed for the medical treatment of PAH and assesses their potential future role in the therapeutic algorithms of PAH.
Collapse
|
18
|
Bousseau S, Sobrano Fais R, Gu S, Frump A, Lahm T. Pathophysiology and new advances in pulmonary hypertension. BMJ MEDICINE 2023; 2:e000137. [PMID: 37051026 PMCID: PMC10083754 DOI: 10.1136/bmjmed-2022-000137] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/02/2023] [Indexed: 04/14/2023]
Abstract
Pulmonary hypertension is a progressive and often fatal cardiopulmonary condition characterised by increased pulmonary arterial pressure, structural changes in the pulmonary circulation, and the formation of vaso-occlusive lesions. These changes lead to increased right ventricular afterload, which often progresses to maladaptive right ventricular remodelling and eventually death. Pulmonary arterial hypertension represents one of the most severe and best studied types of pulmonary hypertension and is consistently targeted by drug treatments. The underlying molecular pathogenesis of pulmonary hypertension is a complex and multifactorial process, but can be characterised by several hallmarks: inflammation, impaired angiogenesis, metabolic alterations, genetic or epigenetic abnormalities, influence of sex and sex hormones, and abnormalities in the right ventricle. Current treatments for pulmonary arterial hypertension and some other types of pulmonary hypertension target pathways involved in the control of pulmonary vascular tone and proliferation; however, these treatments have limited efficacy on patient outcomes. This review describes key features of pulmonary hypertension, discusses current and emerging therapeutic interventions, and points to future directions for research and patient care. Because most progress in the specialty has been made in pulmonary arterial hypertension, this review focuses on this type of pulmonary hypertension. The review highlights key pathophysiological concepts and emerging therapeutic directions, targeting inflammation, cellular metabolism, genetics and epigenetics, sex hormone signalling, bone morphogenetic protein signalling, and inhibition of tyrosine kinase receptors.
Collapse
Affiliation(s)
- Simon Bousseau
- Division of Pulmonary, Sleep, and Critical Care Medicine, National Jewish Health, Denver, CO, USA
| | - Rafael Sobrano Fais
- Division of Pulmonary, Sleep, and Critical Care Medicine, National Jewish Health, Denver, CO, USA
| | - Sue Gu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cardiovascular Pulmonary Research Lab, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrea Frump
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tim Lahm
- Division of Pulmonary, Sleep, and Critical Care Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, CO, USA
| |
Collapse
|
19
|
Ventetuolo CE, Moutchia J, Baird GL, Appleby DH, McClelland RL, Minhas J, Min J, Holmes JH, Urbanowicz RJ, Al-Naamani N, Kawut SM. Baseline Sex Differences in Pulmonary Arterial Hypertension Randomized Clinical Trials. Ann Am Thorac Soc 2023; 20:58-66. [PMID: 36053665 PMCID: PMC9819259 DOI: 10.1513/annalsats.202203-207oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/02/2022] [Indexed: 02/05/2023] Open
Abstract
Rationale: Sex-based differences in pulmonary arterial hypertension (PAH) are known, but the contribution to disease measures is understudied. Objectives: We examined whether sex was associated with baseline 6-minute-walk distance (6MWD), hemodynamics, and functional class. Methods: We conducted a secondary analysis of participant-level data from randomized clinical trials of investigational PAH therapies conducted between 1998 and 2014 and provided by the U.S. Food and Drug Administration. Outcomes were modeled as a function of an interaction between sex and age or sex and body mass index (BMI), respectively, with generalized mixed modeling. Results: We included a total of 6,633 participants from 18 randomized clinical trials. A total of 5,197 (78%) were female, with a mean age of 49.1 years and a mean BMI of 27.0 kg/m2. Among 1,436 males, the mean age was 49.7 years, and the mean BMI was 26.4 kg/m2. The most common etiology of PAH was idiopathic. Females had shorter 6MWD. For every 1 kg/m2 increase in BMI for females, 6MWD decreased 2.3 (1.6-3.0) meters (P < 0.001), whereas 6MWD did not significantly change with BMI in males (0.31 m [-0.30 to 0.92]; P = 0.32). Females had lower right atrial pressure (RAP) and mean pulmonary artery pressure, and higher cardiac index than males (all P < 0.03). Age significantly modified the sex by RAP and mean pulmonary artery pressure relationships. For every 10-year increase in age, RAP was lower in males (0.5 mm Hg [0.3-0.7]; P < 0.001), but not in females (0.13 [-0.03 to 0.28]; P = 0.10). There was a significant decrease in pulmonary vascular resistance (PVR) with increasing age regardless of sex (P < 0.001). For every 1 kg/m2 increase in BMI, there was a 3% decrease in PVR for males (P < 0.001), compared with a 2% decrease in PVR in females (P < 0.001). Conclusions: Sexual dimorphism in subjects enrolled in clinical trials extends to 6MWD and hemodynamics; these relationships are modified by age and BMI. Sex, age, and body size should be considered in the evaluation and interpretation of surrogate outcomes in PAH.
Collapse
Affiliation(s)
- Corey E. Ventetuolo
- Department of Medicine
- Department of Health Services, Policy, and Practice, School of Public Health, and
| | - Jude Moutchia
- Department of Biostatistics, Epidemiology, and Informatics and
| | - Grayson L. Baird
- Department of Diagnostic Imaging, Alpert Medical School, Brown University, Providence, Rhode Island
- Lifespan Hospital System, Providence, Rhode Island
| | - Dina H. Appleby
- Department of Biostatistics, Epidemiology, and Informatics and
| | - Robyn L. McClelland
- Department of Biostatistics, University of Washington School of Public Health, Seattle, Washington; and
| | - Jasleen Minhas
- Department of Biostatistics, Epidemiology, and Informatics and
| | - Jeff Min
- Department of Biostatistics, Epidemiology, and Informatics and
| | - John H. Holmes
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryan J. Urbanowicz
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nadine Al-Naamani
- Department of Biostatistics, Epidemiology, and Informatics and
- Department of Biostatistics, University of Washington School of Public Health, Seattle, Washington; and
| | - Steven M. Kawut
- Department of Biostatistics, Epidemiology, and Informatics and
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Molecular Pathways in Pulmonary Arterial Hypertension. Int J Mol Sci 2022; 23:ijms231710001. [PMID: 36077398 PMCID: PMC9456336 DOI: 10.3390/ijms231710001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension is a multifactorial, chronic disease process that leads to pulmonary arterial endothelial dysfunction and smooth muscular hypertrophy, resulting in impaired pliability and hemodynamics of the pulmonary vascular system, and consequent right ventricular dysfunction. Existing treatments target limited pathways with only modest improvement in disease morbidity, and little or no improvement in mortality. Ongoing research has focused on the molecular basis of pulmonary arterial hypertension and is going to be important in the discovery of new treatments and genetic pathways involved. This review focuses on the molecular pathogenesis of pulmonary arterial hypertension.
