1
|
Barker AF, Karamooz E. Non-Cystic Fibrosis Bronchiectasis in Adults: A Review. JAMA 2025:2833340. [PMID: 40293759 DOI: 10.1001/jama.2025.2680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Importance Non-cystic fibrosis (CF) bronchiectasis is a chronic lung condition caused by permanent bronchial dilatation and inflammation and is characterized by daily cough, sputum, and recurrent exacerbations. Approximately 500 000 people in the US have non-CF bronchiectasis. Observations Non-CF bronchiectasis may be associated with prior pneumonia, infection with nontuberculous mycobacteria or tuberculosis, genetic conditions (eg, α1-antitrypsin deficiency, primary ciliary dyskinesia), autoimmune diseases (eg, rheumatoid arthritis, inflammatory bowel disease), allergic bronchopulmonary aspergillosis, and immunodeficiency syndromes (eg, common variable immunodeficiency). Up to 38% of cases are idiopathic. According to US data, conditions associated with non-CF bronchiectasis include gastroesophageal reflux disease (47%), asthma (29%), and chronic obstructive pulmonary disease (20%). The prevalence of non-CF bronchiectasis increases substantially with age (7 per 100 000 in individuals 18-34 years vs 812 per 100 000 in those ≥75 years) and is more common in women than men (180 vs 95 per 100 000). Diagnosis is confirmed with noncontrast chest computed tomography showing dilated airways and often airway thickening and mucus plugging. Initial diagnostic evaluation involves blood testing (complete blood cell count with differential); immunoglobulin quantification testing (IgG, IgA, IgE, and IgM); sputum cultures for bacteria, mycobacteria, and fungi; and prebronchodilator and postbronchodilator spirometry. Treatment includes airway clearance techniques; nebulization of saline to loosen tenacious secretions; and regular exercise, participation in pulmonary rehabilitation, or both. Inhaled bronchodilators (β-agonists and antimuscarinic agents) and inhaled corticosteroids are indicated for patients with bronchiectasis who have asthma or chronic obstructive pulmonary disease. Exacerbations of bronchiectasis, which typically present with increased cough and sputum and worsened fatigue, are associated with progressive decline in lung function and decreased quality of life. Exacerbations should be treated with oral or intravenous antibiotics. Individuals with 3 or more exacerbations of bronchiectasis annually may benefit from long-term inhaled antibiotics (eg, colistin, gentamicin) or daily oral macrolides (eg, azithromycin). Lung transplant may be considered for patients with severely impaired pulmonary function, frequent exacerbations, or both. Among patients with non-CF bronchiectasis, mortality is higher for those with frequent and severe exacerbations, infection with Pseudomonas aeruginosa, and comorbidities, such as chronic obstructive pulmonary disease. Conclusions and Relevance Non-CF bronchiectasis is a chronic lung condition that typically causes chronic cough and daily sputum production. Exacerbations are associated with progressive decline in lung function and decreased quality of life. Management involves treatment of conditions associated with bronchiectasis, airway clearance techniques, oral or intravenous antibiotics for acute exacerbations, and consideration of long-term inhaled antibiotics or oral macrolides for patients with 3 or more exacerbations annually.
Collapse
Affiliation(s)
- Alan F Barker
- Pulmonary, Allergy and Critical Care, Oregon Health & Science University, Portland
| | - Elham Karamooz
- Pulmonary, Allergy and Critical Care, Oregon Health & Science University, Portland
- Pulmonary and Critical Care, Portland VA Health Care System, Portland, Oregon
| |
Collapse
|
2
|
|
3
|
Chalmers JD, Metersky M, Aliberti S, Morgan L, Fucile S, Lauterio M, McDonald PP. Neutrophilic inflammation in bronchiectasis. Eur Respir Rev 2025; 34:240179. [PMID: 40174958 PMCID: PMC11962982 DOI: 10.1183/16000617.0179-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/11/2025] [Indexed: 04/04/2025] Open
Abstract
Noncystic fibrosis bronchiectasis, hereafter referred to as bronchiectasis, is a chronic, progressive lung disease that can affect people of all ages. Patients with clinically significant bronchiectasis have chronic cough and sputum production, as well as recurrent respiratory infections, fatigue and impaired health-related quality of life. The pathophysiology of bronchiectasis has been described as a vicious vortex of chronic inflammation, recurring airway infection, impaired mucociliary clearance and progressive lung damage that promotes the development and progression of the disease. This review describes the pivotal role of neutrophil-driven inflammation in the pathogenesis and progression of bronchiectasis. Delayed neutrophil apoptosis and increased necrosis enhance dysregulated inflammation in bronchiectasis and failure to resolve this contributes to chronic, sustained inflammation. The excessive release of neutrophil serine proteases, such as neutrophil elastase, cathepsin G and proteinase 3, promotes a protease-antiprotease imbalance that correlates with increased inflammation in bronchiectasis and contributes to disease progression. While there are currently no licensed therapies to treat bronchiectasis, this review will explore the evolving evidence for neutrophilic inflammation as a novel treatment target with meaningful clinical benefits.
Collapse
Affiliation(s)
- James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Mark Metersky
- University of Connecticut School of Medicine, Farmington, CT, USA
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| | - Lucy Morgan
- Department of Respiratory Medicine, Concord Clinical School, University of Sydney, Sydney, Australia
| | | | | | | |
Collapse
|
4
|
Xuan W, Liang C, Yang S, Zheng L, Wu X, Zhang X. FABP4 expression in neutrophils as a predictor of sepsis and SI-ARDS based on BALF transcriptome and peripheral blood validation. Chin Med J (Engl) 2025:00029330-990000000-01499. [PMID: 40169352 DOI: 10.1097/cm9.0000000000003447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND The objective of this study is to delineate the differential gene expression patterns of neutrophils in bronchoalveolar lavage fluid (BALF) from patients with sepsis and those experiencing progression to sepsis-induced acute respiratory distress syndrome (SI-ARDS). Additionally, we aim to comprehensively profile the transcriptomic landscape of neutrophils in BALF from patients with sepsis and SI-ARDS, particularly focusing on cases caused by specific bacterial pathogens. METHODS Patients with confirmed sepsis (n = 14) or SI-ARDS (n = 11) were recruited. Besides, a control group consisting of patients with unrelated diseases (n = 7) who required bronchoscopy was also included (cohort 1). We collected the neutrophils in BALF from participants in cohort 1. To validate the identified differentially expressed genes (DEGs) and evaluate neutrophil apoptosis, an additional cohort (cohort 2) was recruited, consisting of 5 healthy controls, 10 patients with sepsis, and 10 patients with SI-ARDS. Peripheral blood neutrophils were collected from participants in cohort 2 for further analysis. DEGs between SI-ARDS patients and controls, sepsis patients and controls, as well as SI-ARDS patients and sepsis patients were identified. And, publicly available datasets were downloaded to compare with local results. Additionally, the DEGs were also identified between patients infected with drug-resistant Klebsiella pneumoniae and those infected with other bacterial pathogens. Furthermore, a third cohort (cohort 3) consisting of 57 sepsis patients and 46 SI-ARDS patients was recruited for investigating the prognostic significance of neutrophils in SI-ARDS. RESULTS In cohort 1, 8/14 of the septic patients and 6/11 of the SI-ARDS patients were affected by drug-resistant Klebsiella pneumonia. There were 9921 DEGs between sepsis patients and controls, 10,252 DEGs between SI-ARDS patients and controls, and 24 DEGs between SI-ARDS and sepsis patients in neutrophils from BALF. Notably, fatty acid-binding pro-tein 4 (FABP4) exhibited significant downregulation in SI-ARDS patients. In cohort 2, peripheral blood analysis confirmed consistent trends, demonstrating that FABP4 expression was decreased, which contributed to the attenuation of neutrophil apoptosis. And FABP4 inhibitor-induced apoptosis resistance was reversed by a phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) inhibitor. Furthermore, survival analysis revealed that SI-ARDS patients with low levels of neutrophil FABP4 expression exhibited poor survival. Additionally, 520 overlapping DEGs were identified between the sepsis and control group comparisons and the SI-ARDS and sepsis group comparisons. Among these overlapping DEGs, 85% were downregulated, predominantly targeting immune-related pathways, whereas a smaller subset was upregulated, mainly associated with metabolism. DEGs in neutrophils in BALF of SI-ARDS and controls notably overlapped with those in neutrophils in peripheral blood. Importantly, DEGs in sepsis/SI-ARDS caused by drug-resistant Klebsiella pneumoniae differed from DEGs in sepsis/SI-ARDS caused by other bacteria. Additionally, FABP4 expression consistently decreased, attenuating neutrophil apoptosis. CONCLUSIONS The downregulation of FABP4 in neutrophils was found to inhibit apoptosis through the activation of the PI3K/AKT signaling pathway. Importantly, the expression level of FABP4 in neutrophil emerged as a prognostic indicator for sepsis and SI-ARDS patients, suggesting its potential utility in clinical decision-making to address the challenges posed by this condition.
Collapse
Affiliation(s)
- Weixia Xuan
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing 100000, China
- Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100000, China
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Chaofan Liang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Shenying Yang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Longcheng Zheng
- Department of Respiratory and Critical Care Medicine, People's Hospital of Henan University, People's Hospital of Henan Province, Zhengzhou, Henan 450003, China
| | - Xu Wu
- Department of Scientific Research, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 41000, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| |
Collapse
|
5
|
Wang LL, Shen X, Xie Y, Ge A, Lu H, Gu S, Kong L, Narayana JK, Mattner J, Chotirmall SH, Xu JF. A gut Eggerthella lenta-derived metabolite impairs neutrophil function to aggravate bacterial lung infection. Sci Transl Med 2025; 17:eadq4409. [PMID: 40009694 DOI: 10.1126/scitranslmed.adq4409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/25/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
The composition of the gut microbiota in patients with bronchiectasis has been proven to be distinct from that of healthy individuals, and this disrupted gut microbiota can exacerbate lung infections. However, the responsible microbes and mechanisms in the "gut-lung" axis in bronchiectasis remain unknown. Here, we report that Eggerthella lenta was enriched in the gut, and taurine ursodeoxycholic acid (TUDCA) was enriched in both the guts and sera of patients with bronchiectasis, with both being associated with disease severity. Fecal microbiota transfer from patients with bronchiectasis as well as administration of E. lenta independently exacerbated pulmonary Pseudomonas aeruginosa infections in murine models. E. lenta-associated TUDCA bound adenosine monophosphate-activated protein kinase (AMPK) within neutrophils and interfered with the interaction between liver kinase B1 and AMPK, with a consequential decrease in AMPK phosphorylation. This ultimately reduced ATP production in neutrophils, inhibited their function, and compromised P. aeruginosa elimination from the lung, aggravating tissue injury. Metformin treatment improved disease severity and outcome in the mouse models. In sum, the gut bacterium E. lenta raises the stakes of bacterial lung infection because it causes dysfunction of neutrophils circulated from serum to lung via the metabolite TUDCA. Interventions targeting E. lenta or AMPK phosphorylation may serve as adjunctive strategies to complement existing approaches for managing chronic pulmonary infection in bronchiectasis and other chronic respiratory disease states.
