1
|
Zhang X, Wang L, Huang L, Cao G, Huang C, Duan Y, Lyu W. Potential mechanisms by which Jiawei Lianpu Yin inhibits Helicobacter pylori colonization and alleviates gastric mucosal inflammation and damage: Integrated transcriptomics, network pharmacology, and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119793. [PMID: 40239879 DOI: 10.1016/j.jep.2025.119793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Helicobacter pylori (H. pylori) infection is a primary cause of gastric mucosal damage and inflammation, and its persistent presence is recognized as a major risk factor for the development of gastric cancer. Despite available treatments, eradication of H. pylori remains a significant clinical challenge, highlighting the urgent need for new therapeutic agents that can disrupt bacterial colonization and facilitate its elimination. Jiawei Lianpu Yin (JWLPY), a traditional herbal formula composed of natural medicinal substances, has been used to treat gastric disorders related to H. pylori infection. However, the precise mechanisms underlying its therapeutic effects have not yet been fully elucidated. AIM OF THE STUDY The aim of this study was to investigate whether JWLPY can inhibit H. pylori colonization, alleviate gastric mucosal inflammation and damage, and to explore its underlying mechanisms of action. MATERIALS AND METHODS The effects of JWLPY on H. pylori and gastric mucosal injury were evaluated both in vitro and in vivo, using a rat model of H. pylori induced gastritis and an in vitro model of H. pylori induced damage in human gastric mucosal epithelial cells. The mechanisms of action of JWLPY were further investigated through transcriptomic analysis, network pharmacology, and bioinformatics approaches. RESULTS JWLPY inhibited the aggregation of inflammatory cells and preserved the integrity of the mucosal barrier, while reducing autophagy and apoptosis in gastric mucosal epithelial cells. Network pharmacology and transcriptomic analyses revealed that JWLPY promotes the assembly and synthesis of MUC5AC in the endoplasmic reticulum by activating the IRE1 XBP1 signaling pathway. This activation enhances protein folding and assembly processes within the endoplasmic reticulum, thereby inhibiting H. pylori colonization in the gastric mucosa. CONCLUSION This study is the first to demonstrate that JWLPY inhibits H. pylori colonization in the gastric mucosa, alleviates gastric inflammation and tissue damage, and holds potential as a therapeutic agent for the treatment of H. pylori related gastritis.
Collapse
Affiliation(s)
- Xinyue Zhang
- The Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, China.
| | - Lingyan Wang
- The Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, China
| | - Lei Huang
- The Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, China
| | - Guojun Cao
- The Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, China
| | - Chaoqun Huang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei, Wuhan, 430061, China; Hubei Shizhen Laboratory, Hubei, Wuhan, 430061, China
| | - Yanjun Duan
- Hubei University of Chinese Medicine, Wuhan, 430060, China
| | - Wenliang Lyu
- Hubei University of Chinese Medicine, Wuhan, 430060, China; Hubei Shizhen Laboratory, Hubei, Wuhan, 430061, China.
| |
Collapse
|
2
|
Ye Q, Opoku G, Orlov M, Jaramillo AM, Holguin F, Vladar EK, Janssen WJ, Evans CM. Mucins and Their Roles in Asthma. Immunol Rev 2025; 331:e70034. [PMID: 40305069 DOI: 10.1111/imr.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Mucus is a crucial component of airway host defense. For optimal protection, its chief components-the mucins MUC5AC and MUC5B-need to be tightly regulated. Their expression localizes to specific secretory epithelial cell types capable of producing and secreting massive glycopolymers. In asthma, abnormal mucus is an important clinical problem that is effectively treated with therapies that directly target mucins. This review summarizes what is known about how mucin gene regulation, protein synthesis, and secretion are regulated in healthy and asthmatic lungs. Ultimately, a better understanding of these processes could help identify novel ways of preventing or reversing airway mucus dysfunction.
Collapse
Affiliation(s)
- Qihua Ye
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
- Immunology PhD Program, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Gilda Opoku
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
- Integrated Physiology PhD Program, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Marika Orlov
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Ana M Jaramillo
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Fernando Holguin
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Eszter K Vladar
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
| | - William J Janssen
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
- Immunology PhD Program, University of Colorado School of Medicine, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Christopher M Evans
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
- Immunology PhD Program, University of Colorado School of Medicine, Denver, Colorado, USA
- Integrated Physiology PhD Program, University of Colorado School of Medicine, Denver, Colorado, USA
- Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| |
Collapse
|
3
|
Fotook Kiaei SZ, Schwartz DA. Genetic underpinning of idiopathic pulmonary fibrosis: the role of mucin. Expert Rev Respir Med 2025:1-12. [PMID: 39912527 DOI: 10.1080/17476348.2025.2464035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/27/2024] [Accepted: 02/04/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by progressive scarring and reduced survival. The development of IPF is influenced by rare and common genetic variants, cigarette smoking, aging, and environmental exposures. Among the two dozen genetic contributors, the MUC5B promoter variant (rs35705950) is the dominant risk factor, increasing the risk of both familial and sporadic IPF and accounting for nearly 50% of the genetic predisposition to the disease. AREAS COVERED This review provides an expert perspective on the genetic underpinnings of IPF rather than a systematic analysis, emphasizing key insights into its genetic basis. The articles referenced in this review were identified through targeted searches in PubMed, Scopus, and Web of Science for studies published between 2000 and 2023, prioritizing influential research on the genetic factors contributing to IPF. Search terms included 'idiopathic pulmonary fibrosis,' 'genetics,' 'MUC5B,' 'telomere dysfunction,' and 'surfactant proteins.' The selection of studies was guided by the authors' expertise, focusing on the most relevant publications. EXPERT OPINION The identification of genetic variants not only highlights the complexity of IPF but also offers potential for earlier diagnosis and personalized treatment strategies targeting specific genetic pathways, ultimately aiming to improve patient outcomes.