Collapse
|
21
|
Medrek S, Melendres-Groves L. Evolving nonvasodilator treatment options for pulmonary arterial hypertension. Curr Opin Pulm Med 2022; 28:361-368. [PMID: 35838352 DOI: 10.1097/mcp.0000000000000887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW With the establishment of vasodilator therapy as a mainstay of treatment for pulmonary arterial hypertension (PAH), new therapeutic approaches are needed to prevent the development of the vasculopathy associated with this disease. Many studies are currently underway to investigate nonvasodilator treatment options. RECENT FINDINGS Modulation of bone morphogenic protein receptor type 2 (BMPR2) signaling with sotatercept showed promising results in phase 2 studies. Rituximab, an anti-CD20 monoclonal antibody, showed some signal for beneficial effect in patients with scleroderma-associated PAH. Studies evaluating agents including tocilizumab, selonsertib, bardoxolone, 10-nitro-9(E)-enoic acid (CXA-10) and intravenous iron have not shown acceptable efficacy in treating PAH. SUMMARY Pharmacologic approaches for the treatment of PAH include altering of transforming growth factor β/BMPR2 signaling, proliferation via growth factors, immune response, oxidative stress, estrogen signaling, metabolism, and neurohormonal modulation. Other treatment modalities including pulmonary artery nerve denervation, stem cell therapy, and inter-atrial shunt formation are also being explored.
Collapse
Affiliation(s)
- Sarah Medrek
- Division of Pulmonary Critical Care Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | | |
Collapse
|
22
|
Rodriguez-Arias JJ, García-Álvarez A. Sex Differences in Pulmonary Hypertension. FRONTIERS IN AGING 2022; 2:727558. [PMID: 35822006 PMCID: PMC9261364 DOI: 10.3389/fragi.2021.727558] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022]
Abstract
Pulmonary hypertension (PH) includes multiple diseases that share as common characteristic an elevated pulmonary artery pressure and right ventricular involvement. Sex differences are observed in practically all causes of PH. The most studied type is pulmonary arterial hypertension (PAH) which presents a gender bias regarding its prevalence, prognosis, and response to treatment. Although this disease is more frequent in women, once affected they present a better prognosis compared to men. Even if estrogens seem to be the key to understand these differences, animal models have shown contradictory results leading to the birth of the estrogen paradox. In this review we will summarize the evidence regarding sex differences in experimental animal models and, very specially, in patients suffering from PAH or PH from other etiologies.
Collapse
Affiliation(s)
| | - Ana García-Álvarez
- Cardiology Department, Institut Clínic Cardiovascular, Hospital Clínic, IDIBAPS, Madrid, Spain.,Universidad de Barcelona, Barcelona, Spain.,Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
23
|
Kızılırmak D, Karadoğan D, Yıldırım H, Tokgöz Akyıl F, Şişmanlar Eyüboğlu T, Emiralioğlu N, Özden Sertçelik Ü, Esra Günaydın F, Ataoğlu Ö, Oğuz MS, Çakmakcı S, Özçelik N, Öncel A, Fırıncıoğluları A, Yılmaz Kara B, Ömer D, Karaoğlanoğlu S, Cetin N, Gulsum Karakas F, Gunduz Gurkan C, Marim F, Önyılmaz T, Polat Yuluğ D, Aylin Acet Öztürk N, Aydın Güçlü Ö, Çiftçi Küsbeci T, Şerifoğlu İ, Arıkan H, Nur Töreyin Z, Çelik P, Akgün M. Turkish Thoracic Society Early Career Members Task Force Group's Virtual Congress Notes: European Respiratory Society International Congress 2020. Turk Thorac J 2022; 23:162-172. [PMID: 35404249 PMCID: PMC9449886 DOI: 10.5152/turkthoracj.2022.21081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/11/2021] [Indexed: 11/22/2022]
Abstract
In this article, Early Career Task Force Group members of the Turkish Thoracic Society summarize the European Respiratory Society 2020 virtual congress. Current developments in the field of respiratory diseases were compiled with the addition of sessions specific to coronavirus disease 2019 this year. Almost all of the congress sessions were examined, and the important and striking results of the congress were highlighted. Congress sessions were attended by expert researchers, and the prominent messages of each session were highlighted in short summaries. They were then grouped under relevant titles and ranked in order of meaning and relation. It was finalized by a team of researchers.
Collapse
Affiliation(s)
- Deniz Kızılırmak
- Department of Chest Diseases, Manisa Celal Bayar University, School of Medicine, Manisa, Turkey
| | - Dilek Karadoğan
- Department of Chest Diseases, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - Halime Yıldırım
- Department of Medical Biology, University of Health Sciences, School of Medicine, İstanbul, Turkey
| | - Fatma Tokgöz Akyıl
- Department of Chest Diseases, Yedikule Chest Diseases and Thoracic Surgery Training and Research Hospital, İstanbul, Turkey
| | | | - Nagehan Emiralioğlu
- Department of Pediatric Pulmonology, Hacettepe University School of Medicine, Ankara, Turkey
| | | | - Fatma Esra Günaydın
- Department of Chest Diseases, Allergy and Immunology, Bursa Uludağ University, School of Medicine, Bursa, Turkey
| | - Özlem Ataoğlu
- Department of Chest Diseases, Atatürk State Hospital, Düzce, Turkey
| | - Merve Sinem Oğuz
- Department of Chest Diseases, İstanbul University, Istanbul School of Medicine, İstanbul, Turkey
| | - Selin Çakmakcı
- Department of Chest Diseases, Buldan Chest Diseases Hospital, Denizli, Turkey
| | - Neslihan Özçelik
- Department of Chest Diseases, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - Aslı Öncel
- Department of Chest Diseases, Hacettepe University, School of Medicine, Ankara, Turkey
| | - Ali Fırıncıoğluları
- Department of Chest Diseases, Dr Burhan Nalbantoglu State Hospital, Nicosia, Cyprus
| | - Bilge Yılmaz Kara
- Department of Chest Diseases, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - Dilara Ömer
- Department of Chest Diseases, Bursa Uludağ University, School of Medicine, Bursa, Turkey
| | - Selen Karaoğlanoğlu
- Department of Chest Diseases, Ordu University, School of Medicine, Ordu, Turkey
| | - Nazli Cetin
- Department of Chest Diseases, Pamukkale University, School of Medicine, Denizli, Turkey
| | - Fatma Gulsum Karakas
- Department of Chest Diseases, İstanbul University, Cerrahpaşa School of Medicine, İstanbul, Turkey
| | - Canan Gunduz Gurkan
- Department of Chest Diseases, Süreyyapaşa Chest Diseases and Thoracic Surgery Training and Research Hospital, İstanbul, Turkey
| | - Feride Marim
- Department of Chest Diseases, Kütahya University of Health Sciences, School of Medicine, Kütahya, Turkey
| | - Tuğba Önyılmaz
- Department of Chest Diseases, Private Konak Hospital, Kocaeli, Turkey
| | - Demet Polat Yuluğ
- Department of Chest Diseases, Aksaray University Training and Research Hospital, Aksaray, Turkey
| | | | - Özge Aydın Güçlü
- Department of Chest Diseases, Bursa Uludağ University, School of Medicine, Bursa, Turkey
| | | | - İrem Şerifoğlu
- Department of Chest Diseases, Ankara City Hospital, Ankara, Turkey
| | - Hüseyin Arıkan
- Department of Pulmonary and Critical Care Medicine, Marmara University, School of Medicine, İstanbul, Turkey
| | - Zehra Nur Töreyin
- Department of Occupational Diseases, University of Health Sciences, Adana Research and Training Hospital, Adana, Turkey
| | - Pınar Çelik
- Department of Chest Diseases, Manisa Celal Bayar University, School of Medicine, Manisa, Turkey
| | - Metin Akgün
- Department of Chest Diseases, Atatürk University, School of Medicine, Erzurum, Turkey
| |
Collapse
|
24
|
Vrigkou E, Vassilatou E, Dima E, Langleben D, Kotanidou A, Tzanela M. The Role of Thyroid Disorders, Obesity, Diabetes Mellitus and Estrogen Exposure as Potential Modifiers for Pulmonary Hypertension. J Clin Med 2022; 11:jcm11040921. [PMID: 35207198 PMCID: PMC8874474 DOI: 10.3390/jcm11040921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 02/01/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive disorder characterized by a chronic in-crease in pulmonary arterial pressure, frequently resulting in right-sided heart failure and potentially death. Co-existing medical conditions are important factors in PH, since they not only result in the genesis of the disorder, but may also contribute to its progression. Various studies have assessed the impact of thyroid disorders and other endocrine conditions (namely estrogen exposure, obesity, and diabetes mellitus) on the progression of PH. The complex interactions that hormones may have with the cardiovascular system and pulmonary vascular bed can create several pathogenetic routes that could explain the effects of endocrine disorders on PH development and evolution. The aim of this review is to summarize current knowledge on the role of concomitant thyroid disorders, obesity, diabetes mellitus, and estrogen exposure as potential modifiers for PH, and especially for pulmonary arterial hypertension, and to discuss possible pathogenetic routes linking them with PH. This information could be valuable for practicing clinicians so as to better evaluate and/or treat concomitant endocrine conditions in the PH population.