Collapse
Affiliation(s)
- Le-Le Wang
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Xiyue Shen
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Yingzhou Xie
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Ai Ge
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Haiwen Lu
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Shuyi Gu
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Lingxin Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Jayanth Kumar Narayana
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen 91054, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), FAU Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Jin-Fu Xu
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai 200040, People's Republic of China
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, People's Republic of China
| |
Collapse
|
6
|
Chalmers JD, Mall MA, Chotirmall SH, O'Donnell AE, Flume PA, Hasegawa N, Ringshausen FC, Watz H, Xu JF, Shteinberg M, McShane PJ. Targeting neutrophil serine proteases in bronchiectasis. Eur Respir J 2025; 65:2401050. [PMID: 39467608 DOI: 10.1183/13993003.01050-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
Persistent neutrophilic inflammation is a central feature in both the pathogenesis and progression of bronchiectasis. Neutrophils release neutrophil serine proteases (NSPs), such as neutrophil elastase (NE), cathepsin G and proteinase 3. When chronically high levels of free NSP activity exceed those of protective antiproteases, structural lung destruction, mucosal-related defects, further susceptibility to infection and worsening of clinical outcomes can occur. Despite the defined role of prolonged, high levels of NSPs in bronchiectasis, no drug that controls neutrophilic inflammation is licensed for the treatment of bronchiectasis. Previous methods of suppressing neutrophilic inflammation (such as direct inhibition of NE) have not been successful; however, an emerging therapy designed to address neutrophil-mediated pathology, inhibition of the cysteine protease cathepsin C (CatC, also known as dipeptidyl peptidase 1), is a promising approach to ameliorate neutrophilic inflammation, since this may reduce the activity of all NSPs implicated in bronchiectasis pathogenesis, and not just NE. Current data suggest that CatC inhibition may effectively restore the protease-antiprotease balance in bronchiectasis and improve disease outcomes as a result. Clinical trials for CatC inhibitors in bronchiectasis have reported positive phase III results. In this narrative review, we discuss the role of high NSP activity in bronchiectasis, and how this feature drives the associated morbidity and mortality seen in bronchiectasis. This review discusses therapeutic approaches aimed at treating neutrophilic inflammation in the bronchiectasis lung, summarising clinical trial outcomes and highlighting the need for more treatment strategies that effectively address chronic neutrophilic inflammation in bronchiectasis.
Collapse
Affiliation(s)
- James D Chalmers
- Division of Respiratory Medicine and Gastroenterology, University of Dundee, Dundee, UK
- J.D. Chalmers and M.A. Mall are joint first authors
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site Berlin, Berlin, Germany
- J.D. Chalmers and M.A. Mall are joint first authors
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | | | | | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Felix C Ringshausen
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| | - Henrik Watz
- Velocity Clinical Research Grosshansdorf, formerly Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research Grosshansdorf (DZL), Grosshansdorf, Germany
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Michal Shteinberg
- Carmel Medical Center, Haifa, Israel
- The B. Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
- M. Shteinberg and P.J. McShane are joint senior authors
| | - Pamela J McShane
- University of Texas Health Science Center at Tyler, Tyler, TX, USA
- M. Shteinberg and P.J. McShane are joint senior authors
| |
Collapse
|
7
|
Long MB, Chotirmall SH, Shteinberg M, Chalmers JD. Rethinking bronchiectasis as an inflammatory disease. THE LANCET. RESPIRATORY MEDICINE 2024; 12:901-914. [PMID: 38971168 DOI: 10.1016/s2213-2600(24)00176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/08/2024]
Abstract
Bronchiectasis is understood to be the result of a complex interaction between infection, impaired mucociliary clearance, inflammation, and lung damage. Current therapeutic approaches to bronchiectasis are heavily focused on management of infection along with enhancing mucus clearance. Long-term antibiotics have had limited success in clinical trials, suggesting a need to re-evaluate the concept of bronchiectasis as an infective disorder. We invoke the example of asthma, for which treatment paradigms shifted away from targeting smooth muscle constriction, towards permanently suppressing airway inflammation, reducing risk and ultimately inducing remission with precision anti-inflammatory treatments. In this Review, we argue that bronchiectasis is primarily a chronic inflammatory disease, requiring early identification of at-risk individuals, and we introduce a novel concept of disease activity with important implications for clinical practice and future research. A new generation of novel anti-inflammatory treatments are under development and repurposing of anti-inflammatory agents from other diseases could revolutionise patient care.
Collapse
Affiliation(s)
- Merete B Long
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel; The Technion, Israel Institute of Technology, The B Rappaport Faculty of Medicine, Haifa, Israel
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
8
|
Pisanu L, Mucaj K, Conio V, Bertuccio F, Giana I, Arlando L, Russo M, Montini S, Bortolotto C, Corsico AG, Stella GM. Lung bronchiectasisas a paradigm of the interplay between infection and colonization on plastic modulation of the pre-metastatic niche. Front Oncol 2024; 14:1480777. [PMID: 39469649 PMCID: PMC11513253 DOI: 10.3389/fonc.2024.1480777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
The lungs are most often a preferential target organ for malignant spreading and growth. It is well known that chronic parenchymal inflammation and prolonged injuries represents an independent risk factor for cancer onset. Growing evidence supports the implication of lung microbiota in the pathogenesis of lung cancer. However, the full interplay between chronic inflammation, bacterial colonization, pathologic condition as bronchiectasis and malignant growth deserves better clarification. We here aim at presenting and analyzing original data and discussing the state-of-the-art on the knowledge regarding how this complex milieu acts on the plasticity of the lung pre-metastatic niche to point out the rationale for early diagnosis and therapeutic targeting.
Collapse
Affiliation(s)
- Lucrezia Pisanu
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Klodjana Mucaj
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Valentina Conio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Francesco Bertuccio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Ilaria Giana
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Arlando
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Marianna Russo
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Simone Montini
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Chandra Bortolotto
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia Medical School, Pavia, Italy
- Radiology Institute, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
9
|
Leblanc PO, Bourgoin SG, Poubelle PE, Tessier PA, Pelletier M. Metabolic regulation of neutrophil functions in homeostasis and diseases. J Leukoc Biol 2024; 116:456-468. [PMID: 38452242 DOI: 10.1093/jleuko/qiae025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 03/09/2024] Open
Abstract
Neutrophils are the most abundant leukocytes in humans and play a role in the innate immune response by being the first cells attracted to the site of infection. While early studies presented neutrophils as almost exclusively glycolytic cells, recent advances show that these cells use several metabolic pathways other than glycolysis, such as the pentose phosphate pathway, oxidative phosphorylation, fatty acid oxidation, and glutaminolysis, which they modulate to perform their functions. Metabolism shifts from fatty acid oxidation-mediated mitochondrial respiration in immature neutrophils to glycolysis in mature neutrophils. Tissue environments largely influence neutrophil metabolism according to nutrient sources, inflammatory mediators, and oxygen availability. Inhibition of metabolic pathways in neutrophils results in impairment of certain effector functions, such as NETosis, chemotaxis, degranulation, and reactive oxygen species generation. Alteration of these neutrophil functions is implicated in certain human diseases, such as antiphospholipid syndrome, coronavirus disease 2019, and bronchiectasis. Metabolic regulators such as AMPK, HIF-1α, mTOR, and Arf6 are linked to neutrophil metabolism and function and could potentially be targeted for the treatment of diseases associated with neutrophil dysfunction. This review details the effects of alterations in neutrophil metabolism on the effector functions of these cells.
Collapse
Affiliation(s)
- Pier-Olivier Leblanc
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
| | - Sylvain G Bourgoin
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Patrice E Poubelle
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Medicine, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Philippe A Tessier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| |
Collapse
|
10
|
Xue GZ, Ma HZ, Wuren TN. The role of neutrophils in chronic cough. Hum Cell 2024; 37:1316-1324. [PMID: 38913146 DOI: 10.1007/s13577-024-01089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/18/2024] [Indexed: 06/25/2024]
Abstract
Chronic cough is a common disorder lasting more than 8 weeks and affecting all age groups. The evidence supporting the role of neutrophils in chronic cough pathology is based on many patients with chronic cough developing airway neutrophilia. How neutrophils influence the development of chronic cough is unknown. However, they are likely involved in multiple aspects of cough etiology, including promoting airway inflammation, airway remodeling, hyper-responsiveness, local neurogenic inflammation, and other possible mechanisms. Neutrophilic airway inflammation is also associated with refractory cough, poor control of underlying diseases (e.g., asthma), and insensitivity to cough suppressant therapy. The potential for targeting neutrophils in chronic cough needs exploration, including developing new drugs targeting one or more neutrophil-mediated pathways or altering the neutrophil phenotype to alleviate chronic cough. How the airway microbiome differs, plays a role, and interacts with neutrophils in different cough etiologies is poorly understood. Future studies should focus on understanding the relationship between the airway microbiome and neutrophils.
Collapse
Affiliation(s)
- Guan-Zhen Xue
- School of Medicine, Qinghai University, Research Center for High Altitude Medicine, No.16 Kunlun Road, Xining, Qinghai Province, China
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining, Qinghai Province, China
| | - Hai-Zhen Ma
- Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| | - Ta-Na Wuren
- School of Medicine, Qinghai University, Research Center for High Altitude Medicine, No.16 Kunlun Road, Xining, Qinghai Province, China.
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining, Qinghai Province, China.
| |
Collapse
|
11
|
Shteinberg M, Waterer G, Chotirmall SH. A Global Effort to Stop the Vicious Vortex: A Special American Journal of Respiratory and Critical Care Medicine Issue for World Bronchiectasis Day 2024. Am J Respir Crit Care Med 2024; 210:1-3. [PMID: 38780090 PMCID: PMC11197068 DOI: 10.1164/rccm.202405-0947ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Indexed: 05/25/2024] Open
Affiliation(s)
- Michal Shteinberg
- Pulmonology Institute and CF Center Carmel Medical Center Haifa, Israel
- B. Rappaport Faculty of Medicine Technion - Israel Institute of Technology Haifa, Israel
| | - Grant Waterer
- University of Western Australia Royal Perth Hospital Perth, Western Australia, Australia
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore, Singapore
- Department of Respiratory and Critical Care Medicine Tan Tock Seng Hospital Singapore, Singapore
| |
Collapse
|
12
|
Long MB, Gilmour A, Kehl M, Tabor DE, Keller AE, Warrener P, Gopalakrishnan V, Rosengren S, Crichton ML, McIntosh E, Giam YH, Keir HR, Brailsford W, Hughes R, Belvisi MG, Sellman BR, DiGiandomenico A, Chalmers JD. A Bispecific Monoclonal Antibody Targeting Psl and PcrV Enhances Neutrophil-Mediated Killing of Pseudomonas aeruginosa in Patients with Bronchiectasis. Am J Respir Crit Care Med 2024; 210:35-46. [PMID: 38754132 DOI: 10.1164/rccm.202308-1403oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/16/2024] [Indexed: 05/18/2024] Open
Abstract
Rationale: Pseudomonas aeruginosa infection is associated with worse outcomes in bronchiectasis. Impaired neutrophil antimicrobial responses contribute to bacterial persistence. Gremubamab is a bivalent, bispecific monoclonal antibody targeting Psl exopolysaccharide and the type 3 secretion system component PcrV. Objectives: This study evaluated the efficacy of gremubamab to enhance killing of P. aeruginosa by neutrophils from patients with bronchiectasis and to prevent P. aeruginosa-associated cytotoxicity. Methods: P. aeruginosa isolates from a global bronchiectasis cohort (n = 100) underwent whole-genome sequencing to determine target prevalence. Functional activity of gremubamab against selected isolates was tested in vitro and in vivo. Patients with bronchiectasis (n = 11) and control subjects (n = 10) were enrolled, and the effect of gremubamab in peripheral blood neutrophil opsonophagocytic killing (OPK) assays against P. aeruginosa was evaluated. Serum antibody titers to Psl and PcrV were determined (n = 30; 19 chronic P. aeruginosa infection, 11 no known P. aeruginosa infection), as was the effect of gremubamab treatment in OPK and anti-cytotoxic activity assays. Measurements and Main Results: Psl and PcrV were conserved in isolates from chronically infected patients with bronchiectasis. Seventy-three of 100 isolates had a full psl locus, and 99 of 100 contained the pcrV gene, with 20 distinct full-length PcrV protein subtypes identified. PcrV subtypes were successfully bound by gremubamab and the monoclonal antibody-mediated potent protective activity against tested isolates. Gremubamab increased bronchiectasis patient neutrophil-mediated OPK (+34.6 ± 8.1%) and phagocytosis (+70.0 ± 48.8%), similar to effects observed in neutrophils from control subjects (OPK, +30.1 ± 7.6%). No evidence of competition between gremubamab and endogenous antibodies was found, with protection against P. aeruginosa-induced cytotoxicity and enhanced OPK demonstrated with and without addition of patient serum. Conclusions: Gremubamab enhanced bronchiectasis patient neutrophil phagocytosis and killing of P. aeruginosa and reduced virulence.