Collapse
Affiliation(s)
| | - David A Schwartz
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, USA
| |
Collapse
|
4
|
Maekawa A, Ueda-Hayakawa I, Shimbo T, Yamazaki S, Ouchi Y, Kitayama T, Tamai K, Fujimoto M. Single-cell transcriptomic profiling of lung fibroblasts in a bleomycin-induced systemic sclerosis mouse model. Biochem Biophys Res Commun 2024; 741:151017. [PMID: 39608052 DOI: 10.1016/j.bbrc.2024.151017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by fibrosis, vascular abnormalities, and immune dysfunction, with no definitive cure. Patients with progressive pulmonary fibrosis face a high mortality risk, underscoring the urgent need for effective treatments. Although fibroblasts are recognized as key drivers of fibrosis, the precise molecular mechanisms remain poorly understood. In this study, we employ single-cell RNA sequencing to explore the role of fibroblasts in pulmonary fibrosis. Using a mouse model induced by subcutaneous bleomycin administration, we identify two distinct fibroblast subpopulations: nephronectin-positive (NPNT) and peptidase inhibitor 16-positive cells(PI16). NPNT-positive fibroblasts, located around the alveoli, exhibit increased extracellular matrix expression following bleomycin treatment. To further understand pulmonary fibrosis, subcutaneous and intratracheal bleomycin-induced mouse models are compared. A comparative gene expression analysis reveals shared and unique features between the models, highlighting the complexity of the fibrotic process. These findings offer valuable insights into the molecular mechanisms of SSc-associated pulmonary fibrosis and may inform the development of therapies targeting specific fibroblast subpopulations or pathways.
Collapse
Affiliation(s)
- Aya Maekawa
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ikuko Ueda-Hayakawa
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Takashi Shimbo
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Osaka, Japan.
| | | | | | | | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Inc., Ibaraki, Osaka, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
5
|
Fu Z, Wang W, Gao Y. Understanding the impact of ER stress on lung physiology. Front Cell Dev Biol 2024; 12:1466997. [PMID: 39744015 PMCID: PMC11688383 DOI: 10.3389/fcell.2024.1466997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025] Open
Abstract
Human lungs consist of a distinctive array of cell types, which are subjected to persistent challenges from chemical, mechanical, biological, immunological, and xenobiotic stress throughout life. The disruption of endoplasmic reticulum (ER) homeostatic function, triggered by various factors, can induce ER stress. To overcome the elevated ER stress, an adaptive mechanism known as the unfolded protein response (UPR) is activated in cells. However, persistent ER stress and maladaptive UPR can lead to defects in proteostasis at the cellular level and are typical features of the lung aging. The aging lung and associated lung diseases exhibit signs of ER stress-related disruption in cellular homeostasis. Dysfunction resulting from ER stress and maladaptive UPR can compromise various cellular and molecular processes associated with aging. Hence, comprehending the mechanisms of ER stress and UPR components implicated in aging and associated lung diseases could enable to develop appropriate therapeutic strategies for the vulnerable population.
Collapse
Affiliation(s)
- Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuan Gao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Luo H, Gong WY, Zhang YY, Liu YY, Chen Z, Feng XL, Jiao QB, Zhang XW. IRE1β evolves to be a guardian of respiratory and gastrointestinal mucosa. Heliyon 2024; 10:e39011. [PMID: 39524875 PMCID: PMC11550042 DOI: 10.1016/j.heliyon.2024.e39011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/31/2024] Open
Abstract
Inositol-requiring enzyme 1 (IRE1), a mediator of the unfolded protein response, shows the highest degree of evolutionary conservation. Vertebrates express two IRE1 paralogs: IRE1α, which is universally expressed and IRE1β, which shows specific expression within mucus secreted cells in respiratory and gastrointestinal tracts. The biological properties and regulation of the two IRE1 duplicates show evolutionary differences. As recently suggested, IRE1β-deficient mice display impairment in secreted protein expression and mucosal homeostasis. Abnormal changes in IRE1β caused by external and internal factors can disrupt mucosal homeostasis and further lead to respiratory and gastrointestinal diseases. Here, we highlight the physiological functions of IRE1β in the respiratory and gastrointestinal tracts in response to environmental microbes, viruses, toxins, and food components.
Collapse
Affiliation(s)
- Hui Luo
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wen-Yan Gong
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuan-Yuan Zhang
- Department of Cardiovascular Ultrasonic Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying-Ying Liu
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhen Chen
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xing-Lin Feng
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qi-Bin Jiao
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xing-Wei Zhang
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
7
|
Liu J, Xu L, Wang L, Wang Q, Yu L, Zhang S. Naringin Alleviates Intestinal Fibrosis by Inhibiting ER Stress-Induced PAR2 Activation. Inflamm Bowel Dis 2024; 30:1946-1956. [PMID: 38557865 DOI: 10.1093/ibd/izae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 04/04/2024]
Abstract
Fibrosis characterized by intestinal strictures is a common complication of Crohn's disease (CD), without specific antifibrotic drugs, which usually relies on surgical intervention. The transcription factor XBP1, a key component of endoplasmic reticulum (ER) stress, is required for degranulation of mast cells and linked to PAR2 activation and fibrosis. Many studies have confirmed that naringin (NAR) can inhibit ER stress and reduce organ fibrosis. We hypothesized that ER stress activated the PAR2-induced epithelial-mesenchymal transition process by stimulating mast cell degranulation to release tryptase and led to intestinal fibrosis in CD patients; NAR might play an antifibrotic role by inhibiting ER stress-induced PAR2 activation. We report that the expression levels of XBP1, mast cell tryptase, and PAR2 are upregulated in fibrotic strictures of CD patients. Molecular docking simulates the interaction of NAR and spliced XBP1. ER stress stimulates degranulation of mast cells to secrete tryptase, activates PAR2-induced epithelial-mesenchymal transition process, and promotes intestinal fibrosis in vitro and vivo experiments, which is inhibited by NAR. Moreover, F2rl1 (the coding gene of PAR2) deletion in intestinal epithelial cells decreases the antifibrotic effect of NAR. Hence, the ER stress-mast cell tryptase-PAR2 axis can promote intestinal fibrosis, and NAR administration can alleviate intestinal fibrosis by inhibiting ER stress-induced PAR2 activation.