Collapse
Affiliation(s)
- Eleni Vrigkou
- 1st Department of Critical Care and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (E.V.); (E.D.); (A.K.)
| | | | - Effrosyni Dima
- 1st Department of Critical Care and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (E.V.); (E.D.); (A.K.)
| | - David Langleben
- Center for Pulmonary Vascular Disease, Azrieli Heart Center, Jewish General Hospital and McGill University, Montreal, QC H3A 0G4, Canada;
| | - Anastasia Kotanidou
- 1st Department of Critical Care and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (E.V.); (E.D.); (A.K.)
| | - Marinella Tzanela
- Department of Endocrinology, Diabetes Center, Evangelismos Hospital, 10676 Athens, Greece
- Correspondence: ; Tel.: +30-694-4284-637
| |
Collapse
|
25
|
Kelly NJ, Chan SY. Pulmonary Arterial Hypertension: Emerging Principles of Precision Medicine across Basic Science to Clinical Practice. Rev Cardiovasc Med 2022; 23:378. [PMID: 36875282 PMCID: PMC9980296 DOI: 10.31083/j.rcm2311378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an enigmatic and deadly vascular disease with no known cure. Recent years have seen rapid advances in our understanding of the molecular underpinnings of PAH, with an expanding knowledge of the molecular, cellular, and systems-level drivers of disease that are being translated into novel therapeutic modalities. Simultaneous advances in clinical technology have led to a growing list of tools with potential application to diagnosis and phenotyping. Guided by fundamental biology, these developments hold the potential to usher in a new era of personalized medicine in PAH with broad implications for patient management and great promise for improved outcomes.
Collapse
Affiliation(s)
- Neil J Kelly
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
26
|
Gorenflo M, Ziesenitz VC. Treatment of pulmonary arterial hypertension in children. Cardiovasc Diagn Ther 2021; 11:1144-1159. [PMID: 34527540 DOI: 10.21037/cdt-20-912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/27/2021] [Indexed: 11/06/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating illness causing already significant morbidity in childhood. Currently approved treatment options for children comprise the endothelin receptor antagonist bosentan, as well as the phosphodiesterase-5 inhibitor sildenafil. But PAH treatment has advanced significantly over the past decade, and new classes of targeted drug therapies, such as stimulators of the soluble guanylate cyclase (riociguat) or prostacyclin receptor agonists (selexipag), are currently evaluated regarding their efficacy and safety in children, in order to limit off-label use. Due to the different etiologies in children, such as PAH-CHD, there is no evidence that initial combination therapy in children is superior to a mono-therapy with respect to survival. Special attention should also be paid to the pharmacology of PAH drugs in children, which might be impacted by ontogeny or drug-drug-interactions. Therapeutic drug monitoring may be useful in pediatric patients. There is a clear need for more controlled studies of PAH medications, alone or in combination therapy in the pediatric age group. Data from clinical trials as well as from patient registries should be pooled to optimize drug development and evaluation, trial design, and evidence-based pharmacotherapy in pediatric patients with PAH. In this review, the current treatment options of pediatric PAH are summarized, and an overview of new treatment concepts, which are already evaluated in adults, is presented.
Collapse
Affiliation(s)
- Matthias Gorenflo
- Department of Pediatric Cardiology and Congenital Heart Diseases, Centre of Child and Adolescent Health, University Hospital Heidelberg, Heidelberg, Germany
| | - Victoria C Ziesenitz
- Department of Pediatric Cardiology and Congenital Heart Diseases, Centre of Child and Adolescent Health, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
27
|
Zolty R. Novel Experimental Therapies for Treatment of Pulmonary Arterial Hypertension. J Exp Pharmacol 2021; 13:817-857. [PMID: 34429666 PMCID: PMC8380049 DOI: 10.2147/jep.s236743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and devastating disease characterized by pulmonary artery vasoconstriction and vascular remodeling leading to vascular rarefaction with elevation of pulmonary arterial pressures and pulmonary vascular resistance. Often PAH will cause death from right heart failure. Current PAH-targeted therapies improve functional capacity, pulmonary hemodynamics and reduce hospitalization. Nevertheless, today PAH still remains incurable and is often refractory to medical therapy, underscoring the need for further research. Over the last three decades, PAH has evolved from a disease of unknown pathogenesis devoid of effective therapy to a condition whose cellular, genetic and molecular underpinnings are unfolding. This article provides an update on current knowledge and summarizes the progression in recent advances in pharmacological therapy in PAH.
Collapse
Affiliation(s)
- Ronald Zolty
- Pulmonary Hypertension Program, University of Nebraska Medical Center, Lied Transplant Center, Omaha, NE, USA
| |
Collapse
|
28
|
Abstract
Rationale: Sex hormones play a role in pulmonary arterial hypertension (PAH), but the menstrual cycle has never been studied.Objectives: We conducted a prospective observational study of eight women with stable PAH and 20 healthy controls over one cycle.Methods: Participants completed four study visits 1 week apart starting on the first day of menstruation. Relationships between sex hormones, hormone metabolites, and extracellular vesicle microRNA (miRNA) expression and clinical markers were compared with generalized linear mixed modeling.Results: Women with PAH had higher but less variable estradiol (E2) levels (P < 0.001) that tracked with 6-minute walk distance (P < 0.001), N-terminal prohormone of brain natriuretic peptide (P = 0.03) levels, and tricuspid annular plane systolic excursion (P < 0.01); the direction of these associations depended on menstrual phase. Dehydroepiandrosterone sulfate (DHEA-S) levels were lower in women with PAH (all visits, P < 0.001). In PAH, each 100-μg/dl increase in DHEA-S was associated with a 127-m increase in 6-minute walk distance (P < 0.001) and was moderated by the cardioprotective E2 metabolite 2-methoxyestrone (P < 0.001). As DHEA-S increased, N-terminal prohormone of brain natriuretic peptide levels decreased (P = 0.001). Expression of extracellular vesicle miRNAs-21, -29c, and -376a was higher in PAH, moderated by E2 and DHEA-S levels, and tracked with hormone-associated changes in clinical measures.Conclusions: Women with PAH have fluctuations in cardiopulmonary function during menstruation driven by E2 and DHEA-S. These hormones in turn influence transcription of extracellular vesicle miRNAs implicated in the pathobiology of pulmonary vascular disease and cancer.