Collapse
Affiliation(s)
- Merete B Long
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Amy Gilmour
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Margaret Kehl
- Vaccine and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - David E Tabor
- Vaccine and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Ashley E Keller
- Vaccine and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Paul Warrener
- Vaccine and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - Sanna Rosengren
- Translational Science and Experimental Medicine, Respiratory & Immunology, Respiratory and Immunology, and
| | - Megan L Crichton
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Eve McIntosh
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Yan Hui Giam
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Holly R Keir
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Wayne Brailsford
- Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and
| | - Rod Hughes
- Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Maria G Belvisi
- Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and
| | - Bret R Sellman
- Vaccine and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Antonio DiGiandomenico
- Vaccine and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
13
|
Mac Aogáin M, Dicker AJ, Mertsch P, Chotirmall SH. Infection and the microbiome in bronchiectasis. Eur Respir Rev 2024; 33:240038. [PMID: 38960615 PMCID: PMC11220623 DOI: 10.1183/16000617.0038-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is marked by bronchial dilatation, recurrent infections and significant morbidity, underpinned by a complex interplay between microbial dysbiosis and immune dysregulation. The identification of distinct endophenotypes have refined our understanding of its pathogenesis, including its heterogeneous disease mechanisms that influence treatment and prognosis responses. Next-generation sequencing (NGS) has revolutionised the way we view airway microbiology, allowing insights into the "unculturable". Understanding the bronchiectasis microbiome through targeted amplicon sequencing and/or shotgun metagenomics has provided key information on the interplay of the microbiome and host immunity, a central feature of disease progression. The rapid increase in translational and clinical studies in bronchiectasis now provides scope for the application of precision medicine and a better understanding of the efficacy of interventions aimed at restoring microbial balance and/or modulating immune responses. Holistic integration of these insights is driving an evolving paradigm shift in our understanding of bronchiectasis, which includes the critical role of the microbiome and its unique interplay with clinical, inflammatory, immunological and metabolic factors. Here, we review the current state of infection and the microbiome in bronchiectasis and provide views on the future directions in this field.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Alison J Dicker
- Respiratory Research Group, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Pontus Mertsch
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center (CPC), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
14
|
Johnson E, Long MB, Chalmers JD. Biomarkers in bronchiectasis. Eur Respir Rev 2024; 33:230234. [PMID: 38960612 PMCID: PMC11220624 DOI: 10.1183/16000617.0234-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/09/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is a heterogeneous disease with multiple aetiologies and diverse clinical features. There is a general consensus that optimal treatment requires precision medicine approaches focused on specific treatable disease characteristics, known as treatable traits. Identifying subtypes of conditions with distinct underlying biology (endotypes) depends on the identification of biomarkers that are associated with disease features, prognosis or treatment response and which can be applied in clinical practice. Bronchiectasis is a disease characterised by inflammation, infection, structural lung damage and impaired mucociliary clearance. Increasingly there are available methods to measure each of these components of the disease, revealing heterogeneous inflammatory profiles, microbiota, radiology and mucus and epithelial biology in patients with bronchiectasis. Using emerging biomarkers and omics technologies to guide treatment in bronchiectasis is a promising field of research. Here we review the most recent data on biomarkers in bronchiectasis.
Collapse
Affiliation(s)
- Emma Johnson
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Merete B Long
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
15
|
Zhou Y, He X, Tang J, Zhang D, Liu Y, Xue Y, Jiang N, Zhang J, Wang X. Total sputum nitrate/nitrite is associated with exacerbations and Pseudomonas aeruginosa colonisation in bronchiectasis. ERJ Open Res 2024; 10:01045-2023. [PMID: 39040581 PMCID: PMC11261385 DOI: 10.1183/23120541.01045-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/16/2024] [Indexed: 07/24/2024] Open
Abstract
Background Sputum nitrate/nitrite, which is the main component of reactive nitrogen species, is a potential biomarker of disease severity and progression in bronchiectasis. This study aimed to determine the association between nitrate/nitrite and exacerbations and airway microbiota in bronchiectasis. Methods We measured total nitrate/nitrite concentration in sputum samples collected from 85 patients with stable bronchiectasis, performed 16S ribosomal RNA sequencing of sputum samples and predicted the denitrification ability of airway microbiota using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Relationships between sputum total nitrate/nitrite and disease severity, exacerbations and airway microbiota were examined. Results Higher total sputum nitrate/nitrite was associated with more severe bronchiectasis defined by E-FACED (exacerbation, forced expiratory volume in 1 s, age, chronic colonisation by Pseudomonas aeruginosa, radiological extension and dyspnoea) (p=0.003) or Bronchiectasis Severity Index (p=0.006) and more exacerbations in the prior 12 months (p=0.005). Moreover, total sputum nitrate/nitrite was significantly higher in patients with worse cough score (p=0.03), worse sputum purulence score (p=0.01) and worse Medical Research Council dyspnoea score (p=0.02). In addition, the total sputum nitrate/nitrite of the P. aeruginosa colonised (PA) group was higher than that of the non-P. aeruginosa colonised (NPA) group (p=0.04), and the relative abundance of P. aeruginosa was positively correlated with total nitrate/nitrite (r=0.337, p=0.002). Denitrification module (M00529) was also significantly enriched in the PA group compared to the NPA group through PICRUSt analyses. Using receiver-operating characteristic analysis, total nitrate/nitrite was associated with exacerbations during 1-year follow-up (area under the curve 0.741, p=0.014). Conclusions Sputum nitrate/nitrite is a biomarker of disease severity and associated with P. aeruginosa colonisation in bronchiectasis.
Collapse
Affiliation(s)
- Yaya Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint first authors
| | - Xinliang He
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint first authors
| | - Jian Tang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongmei Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu'e Xue
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nanchuan Jiang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianchu Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint senior authors
| | - Xiaorong Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint senior authors
| |
Collapse
|
16
|
Kwok WC, Ho JCM, Lam DCL, Ip MSM, Tam TCC. Baseline neutrophil-to-lymphocyte ratio as a predictor of response to hospitalized bronchiectasis exacerbation risks. Eur Clin Respir J 2024; 11:2372901. [PMID: 38946716 PMCID: PMC11212557 DOI: 10.1080/20018525.2024.2372901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Background Bronchiectasis is a disease with predominantly neutrophilic inflammation. As a readily available biomarker, there is little evidence to support the use of blood neutrophil-to-lymphocyte ratio (NLR) to predict bronchiectasis exacerbation severe enough to warrant hospitalization. Methods A registry-based retrospective cohort study was conducted at a in Hong Kong. Chinese patients with non-cystic fibrosis (CF) bronchiectasis were retrospectively reviewed and subsequently followed up to investigate the association of NLR and the need for hospitalization for bronchiectasis exacerbation. Data on the NLR for patients in a clinically stable state in 2018 were collected and patients followed up from 1 January 2019 to 31 December 2022. The primary outcome was the need for hospitalization due to bronchiectasis exacerbation over the next 4 years. Results We reviewed 473 Chinese patients with non-CF bronchiectasis, of whom 94 required hospitalization for bronchiectasis exacerbation during the 4-year follow-up period. Multi-variable logistic regression adjusted for E-FACED score (Exacerbation, Forced expiratory volume in 1 s (FEV1), Age, Chronic colonization, Extension, and Dyspnea score), gender, age, smoking status, and presence of co-existing chronic obstructive pulmonary disease (COPD) was conducted to compare patients with highest and lowest quartile NLR. Results revealed that those with NLR at the highest quartile were at increased risk of hospitalization for bronchiectasis exacerbation with an adjusted odds ratio (aOR) of 2.02 (95% confidence interval = 1.00-4.12, p = 0.05). Conclusion Blood NLR may serve as a marker to predict the need for hospitalization due to bronchiectasis exacerbation.
Collapse
Affiliation(s)
- Wang Chun Kwok
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - James Chung Man Ho
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - David Chi Leung Lam
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Mary Sau Man Ip
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Terence Chi Chun Tam
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| |
Collapse
|
17
|
Azoicai A, Lupu A, Alexoae MM, Starcea IM, Mocanu A, Lupu VV, Mitrofan EC, Nedelcu AH, Tepordei RT, Munteanu D, Mitrofan C, Salaru DL, Ioniuc I. Lung microbiome: new insights into bronchiectasis' outcome. Front Cell Infect Microbiol 2024; 14:1405399. [PMID: 38895737 PMCID: PMC11183332 DOI: 10.3389/fcimb.2024.1405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
The present treatments for bronchiectasis, which is defined by pathological dilatation of the airways, are confined to symptom relief and minimizing exacerbations. The condition is becoming more common worldwide. Since the disease's pathophysiology is not entirely well understood, developing novel treatments is critically important. The interplay of chronic infection, inflammation, and compromised mucociliary clearance, which results in structural alterations and the emergence of new infection, is most likely responsible for the progression of bronchiectasis. Other than treating bronchiectasis caused by cystic fibrosis, there are no approved treatments. Understanding the involvement of the microbiome in this disease is crucial, the microbiome is defined as the collective genetic material of all bacteria in an environment. In clinical practice, bacteria in the lungs have been studied using cultures; however, in recent years, researchers use next-generation sequencing methods, such as 16S rRNA sequencing. Although the microbiome in bronchiectasis has not been entirely investigated, what is known about it suggests that Haemophilus, Pseudomonas and Streptococcus dominate the lung bacterial ecosystems, they present significant intraindividual stability and interindividual heterogeneity. Pseudomonas and Haemophilus-dominated microbiomes have been linked to more severe diseases and frequent exacerbations, however additional research is required to fully comprehend the role of microbiome in the evolution of bronchiectasis. This review discusses recent findings on the lung microbiota and its association with bronchiectasis.