Collapse
Affiliation(s)
- Jinguo Liu
- Department of Endoscopy Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Lei Xu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Wang
- Department of Surgery, Huangshi Traditional Chinese Medicine Hospital, Hubei Chinese Medical University, Huangshi, China
| | - Qianqian Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liangliang Yu
- Department of Endoscopy Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Shuo Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Hassan M, Ali AS, Zubairi ABS, Padhani ZA, Kirmani S, Ahmad H, Fatmi Z, Das JK. Gene polymorphisms and risk of idiopathic pulmonary fibrosis: a systematic review and meta-analysis. Monaldi Arch Chest Dis 2024. [PMID: 39480160 DOI: 10.4081/monaldi.2024.2952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/09/2024] [Indexed: 11/02/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) has been widely hypothesized to occur as a result of an interplay between a nexus of environmental and genetic risk factors. However, not much is known about the genetic aspect of this disease. The objective of this review was to identify the genetic polymorphisms associated with the risk of developing IPF. We searched PubMed, EBSCO CINAHL Plus, Web of Science, and Wiley Cochrane Library databases for studies on risk factors of IPF published between March 2000 and November 2023. Studies with an IPF diagnosis based only on the American Thoracic Society and the European Respiratory Society guidelines were included. Thirty-one case-control studies were included with 3997 IPF and 20,925 non-IPF subjects. Two of the studies enrolled biopsy-proven IPF patients; 13 studies diagnosed IPF on the basis of clinical and high-resolution computed tomography (HRCT) findings; and 14 studies diagnosed based on both biopsy and clinical and HRCT findings. 16 studies with MUC5B rs35705950, IL-4 rs2243250, IL-4 rs2070874, and tumor necrosis factor α (TNFα)-308 were eligible for meta-analysis. The allele contrast model (T versus G) for MUC5B rs35705950 revealed statistically significant association of T allele with the risk of IPF [odds ratio (OR) 3.84, 95% confidence interval (CI) 3.20 to 4.61, adjusted p<0.0001), as was the allele contrast model for Asian (OR 2.83, 95% CI 1.51 to 5.32, adjusted p=0.009) and Caucasian (OR 4.11, 95% CI 3.56 to 4.75, adjusted p<0.0001). The allele contrast models for IL-4 rs2243250, IL-4 rs2070874, and TNFα-308 did not demonstrate any significant association with IPF. This review suggests an association of MUC5B rs35705950 T allele with the risk of developing IPF. To our knowledge, this study is the first to aggregate several genetic polymorphisms associated with IPF.
Collapse
Affiliation(s)
- Maryam Hassan
- Department of Medicine, Aga Khan University Hospital, Karachi
| | | | - Ali Bin Sarwar Zubairi
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan; Department of Medicine, Southern Illinois University School of Medicine, Springfield, IL
| | - Zahra Ali Padhani
- Faculty of Health and Medical Sciences, School of Public Health, University of Adelaide
| | - Salman Kirmani
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi
| | - Huzaifa Ahmad
- Department of Medicine, Aga Khan University Hospital, Karachi
| | - Zafar Fatmi
- Department of Community Health Sciences, Aga Khan University Hospital, Karachi
| | - Jai K Das
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi; Institute of Global Health and Development, Aga Khan University, Karachi
| |
Collapse
|
9
|
Adegunsoye A, Kropski JA, Behr J, Blackwell TS, Corte TJ, Cottin V, Glanville AR, Glassberg MK, Griese M, Hunninghake GM, Johannson KA, Keane MP, Kim JS, Kolb M, Maher TM, Oldham JM, Podolanczuk AJ, Rosas IO, Martinez FJ, Noth I, Schwartz DA. Genetics and Genomics of Pulmonary Fibrosis: Charting the Molecular Landscape and Shaping Precision Medicine. Am J Respir Crit Care Med 2024; 210:401-423. [PMID: 38573068 PMCID: PMC11351799 DOI: 10.1164/rccm.202401-0238so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024] Open
Abstract
Recent genetic and genomic advancements have elucidated the complex etiology of idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung diseases (ILDs), emphasizing the contribution of heritable factors. This state-of-the-art review synthesizes evidence on significant genetic contributors to pulmonary fibrosis (PF), including rare genetic variants and common SNPs. The MUC5B promoter variant is unusual, a common SNP that markedly elevates the risk of early and established PF. We address the utility of genetic variation in enhancing understanding of disease pathogenesis and clinical phenotypes, improving disease definitions, and informing prognosis and treatment response. Critical research gaps are highlighted, particularly the underrepresentation of non-European ancestries in PF genetic studies and the exploration of PF phenotypes beyond usual interstitial pneumonia/IPF. We discuss the role of telomere length, often critically short in PF, and its link to progression and mortality, underscoring the genetic complexity involving telomere biology genes (TERT, TERC) and others like SFTPC and MUC5B. In addition, we address the potential of gene-by-environment interactions to modulate disease manifestation, advocating for precision medicine in PF. Insights from gene expression profiling studies and multiomic analyses highlight the promise for understanding disease pathogenesis and offer new approaches to clinical care, therapeutic drug development, and biomarker discovery. Finally, we discuss the ethical, legal, and social implications of genomic research and therapies in PF, stressing the need for sound practices and informed clinical genetic discussions. Looking forward, we advocate for comprehensive genetic testing panels and polygenic risk scores to improve the management of PF and related ILDs across diverse populations.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Pulmonary/Critical Care, and
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Juergen Behr
- Department of Medicine V, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Comprehensive Pneumology Center Munich, member of the German Center for Lung Research (DZL), Munich, Germany
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Tamera J. Corte
- Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases (OrphaLung), Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), Lyon, France
- Claude Bernard University Lyon, Lyon, France
| | - Allan R. Glanville
- Lung Transplant Unit, St. Vincent’s Hospital Sydney, Sydney, New South Wales, Australia
| | - Marilyn K. Glassberg
- Department of Medicine, Loyola Chicago Stritch School of Medicine, Chicago, Illinois
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Gary M. Hunninghake
- Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Michael P. Keane
- Department of Respiratory Medicine, St. Vincent’s University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - John S. Kim
- Department of Medicine, School of Medicine, and
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Toby M. Maher
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - David A. Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
10
|
Sun L, Walls SA, Dang H, Quinney NL, Sears PR, Sadritabrizi T, Hasegawa K, Okuda K, Asakura T, Chang X, Zheng M, Mikami Y, Dizmond FU, Danilova D, Zhou L, Deshmukh A, Cholon DM, Radicioni G, Rogers TD, Kissner WJ, Markovetz MR, Guhr Lee TN, Gutay MI, Esther CR, Chua M, Grubb BR, Ehre C, Kesimer M, Hill DB, Ostrowski LE, Button B, Gentzsch M, Robinson C, Olivier KN, Freeman AF, Randell SH, O'Neal WK, Boucher RC, Chen G. Dysregulated Airway Host Defense in Hyper IgE Syndrome due to STAT3 Mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607930. [PMID: 39211176 PMCID: PMC11361074 DOI: 10.1101/2024.08.14.607930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Rationale Hyper IgE syndrome (STAT3-HIES), also known as Job's syndrome, is a rare immunodeficiency disease typically caused by dominant-negative STAT3 mutations. STAT3-HIES syndrome is characterized by chronic pulmonary infection and inflammation, suggesting impairment of pulmonary innate host defense. Objectives To identify airway epithelial host defense defects consequent to STAT3 mutations that, in addition to reported mutant STAT3 immunologic abnormalities, produce pulmonary infection. Methods STAT3-HIES sputum was evaluated for biochemical/biophysical properties. STAT3-HIES excised lungs were harvested for histology; bronchial brush samples were collected for RNA sequencing and in vitro culture. A STAT3-HIES-specific mutation (R382W), expressed by lentiviruses, and a STAT3 knockout, generated by CRISPR/Cas9, were maintained in normal human bronchial epithelia under basal or inflammatory (IL1β) conditions. Effects of STAT3 deficiency on transcriptomics, and epithelial ion channel, secretory, antimicrobial, and ciliary functions were assessed. Measurements and Main Results Mucus concentrations and viscoelasticity were increased in STAT3-HIES sputum. STAT3-HIES excised lungs exhibited mucus obstruction and elevated IL1β expression. STAT3 deficiency impaired CFTR-dependent fluid and mucin secretion, inhibited expression of antimicrobial peptides, cytokines, and chemokines, and acidified airway surface liquid at baseline and post-IL1β exposure in vitro. Notably, mutant STAT3 suppressed IL1R1 expression. STAT3 mutations also inhibited ciliogenesis in vivo and impaired mucociliary transport in vitro, a process mediated via HES6 suppression. Administration of a γ-secretase inhibitor increased HES6 expression and improved ciliogenesis in STAT3 R382W mutant cells. Conclusions STAT3 dysfunction leads to multi-component defects in airway epithelial innate defense, which, in conjunction with STAT3-HIES immune deficiency, contributes to chronic pulmonary infection.