Collapse
|
29
|
Qaiser KN, Tonelli AR. Novel Treatment Pathways in Pulmonary Arterial Hypertension. Methodist Debakey Cardiovasc J 2021; 17:106-114. [PMID: 34326930 PMCID: PMC8298123 DOI: 10.14797/cbhs2234] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe and progressive vascular disease characterized by pulmonary vascular remodeling, proliferation, and inflammation. Despite the availability of effective treatments, PAH may culminate in right ventricular failure and death. Currently approved medications act through three well-characterized pathways: the nitric oxide, endothelin, and prostacyclin pathways. Ongoing research efforts continue to expand our understanding of the molecular pathogenesis of this complex and multifactorial disease. Based on recent discoveries in the pathobiology of PAH, several new treatments are being developed and tested with the goal of modifying the disease process and ultimately improving the long-term prognosis.
Collapse
|
30
|
Leopold JA, Kawut SM, Aldred MA, Archer SL, Benza RL, Bristow MR, Brittain EL, Chesler N, DeMan FS, Erzurum SC, Gladwin MT, Hassoun PM, Hemnes AR, Lahm T, Lima JA, Loscalzo J, Maron BA, Rosa LM, Newman JH, Redline S, Rich S, Rischard F, Sugeng L, Tang WHW, Tedford RJ, Tsai EJ, Ventetuolo CE, Zhou Y, Aggarwal NR, Xiao L. Diagnosis and Treatment of Right Heart Failure in Pulmonary Vascular Diseases: A National Heart, Lung, and Blood Institute Workshop. Circ Heart Fail 2021; 14:e007975. [PMID: 34422205 PMCID: PMC8375628 DOI: 10.1161/circheartfailure.120.007975] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Right ventricular dysfunction is a hallmark of advanced pulmonary vascular, lung parenchymal, and left heart disease, yet the underlying mechanisms that govern (mal)adaptation remain incompletely characterized. Owing to the knowledge gaps in our understanding of the right ventricle (RV) in health and disease, the National Heart, Lung, and Blood Institute (NHLBI) commissioned a working group to identify current challenges in the field. These included a need to define and standardize normal RV structure and function in populations; access to RV tissue for research purposes and the development of complex experimental platforms that recapitulate the in vivo environment; and the advancement of imaging and invasive methodologies to study the RV within basic, translational, and clinical research programs. Specific recommendations were provided, including a call to incorporate precision medicine and innovations in prognosis, diagnosis, and novel RV therapeutics for patients with pulmonary vascular disease.
Collapse
Affiliation(s)
- Jane A. Leopold
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Steven M. Kawut
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Micheala A. Aldred
- Division of Pulmonary, Critical Care, Sleep & Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN
| | - Stephen L. Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Ray L. Benza
- Department of Medicine, Allegheny General Hospital, Pittsburgh, PA
| | | | - Evan L. Brittain
- Division of Cardiovascular Medicine and Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, TN
| | - Naomi Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI
| | - Frances S. DeMan
- Department of Pulmonary Medicine, PHEniX laboratory, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Mark T. Gladwin
- Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Paul M. Hassoun
- Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Anna R. Hemnes
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Tim Lahm
- Division of Pulmonary, Critical Care, Sleep & Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN
| | - Joao A.C. Lima
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Bradley A. Maron
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School and Department of Cardiology, Boston VA Healthcare System, West Roxbury, MA
| | - Laura Mercer Rosa
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John H. Newman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Susan Redline
- Departments of Medicine and Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Stuart Rich
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Franz Rischard
- Department of Medicine, University of Arizona- Tucson, Tucson, AZ
| | - Lissa Sugeng
- Department of Medicine, Yale School of Medicine, New Haven, CT
| | - W. H. Wilson Tang
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH
| | - Ryan J. Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Emily J. Tsai
- Division of Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY
| | - Corey E. Ventetuolo
- Department of Medicine, Alpert Medical School of Brown University, Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, RI
| | - YouYang Zhou
- Departments of Pediatrics (Division of Critical Care), Pharmacology, and Medicine, Northwestern University Feinberg School of Medicine. Chicago, Illinois
| | - Neil R. Aggarwal
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Lei Xiao
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| |
Collapse
|
31
|
Sharifi Kia D, Kim K, Simon MA. Current Understanding of the Right Ventricle Structure and Function in Pulmonary Arterial Hypertension. Front Physiol 2021; 12:641310. [PMID: 34122125 PMCID: PMC8194310 DOI: 10.3389/fphys.2021.641310] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease resulting in increased right ventricular (RV) afterload and RV remodeling. PAH results in altered RV structure and function at different scales from organ-level hemodynamics to tissue-level biomechanical properties, fiber-level architecture, and cardiomyocyte-level contractility. Biomechanical analysis of RV pathophysiology has drawn significant attention over the past years and recent work has found a close link between RV biomechanics and physiological function. Building upon previously developed techniques, biomechanical studies have employed multi-scale analysis frameworks to investigate the underlying mechanisms of RV remodeling in PAH and effects of potential therapeutic interventions on these mechanisms. In this review, we discuss the current understanding of RV structure and function in PAH, highlighting the findings from recent studies on the biomechanics of RV remodeling at organ, tissue, fiber, and cellular levels. Recent progress in understanding the underlying mechanisms of RV remodeling in PAH, and effects of potential therapeutics, will be highlighted from a biomechanical perspective. The clinical relevance of RV biomechanics in PAH will be discussed, followed by addressing the current knowledge gaps and providing suggested directions for future research.
Collapse
Affiliation(s)
- Danial Sharifi Kia
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kang Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh - University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marc A Simon
- Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
32
|
Sex and Gender Differences in Lung Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:227-258. [PMID: 34019273 DOI: 10.1007/978-3-030-68748-9_14] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sex differences in the anatomy and physiology of the respiratory system have been widely reported. These intrinsic sex differences have also been shown to modulate the pathophysiology, incidence, morbidity, and mortality of several lung diseases across the life span. In this chapter, we describe the epidemiology of sex differences in respiratory diseases including neonatal lung disease (respiratory distress syndrome, bronchopulmonary dysplasia) and pediatric and adult disease (including asthma, cystic fibrosis, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, lung cancer, lymphangioleiomyomatosis, obstructive sleep apnea, pulmonary arterial hypertension, and respiratory viral infections such as respiratory syncytial virus, influenza, and SARS-CoV-2). We also discuss the current state of research on the mechanisms underlying the observed sex differences in lung disease susceptibility and severity and the importance of considering both sex and gender variables in research studies' design and analysis.
Collapse
|
33
|
Walsh TP, Baird GL, Atalay MK, Agarwal S, Arcuri D, Klinger JR, Mullin CJ, Morreo H, Normandin B, Shiva S, Whittenhall M, Ventetuolo CE. Experimental design of the Effects of Dehydroepiandrosterone in Pulmonary Hypertension (EDIPHY) trial. Pulm Circ 2021; 11:2045894021989554. [PMID: 34094503 PMCID: PMC8142004 DOI: 10.1177/2045894021989554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/15/2020] [Indexed: 12/02/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) remains life-limiting despite numerous approved vasodilator therapies. Right ventricular (RV) function determines outcome in PAH but no treatments directly target RV adaptation. PAH is more common in women, yet women have better RV function and survival as compared to men with PAH. Lower levels of the adrenal steroid dehydroepiandrosterone (DHEA) and its sulfate ester are associated with more severe pulmonary vascular disease, worse RV function, and mortality independent of other sex hormones in men and women with PAH. DHEA has direct effects on nitric oxide (NO) and endothelin-1 (ET-1) synthesis and signaling, direct antihypertrophic effects on cardiomyocytes, and mitigates oxidative stress. Effects of Dehydroepiandrosterone in Pulmonary Hypertension (EDIPHY) is an on-going randomized double-blind placebo-controlled crossover trial of DHEA in men (n = 13) and pre- and post-menopausal women (n = 13) with Group 1 PAH funded by the National Heart, Lung and Blood Institute. We will determine whether orally administered DHEA 50 mg daily for 18 weeks affects RV longitudinal strain measured by cardiac magnetic resonance imaging, markers of RV remodeling and oxidative stress, NO and ET-1 signaling, sex hormone levels, other PAH intermediate end points, side effects, and safety. The crossover design will elucidate sex-based phenotypes in PAH and whether active treatment with DHEA impacts NO and ET-1 biosynthesis. EDIPHY is the first clinical trial of an endogenous sex hormone in PAH. Herein we present the study’s rationale and experimental design.