Collapse
Affiliation(s)
- Alice Azoicai
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ancuta Lupu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Monica Mihaela Alexoae
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Iuliana Magdalena Starcea
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Adriana Mocanu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Vasile Valeriu Lupu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Razvan Tudor Tepordei
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Dragos Munteanu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Costica Mitrofan
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ileana Ioniuc
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
18
|
Kwok WC, Tam TCC, Lam DCL, Ip MSM, Ho JCM. Systemic immune-inflammation index in predicting hospitalized bronchiectasis exacerbation risks and disease severity. J Thorac Dis 2024; 16:2767-2775. [PMID: 38883640 PMCID: PMC11170410 DOI: 10.21037/jtd-23-1392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/07/2024] [Indexed: 06/18/2024]
Abstract
Background Bronchiectasis is a common respiratory disease with neutrophilic inflammation being the predominant pathophysiology. Systemic immune-inflammation index (SII) is a simple and readily available biomarker being studied in various conditions including asthma, chronic obstructive pulmonary disease, and interstitial lung disease, but not in bronchiectasis. We aim to investigate the prognostic role of SII in bronchiectasis with this study. Methods A retrospective cohort study in Chinese patients with non-cystic fibrosis (CF) bronchiectasis was conducted in Hong Kong, to investigate the association between baseline SII and of hospitalized bronchiectasis exacerbation risk over 4.5 years of follow-up, as well as correlating with disease severity in bronchiectasis. The baseline SII in 2018 was calculated based on stable-state complete blood count. Results Among 473 Chinese patients with non-CF bronchiectasis were recruited, 94 of the patients had hospitalized bronchiectasis exacerbation during the follow-up period. Higher SII was associated with increased hospitalized bronchiectasis exacerbation risks with adjusted odds ratio (aOR) of 1.001 [95% confidence interval (CI): 1.000-1.001, P=0.003] for 1 unit (cells/µL) increase in SII count and aOR of 1.403 (95% CI: 1.126-1.748, P=0.003) for 1 standard deviation (SD) increase in SII. SII was found to have significant negative association with baseline forced expiratory volume in the first second (FEV1) (in litre and percentage predicted), forced vital capacity (FVC) in percentage; and significant positive correlation with the extent of bronchiectasis and baseline neutrophil to lymphocyte ratio (NLR). Conclusions SII could serve as biomarker to predict the risks of hospitalized exacerbation in bronchiectasis patients, as well as correlating with the disease severity.
Collapse
Affiliation(s)
- Wang Chun Kwok
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Terence Chi Chun Tam
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - David Chi Leung Lam
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Mary Sau Man Ip
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - James Chung Man Ho
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| |
Collapse
|
19
|
Cheetham CJ, McKelvey MC, McAuley DF, Taggart CC. Neutrophil-Derived Proteases in Lung Inflammation: Old Players and New Prospects. Int J Mol Sci 2024; 25:5492. [PMID: 38791530 PMCID: PMC11122108 DOI: 10.3390/ijms25105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Neutrophil-derived proteases are critical to the pathology of many inflammatory lung diseases, both chronic and acute. These abundant enzymes play roles in key neutrophil functions, such as neutrophil extracellular trap formation and reactive oxygen species release. They may also be released, inducing tissue damage and loss of tissue function. Historically, the neutrophil serine proteases (NSPs) have been the main subject of neutrophil protease research. Despite highly promising cell-based and animal model work, clinical trials involving the inhibition of NSPs have shown mixed results in lung disease patients. As such, the cutting edge of neutrophil-derived protease research has shifted to proteases that have had little-to-no research in neutrophils to date. These include the cysteine and serine cathepsins, the metzincins and the calpains, among others. This review aims to outline the previous work carried out on NSPs, including the shortcomings of some of the inhibitor-orientated clinical trials. Our growing understanding of other proteases involved in neutrophil function and neutrophilic lung inflammation will then be discussed. Additionally, the potential of targeting these more obscure neutrophil proteases will be highlighted, as they may represent new targets for inhibitor-based treatments of neutrophil-mediated lung inflammation.
Collapse
Affiliation(s)
- Coby J. Cheetham
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| | - Michael C. McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK;
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| |
Collapse
|
20
|
Shawamri S, Šačić D, Ristić M, Milivojević I. Concurrent Acute Myocardial Infarction and Stroke: Challenges in Diagnosis and Treatment. Int Heart J 2024; 65:956-959. [PMID: 39343598 DOI: 10.1536/ihj.24-204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Acute myocardial infarction (MI) and stroke occurring simultaneously in one patient is a rare clinical event. These medical emergencies involve many diagnostic and treatment challenges due to different causes, treatment modalities, and shifting priorities. Presence and exacerbation of bronchiectasis has been considered as a risk factor for atherosclerotic cardiovascular and cerebrovascular diseases and can trigger a cardioembolic stroke. We describe a case of a 59-year-old male patient with bronchiectasis who was treated at our tertiary care center due to concurrent MI and stroke.
Collapse
Affiliation(s)
| | - Dalila Šačić
- Clinic for Cardiology, University Clinical Center of Serbia
| | - Marko Ristić
- Clinic for Cardiology, University Clinical Center of Serbia
| | | |
Collapse
|
21
|
McShane PJ. Investigation and Management of Bronchiectasis in Nontuberculous Mycobacterial Pulmonary Disease. Clin Chest Med 2023; 44:731-742. [PMID: 37890912 DOI: 10.1016/j.ccm.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Patients with nontuberculous mycobacterial (NTM) lung infection require life-long attention to their bronchiectasis, whether or not their NTM infection has been cured. The identification of the cause of bronchiectasis and/or coexisting diseases is important because it may affect therapeutic strategies. Airway clearance is the mainstay of bronchiectasis management. It can include multiple breathing techniques, devices, and mucoactive agents. The exact airway clearance regimen should be customized to each individual patient. Chronic pathogenic airway bacteria, such as Pseudomonas aeruginosa, may warrant consideration of eradication therapy and/or chronic use of maintenance inhaled antibiotics.
Collapse
Affiliation(s)
- Pamela J McShane
- Department of Medicine, University of Texas Health Science Center at Tyler, 11937 Hwy 271, Tyler, TX 75708, USA.
| |
Collapse
|
22
|
Zou S, Jie H, Han X, Wang J. The role of neutrophil extracellular traps in sepsis and sepsis-related acute lung injury. Int Immunopharmacol 2023; 124:110436. [PMID: 37688916 DOI: 10.1016/j.intimp.2023.110436] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 09/11/2023]
Abstract
Neutrophils release neutrophil extracellular traps (NETs) to trap pathogenic microorganisms. NETs are involved in the inflammatory response and bacterial killing and clearance. However, their excessive activation can lead to an inflammatory storm in the body, which may damage tissues and cause organ dysfunction. Organ dysfunction is the main pathophysiological cause of sepsis and also a cause of the high mortality rate in sepsis. Acute lung injury caused by sepsis accounts for the highest proportion of organ damage in sepsis. NET formation can lead to the development of sepsis because by promoting the release of interleukin-1 beta, interleukin-8, and tumor necrosis factor-alpha, thereby accelerating acute lung injury. In this review, we describe the critical role of NETs in sepsis-associated acute lung injury and review the current knowledge and novel therapeutic approaches.
Collapse
Affiliation(s)
- Shujing Zou
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Hongyu Jie
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Xinai Han
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Jinghong Wang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
23
|
Chalmers JD, Elborn S, Greene CM. Basic, translational and clinical aspects of bronchiectasis in adults. Eur Respir Rev 2023; 32:230015. [PMID: 37286220 PMCID: PMC10245133 DOI: 10.1183/16000617.0015-2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 06/09/2023] Open
Abstract
Bronchiectasis is a common progressive respiratory disease with recognisable radiological abnormalities and a clinical syndrome of cough, sputum production and recurrent respiratory infections. Inflammatory cell infiltration into the lung, in particular neutrophils, is central to the pathophysiology of bronchiectasis. Herein we explore the roles and relationships between infection, inflammation and mucociliary clearance dysfunction in the establishment and progression of bronchiectasis. Microbial and host-mediated damage are important processes underpinning bronchiectasis and the relative contribution of proteases, cytokines and inflammatory mediators to the propagation of inflammation is presented. We also discuss the emerging concept of inflammatory endotypes, defined by the presence of neutrophilic and eosinophilic inflammation, and explore the role of inflammation as a treatable trait. Current treatment for bronchiectasis focuses on treatment of underlying causes, enhancing mucociliary clearance, controlling infection and preventing and treating complications. Data on airway clearance approaches via exercise and mucoactive drugs, pharmacotherapy with macrolides to decrease exacerbations and the usefulness of inhaled antibiotics and bronchodilators are discussed, finishing with a look to the future where new therapies targeting host-mediated immune dysfunction hold promise.
Collapse
Affiliation(s)
| | - Stuart Elborn
- School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Catherine M Greene
- Lung Biology Group, Department of Clinical Microbiology, RCSI University of Medicine and Heath Sciences, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
24
|
Beech A, Portacci A, Herrero-Cortina B, Mathioudakis AG, Gotera C, Uller L, Ricciardolo FLM, Pobeha P, Snelgrove RJ, Braunstahl GJ, Bossios A, Usmani O, Ananth S. ERS International Congress 2022: highlights from the Airway Diseases Assembly. ERJ Open Res 2023; 9:00034-2023. [PMID: 37228280 PMCID: PMC10204859 DOI: 10.1183/23120541.00034-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/15/2023] [Indexed: 05/27/2023] Open
Abstract
The European Respiratory Society (ERS) celebrated the return of an in-person meeting in Barcelona, Spain, after 2 years of virtual congresses. The ERS Congress 2022 programme was replete with symposia, skills workshops and abstract presentations from all 14 assemblies, encompassing over 3000 abstracts presented in the form of thematic poster discussion and oral presentations. In this article, highlights from the ERS Congress 2022 (including from thematic poster sessions, oral presentations and symposia from keynote speakers), presented by Assembly 5 (Airway diseases, asthma, COPD and chronic cough), are reviewed by Early Career Members and experts in the field, with the aim of presenting key recent findings in the field.
Collapse
Affiliation(s)
- Augusta Beech
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester, UK
| | - Andrea Portacci
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University “Aldo Moro”, Bari, Italy
| | - Beatrice Herrero-Cortina
- Universidad San Jorge, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - Alexander G. Mathioudakis
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | | | - Fabio Luigi Massimo Ricciardolo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Institute of Translational Pharmacology, National Research Council (IFT-CNR), Palermo, Italy
| | - Pavol Pobeha
- Pavol Jozef Safarik University, Kosice, Slovakia
| | | | | | - Apostolos Bossios
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Omar Usmani
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sachin Ananth
- Guy's and St Thomas's NHS Foundation Trust, London, UK
| |
Collapse
|
25
|
Yang H, Wen X, Wu F, Zheng Y, Dai C, Zhao N, Deng Z, Wang Z, Peng J, Xiao S, Lu L, Huang J, Yu S, Yang C, Chen S, Zhou Y, Ran P. Inter-relationships among neutrophilic inflammation, air trapping and future exacerbation in COPD: an analysis of ECOPD study. BMJ Open Respir Res 2023; 10:10/1/e001597. [PMID: 37028910 PMCID: PMC10083880 DOI: 10.1136/bmjresp-2022-001597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND The inter-relationships among neutrophilic airway inflammation, air trapping and future exacerbation in chronic obstructive pulmonary disease (COPD) remain unclear. OBJECTIVE To evaluate the associations between sputum neutrophil proportions and future exacerbation in COPD and to determine whether these associations are modified by significant air trapping. METHODS Participants with completed data were included and followed up to the first year in the Early Chronic Obstructive Pulmonary Disease study (n=582). Sputum neutrophil proportions and high-resolution CT-related markers were measured at baseline. Sputum neutrophil proportions were dichotomised based on their median (86.2%) to low and high levels. In addition, subjects were divided into the air trapping or non-air trapping group. Outcomes of interest included COPD exacerbation (separately any, severe and frequent exacerbation, occurring in the first year of follow-up). Multivariable logistic regressions were performed to examine the risk of severe exacerbation and frequent exacerbation with either neutrophilic airway inflammation groups or air trapping groups. RESULTS There was no significant difference between high and low levels of sputum neutrophil proportions in the exacerbation in the preceding year. After the first year of follow-up, subjects with high sputum neutrophil proportions had increased risks of severe exacerbation (OR=1.68, 95% CI: 1.09 to 2.62, p=0.020). Subjects with high sputum neutrophil proportions and significant air trapping had increased odds of having frequent exacerbation (OR=3.29, 95% CI: 1.30 to 9.37, p=0.017) and having severe exacerbation (OR=2.72, 95% CI: 1.42 to 5.43, p=0.003) when compared with those who had low sputum neutrophil proportions and non-air trapping. CONCLUSIONS We found that subjects with high sputum neutrophil proportions and significant air trapping are prone to future exacerbation of COPD. It may be a helpful predictor of future exacerbation.