Collapse
|
11
|
Zhou H, Zhang Q, Liu C, Fan J, Huang W, Li N, Yang M, Wang H, Xie W, Kong H. NLRP3 inflammasome mediates abnormal epithelial regeneration and distal lung remodeling in silica‑induced lung fibrosis. Int J Mol Med 2024; 53:25. [PMID: 38240085 PMCID: PMC10836498 DOI: 10.3892/ijmm.2024.5349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
NOD-like receptor protein 3 (NLRP3) inflammasome is closely related to silica particle‑induced chronic lung inflammation but its role in epithelial remodeling, repair and regeneration in the distal lung during development of silicosis remains to be elucidated. The present study aimed to determine the effects of the NLRP3 inflammasome on epithelial remodeling and cellular regeneration and potential mechanisms in the distal lung of silica‑treated mice at three time points. Pulmonary function assessment, inflammatory cell counting, enzyme‑linked immunosorbent assay, histological and immunological analyses, hydroxyproline assay and western blotting were used in the study. Single intratracheal instillation of a silica suspension caused sustained NLRP3 inflammasome activation in the distal lung. Moreover, a time‑dependent increase in airway resistance and a decrease in lung compliance accompanied progression of pulmonary fibrosis. In the terminal bronchiole, lung remodeling including pyroptosis (membrane‑distributed GSDMD+), excessive proliferation (Ki67+), mucus overproduction (mucin 5 subtype AC and B) and epithelial‑mesenchymal transition (decreased E‑Cadherin+ and increased Vimentin+), was observed by immunofluorescence analysis. Notably, aberrant spatiotemporal expression of the embryonic lung stem/progenitor cell markers SOX2 and SOX9 and ectopic distribution of bronchioalveolar stem cells were observed in the distal lung only on the 7th day after silica instillation (the early inflammatory phase of silicosis). Western blotting revealed that the Sonic hedgehog/Glioma‑associated oncogene (Shh/Gli) and Wnt/β‑catenin pathways were involved in NLRP3 inflammasome activation‑mediated epithelial remodeling and dysregulated regeneration during the inflammatory and fibrotic phases. Overall, sustained NLRP3 inflammasome activation led to epithelial remodeling in the distal lung of mice. Moreover, understanding the spatiotemporal profile of dysregulated epithelial repair and regeneration may provide a novel therapeutic strategy for inhalable particle‑related chronic inflammatory and fibrotic lung disease.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pulmonary and Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Qun Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chenyang Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jiahao Fan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Nan Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mingxia Yang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Hong Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiping Xie
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hui Kong
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
12
|
Asakura T, Okuda K, Chen G, Dang H, Kato T, Mikami Y, Schworer SA, Gilmore RC, Radicioni G, Hawkins P, Barbosa Cardenas SM, Saito M, Cawley AM, De la Cruz G, Chua M, Alexis NE, Masugi Y, Noone PG, Ribeiro CMP, Kesimer M, Olivier KN, Hasegawa N, Randell SH, O’Neal WK, Boucher RC. Proximal and Distal Bronchioles Contribute to the Pathogenesis of Non-Cystic Fibrosis Bronchiectasis. Am J Respir Crit Care Med 2024; 209:374-389. [PMID: 38016030 PMCID: PMC10878387 DOI: 10.1164/rccm.202306-1093oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023] Open
Abstract
Rationale: Non-cystic fibrosis bronchiectasis (NCFB) may originate in bronchiolar regions of the lung. Accordingly, there is a need to characterize the morphology and molecular characteristics of NCFB bronchioles. Objectives: Test the hypothesis that NCFB exhibits a major component of bronchiolar disease manifest by mucus plugging and ectasia. Methods: Morphologic criteria and region-specific epithelial gene expression, measured histologically and by RNA in situ hybridization and immunohistochemistry, identified proximal and distal bronchioles in excised NCFB lungs. RNA in situ hybridization and immunohistochemistry assessed bronchiolar mucus accumulation and mucin gene expression. CRISPR-Cas9-mediated IL-1R1 knockout in human bronchial epithelial cultures tested IL-1α and IL-1β contributions to mucin production. Spatial transcriptional profiling characterized NCFB distal bronchiolar gene expression. Measurements and Main Results: Bronchiolar perimeters and lumen areas per section area were increased in proximal, but not distal, bronchioles in NCFB versus control lungs, suggesting proximal bronchiolectasis. In NCFB, mucus plugging was observed in ectatic proximal bronchioles and associated nonectatic distal bronchioles in sections with disease. MUC5AC and MUC5B mucins were upregulated in NCFB proximal bronchioles, whereas MUC5B was selectively upregulated in distal bronchioles. Bronchiolar mucus plugs were populated by IL-1β-expressing macrophages. NCFB sterile sputum supernatants induced human bronchial epithelial MUC5B and MUC5AC expression that was >80% blocked by IL-1R1 ablation. Spatial transcriptional profiling identified upregulation of genes associated with secretory cells, hypoxia, interleukin pathways, and IL-1β-producing macrophages in mucus plugs and downregulation of epithelial ciliogenesis genes. Conclusions: NCFB exhibits distinctive proximal and distal bronchiolar disease. Both bronchiolar regions exhibit bronchiolar secretory cell features and mucus plugging but differ in mucin gene regulation and ectasia.