Collapse
Affiliation(s)
| | - Grayson L Baird
- Lifespan Health System, Providence, RI, USA.,Department of Diagnostic Imaging, Alpert Medical School of Brown University, Providence, RI, USA
| | - Michael K Atalay
- Department of Diagnostic Imaging, Alpert Medical School of Brown University, Providence, RI, USA
| | - Saurabh Agarwal
- Department of Diagnostic Imaging, Alpert Medical School of Brown University, Providence, RI, USA
| | - Daniel Arcuri
- Department of Diagnostic Imaging, Alpert Medical School of Brown University, Providence, RI, USA
| | - James R Klinger
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Christopher J Mullin
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | | | | | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, NO Metabolomics Core Facility, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary Whittenhall
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Corey E Ventetuolo
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA.,Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, RI, USA
| |
Collapse
|
34
|
2-Methoxyestradiol Attenuates the Development and Retards the Progression of Hypoxia-And Alpha-Naphthylthiourea-Induced Pulmonary Hypertension. ACTA ACUST UNITED AC 2021; 42:41-51. [PMID: 33894125 DOI: 10.2478/prilozi-2021-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pulmonary arterial hypertension (PH), a progressive, incurable, and deadly disease, predominantly develops in women. Growing body of evidence suggest that dysregulated estradiol (E2) metabolism influences the development of PH and that some of the biological effects of E2 are mediated by its major non-estrogenic metabolite, 2-metyhoxyestradiol (2ME). The objective of this study was to examine effects of 2ME in chronic hypoxia (CH)-induced PH and alpha-naphthylthiourea (ANTU)-induced acute lung injury and PH. In addition, we investigated the effects of exposure to different levels of CH on development of PH. Chronic exposure to 15% or 10% oxygen produced similar increases in right ventricle peak systolic pressure (RVPSP) and pulmonary vascular remodeling, but oxygen concentration-dependent increase in hematocrit. Notably, right ventricle (RV) hypertrophy correlated with level of hypoxia and hematocrit, rather than with magnitude of RVPSP. The latter suggests that, in addition to increased afterload, hypoxia (via increased hematocrit) significantly contributes to RV hypertrophy in CH model of PH. In CH-PH rats, preventive and curative 2ME treatments reduced both elevated RVPSP and pulmonary vascular remodeling. Curative treatment with 2ME was more effective in reducing hematocrit and right ventricular hypertrophy, as compared to preventive treatment. Single ANTU injection produced lung injury, i.e., increased lungs weight and induced pleural effusion. Treatment with 2ME significantly reduced pleural effusion and, more importantly, eliminated acute mortality induced by ANTU (33% vs 0%, ANTU vs. ANTU+2ME group). Chronic treatment with ANTU induced PH and RV hypertrophy and increased lungs weight. 2-ME significantly attenuated severity of disease (i.e., reduced RVPSP, RV hypertrophy and pulmonary vascular injury). This study demonstrates that 2ME has beneficial effects in chronic hypoxia- and acute lung injury-induced PH and provides preclinical justification for clinical evaluation of 2ME in pulmonary hypertension.
Collapse
|
35
|
Huang A, Kandhi S, Sun D. Roles of Genetic Predisposition in the Sex Bias of Pulmonary Pathophysiology, as a Function of Estrogens : Sex Matters in the Prevalence of Lung Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:107-127. [PMID: 33788190 DOI: 10.1007/978-3-030-63046-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In addition to studies focused on estrogen mediation of sex-different regulation of systemic circulations, there is now increasing clinical relevance and research interests in the pulmonary circulation, in terms of sex differences in the morbidity and mortality of lung diseases such as inherent-, allergic- and inflammatory-based events. Thus, female predisposition to pulmonary artery hypertension (PAH) is an inevitable topic. To better understand the nature of sexual differentiation in the pulmonary circulation, and how heritable factors, in vivo- and/or in vitro-altered estrogen circumstances and changes in the live environment work in concert to discern the sex bias, this chapter reviews pulmonary events characterized by sex-different features, concomitant with exploration of how alterations of genetic expression and estrogen metabolisms trigger the female-predominant pathological signaling. We address the following: PAH (Sect.7.2) is characterized as an estrogenic promotion of its incidence (Sect. 7.2.2), as a function of specific germline mutations, and as an estrogen-elicited protection of its prognosis (Sect.7.2.1). More detail is provided to introduce a less recognized gene of Ephx2 that encodes soluble epoxide hydrolase (sEH) to degrade epoxyeicosatrienic acids (EETs). As a susceptible target of estrogen, Ephx2/sEH expression is downregulated by an estrogen-dependent epigenetic mechanism. Increases in pulmonary EETs then evoke a potentiation of PAH generation, but mitigation of its progression, a phenomenon similar to the estrogen-paradox regulation of PAH. Additionally, the female susceptibility to chronic obstructive pulmonary diseases (Sect. 7.3) and asthma (Sect.7.4), but less preference to COVID-19 (Sect. 7.5), and roles of estrogen in their pathogeneses are briefly discussed.
Collapse
Affiliation(s)
- An Huang
- Department of Physiology, New York Medical College, Valhalla, NY, USA.
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
36
|
Frump AL, Albrecht M, Yakubov B, Breuils-Bonnet S, Nadeau V, Tremblay E, Potus F, Omura J, Cook T, Fisher A, Rodriguez B, Brown RD, Stenmark KR, Rubinstein CD, Krentz K, Tabima DM, Li R, Sun X, Chesler NC, Provencher S, Bonnet S, Lahm T. 17β-Estradiol and estrogen receptor α protect right ventricular function in pulmonary hypertension via BMPR2 and apelin. J Clin Invest 2021; 131:129433. [PMID: 33497359 DOI: 10.1172/jci129433] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/22/2021] [Indexed: 12/30/2022] Open
Abstract
Women with pulmonary arterial hypertension (PAH) exhibit better right ventricular (RV) function and survival than men; however, the underlying mechanisms are unknown. We hypothesized that 17β-estradiol (E2), through estrogen receptor α (ER-α), attenuates PAH-induced RV failure (RVF) by upregulating the procontractile and prosurvival peptide apelin via a BMPR2-dependent mechanism. We found that ER-α and apelin expression were decreased in RV homogenates from patients with RVF and from rats with maladaptive (but not adaptive) RV remodeling. RV cardiomyocyte apelin abundance increased in vivo or in vitro after treatment with E2 or ER-α agonist. Studies employing ER-α-null or ER-β-null mice, ER-α loss-of-function mutant rats, or siRNA demonstrated that ER-α is necessary for E2 to upregulate RV apelin. E2 and ER-α increased BMPR2 in pulmonary hypertension RVs and in isolated RV cardiomyocytes, associated with ER-α binding to the Bmpr2 promoter. BMPR2 is required for E2-mediated increases in apelin abundance, and both BMPR2 and apelin are necessary for E2 to exert RV-protective effects. E2 or ER-α agonist rescued monocrotaline pulmonary hypertension and restored RV apelin and BMPR2. We identified what we believe to be a novel cardioprotective E2/ER-α/BMPR2/apelin axis in the RV. Harnessing this axis may lead to novel RV-targeted therapies for PAH patients of either sex.