Collapse
Affiliation(s)
- Huajing Yang
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiang Wen
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Fan Wu
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Youlan Zheng
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Cuiqiong Dai
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ningning Zhao
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhishan Deng
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zihui Wang
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jieqi Peng
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Shan Xiao
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Lifei Lu
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jianhui Huang
- Department of internal medicine, Lianping County People's Hospital, Heyuan, Guangdong, China
| | - Shuqing Yu
- Department of internal medicine, Lianping County People's Hospital, Heyuan, Guangdong, China
- Department of internal medicine, Lianping County Hospital of Traditional Chinese Medicine, Heyuan, Guangdong, China
| | - Changli Yang
- Department of Pulmonary and Critical Care Medicine, Wengyuan County People's Hospital, Shaoguan, Guangdong, China
| | - Shengtang Chen
- Department of Pulmonary and Critical Care Medicine, Wengyuan County People's Hospital, Shaoguan, Guangdong, China
| | - Yumin Zhou
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Pixin Ran
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Jin J, Wang F, Tian J, Zhao X, Dong J, Wang N, Liu Z, Zhao H, Li W, Mang G, Hu S. Neutrophil extracellular traps contribute to coagulopathy after traumatic brain injury. JCI Insight 2023; 8:141110. [PMID: 36802340 PMCID: PMC10070118 DOI: 10.1172/jci.insight.141110] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Coagulopathy contributes to the majority of deaths and disabilities associated with traumatic brain injury (TBI). Whether neutrophil extracellular traps (NETs) contribute to an abnormal coagulation state in the acute phase of TBI remains unknown. Our objectives were to demonstrate the definitive role of NETs in coagulopathy in TBI. We detected NET markers in 128 TBI patients and 34 healthy individuals. Neutrophil-platelet aggregates were detected in blood samples from TBI patients and healthy individuals using flow cytometry and staining for CD41 and CD66b. Endothelial cells were incubated with isolated NETs and we detected the expression of vascular endothelial cadherin, syndecan-1, thrombomodulin, von Willebrand factor, phosphatidylserine, and tissue factor. In addition, we established a TBI mouse model to determine the potential role of NETs in TBI-associated coagulopathy. NET generation was mediated by high mobility group box 1 (HMGB1) from activated platelets and contributed to procoagulant activity in TBI. Furthermore, coculture experiments indicated that NETs damaged the endothelial barrier and caused these cells to assume a procoagulant phenotype. Moreover, the administration of DNase I before or after brain trauma markedly reduced coagulopathy and improved the survival and clinical outcome of mice with TBI.
Collapse
Affiliation(s)
- Jiaqi Jin
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fang Wang
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Tian
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyi Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Dong
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Wang
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihui Liu
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongtao Zhao
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenqiang Li
- Department of Vascular Surgery, Jinshan Hospital of Fudan University, Shanghai, China
| | - Ge Mang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shaoshan Hu
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
27
|
Neutrophil Extracellular Traps in Airway Diseases: Pathological Roles and Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24055034. [PMID: 36902466 PMCID: PMC10003347 DOI: 10.3390/ijms24055034] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Neutrophils are important effector cells of the innate immune response that fight pathogens by phagocytosis and degranulation. Neutrophil extracellular traps (NETs) are released into the extracellular space to defend against invading pathogens. Although NETs play a defensive role against pathogens, excessive NETs can contribute to the pathogenesis of airway diseases. NETs are known to be directly cytotoxic to the lung epithelium and endothelium, highly involved in acute lung injury, and implicated in disease severity and exacerbation. This review describes the role of NET formation in airway diseases, including chronic rhinosinusitis, and suggests that targeting NETs could be a therapeutic strategy for airway diseases.
Collapse
|
28
|
Abstract
Neutrophils or polymorphonuclear neutrophils (PMNs) are an important component of innate host defense. These phagocytic leukocytes are recruited to infected tissues and kill invading microbes. There are several general characteristics of neutrophils that make them highly effective as antimicrobial cells. First, there is tremendous daily production and turnover of granulocytes in healthy adults-typically 1011 per day. The vast majority (~95%) of these cells are neutrophils. In addition, neutrophils are mobilized rapidly in response to chemotactic factors and are among the first leukocytes recruited to infected tissues. Most notably, neutrophils contain and/or produce an abundance of antimicrobial molecules. Many of these antimicrobial molecules are toxic to host cells and can destroy host tissues. Thus, neutrophil activation and turnover are highly regulated processes. To that end, aged neutrophils undergo apoptosis constitutively, a process that contains antimicrobial function and proinflammatory capacity. Importantly, apoptosis facilitates nonphlogistic turnover of neutrophils and removal by macrophages. This homeostatic process is altered by interaction with microbes and their products, as well as host proinflammatory molecules. Microbial pathogens can delay neutrophil apoptosis, accelerate apoptosis following phagocytosis, or cause neutrophil cytolysis. Here, we review these processes and provide perspective on recent studies that have potential to impact this paradigm.
Collapse
Affiliation(s)
- Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Mark T Quinn
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
29
|
Alkarni M, Lipman M, Lowe DM. The roles of neutrophils in non-tuberculous mycobacterial pulmonary disease. Ann Clin Microbiol Antimicrob 2023; 22:14. [PMID: 36800956 PMCID: PMC9938600 DOI: 10.1186/s12941-023-00562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Non-tuberculous Mycobacterial Pulmonary Disease (NTM-PD) is an increasingly recognised global health issue. Studies have suggested that neutrophils may play an important role in controlling NTM infection and contribute to protective immune responses within the early phase of infection. However, these cells are also adversely associated with disease progression and exacerbation and can contribute to pathology, for example in the development of bronchiectasis. In this review, we discuss the key findings and latest evidence regarding the diverse functions of neutrophils in NTM infection. First, we focus on studies that implicate neutrophils in the early response to NTM infection and the evidence reporting neutrophils' capability to kill NTM. Next, we present an overview of the positive and negative effects that characterise the bidirectional relationship between neutrophils and adaptive immunity. We consider the pathological role of neutrophils in driving the clinical phenotype of NTM-PD including bronchiectasis. Finally, we highlight the current promising treatments in development targeting neutrophils in airways diseases. Clearly, more insights on the roles of neutrophils in NTM-PD are needed in order to inform both preventative strategies and host-directed therapy for these important infections.
Collapse
Affiliation(s)
- Meyad Alkarni
- grid.83440.3b0000000121901201Institute of Immunity and Transplantation, University College London, Pears Building, Rowland Hill Street, London, NW3 2PP UK
| | - Marc Lipman
- grid.83440.3b0000000121901201UCL Respiratory, University College London, London, UK
| | - David M. Lowe
- grid.83440.3b0000000121901201Institute of Immunity and Transplantation, University College London, Pears Building, Rowland Hill Street, London, NW3 2PP UK
| |
Collapse
|
30
|
Insights into Personalised Medicine in Bronchiectasis. J Pers Med 2023; 13:jpm13010133. [PMID: 36675794 PMCID: PMC9863431 DOI: 10.3390/jpm13010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Bronchiectasis is a heterogenous disease with multiple aetiologies resulting in inflammation and dilatation of the airways with associated mucus production and chronic respiratory infection. The condition is being recognised ever more frequently as the availability of computed tomography increases. It is associated with significant morbidity and healthcare-related costs. With new understanding of the disease process, varying endotypes, identification of underlying causes and treatable traits, the management of bronchiectasis can be increasingly personalised.
Collapse
|
31
|
Laucirica DR, Stick SM, Garratt LW, Kicic A. Bacteriophage: A new therapeutic player to combat neutrophilic inflammation in chronic airway diseases. Front Med (Lausanne) 2022; 9:1069929. [PMID: 36590945 PMCID: PMC9794625 DOI: 10.3389/fmed.2022.1069929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Persistent respiratory bacterial infections are a clinical burden in several chronic inflammatory airway diseases and are often associated with neutrophil infiltration into the lungs. Following recruitment, dysregulated neutrophil effector functions such as increased granule release and formation of neutrophil extracellular traps (NETs) result in damage to airway tissue, contributing to the progression of lung disease. Bacterial pathogens are a major driver of airway neutrophilic inflammation, but traditional management of infections with antibiotic therapy is becoming less effective as rates of antimicrobial resistance rise. Bacteriophages (phages) are now frequently identified as antimicrobial alternatives for antimicrobial resistant (AMR) airway infections. Despite growing recognition of their bactericidal function, less is known about how phages influence activity of neutrophils recruited to sites of bacterial infection in the lungs. In this review, we summarize current in vitro and in vivo findings on the effects of phage therapy on neutrophils and their inflammatory mediators, as well as mechanisms of phage-neutrophil interactions. Understanding these effects provides further validation of their safe use in humans, but also identifies phages as a targeted neutrophil-modulating therapeutic for inflammatory airway conditions.
Collapse
Affiliation(s)
- Daniel R. Laucirica
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Luke W. Garratt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
| |
Collapse
|
32
|
Luo L, Li H, Tang J, Liao Z, Wang F, Jin Y, Zhou F, Feng J, Li X. Clinical characteristics and outcomes of MPO-ANCA-associated glomerulonephritis with bronchiectasis: A retrospective case-control study. Semin Arthritis Rheum 2022; 57:152082. [DOI: 10.1016/j.semarthrit.2022.152082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
|
33
|
Peripheral Neutrophil-to-Lymphocyte Ratio in Bronchiectasis: A Marker of Disease Severity. Biomolecules 2022; 12:biom12101399. [PMID: 36291608 PMCID: PMC9599714 DOI: 10.3390/biom12101399] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Most patients with bronchiectasis have a predominantly neutrophilic inflammatory profile, although other cells such as lymphocytes (as controllers of bronchial inflammation) and eosinophils also play a significant pathophysiological role. Easy-to-interpret blood biomarkers with a discriminative capacity for severity or prognosis are needed. The objective of this study was to assess whether the peripheral neutrophil-to-lymphocyte ratio (NLR) is associated with different outcomes of severity in bronchiectasis. A total of 1369 patients with bronchiectasis from the Spanish Registry of Bronchiectasis were included. To compare groups, the sample was divided into increasing quartiles of NLR ratio. Correlations between quantitative variables were established using Pearson's P test. A simple linear regression (with the value of exacerbations as a quantitative variable) was used to determine the independent relationship between the number and severity of exacerbations and the NLR ratio. The area under the curve (AUC)-ROC was used to determine the predictive capacity of the NLR for severe bronchiectasis, according to the different multidimensional scores. Mean age: 69 (15) years (66.3% of women). The mean NLR was 2.92 (2.03). A higher NLR was associated with more severe bronchiectasis (with an especially significant discriminative power for severe forms) according to the commonly used scores (FACED, E-FACED and BSI), as well as with poorer quality of life (SGRQ), more comorbidities (Charlson index), infection by pathogenic microorganisms, and greater application of treatment. Furthermore, the NLR correlated better with severity scores than other parameters of systemic inflammation. Finally, it was an independent predictor of the incident number and severity of exacerbations. In conclusion, the NLR is an inexpensive and easy-to-measure marker of systemic inflammation for determining severity and predicting exacerbations (especially the most severe) in patients with bronchiectasis.