Collapse
Affiliation(s)
- Takanori Asakura
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Department of Clinical Medicine, Laboratory of Bioregulatory Medicine, Kitasato University School of Pharmacy, Tokyo, Japan
- Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
- Division of Pulmonary Medicine, Department of Medicine
| | - Kenichi Okuda
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Gang Chen
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Takafumi Kato
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Yu Mikami
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | | | | | | | | | | | - Minako Saito
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | | | | | - Michael Chua
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Neil E. Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, Division of Allergy and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | - Kenneth N. Olivier
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan; and
| | | | | | | |
Collapse
|
13
|
Mann MW, Fu Y, Gearhart RL, Xu X, Roberts DS, Li Y, Zhou J, Ge Y, Brasier AR. Bromodomain-containing Protein 4 regulates innate inflammation via modulation of alternative splicing. Front Immunol 2023; 14:1212770. [PMID: 37435059 PMCID: PMC10331468 DOI: 10.3389/fimmu.2023.1212770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Bromodomain-containing Protein 4 (BRD4) is a transcriptional regulator which coordinates gene expression programs controlling cancer biology, inflammation, and fibrosis. In the context of airway viral infection, BRD4-specific inhibitors (BRD4i) block the release of pro-inflammatory cytokines and prevent downstream epithelial plasticity. Although the chromatin modifying functions of BRD4 in inducible gene expression have been extensively investigated, its roles in post-transcriptional regulation are not well understood. Given BRD4's interaction with the transcriptional elongation complex and spliceosome, we hypothesize that BRD4 is a functional regulator of mRNA processing. Methods To address this question, we combine data-independent analysis - parallel accumulation-serial fragmentation (diaPASEF) with RNA-sequencing to achieve deep and integrated coverage of the proteomic and transcriptomic landscapes of human small airway epithelial cells exposed to viral challenge and treated with BRD4i. Results We discover that BRD4 regulates alternative splicing of key genes, including Interferon-related Developmental Regulator 1 (IFRD1) and X-Box Binding Protein 1 (XBP1), related to the innate immune response and the unfolded protein response (UPR). We identify requirement of BRD4 for expression of serine-arginine splicing factors, splicosome components and the Inositol-Requiring Enzyme 1 IREα affecting immediate early innate response and the UPR. Discussion These findings extend the transcriptional elongation-facilitating actions of BRD4 in control of post-transcriptional RNA processing via modulating splicing factor expression in virus-induced innate signaling.
Collapse
Affiliation(s)
- Morgan W. Mann
- Department of Medicine, University of Wisconsin – Madison, Madison, WI, United States
| | - Yao Fu
- Department of Medicine, University of Wisconsin – Madison, Madison, WI, United States
| | - Robert L. Gearhart
- Department of Chemistry, University of Wisconsin – Madison, Madison, WI, United States
| | - Xiaofang Xu
- Department of Medicine, University of Wisconsin – Madison, Madison, WI, United States
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin – Madison, Madison, WI, United States
| | - Yi Li
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin – Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Allan R. Brasier
- Department of Medicine, University of Wisconsin – Madison, Madison, WI, United States
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
14
|
Schworer SA, Chason KD, Chen G, Chen J, Zhou H, Burbank AJ, Kesic MJ, Hernandez ML. IL-1 receptor antagonist attenuates proinflammatory responses to rhinovirus in airway epithelium. J Allergy Clin Immunol 2023; 151:1577-1584.e4. [PMID: 36708816 PMCID: PMC10257744 DOI: 10.1016/j.jaci.2023.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/15/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Rhinoviruses (RVs) are the most common trigger for asthma exacerbations, and there are currently no targeted therapies for viral-induced asthma exacerbations. RV infection causes neutrophilic inflammation, which is often resistant to effects of glucocorticoids. IL-1 receptor antagonist (IL-1RA) treatment reduces neutrophilic inflammation in humans challenged with inhaled endotoxin and thus may have therapeutic potential for RV-induced asthma exacerbations. OBJECTIVE We sought to test the hypothesis that IL-1RA treatment of airway epithelium reduces RV-mediated proinflammatory cytokine production, which is important for neutrophil recruitment. METHODS Human bronchial epithelial cells from deceased donors without prior pulmonary disease were cultured at air-liquid interface and treated with IL-13 to approximate an asthmatic inflammatory milieu. Human bronchial epithelial cells were infected with human RV-16 with or without IL-1RA treatment. RESULTS RV infection promoted the release of IL-1α and the neutrophil-attractant cytokines IL-6, IL-8, and CXCL10. Proinflammatory cytokine secretion was significantly reduced by IL-1RA treatment without significant change in IFN-β release or RV titer. In addition, IL-1RA reduced MUC5B expression after RV infection without impacting MUC5AC. CONCLUSIONS These data suggest that IL-1RA treatment significantly reduced proinflammatory cytokines while preserving the antiviral response. These results provide evidence for further investigation of IL-1RA as a novel targeted therapy against neutrophil-attractant cytokine release in RV-induced airway inflammatory responses.
Collapse
Affiliation(s)
- Stephen A Schworer
- Division of Allergy and Immunology, Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC; Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kelly D Chason
- Division of Allergy and Immunology, Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC
| | - Gang Chen
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jie Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Haibo Zhou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Allison J Burbank
- Division of Allergy and Immunology, Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC
| | - Matthew J Kesic
- Campbell University College of Pharmacy and Health Sciences, Buies Creek, NC
| | - Michelle L Hernandez
- Division of Allergy and Immunology, Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC.