Collapse
Affiliation(s)
- Andrea L Frump
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marjorie Albrecht
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bakhtiyor Yakubov
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Valérie Nadeau
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Eve Tremblay
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Francois Potus
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Junichi Omura
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Todd Cook
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amanda Fisher
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brooke Rodriguez
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - R Dale Brown
- Department of Pediatrics, University of Colorado-Denver, Aurora, Colorado, USA
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado-Denver, Aurora, Colorado, USA
| | - C Dustin Rubinstein
- Genome Editing and Animal Models Core, University of Wisconsin Biotechnology Center
| | - Kathy Krentz
- Genome Editing and Animal Models Core, University of Wisconsin Biotechnology Center
| | | | - Rongbo Li
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xin Sun
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Steeve Provencher
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Sebastien Bonnet
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
37
|
Hye T, Dwivedi P, Li W, Lahm T, Nozik-Grayck E, Stenmark KR, Ahsan F. Newer insights into the pathobiological and pharmacological basis of the sex disparity in patients with pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1025-L1037. [PMID: 33719549 DOI: 10.1152/ajplung.00559.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) affects more women than men, although affected females tend to survive longer than affected males. This sex disparity in PAH is postulated to stem from the diverse roles of sex hormones in disease etiology. In animal models, estrogens appear to be implicated not only in pathologic remodeling of pulmonary arteries, but also in protection against right ventricular (RV) hypertrophy. In contrast, the male sex hormone testosterone is associated with reduced survival in male animals, where it is associated with increased RV mass, volume, and fibrosis. However, it also has a vasodilatory effect on pulmonary arteries. Furthermore, patients of both sexes show varying degrees of response to current therapies for PAH. As such, there are many gaps and contradictions regarding PAH development, progression, and therapeutic interventions in male versus female patients. Many of these questions remain unanswered, which may be due in part to lack of effective experimental models that can consistently reproduce PAH pulmonary microenvironments in their sex-specific forms. This review article summarizes the roles of estrogens and related sex hormones, immunological and genetical differences, and the benefits and limitations of existing experimental tools to fill in gaps in our understanding of the sex-based variation in PAH development and progression. Finally, we highlight the potential of a new tissue chip-based model mimicking PAH-afflicted male and female pulmonary arteries to study the sex-based differences in PAH and to develop personalized therapies based on patient sex and responsiveness to existing and new drugs.
Collapse
Affiliation(s)
- Tanvirul Hye
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, Texas
| | - Pankaj Dwivedi
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, Missouri
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas
| | - Tim Lahm
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Eva Nozik-Grayck
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, Texas.,Department of Pharmaceutical and Biomedical Sciences, California Northstate University, Elk Grove, California
| |
Collapse
|
38
|
Al-Naamani N, Krowka MJ, Forde KA, Krok KL, Feng R, Heresi GA, Dweik RA, Bartolome S, Bull TM, Roberts KE, Austin ED, Hemnes AR, Patel MJ, Oh JK, Lin G, Doyle MF, Denver N, Andrew R, MacLean MR, Fallon MB, Kawut SM, Pulmonary Vascular Complications of Liver Disease Study Group. Estrogen Signaling and Portopulmonary Hypertension: The Pulmonary Vascular Complications of Liver Disease Study (PVCLD2). Hepatology 2021; 73:726-737. [PMID: 32407592 PMCID: PMC8115214 DOI: 10.1002/hep.31314] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Portopulmonary hypertension (POPH) was previously associated with a single-nucleotide polymorphism (SNP) rs7175922 in aromatase (cytochrome P450 family 19 subfamily A member 1 [CYP19A1]). We sought to determine whether genetic variants and metabolites in the estrogen signaling pathway are associated with POPH. APPROACH AND RESULTS We performed a multicenter case-control study. POPH patients had mean pulmonary artery pressure >25 mm Hg, pulmonary vascular resistance >240 dyn-sec/cm-5 , and pulmonary artery wedge pressure ≤15 mm Hg without another cause of pulmonary hypertension. Controls had advanced liver disease, right ventricular (RV) systolic pressure <40 mm Hg, and normal RV function by echocardiography. We genotyped three SNPs in CYP19A1 and CYP1B1 using TaqMan and imputed SNPs in estrogen receptor 1 using genome-wide markers. Estrogen metabolites were measured in blood and urine samples. There were 37 patients with POPH and 290 controls. Mean age was 57 years, and 36% were female. The risk allele A in rs7175922 (CYP19A1) was significantly associated with higher levels of estradiol (P = 0.02) and an increased risk of POPH (odds ratio [OR], 2.36; 95% confidence interval [CI], 1.12-4.91; P = 0.02) whereas other SNPs were not. Lower urinary 2-hydroxyestrogen/16-α-hydroxyestrone (OR per 1-ln decrease = 2.04; 95% CI, 1.16-3.57; P = 0.01), lower plasma levels of dehydroepiandrosterone-sulfate (OR per 1-ln decrease = 2.38; 95% CI, 1.56-3.85; P < 0.001), and higher plasma levels of 16-α-hydroxyestradiol (OR per 1-ln increase = 2.16; 95% CI, 1.61-2.98; P < 0.001) were associated with POPH. CONCLUSIONS Genetic variation in aromatase and changes in estrogen metabolites were associated with POPH.
Collapse
Affiliation(s)
- Nadine Al-Naamani
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | - Kimberly A. Forde
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Karen L. Krok
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Rui Feng
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | - Raed A. Dweik
- Department of Medicine, Cleveland Clinic, Cleveland, OH
| | | | - Todd M. Bull
- Department of Medicine, University of Colorado, Denver, CO
| | | | - Eric D. Austin
- Department of Pediatrics, Vanderbilt University, Nashville, TN
| | - Anna R. Hemnes
- Department of Medicine, Vanderbilt University, Nashville, TN
| | - Mamta J. Patel
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jae K. Oh
- Department of Medicine, Mayo Clinic, Rochester, MN
| | - Grace Lin
- Department of Medicine, Mayo Clinic, Rochester, MN
| | - Margaret F. Doyle
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT
| | - Nina Denver
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Ruth Andrew
- University/British Heart Foundation Centre for Cardiovascular Science and Edinburgh Mass Spectrometry Core, University of Edinburgh, Edinburgh, UK
| | - Margaret R. MacLean
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | | | - Steven M. Kawut
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
39
|
Keen J, Prisco SZ, Prins KW. Sex Differences in Right Ventricular Dysfunction: Insights From the Bench to Bedside. Front Physiol 2021; 11:623129. [PMID: 33536939 PMCID: PMC7848185 DOI: 10.3389/fphys.2020.623129] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 12/04/2022] Open
Abstract
There are inherent distinctions in right ventricular (RV) performance based on sex as females have better RV function than males. These differences are magnified and have very important prognostic implications in two RV-centric diseases, pulmonary hypertension (PH), and arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). In both PH and ARVC/D, RV dysfunction results in poor patient outcomes. However, there are no currently approved therapies specifically targeting the failing RV, an important unmet need for these two life-threatening disorders. In this review, we highlight human data demonstrating divergent RV phenotypes in healthy, PH, and ARVC/D patients based on sex. Furthermore, we discuss the links between estrogen (the female predominant sex hormone), testosterone (the male predominant sex hormone), and dehydroepiandrosterone (a precursor hormone for multiple sex hormones in males and females) and RV function in both disorders. To provide potential mechanistic insights into sex differences in RV function, we review data that investigate how sex hormones combat or contribute to pathophysiological changes in the RV. Finally, we highlight the ongoing clinical trials in pulmonary arterial hypertension targeting estrogen and dehydroepiandrosterone signaling. Hopefully, a greater understanding of the factors that promote superior RV function in females will lead to novel therapeutic approaches to combat RV dysfunction in PH and ARVC/D.