Collapse
|
34
|
Qiao X, Hou G, He YL, Song DF, An Y, Altawil A, Zhou XM, Wang QY, Kang J, Yin Y. The Novel Regulatory Role of the lncRNA–miRNA–mRNA Axis in Chronic Inflammatory Airway Diseases. Front Mol Biosci 2022; 9:927549. [PMID: 35769905 PMCID: PMC9234692 DOI: 10.3389/fmolb.2022.927549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/19/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammatory airway diseases, characterized by airway inflammation and airway remodelling, are increasing as a cause of morbidity and mortality for all age groups and races across the world. The underlying molecular mechanisms involved in chronic inflammatory airway diseases have not been fully explored. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have recently attracted much attention for their roles in the regulation of a variety of biological processes. A number of studies have confirmed that both lncRNAs and miRNAs can regulate the initiation and progression of chronic airway diseases by targeting mRNAs and regulating different cellular processes, such as proliferation, apoptosis, inflammation, migration, and epithelial–mesenchymal transition (EMT). Recently, accumulative evidence has shown that the novel regulatory mechanism underlying the interaction among lncRNAs, miRNAs and messenger RNAs (mRNAs) plays a critical role in the pathophysiological processes of chronic inflammatory airway diseases. In this review, we comprehensively summarized the regulatory roles of the lncRNA–miRNA–mRNA network in different cell types and their potential roles as biomarkers, indicators of comorbidities or therapeutic targets for chronic inflammatory airway diseases, particularly chronic obstructive pulmonary disease (COPD) and asthma.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yu-Lin He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong-Fang Song
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi An
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Abdullah Altawil
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Ming Zhou
- Respiratory Department, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| | - Qiu-Yue Wang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| |
Collapse
|
35
|
Wang X, Olveira C, Girón R, García-Clemente M, Máiz L, Sibila O, Golpe R, Menéndez R, Rodríguez-López J, Prados C, Martinez-García MA, Rodriguez JL, de la Rosa D, Qin L, Duran X, Garcia-Ojalvo J, Barreiro E. Blood Neutrophil Counts Define Specific Clusters of Bronchiectasis Patients: A Hint to Differential Clinical Phenotypes. Biomedicines 2022; 10:1044. [PMID: 35625780 PMCID: PMC9139050 DOI: 10.3390/biomedicines10051044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
We sought to investigate differential phenotypic characteristics according to neutrophil counts, using a biostatistics approach in a large-cohort study from the Spanish Online Bronchiectasis Registry (RIBRON). The 1034 patients who met the inclusion criteria were clustered into two groups on the basis of their blood neutrophil levels. Using the Mann-Whitney U test to explore potential differences according to FACED and EFACED scores between the two groups, a neutrophil count of 4990 cells/µL yielded the most balanced cluster sizes: (1) above-threshold (n = 337) and (2) below-threshold (n = 697) groups. Patients above the threshold showed significantly worse lung function parameters and nutritional status, while systemic inflammation levels were higher than in the below-threshold patients. In the latter group, the proportions of patients with mild disease were greater, while a more severe disease was present in the above-threshold patients. According to the blood neutrophil counts using biostatistics analyses, two distinct clinical phenotypes of stable patients with non-CF bronchiectasis were defined. Patients falling into the above-threshold cluster were more severe. Severity was characterized by a significantly impaired lung function parameters and nutritional status, and greater systemic inflammation. Phenotypic profiles of bronchiectasis patients are well defined as a result of the cluster analysis of combined systemic and respiratory variables.
Collapse
Affiliation(s)
- Xuejie Wang
- Lung Cancer and Muscle Research Group, Pulmonology Department, Hospital del Mar-IMIM, Parc de Salut Mar, 08003 Barcelona, Spain; (X.W.); (L.Q.)
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Casilda Olveira
- Respiratory Department, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010 Málaga, Spain;
| | - Rosa Girón
- Respiratory Department, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, 28006 Madrid, Spain;
| | - Marta García-Clemente
- Respiratory Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain;
| | - Luis Máiz
- Respiratory Department, Hospital Ramon y Cajal, 28034 Madrid, Spain;
| | - Oriol Sibila
- Respiratory Department, Hospital Clínic, 08036 Barcelona, Spain;
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain;
| | - Rafael Golpe
- Respiratory Department, Hospital Lucus Augusti, 27003 Lugo, Spain;
| | - Rosario Menéndez
- Respiratory Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
| | | | - Concepción Prados
- Respiratory Department, Hospital Universitario la Paz, 28046 Madrid, Spain;
| | - Miguel Angel Martinez-García
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain;
- Respiratory Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
| | - Juan Luis Rodriguez
- Respiratory Department, Hospital Clínico San Carlos, 28040 Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Departamento de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - David de la Rosa
- Respiratory Department, Hospital Santa Creu I Sant Pau, 08025 Barcelona, Spain;
| | - Liyun Qin
- Lung Cancer and Muscle Research Group, Pulmonology Department, Hospital del Mar-IMIM, Parc de Salut Mar, 08003 Barcelona, Spain; (X.W.); (L.Q.)
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Xavier Duran
- Scientific and Technical Department, Hospital del Mar (IMIM), 08003 Barcelona, Spain;
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain;
| | - Esther Barreiro
- Lung Cancer and Muscle Research Group, Pulmonology Department, Hospital del Mar-IMIM, Parc de Salut Mar, 08003 Barcelona, Spain; (X.W.); (L.Q.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain;
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain;
| |
Collapse
|
36
|
|
37
|
|
38
|
Mincham KT, Bruno N, Singanayagam A, Snelgrove RJ. Our evolving view of neutrophils in defining the pathology of chronic lung disease. Immunology 2021; 164:701-721. [PMID: 34547115 PMCID: PMC8561104 DOI: 10.1111/imm.13419] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are critical components of the body's immune response to infection, being loaded with a potent arsenal of toxic mediators and displaying immense destructive capacity. Given the potential of neutrophils to impart extensive tissue damage, it is perhaps not surprising that when augmented these cells are also implicated in the pathology of inflammatory diseases. Prominent neutrophilic inflammation is a hallmark feature of patients with chronic lung diseases such as chronic obstructive pulmonary disease, severe asthma, bronchiectasis and cystic fibrosis, with their numbers frequently associating with worse prognosis. Accordingly, it is anticipated that neutrophils are central to the pathology of these diseases and represent an attractive therapeutic target. However, in many instances, evidence directly linking neutrophils to the pathology of disease has remained somewhat circumstantial and strategies that have looked to reduce neutrophilic inflammation in the clinic have proved largely disappointing. We have classically viewed neutrophils as somewhat crude, terminally differentiated, insular and homogeneous protagonists of pathology. However, it is now clear that this does not do the neutrophil justice, and we now recognize that these cells exhibit heterogeneity, a pronounced awareness of the localized environment and a remarkable capacity to interact with and modulate the behaviour of a multitude of cells, even exhibiting anti-inflammatory, pro-resolving and pro-repair functions. In this review, we discuss evidence for the role of neutrophils in chronic lung disease and how our evolving view of these cells may impact upon our perceived assessment of their contribution to disease pathology and efforts to target them therapeutically.
Collapse
Affiliation(s)
- Kyle T. Mincham
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Nicoletta Bruno
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Aran Singanayagam
- National Heart and Lung InstituteImperial College LondonLondonUK
- Department of Infectious DiseaseImperial College LondonLondonUK
| | | |
Collapse
|
39
|
Bedi P, Ziegler K, Whitfield PD, Davidson D, Rossi AG, Hill AT. Dysregulation of prostaglandins, leukotrienes and lipoxin A 4 in bronchiectasis. Thorax 2021; 77:960-967. [PMID: 34789559 PMCID: PMC9510413 DOI: 10.1136/thoraxjnl-2020-216475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 09/21/2021] [Indexed: 11/05/2022]
Abstract
Introduction Bronchiectasis is characterised by excessive neutrophilic inflammation. Lipid mediators such as prostaglandins and leukotrienes have crucial roles in the inflammatory response. Further characterisation of these lipids and understanding the interplay of anti-inflammatory and proinflammatory lipid mediators could lead to the development of novel anti-inflammatory therapies for bronchiectasis. Aim The aim of our study was to characterise the lipids obtained from serum and airways in patients with bronchiectasis in the stable state. Methods Six healthy volunteers, 10 patients with mild bronchiectasis, 15 with moderate bronchiectasis and 9 with severe bronchiectasis were recruited. All participants had 60 mL of blood taken and underwent a bronchoscopy while in the stable state. Lipidomics was done on serum and bronchoalveolar lavage fluid (BALF). Results In the stable state, in serum there were significantly higher levels of prostaglandin E2 (PGE2), 15-hydroxyeicosatetranoic acid (15-HETE) and leukotriene B4 (LTB4) in patients with moderate–severe disease compared with healthy volunteers. There was a significantly lower level of lipoxin A4 (LXA4) in severe bronchiectasis. In BALF, there were significantly higher levels of PGE2, 5-HETE, 15-HETE, 9-hydroxyoctadecadienoic acid and LTB4 in moderate–severe patients compared with healthy volunteers. In the stable state, there was a negative correlation of PGE2 and LTB4 with % predicted forced expiratory volume in 1 s and a positive correlation with antibiotic courses. LXA4 improved blood and airway neutrophil phagocytosis and bacterial killing in patients with bronchiectasis. Additionally LXA4 reduced neutrophil activation and degranulation. Conclusion There is a dysregulation of lipid mediators in bronchiectasis with excess proinflammatory lipids. LXA4 improves the function of reprogrammed neutrophils. The therapeutic efficacy of LXA4 in bronchiectasis warrants further studies.
Collapse
Affiliation(s)
- Pallavi Bedi
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Kerstin Ziegler
- Department of Lipidomics, University of the Highlands and Islands, Inverness, UK
| | | | - Donald Davidson
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | | | - Adam T Hill
- Respiratory Medicine, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
40
|
Wang X, Villa C, Dobarganes Y, Olveira C, Girón R, García-Clemente M, Máiz L, Sibila O, Golpe R, Menéndez R, Rodríguez-López J, Prados C, Martinez-García MA, Rodriguez JL, de la Rosa D, Duran X, Garcia-Ojalvo J, Barreiro E. Phenotypic Clustering in Non-Cystic Fibrosis Bronchiectasis Patients: The Role of Eosinophils in Disease Severity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168431. [PMID: 34444179 PMCID: PMC8392197 DOI: 10.3390/ijerph18168431] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022]
Abstract
Whether high blood eosinophil counts may define a better phenotype in bronchiectasis patients, as shown in chronic obstructive pulmonary disease (COPD), remains to be investigated. Differential phenotypic characteristics according to eosinophil counts were assessed using a biostatistical approach in a large cohort study from the Spanish Online Bronchiectasis Registry (RIBRON). The 906 patients who met the inclusion criteria were clustered into two groups on the basis of their eosinophil levels. The potential differences according to the bronchiectasis severity index (BSI) score between two groups (Mann–Whitney U test and eosinophil count threshold: 100 cells/µL) showed the most balanced cluster sizes: above-threshold and below-threshold groups. Patients above the threshold exhibited significantly better clinical outcomes, lung function, and nutritional status, while showing lower systemic inflammation levels. The proportion of patients with mild disease was higher in the above-threshold group, while the below-threshold patients were more severe. Two distinct clinical phenotypes of stable patients with non-cystic fibrosis (CF) bronchiectasis of a wide range of disease severity were established on the basis of blood eosinophil counts using a biostatistical approach. Patients classified within the above-threshold cluster were those exhibiting a mild disease, significantly better clinical outcomes, lung function, and nutritional status while showing lower systemic inflammatory levels. These results will contribute to better characterizing bronchiectasis patients into phenotypic profiles with their clinical implications.