| |
Collapse
|
15
|
Zhou YH, Gallins PJ, Pace RG, Dang H, Aksit MA, Blue EE, Buckingham KJ, Collaco JM, Faino AV, Gordon WW, Hetrick KN, Ling H, Liu W, Onchiri FM, Pagel K, Pugh EW, Raraigh KS, Rosenfeld M, Sun Q, Wen J, Li Y, Corvol H, Strug LJ, Bamshad MJ, Blackman SM, Cutting GR, Gibson RL, O’Neal WK, Wright FA, Knowles MR. Genetic Modifiers of Cystic Fibrosis Lung Disease Severity: Whole-Genome Analysis of 7,840 Patients. Am J Respir Crit Care Med 2023; 207:1324-1333. [PMID: 36921087 PMCID: PMC10595435 DOI: 10.1164/rccm.202209-1653oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Rationale: Lung disease is the major cause of morbidity and mortality in persons with cystic fibrosis (pwCF). Variability in CF lung disease has substantial non-CFTR (CF transmembrane conductance regulator) genetic influence. Identification of genetic modifiers has prognostic and therapeutic importance. Objectives: Identify genetic modifier loci and genes/pathways associated with pulmonary disease severity. Methods: Whole-genome sequencing data on 4,248 unique pwCF with pancreatic insufficiency and lung function measures were combined with imputed genotypes from an additional 3,592 patients with pancreatic insufficiency from the United States, Canada, and France. This report describes association of approximately 15.9 million SNPs using the quantitative Kulich normal residual mortality-adjusted (KNoRMA) lung disease phenotype in 7,840 pwCF using premodulator lung function data. Measurements and Main Results: Testing included common and rare SNPs, transcriptome-wide association, gene-level, and pathway analyses. Pathway analyses identified novel associations with genes that have key roles in organ development, and we hypothesize that these genes may relate to dysanapsis and/or variability in lung repair. Results confirmed and extended previous genome-wide association study findings. These whole-genome sequencing data provide finely mapped genetic information to support mechanistic studies. No novel primary associations with common single variants or rare variants were found. Multilocus effects at chr5p13 (SLC9A3/CEP72) and chr11p13 (EHF/APIP) were identified. Variant effect size estimates at associated loci were consistently ordered across the cohorts, indicating possible age or birth cohort effects. Conclusions: This premodulator genomic, transcriptomic, and pathway association study of 7,840 pwCF will facilitate mechanistic and postmodulator genetic studies and the development of novel therapeutics for CF lung disease.
Collapse
Affiliation(s)
- Yi-Hui Zhou
- Bioinformatics Research Center
- Department of Biological Sciences, and
| | | | - Rhonda G. Pace
- Marsico Lung Institute/UNC CF Research Center, School of Medicine
| | - Hong Dang
- Marsico Lung Institute/UNC CF Research Center, School of Medicine
| | | | - Elizabeth E. Blue
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
- Division of Medical Genetics, Department of Medicine
| | | | | | - Anna V. Faino
- Children’s Core for Biostatistics, Epidemiology and Analytics in Research and
| | | | - Kurt N. Hetrick
- Department of Genetic Medicine, Center for Inherited Disease Research, and
| | - Hua Ling
- Department of Genetic Medicine, Center for Inherited Disease Research, and
| | | | | | - Kymberleigh Pagel
- The Institute for Computational Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth W. Pugh
- Department of Genetic Medicine, Center for Inherited Disease Research, and
| | | | - Margaret Rosenfeld
- Department of Pediatrics, and
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, Washington
| | | | | | - Yun Li
- Department of Biostatistics
- Department of Genetics, and
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Harriet Corvol
- Pediatric Pulmonary Department, Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Paris, France
- Centre de Recherche Saint Antoine, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Lisa J. Strug
- Division of Biostatistics, Dalla Lana School of Public Health
- Department of Statistical Sciences, and
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada; and
- Program in Genetics and Genome Biology and
- The Center for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael J. Bamshad
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
- Division of Genetic Medicine, Department of Pediatrics
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Scott M. Blackman
- McKusick-Nathans Department of Genetic Medicine
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Ronald L. Gibson
- Department of Pediatrics, and
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, Washington
| | - Wanda K. O’Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine
| | - Fred A. Wright
- Bioinformatics Research Center
- Department of Biological Sciences, and
- Department of Statistics, North Carolina State University, Raleigh, North Carolina
| | | |
Collapse
|
16
|
Wang WJ, Lu X, Li Z, Peng K, Zhan P, Fu L, Wang Y, Zhao H, Wang H, Xu DX, Tan ZX. Early-life cadmium exposure elevates susceptibility to allergic asthma in ovalbumin-sensitized and challenged mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114799. [PMID: 36933479 DOI: 10.1016/j.ecoenv.2023.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/28/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Increasing evidence have demonstrated that early-life exposure to environmental toxicants elevates risk of allergic asthma. Cadmium (Cd) is widely present in the environment. The purposes of this study were to evaluate the impact of early-life Cd exposure on susceptibility to ovalbumin (OVA)-evoked allergic asthma. Newly weaned mice were subjected to a low concentration of CdCl2 (1 mg/L) by drinking water for 5 consecutive weeks. Penh value, an index of airway obstruction, was increased in OVA-stimulated and challenged pups. Abundant inflammatory cells were observed in the lung of OVA-exposed pups. Goblet cell hyperplasia and mucus secretion were shown in the airway of OVA-stimulated and challenged pups. Early-life Cd exposure exacerbated OVA-evoked airway hyperreactivity, Goblet cell hyperplasia and mucus secretion. The in vitro experiments showed that mucoprotein gene MUC5AC mRNA was upregulated in Cd-exposed bronchial epithelial cells. Mechanistically, endoplasmic reticulum (ER) stress-related molecules GRP78, p-eIF2α, CHOP, p-IRE1α and spliced XBP-1 (sXBP-1) were elevated in Cd-subjected bronchial epithelial cells. The blockade of ER stress, using chemical inhibitor 4-PBA or sXBP-1 siRNA interference, attenuated Cd-induced MUC5AC upregulation in bronchial epithelial cells. These results indicate that early-life Cd exposure aggravates OVA-induced allergic asthma partially through inducing ER stress in bronchial epithelial cells.
Collapse
Affiliation(s)
- Wen-Jing Wang
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xue Lu
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Zhao Li
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Kun Peng
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Ping Zhan
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lin Fu
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Hui Zhao
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China.
| | - Zhu-Xia Tan
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China.
| |
Collapse
|
17
|
Ding D, Gao R, Xue Q, Luan R, Yang J. Genomic Fingerprint Associated with Familial Idiopathic Pulmonary Fibrosis: A Review. Int J Med Sci 2023; 20:329-345. [PMID: 36860670 PMCID: PMC9969503 DOI: 10.7150/ijms.80358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe interstitial lung disease; although the recent introduction of two anti-fibrosis drugs, pirfenidone and Nidanib, have resulted in a significant reduction in lung function decline, IPF is still not curable. Approximately 2-20% of patients with IPF have a family history of the disease, which is considered the strongest risk factor for idiopathic interstitial pneumonia. However, the genetic predispositions of familial IPF (f-IPF), a particular type of IPF, remain largely unknown. Genetics affect the susceptibility and progression of f-IPF. Genomic markers are increasingly being recognized for their contribution to disease prognosis and drug therapy outcomes. Existing data suggest that genomics may help identify individuals at risk for f-IPF, accurately classify patients, elucidate key pathways involved in disease pathogenesis, and ultimately develop more effective targeted therapies. Since several genetic variants associated with the disease have been found in f-IPF, this review systematically summarizes the latest progress in the gene spectrum of the f-IPF population and the underlying mechanisms of f-IPF. The genetic susceptibility variation related to the disease phenotype is also illustrated. This review aims to improve the understanding of the IPF pathogenesis and facilitate his early detection.