Collapse
Affiliation(s)
- Jennifer Keen
- Pulmonary and Critical Care, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Sasha Z Prisco
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Kurt W Prins
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
40
|
Zheng W, Wang Z, Jiang X, Zhao Q, Shen J. Targeted Drugs for Treatment of Pulmonary Arterial Hypertension: Past, Present, and Future Perspectives. J Med Chem 2020; 63:15153-15186. [PMID: 33314936 DOI: 10.1021/acs.jmedchem.0c01093] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease that can lead to right ventricular failure and premature death. Although approved drugs have been shown to be safe and effective, PAH remains a severe clinical condition, and the long-term survival of patients with PAH is still suboptimal. Thus, potential therapeutic targets and new agents to treat PAH are urgently needed. In recent years, a variety of related pathways and potential therapeutic targets have been found, which brings new hope for PAH therapy. In this perspective, not only are the marketed drugs used to treat PAH summarized but also the recently developed novel pharmaceutical therapies currently in clinical trials are discussed. Furthermore, the advances in natural products as potential treatment for PAH are also updated.
Collapse
Affiliation(s)
- Wei Zheng
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiangrui Jiang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qingjie Zhao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingshan Shen
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Xiao Y, Chen PP, Zhou RL, Zhang Y, Tian Z, Zhang SY. Pathological Mechanisms and Potential Therapeutic Targets of Pulmonary Arterial Hypertension: A Review. Aging Dis 2020; 11:1623-1639. [PMID: 33269111 PMCID: PMC7673851 DOI: 10.14336/ad.2020.0111] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive cardiovascular disease characterized by pulmonary vasculature reconstruction and right ventricular dysfunction. The mortality rate of PAH remains high, although multiple therapeutic strategies have been implemented in clinical practice. These drugs mainly target the endothelin-1, prostacyclin and nitric oxide pathways. Management for PAH treatment includes improving symptoms, enhancing quality of life, and extending survival rate. Existing drugs developed to treat the disease have resulted in enormous economic and healthcare liabilities. The estimated cost for advanced PAH has exceeded $200,000 per year. The pathogenesis of PAH is associated with numerous molecular processes. It mainly includes germline mutation, inflammation, dysfunction of pulmonary arterial endothelial cells, epigenetic modifications, DNA damage, metabolic dysfunction, sex hormone imbalance, and oxidative stress, among others. Findings based on the pathobiology of PAH may have promising therapeutic outcomes. Hence, faced with the challenges of increasing healthcare demands, in this review, we attempted to explore the pathological mechanisms and alternative therapeutic targets, including other auxiliary devices or interventional therapies, in PAH. The article will discuss the potential therapies of PAH in detail, which may require further investigation before implementation.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei-Pei Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui-Lin Zhou
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuang Tian
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Prisco SZ, Thenappan T, Prins KW. Treatment Targets for Right Ventricular Dysfunction in Pulmonary Arterial Hypertension. JACC Basic Transl Sci 2020; 5:1244-1260. [PMID: 33426379 PMCID: PMC7775863 DOI: 10.1016/j.jacbts.2020.07.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 01/10/2023]
Abstract
Right ventricle (RV) dysfunction is the strongest predictor of mortality in pulmonary arterial hypertension (PAH), but, at present, there are no therapies directly targeting the failing RV. Although there are shared molecular mechanisms in both RV and left ventricle (LV) dysfunction, there are important differences between the 2 ventricles that may allow for the development of RV-enhancing or RV-directed therapies. In this review, we discuss the current understandings of the dysregulated pathways that promote RV dysfunction, highlight RV-enriched or RV-specific pathways that may be of particular therapeutic value, and summarize recent and ongoing clinical trials that are investigating RV function in PAH. It is hoped that development of RV-targeted therapies will improve quality of life and enhance survival for this deadly disease.
Collapse
Key Words
- FAO, fatty acid oxidation
- IPAH, idiopathic pulmonary arterial hypertension
- LV, left ventricle/ventricular
- PAH, pulmonary arterial hypertension
- PH, pulmonary hypertension
- RAAS, renin-angiotensin-aldosterone system
- RV, right ventricle/ventricular
- RVH, right ventricular hypertrophy
- SSc-PAH, systemic sclerosis-associated pulmonary arterial hypertension
- clinical trials
- miRNA/miR, micro-ribonucleic acid
- pulmonary arterial hypertension
- right ventricle
Collapse
Affiliation(s)
- Sasha Z. Prisco
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thenappan Thenappan
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kurt W. Prins
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
43
|
|
44
|
Agrawal V, Lahm T, Hansmann G, Hemnes AR. Molecular mechanisms of right ventricular dysfunction in pulmonary arterial hypertension: focus on the coronary vasculature, sex hormones, and glucose/lipid metabolism. Cardiovasc Diagn Ther 2020; 10:1522-1540. [PMID: 33224772 PMCID: PMC7666935 DOI: 10.21037/cdt-20-404] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, life-threatening condition characterized by dysregulated metabolism, pulmonary vascular remodeling, and loss of pulmonary vascular cross-sectional area due to a variety of etiologies. Right ventricular (RV) dysfunction in PAH is a critical mediator of both long-term morbidity and mortality. While combinatory oral pharmacotherapy and/or intravenous prostacyclin aimed at decreasing pulmonary vascular resistance (PVR) have improved clinical outcomes, there are currently no treatments that directly address RV failure in PAH. This is, in part, due to the incomplete understanding of the pathogenesis of RV dysfunction in PAH. The purpose of this review is to discuss the current understanding of key molecular mechanisms that cause, contribute and/or sustain RV dysfunction, with a special focus on pathways that either have led to or have the potential to lead to clinical therapeutic intervention. Specifically, this review discusses the mechanisms by which vessel loss and dysfunctional angiogenesis, sex hormones, and metabolic derangements in PAH directly contribute to RV dysfunction. Finally, this review discusses limitations and future areas of investigation that may lead to novel understanding and therapeutic interventions for RV dysfunction in PAH.
Collapse
Affiliation(s)
- Vineet Agrawal
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tim Lahm
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Anna R. Hemnes
- Division of Allergy, Pulmonology and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
45
|
Mair KM, Gaw R, MacLean MR. Obesity, estrogens and adipose tissue dysfunction - implications for pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894020952019. [PMID: 32999709 PMCID: PMC7506791 DOI: 10.1177/2045894020952023] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a prevalent global public health issue characterized by excess body fat. Adipose tissue is now recognized as an important endocrine organ releasing an abundance of bioactive adipokines including, but not limited to, leptin, adiponectin and resistin. Obesity is a common comorbidity amongst pulmonary arterial hypertension patients, with 30% to 40% reported as obese, independent of other comorbidities associated with pulmonary arterial hypertension (e.g. obstructive sleep apnoea). An 'obesity paradox' has been observed, where obesity has been associated with subclinical right ventricular dysfunction but paradoxically may confer a protective effect on right ventricular function once pulmonary hypertension develops. Obesity and pulmonary arterial hypertension share multiple pathophysiological mechanisms including inflammation, oxidative stress, elevated leptin (proinflammatory) and reduced adiponectin (anti-inflammatory). The female prevalence of pulmonary arterial hypertension has instigated the hypothesis that estrogens may play a causative role in its development. Adipose tissue, a major site for storage and metabolism of sex steroids, is the primary source of estrogens and circulating estrogens levels which are elevated in postmenopausal women and men with pulmonary arterial hypertension. This review discusses the functions of adipose tissue in both health and obesity and the links between obesity and pulmonary arterial hypertension. Shared pathophysiological mechanisms and the contribution of specific fat depots, metabolic and sex-dependent differences are discussed.