Collapse
Affiliation(s)
- Xuejie Wang
- Lung Cancer and Muscle Research Group, Pulmonology Department, Hospital del Mar-IMIM, Parc de Salut Mar, 08003 Barcelona, Spain;
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Carmen Villa
- Respiratory Department, Clínica Fuensanta, 28027 Madrid, Spain; (C.V.); (Y.D.)
| | - Yadira Dobarganes
- Respiratory Department, Clínica Fuensanta, 28027 Madrid, Spain; (C.V.); (Y.D.)
| | - Casilda Olveira
- Respiratory Department, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010 Málaga, Spain;
| | - Rosa Girón
- Respiratory Department, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, 28006 Madrid, Spain;
| | - Marta García-Clemente
- Respiratory Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain;
| | - Luis Máiz
- Respiratory Department, Hospital Ramon y Cajal, 28034 Madrid, Spain;
| | - Oriol Sibila
- Respiratory Department, Hospital Clínic, 08036 Barcelona, Spain;
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| | - Rafael Golpe
- Respiratory Department, Hospital Lucus Augusti, 27003 Lugo, Spain;
| | - Rosario Menéndez
- Respiratory Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
| | | | | | - Miguel Angel Martinez-García
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
- Respiratory Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
| | - Juan Luis Rodriguez
- Respiratory Department, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, 28040 Madrid, Spain;
- Departament of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - David de la Rosa
- Respiratory Department, Hospital Santa Creu I Sant Pau, 08041 Barcelona, Spain;
| | - Xavier Duran
- Scientific and Technical Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Jordi Garcia-Ojalvo
- Department of Health and Experimental Sciences (CEXS), Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain;
| | - Esther Barreiro
- Lung Cancer and Muscle Research Group, Pulmonology Department, Hospital del Mar-IMIM, Parc de Salut Mar, 08003 Barcelona, Spain;
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
- Department of Health and Experimental Sciences (CEXS), Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain;
- Correspondence: ; Tel.: +34-93-316-0385
| |
Collapse
|
41
|
Common Variable Immunodeficiency and Other Immunodeficiency Syndromes in Bronchiectasis. Semin Respir Crit Care Med 2021; 42:525-536. [PMID: 34261177 DOI: 10.1055/s-0041-1730893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Immunodeficiency represents a vast number of diseases and syndromes. Both primary and secondary forms of immunodeficiency are important contributors to the development of bronchiectasis. Primary immune deficiencies, in particular, are increasingly identified and defined as contributors. Specific immune deficiencies that are closely associated with bronchiectasis and as discussed in this article are common variable immunodeficiency, specific antibody deficiency, immunodeficiencies involving immunoglobulin E, DOCK8 immunodeficiency, phosphoglucomutase 3 deficiency, activated phosphoinositide 3-kinase delta syndrome, and X-linked agammaglobulinemia. Each of these primary immune deficiencies has unique nuances. Vigilance for these unique signs and symptoms is likely to improve recognition of specific immunodeficiency in the idiopathic bronchiectasis patient. Secondary forms of immunodeficiency occur as a result of a separate disease process. Graft versus host disease, malignancy, and human immunodeficiency virus are three classic examples discussed in this article. An awareness of the potential for these disease settings to lead to bronchiectasis is necessary to optimize patient care. With understanding and mindfulness toward the intricate relationship between bronchiectasis and immunodeficiency, there is an opportunity to elucidate pathophysiologic underpinnings between these two syndromes.
Collapse
|
42
|
Abstract
Bronchiectasis is a complex, heterogeneous disorder defined by both a radiological abnormality of permanent bronchial dilatation and a clinical syndrome. There are multiple underlying causes including severe infections, mycobacterial disease, autoimmune conditions, hypersensitivity disorders, and genetic conditions. The pathophysiology of disease is understood in terms of interdependent concepts of chronic infection, inflammation, impaired mucociliary clearance, and structural lung damage. Neutrophilic inflammation is characteristic of the disease, with elevated levels of harmful proteases such as neutrophil elastase associated with worse outcomes. Recent data show that neutrophil extracellular trap formation may be the key mechanism leading to protease release and severe bronchiectasis. Despite the dominant of neutrophilic disease, eosinophilic subtypes are recognized and may require specific treatments. Neutrophilic inflammation is associated with elevated bacterial loads and chronic infection with organisms such as Pseudomonas aeruginosa. Loss of diversity of the normal lung microbiota and dominance of proteobacteria such as Pseudomonas and Haemophilus are features of severe bronchiectasis and link to poor outcomes. Ciliary dysfunction is also a key feature, exemplified by the rare genetic syndrome of primary ciliary dyskinesia. Mucus symptoms arise through goblet cell hyperplasia and metaplasia and reduced ciliary function through dyskinesia and loss of ciliated cells. The contribution of chronic inflammation, infection, and mucus obstruction leads to progressive structural lung damage. The heterogeneity of the disease is the most challenging aspect of management. An understanding of the pathophysiology of disease and their biomarkers can help to guide personalized medicine approaches utilizing the concept of "treatable traits."
Collapse
Affiliation(s)
- Holly R Keir
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, United Kingdom
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
43
|
McKelvey MC, Brown R, Ryan S, Mall MA, Weldon S, Taggart CC. Proteases, Mucus, and Mucosal Immunity in Chronic Lung Disease. Int J Mol Sci 2021; 22:5018. [PMID: 34065111 PMCID: PMC8125985 DOI: 10.3390/ijms22095018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulated protease activity has long been implicated in the pathogenesis of chronic lung diseases and especially in conditions that display mucus obstruction, such as chronic obstructive pulmonary disease, cystic fibrosis, and non-cystic fibrosis bronchiectasis. However, our appreciation of the roles of proteases in various aspects of such diseases continues to grow. Patients with muco-obstructive lung disease experience progressive spirals of inflammation, mucostasis, airway infection and lung function decline. Some therapies exist for the treatment of these symptoms, but they are unable to halt disease progression and patients may benefit from novel adjunct therapies. In this review, we highlight how proteases act as multifunctional enzymes that are vital for normal airway homeostasis but, when their activity becomes immoderate, also directly contribute to airway dysfunction, and impair the processes that could resolve disease. We focus on how proteases regulate the state of mucus at the airway surface, impair mucociliary clearance and ultimately, promote mucostasis. We discuss how, in parallel, proteases are able to promote an inflammatory environment in the airways by mediating proinflammatory signalling, compromising host defence mechanisms and perpetuating their own proteolytic activity causing structural lung damage. Finally, we discuss some possible reasons for the clinical inefficacy of protease inhibitors to date and propose that, especially in a combination therapy approach, proteases represent attractive therapeutic targets for muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Michael C. McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| |
Collapse
|
44
|
Perea L, Cantó E, Suarez-Cuartin G, Aliberti S, Chalmers JD, Sibila O, Vidal S. A Cluster Analysis of Bronchiectasis Patients Based on the Airway Immune Profile. Chest 2021; 159:1758-1767. [PMID: 33217421 DOI: 10.1016/j.chest.2020.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Clinical heterogeneity in bronchiectasis remains a challenge for improving the appropriate targeting of therapies and patient management. Antimicrobial peptides (AMPs) have been linked to disease severity and phenotype. RESEARCH QUESTION Can we identify clusters of patients based on the levels of AMPs, airway inflammation, tissue remodeling, and tissue damage to establish their relationship with disease severity and clinical outcomes? STUDY DESIGN AND METHODS A prospective cohort of 128 stable patients with bronchiectasis were recruited across three centers in three different countries (Spain, Scotland, and Italy). A two-step cluster strategy was used to stratify patients according to levels of lactoferrin, lysozyme, LL-37, and secretory leukocyte protease inhibitor in sputum. Measurements of inflammation (IL-8, tumor growth factor β, and IL-6), tissue remodeling and damage (glycosaminoglycan, matrix metallopeptidase 9, neutrophil elastase, and total and bacterial DNA), and neutrophil chemotaxis were assessed. RESULTS Three clusters of patients were defined according to distinct airway profiles of AMPs. They represented groups of patients with gradually distinct airway infection and disease severity. Each cluster was associated with an airway profile of inflammation, tissue remodeling, and tissue damage. The relationships between soluble mediators also were distinct between clusters. This analysis allowed the identification of the cluster with the most deregulated local innate immune response. During follow-up, each cluster showed different risk of three or more exacerbations occurring (P = .03) and different times to first exacerbations (P = .03). INTERPRETATION Bronchiectasis patients can be stratified in different clusters according to profiles of airway AMPs, inflammation, tissue remodeling, and tissue damage. The combination of these immunologic variables shows a relationship with disease severity and future risk of exacerbations.
Collapse
Affiliation(s)
- Lídia Perea
- Department of Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Elisabet Cantó
- Department of Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Guillermo Suarez-Cuartin
- Respiratory Department, Hospital Universitari de Bellvitge, l'Hospitalet de Llobregat, Barcelona, Spain
| | - Stefano Aliberti
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - James D Chalmers
- Tayside Respiratory Research Group, University of Dundee, Dundee, Scotland
| | - Oriol Sibila
- Respiratory Department, Hospital Clinic, IDIBAPS, CIBERES, University of Barcelona, Barcelona, Spain
| | - Silvia Vidal
- Department of Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.
| |
Collapse
|
45
|
Vidaillac C, Chotirmall SH. Pseudomonas aeruginosa in bronchiectasis: infection, inflammation, and therapies. Expert Rev Respir Med 2021; 15:649-662. [PMID: 33736539 DOI: 10.1080/17476348.2021.1906225] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Bronchiectasis is a chronic endobronchial suppurative disease characterized by irreversibly dilated bronchi damaged by repeated polymicrobial infections and predominantly, neutrophilic airway inflammation. Some consider bronchiectasis a syndromic consequence of several different causes whilst others view it as an individual disease entity. In most patients, identifying an underlying cause remains challenging. The acquisition and colonization of affected airways by Pseudomonas aeruginosa represent a critical and adverse clinical consequence for its progression and management.Areas covered: In this review, we outline clinical and pre-clinical peer-reviewed research published in the last 5 years, focusing on the pathogenesis of bronchiectasis and the role of P. aeruginosa and its virulence in shaping host inflammatory and immune responses in the airway. We further detail its role in airway infection, the lung microbiome, and address therapeutic options in bronchiectasis.Expert opinion: P. aeruginosa represents a key pulmonary pathogen in bronchiectasis that causes acute and/or chronic airway infection. Eradication can prevent adverse clinical consequence and/or disease progression. Novel therapeutic strategies are emerging and include combination-based approaches. Addressing airway infection caused by P. aeruginosa in bronchiectasis is necessary to prevent airway damage, loss of lung function and exacerbations, all of which contribute to adverse clinical outcome.
Collapse
Affiliation(s)
- Celine Vidaillac
- Oxford University Clinical Research Unit, University of Oxford, Ho Chi Minh City, Vietnam.,Center for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
46
|
Gao J, Li L, Jiang N, Liao Y, Kong L, Song Y, Xu J, Cao J, Li Y, Que C, Pleasants RA. Effect of OM-85 BV on reducing bronchiectasis exacerbation in Chinese patients: the iPROBE study. J Thorac Dis 2021; 13:1641-1651. [PMID: 33841955 PMCID: PMC8024857 DOI: 10.21037/jtd-20-1662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Bronchiectasis is characterized by recurrent infectious exacerbations. No existing data inform preventive strategy for exacerbations beyond chronic macrolides. OM-85 BV, an immunostimulant, has been shown to prevent recurrent respiratory infections. We initiated this 1-year, multi-centered, double-blind, and controlled trial to investigate the PReventive effect of OM-85 BV on Bronchiectasis Exacerbations in Chinese patients (iPROBE). Methods Patients with bronchiectasis aged 18 to 75 years, having at least one exacerbation in the past year, were randomized to receive, in addition to any respiratory medications, two courses of 7 mg of OM-85 BV or matching placebo (one capsule orally per day for 10 days a month) for 3 consecutive months, followed by 3 months without treatment. The primary outcomes included the number of acute infectious exacerbations and the time to first exacerbation. Secondary endpoints included patient-reported respiratory outcomes. Safety measures were also assessed. Results Among the 196 participants, 99 were in the OM-85 BV group and 97 in the placebo group. At week 52, the mean number of acute exacerbations per patient was equal to 0.98 and 0.75, respectively, in the two groups (P=0.14). Difference in the time to first pulmonary exacerbation was not statistically significant (P=0.11). There was no statistically significant difference in any secondary end-points. The safety profile in the two arms was good and the majority of adverse events were mild. Conclusions OM-85 BV did not demonstrate protection in decreasing pulmonary exacerbations of bronchiectasis in this trial performed in Chinese patients. It had good safety profile.