Collapse
Affiliation(s)
- Dongyan Ding
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Rong Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qianfei Xue
- Hospital of Jilin University, Changchun, China
| | - Rumei Luan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Mann M, Fu Y, Xu X, Roberts DS, Li Y, Zhou J, Ge Y, Brasier AR. Bromodomain-containing Protein 4 Regulates Innate Inflammation in Airway Epithelial Cells via Modulation of Alternative Splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524257. [PMID: 36711789 PMCID: PMC9882210 DOI: 10.1101/2023.01.17.524257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Bromodomain-containing Protein 4 (BRD4) is a transcriptional regulator which coordinates gene expression programs controlling cancer biology, inflammation, and fibrosis. In airway viral infection, non-toxic BRD4-specific inhibitors (BRD4i) block the release of pro-inflammatory cytokines and prevent downstream remodeling. Although the chromatin modifying functions of BRD4 in inducible gene expression have been extensively investigated, its roles in post-transcriptional regulation are not as well understood. Based on its interaction with the transcriptional elongation complex and spliceosome, we hypothesize that BRD4 is a functional regulator of mRNA processing. To address this question, we combine data-independent analysis - parallel accumulation-serial fragmentation (diaPASEF) with RNA-sequencing to achieve deep and integrated coverage of the proteomic and transcriptomic landscapes of human small airway epithelial cells exposed to viral challenge and treated with BRD4i. The transcript-level data was further interrogated for alternative splicing analysis, and the resulting data sets were correlated to identify pathways subject to post-transcriptional regulation. We discover that BRD4 regulates alternative splicing of key genes, including Interferon-related Developmental Regulator 1 ( IFRD1 ) and X-Box Binding Protein 1 ( XBP1 ), related to the innate immune response and the unfolded protein response, respectively. These findings extend the transcriptional elongation-facilitating actions of BRD4 in control of post-transcriptional RNA processing in innate signaling.
Collapse
Affiliation(s)
- Morgan Mann
- Department of Medicine, University of Wisconsin – Madison, Madison, 53705, Wisconsin, USA
| | - Yao Fu
- Department of Medicine, University of Wisconsin – Madison, Madison, 53705, Wisconsin, USA
| | - Xiaofang Xu
- Department of Medicine, University of Wisconsin – Madison, Madison, 53705, Wisconsin, USA
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin – Madison, Madison, 53705, Wisconsin, USA
| | - Yi Li
- Department of Pharmacology and Toxicology, University of Texas, Medical Branch, Galveston, 77550, Texas, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas, Medical Branch, Galveston, 77550, Texas, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin – Madison, Madison, 53705, Wisconsin, USA,Human Proteomics Program, University of Wisconsin – Madison, Madison, 53705, Wisconsin, USA,Department of Cell and Regenerative Biology, University of Wisconsin – Madison, Madison, 53705, Wisconsin, USA
| | - Allan R. Brasier
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin – Madison, Madison, 53705, Wisconsin, USA
| |
Collapse
|
19
|
Dobrinskikh E, Hennessy CE, Kurche JS, Kim E, Estrella AM, Cardwell J, Yang IV, Schwartz DA. Epithelial Endoplasmic Reticulum Stress Enhances the Risk of Muc5b-associated Lung Fibrosis. Am J Respir Cell Mol Biol 2023; 68:62-74. [PMID: 36108173 PMCID: PMC9817917 DOI: 10.1165/rcmb.2022-0252oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/15/2022] [Indexed: 02/05/2023] Open
Abstract
The gain-of-function minor allele of the MUC5B (mucin 5B, oligomeric mucus/gel-forming) promoter (rs35705950) is the strongest risk factor for idiopathic pulmonary fibrosis (IPF), a devastating fibrotic lung disease that leads to progressive respiratory failure in adults. We have previously demonstrated that Muc5b overexpression in mice worsens lung fibrosis after bleomycin exposure and have hypothesized that excess Muc5b promotes endoplasmic reticulum (ER) stress and apoptosis, stimulating fibrotic lung injury. Here, we report that ER stress pathway members ATF4 (activating transcription factor 4) and ATF6 coexpress with MUC5B in epithelia of the distal IPF airway and honeycomb cyst and that this is more pronounced in carriers of the gain-of-function MUC5B promoter variant. Similarly, in mice exposed to bleomycin, Muc5b expression is temporally associated with markers of ER stress. Using bulk and single-cell RNA sequencing in bleomycin-exposed mice, we found that pathologic ER stress-associated transcripts Atf4 and Ddit3 (DNA damage inducible transcript 3) were elevated in alveolar epithelia of SFTPC-Muc5b transgenic (SFTPC-Muc5bTg) mice relative to wild-type (WT) mice. Activation of the ER stress response inhibits protein translation for most genes by phosphorylation of Eif2α (eukaryotic translation initiation factor 2 alpha), which prevents guanine exchange by Eif2B and facilitates translation of Atf4. The integrated stress response inhibitor (ISRIB) facilitates interaction of phosphorylated Eif2α with Eif2B, overcoming translation inhibition associated with ER stress and reducing Atf4. We found that a single dose of ISRIB diminished Atf4 translation in SFTPC-Muc5bTg mice after bleomycin injury. Moreover, ISRIB resolved the exaggerated fibrotic response of SFTPC-Muc5bTg mice to bleomycin. In summary, we demonstrate that MUC5B and Muc5b expression is associated with pathologic ER stress and that restoration of normal translation with a single dose of ISRIB promotes lung repair in bleomycin-injured Muc5b-overexpressing mice.