Collapse
Affiliation(s)
- Kirsty M. Mair
- Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Rosemary Gaw
- Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Margaret R. MacLean
- Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| |
Collapse
|
46
|
Cool CD, Kuebler WM, Bogaard HJ, Spiekerkoetter E, Nicolls MR, Voelkel NF. The hallmarks of severe pulmonary arterial hypertension: the cancer hypothesis-ten years later. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1115-L1130. [PMID: 32023082 PMCID: PMC9847334 DOI: 10.1152/ajplung.00476.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 01/25/2023] Open
Abstract
Severe forms of pulmonary arterial hypertension (PAH) are most frequently the consequence of a lumen-obliterating angiopathy. One pathobiological model is that the initial pulmonary vascular endothelial cell injury and apoptosis is followed by the evolution of phenotypically altered, apoptosis-resistant, proliferating cells and an inflammatory vascular immune response. Although there may be a vasoconstrictive disease component, the increased pulmonary vascular shear stress in established PAH is caused largely by the vascular wall pathology. In this review, we revisit the "quasi-malignancy concept" of severe PAH and examine to what extent the hallmarks of PAH can be compared with the hallmarks of cancer. The cancer model of severe PAH, based on the growth of abnormal vascular and bone marrow-derived cells, may enable the emergence of novel cell-based PAH treatment strategies.
Collapse
Affiliation(s)
- Carlyne D Cool
- Department of Pathology, University of Colorado, Anschuetz Campus, Aurora, Colorado
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitaetsmedizin, Berlin, Germany
| | - Harm Jan Bogaard
- Amsterdam University Medical Centers, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Edda Spiekerkoetter
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - Mark R Nicolls
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - Norbert F Voelkel
- Amsterdam University Medical Centers, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Prins KW, Thenappan T, Weir EK, Kalra R, Pritzker M, Archer SL. Repurposing Medications for Treatment of Pulmonary Arterial Hypertension: What's Old Is New Again. J Am Heart Assoc 2020; 8:e011343. [PMID: 30590974 PMCID: PMC6405714 DOI: 10.1161/jaha.118.011343] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kurt W Prins
- 1 Cardiovascular Division University of Minnesota Medical School Minneapolis MN
| | - Thenappan Thenappan
- 1 Cardiovascular Division University of Minnesota Medical School Minneapolis MN
| | - E Kenneth Weir
- 1 Cardiovascular Division University of Minnesota Medical School Minneapolis MN
| | - Rajat Kalra
- 1 Cardiovascular Division University of Minnesota Medical School Minneapolis MN
| | - Marc Pritzker
- 1 Cardiovascular Division University of Minnesota Medical School Minneapolis MN
| | | |
Collapse
|
48
|
Tofovic SP, Jackson EK. Estradiol Metabolism: Crossroads in Pulmonary Arterial Hypertension. Int J Mol Sci 2019; 21:ijms21010116. [PMID: 31877978 PMCID: PMC6982327 DOI: 10.3390/ijms21010116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a debilitating and progressive disease that predominantly develops in women. Over the past 15 years, cumulating evidence has pointed toward dysregulated metabolism of sex hormones in animal models and patients with PAH. 17β-estradiol (E2) is metabolized at positions C2, C4, and C16, which leads to the formation of metabolites with different biological/estrogenic activity. Since the first report that 2-methoxyestradiol, a major non-estrogenic metabolite of E2, attenuates the development and progression of experimental pulmonary hypertension (PH), it has become increasingly clear that E2, E2 precursors, and E2 metabolites exhibit both protective and detrimental effects in PH. Furthermore, both experimental and clinical data suggest that E2 has divergent effects in the pulmonary vasculature versus right ventricle (estrogen paradox in PAH). The estrogen paradox is of significant clinical relevance for understanding the development, progression, and prognosis of PAH. This review updates experimental and clinical findings and provides insights into: (1) the potential impacts that pathways of estradiol metabolism (EMet) may have in PAH; (2) the beneficial and adverse effects of estrogens and their precursors/metabolites in experimental PH and human PAH; (3) the co-morbidities and pathological conditions that may alter EMet and influence the development/progression of PAH; (4) the relevance of the intracrinology of sex hormones to vascular remodeling in PAH; and (5) the advantages/disadvantages of different approaches to modulate EMet in PAH. Finally, we propose the three-tier-estrogen effects in PAH concept, which may offer reconciliation of the opposing effects of E2 in PAH and may provide a better understanding of the complex mechanisms by which EMet affects the pulmonary circulation–right ventricular interaction in PAH.
Collapse
Affiliation(s)
- Stevan P. Tofovic
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, BST E1240, 200 Lothrop Street, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine, 100 Technology Drive, PA 15219, USA;
- Correspondence: ; Tel.: +1-412-648-3363
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine, 100 Technology Drive, PA 15219, USA;
| |
Collapse
|
49
|
Frump AL, Lahm T. The Y Chromosome Takes the Field to Modify BMPR2 Expression. Am J Respir Crit Care Med 2019; 198:1476-1478. [PMID: 30265580 DOI: 10.1164/rccm.201809-1682ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Andrea L Frump
- 1 Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - Tim Lahm
- 1 Department of Medicine Indiana University School of Medicine Indianapolis, Indiana.,2 Department of Cellular and Integrative Physiology Indiana University School of Medicine Indianapolis, Indiana and.,3 Richard L. Roudebush VA Medical Center Indianapolis, Indiana
| |
Collapse
|
50
|
Brittain EL, Thennapan T, Maron BA, Chan SY, Austin ED, Spiekerkoetter E, Bogaard HJ, Guignabert C, Paulin R, Machado RF, Yu PB. Update in Pulmonary Vascular Disease 2016 and 2017. Am J Respir Crit Care Med 2019. [PMID: 29533671 DOI: 10.1164/rccm.201801-0062up] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Evan L Brittain
- 1 Division of Cardiovascular Medicine, Department of Medicine.,2 Vanderbilt Translational and Clinical Cardiovascular Research Center.,3 Pulmonary Vascular Center, Department of Medicine, and
| | | | - Bradley A Maron
- 5 Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,6 Department of Cardiology, Boston VA Healthcare System, Boston, Massachusetts
| | - Stephen Y Chan
- 7 Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Eric D Austin
- 3 Pulmonary Vascular Center, Department of Medicine, and.,8 Pediatric Pulmonary Hypertension Program, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Edda Spiekerkoetter
- 9 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,10 Vera Moulton Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University, Stanford, California
| | - Harm J Bogaard
- 11 Pulmonary Hypertension Expert Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Christophe Guignabert
- 12 INSERM UMR-S 999, Le Plessis-Robinson, France.,13 Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Roxane Paulin
- 14 Quebec Heart and Lung Institute, Laval University, Quebec, Quebec, Canada; and
| | - Roberto F Machado
- 15 Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Paul B Yu
- 5 Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|