Collapse
Affiliation(s)
- Jinming Gao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Lun Li
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Jiang
- Department of Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Liao
- Department of Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Lingfei Kong
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinfu Xu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jie Cao
- Department of Pulmonary and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuping Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengli Que
- Department of Pulmonary and Critical Care Medicine, First Hospital of Peking University, Beijing, China
| | - Roy A Pleasants
- Division of Pulmonary Medicine and Critical Care, Chapel Hill, NC, USA
| |
Collapse
|
47
|
Giam YH, Shoemark A, Chalmers JD. Neutrophil dysfunction in bronchiectasis: an emerging role for immunometabolism. Eur Respir J 2021; 58:13993003.03157-2020. [DOI: 10.1183/13993003.03157-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/12/2021] [Indexed: 12/22/2022]
Abstract
Bronchiectasis is a heterogenous disease with multiple underlying causes. The pathophysiology is poorly understood but neutrophilic inflammation and dysfunctional killing of pathogens is believed to be key. There are, however, no licensed therapies for bronchiectasis that directly target neutrophilic inflammation. In this review, we discuss our current understanding of neutrophil dysfunction and therapeutic targeting in bronchiectasis. Immunometabolic reprogramming, a process through which inflammation changes inflammatory cell behaviour by altering intracellular metabolic pathways, is increasingly recognised across multiple inflammatory and autoimmune diseases. Here, we show evidence that much of the neutrophil dysfunction observed in bronchiectasis is consistent with immunometabolic reprogramming. Previous attempts at developing therapies targeting neutrophils have focused on reducing neutrophil numbers, resulting in increased frequency of infections. New approaches are needed and we propose that targeting metabolism could theoretically reverse neutrophil dysfunction and dysregulated inflammation. As an exemplar, 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK) activation has already been shown to reverse phagocytic dysfunction and neutrophil extracellular trap (NET) formation in models of pulmonary disease. AMPK modulates multiple metabolic pathways, including glycolysis which is critical for energy generation in neutrophils. AMPK activators can reverse metabolic reprogramming and are already in clinical use and/or development. We propose the need for a new immunomodulatory approach, rather than an anti-inflammatory approach, to enhance bacterial clearance and reduce bronchiectasis disease severity.
Collapse
|
48
|
Georgakopoulou VE, Trakas N, Damaskos C, Garmpis N, Karakou E, Chatzikyriakou R, Lambrou P, Tsiafaki X. Neutrophils to Lymphocyte Ratio as a Biomarker in Bronchiectasis Exacerbation: A Retrospective Study. Cureus 2020; 12:e9728. [PMID: 32944447 PMCID: PMC7489568 DOI: 10.7759/cureus.9728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Introduction Bronchiectasis is a disorder resulting mainly from bronchial inflammation caused by recurrent or chronic infections. It is characterized by permanently dilated airways due to bronchial wall destruction. Exacerbations have a key role in bronchiectasis as they are associated with a negative impact on patient prognosis. Exacerbations are generally infectious events caused mostly by bacterial microorganisms. Infective or inflammatory agents cause neutrophil recruitment into the airways, which leads to proteolytic enzymes such as neutrophil elastase and matrix metalloproteinases release, resulting in airway matrix destruction. Neutrophil to lymphocyte ratio (NLR) is used as a biomarker of inflammation. It is calculated by dividing the number of neutrophils by the number of lymphocytes. Our aim is to evaluate Neutrophils to Lymphocyte Ratio in patients with bronchiectasis exacerbation and its correlation to microbiological data. Methods The study involved patients with a diagnosis of bronchiectasis based on high-resolution computerised tomography (HRCT) of the chest who fulfilled the criteria of bronchiectasis exacerbation. Complete blood counts with differential counts, which included total white blood cells, neutrophils and lymphocytes, were obtained. NLR and C-reactive protein (CRP) levels were measured in patients with bronchiectasis exacerbation and in healthy controls. NLR was calculated as the ratio of the neutrophils to lymphocytes. The mean NLR values in patients with bronchiectasis exacerbation were compared to mean NLR values in healthy controls. The NLR values were compared to CRP levels in patients with bronchiectasis exacerbation. Sputum cultures were performed in all patients. The mean NLR values in patients with positive sputum cultures were compared with mean NLR values in patients with negative sputum cultures, and mean NLR values in patients with isolated Pseudomonas aeruginosa in sputum cultures were compared to mean NLR values in patients with other infectious agents isolated. Results The study population consisted of 80 patients with bronchiectasis exacerbation - 54 males and 26 females - with a mean age of 77.3±8.4 years, and 64 healthy controls - 36 males and 28 females - with a mean age of 62.9±15.3 years. The mean CRP levels in patients with bronchiectasis exacerbation were 75.03±73.87 mg/l. The mean NLR value in patients with bronchiectasis exacerbation was 9.2±7.8 and the mean NLR value of controls was 3.1±2.9 (p<0.001). The NLR values in patients with bronchiectasis exacerbation had no linear correlation with CRP values in these patients (r=0.002, p=0.992). Fifty-two patients had positive sputum cultures and 28 patients had negative sputum cultures. The mean NLR value in patients with positive sputum cultures was 10.5±9.1, and in patients with negative sputum cultures, it was 6.7±3.6 (p<0.012). The mean NLR value in patients with P.aeruginosa was 10.1±9.5, and in patients with other microorganisms isolated, it was 10.8±8.9 (p=0.784). Conclusions Neutrophil to lymphocyte ratio values are statistically greater in patients with bronchiectasis exacerbation compared to healthy controls. There is no linear correlation between NLR and CRP in these patients. NLR values are statistically greater in patients with positive sputum cultures compared to those with negative sputum cultures. Therefore, NLR can be used for predicting positive cultures in patients with bronchiectasis exacerbation.
Collapse
Affiliation(s)
- Vasiliki E Georgakopoulou
- Department of Pulmonology, Laiko General Hospital, Athens, GRC.,1st Department of Pulmonology, Sismanogleio Hospital, Athens, GRC
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, Athens, GRC
| | - Christos Damaskos
- Renal Transplantation Unit, Laiko General Hospital, Athens, GRC.,Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | - Nikolaos Garmpis
- 2nd Department of Propedeutic Surgery, Laiko General Hospital, Athens, GRC
| | - Evgenia Karakou
- Department of Biochemistry, Sismanogleio Hospital, Athens, GRC
| | | | | | - Xanthi Tsiafaki
- 1st Department of Pulmonology, Sismanogleio Hospital, Athens, GRC
| |
Collapse
|
49
|
Franks LJ, Walsh JR, Hall K, Morris NR. Measuring airway clearance outcomes in bronchiectasis: a review. Eur Respir Rev 2020; 29:190161. [PMID: 32350088 PMCID: PMC9489113 DOI: 10.1183/16000617.0161-2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/27/2019] [Indexed: 12/21/2022] Open
Abstract
While airway clearance techniques (ACTs) are recommended for individuals with bronchiectasis, many trials have demonstrated inconsistent benefits or failed to reach their primary outcome. This review determined the most common clinical and patient-reported outcome measures used to evaluate the efficacy of ACTs in bronchiectasis. A literature search of five databases using relevant keywords and filtering for studies published in English, up until the end of August 2019, was completed. Studies included randomised controlled trials, using crossover or any other trial design, and abstracts. Studies were included where the control was placebo, no intervention, standard care, usual care or an active comparator. Adults with bronchiectasis not related to cystic fibrosis were included. Extracted data comprised study authors, design, duration, intervention, outcome measures and results. The search identified 27 published studies and one abstract. The most common clinical outcome measures were sputum volume (n=23), lung function (n=17) and pulse oximetry (n=9). The most common patient-reported outcomes were health-related quality of life (measured with St George's Respiratory Questionnaire, n=4), cough-related quality of life (measured with Leicester Cough Questionnaire, n=4) and dyspnoea (measured with Borg/modified Borg scale, n=8). Sputum volume, lung function, dyspnoea and health- and cough-related quality of life appear to be the most common clinical and patient-reported measures of airway clearance treatment efficacy.
Collapse
Affiliation(s)
- Lisa J Franks
- Physiotherapy Dept, The Prince Charles Hospital, Chermside, Australia
- School of Allied Health Sciences and Menzies Health Institute, Griffith University, Brisbane, Australia
| | - James R Walsh
- Physiotherapy Dept, The Prince Charles Hospital, Chermside, Australia
- School of Allied Health Sciences and Menzies Health Institute, Griffith University, Brisbane, Australia
- Heart Lung Institute, The Prince Charles Hospital, Chermside, Australia
| | - Kathleen Hall
- Physiotherapy Dept, The Prince Charles Hospital, Chermside, Australia
- Physiotherapy, School of Allied Health, Australian Catholic University, Brisbane, Australia
| | - Norman R Morris
- School of Allied Health Sciences and Menzies Health Institute, Griffith University, Brisbane, Australia
- Heart Lung Institute, The Prince Charles Hospital, Chermside, Australia
- Allied Health Research Collaborative, Metro North Hospital and Health Service, The Prince Charles Hospital, Chermside, Australia
| |
Collapse
|
50
|
Yang SC, Wang YH, Tsai YF, Chang YW, Wu TS, Ho CM, Hwang TL. A synthesized heterocyclic chalcone inhibits neutrophilic inflammation through K + -dependent pH regulation. FASEB J 2020; 34:7127-7143. [PMID: 32275103 DOI: 10.1096/fj.201903123r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/12/2020] [Accepted: 03/22/2020] [Indexed: 12/28/2022]
Abstract
Human neutrophils have a vital role in host defense and inflammatory responses in innate immune systems. Growing evidence shows that the overproduction of reactive oxygen species and granular proteolytic enzymes from activated neutrophils is linked to the pathogenesis of acute inflammatory diseases. However, adequate therapeutic targets are still lacking to regulate neutrophil functions. Herein, we report that MVBR-28, synthesized from the Mannich bases of heterocyclic chalcone, has anti-neutrophilic inflammatory effects through regulation of intracellular pH. MVBR-28 modulates neutrophil functions by attenuating respiratory burst, degranulation, and migration. Conversely, MVBR-28 has no antioxidant effects and fails to alter elastase activity in cell-free systems. The anti-inflammatory effects of MVBR-28 are not seen through cAMP pathways. Significantly, MVBR-28 potently inhibits extracellular Ca2+ influx in N-formyl-methionyl-leucyl-phenylalanine (fMLF)- and thapsigargin-activated human neutrophils. Notably, MVBR-28 attenuates fMLF-induced intracellular alkalization in a K+ -dependent manner, which is upstream of Ca2+ pathways. Collectively, these findings provide new insight into Mannich bases of heterocyclic chalcone regarding the regulation of neutrophil functions and the potential for the development of MVBR-28 as a lead compound for treating neutrophilic inflammatory diseases.
Collapse
Affiliation(s)
- Shun-Chin Yang
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan.,Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsuan Wang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Fong Tsai
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Wen Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tian-Shung Wu
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan.,School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiu-Ming Ho
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|