Collapse
Affiliation(s)
| | | | - Jonathan S. Kurche
- Department of Medicine
- Pulmonary Section, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | | | - Alani M. Estrella
- Roy and Diana Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, New York; and
| | | | - Ivana V. Yang
- Department of Medicine
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado
| | - David A. Schwartz
- Department of Medicine
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
20
|
Lu X, Tan ZX, Wang WJ, Zhan P, Wang Y, Fu L, Gao L, Zhao H, Wang H, Xu DX. Juvenile arsenic exposure aggravates goblet cell hyperplasia and airway mucus secretion in ovalbumin-sensitized mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120462. [PMID: 36270563 DOI: 10.1016/j.envpol.2022.120462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/01/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Gestational arsenic (As) exposure has been associated with adverse developmental outcomes. The purpose of this study was to explore the impacts of As exposure in different periods on susceptibility to allergic asthma. In model 1, dams were administered with NaAsO2 (0.1 or 1 ppm) by drinking water throughout pregnancy and lactation. In model 2, newly weaned pups were exposed to NaAsO2 (1 ppm) through drinking water. Pups were sensitized and challenged with ovalbumin (OVA). Inflammatory cell infiltration and pulmonary T helper 2 (Th2) cytokine upregulation were shown in OVA-sensitized and challenged pups. Goblet cell hyperplasia and airway mucus secretion were observed in OVA-sensitized and challenged pups. Maternal As exposure throughout pregnancy and lactation did not aggravate inflammatory cell infiltration, airway mucus secretion and pulmonary Th2 cytokine upregulation in OVA-sensitized and challenged pups. Although airway hyperreactivity, inflammatory cell infiltration and Th2 cytokine weren't influenced, OVA-evoked Goblet cell hyperplasia and airway mucus secretion were aggravated in pups who were exposed to NaAsO2 after weaning. In conclusion, juvenile As exposure increases susceptibility to allergic asthma through aggravating Goblet cell hyperplasia and airway mucus secretion. The impacts of maternal As exposure during pregnancy and lactation on susceptibility to allergic asthma needs to be further evaluated in other animal experiments.
Collapse
Affiliation(s)
- Xue Lu
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Zhu-Xia Tan
- Department of Toxicology, Anhui Medical University, Hefei, China; The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Wen-Jing Wang
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Ping Zhan
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Lin Fu
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lan Gao
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Hui Zhao
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China.
| |
Collapse
|
21
|
Neatu R, Enekwa I, Thompson DJ, Schwalbe EC, Fois G, Abdelaal G, Veuger S, Frick M, Braubach P, Moschos SA. The Idiopathic Pulmonary Fibrosis-Associated Single Nucleotide Polymorphism RS35705950 Is Transcribed in a MUC5B Promoter Associated Long Non-Coding RNA (AC061979.1). Noncoding RNA 2022; 8:ncrna8060083. [PMID: 36548182 PMCID: PMC9781688 DOI: 10.3390/ncrna8060083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
LncRNAs are involved in regulatory processes in the human genome, including gene expression. The rs35705950 SNP, previously associated with IPF, overlaps with the recently annotated lncRNA AC061979.1, a 1712 nucleotide transcript located within the MUC5B promoter at chromosome 11p15.5. To document the expression pattern of the transcript, we processed 3.9 TBases of publicly available RNA-SEQ data across 27 independent studies involving lung airway epithelial cells. Epithelial lung cells showed expression of this putative pancRNA. The findings were independently validated in cell lines and primary cells. The rs35705950 is found within a conserved region (from fish to primates) within the expressed sequence indicating functional importance. These results implicate the rs35705950-containing AC061979.1 pancRNA as a novel component of the MUC5B expression control minicircuitry.
Collapse
Affiliation(s)
- Ruxandra Neatu
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle-Upon-Tyne NE1 8ST, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle-Upon-Tyne NE1 3BZ, UK
| | - Ifeanyi Enekwa
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle-Upon-Tyne NE1 8ST, UK
| | - Dean J. Thompson
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle-Upon-Tyne NE1 8ST, UK
| | - Edward C. Schwalbe
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle-Upon-Tyne NE1 8ST, UK
| | - Giorgio Fois
- Institue of General Physiology, University of Ulm, Albert-Einstein-Allee 11, D89081 Ulm, Germany
| | - Gina Abdelaal
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle-Upon-Tyne NE1 8ST, UK
| | - Stephany Veuger
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle-Upon-Tyne NE1 8ST, UK
| | - Manfred Frick
- Institue of General Physiology, University of Ulm, Albert-Einstein-Allee 11, D89081 Ulm, Germany
| | - Peter Braubach
- Institute of Pathology, MHH Hannover, 30625 Hannover, Germany
| | - Sterghios A. Moschos
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle-Upon-Tyne NE1 8ST, UK
- Correspondence:
| |
Collapse
|
22
|
Kato T, Asakura T, Edwards CE, Dang H, Mikami Y, Okuda K, Chen G, Sun L, Gilmore RC, Hawkins P, De la Cruz G, Cooley MR, Bailey AB, Hewitt SM, Chertow DS, Borczuk AC, Salvatore S, Martinez FJ, Thorne LB, Askin FB, Ehre C, Randell SH, O’Neal WK, Baric RS, Boucher RC. Prevalence and Mechanisms of Mucus Accumulation in COVID-19 Lung Disease. Am J Respir Crit Care Med 2022; 206:1336-1352. [PMID: 35816430 PMCID: PMC9746856 DOI: 10.1164/rccm.202111-2606oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Rationale: The incidence and sites of mucus accumulation and molecular regulation of mucin gene expression in coronavirus (COVID-19) lung disease have not been reported. Objectives: To characterize the incidence of mucus accumulation and the mechanisms mediating mucin hypersecretion in COVID-19 lung disease. Methods: Airway mucus and mucins were evaluated in COVID-19 autopsy lungs by Alcian blue and periodic acid-Schiff staining, immunohistochemical staining, RNA in situ hybridization, and spatial transcriptional profiling. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected human bronchial epithelial (HBE) cultures were used to investigate mechanisms of SARS-CoV-2-induced mucin expression and synthesis and test candidate countermeasures. Measurements and Main Results: MUC5B and variably MUC5AC RNA concentrations were increased throughout all airway regions of COVID-19 autopsy lungs, notably in the subacute/chronic disease phase after SARS-CoV-2 clearance. In the distal lung, MUC5B-dominated mucus plugging was observed in 90% of subjects with COVID-19 in both morphologically identified bronchioles and microcysts, and MUC5B accumulated in damaged alveolar spaces. SARS-CoV-2-infected HBE cultures exhibited peak titers 3 days after inoculation, whereas induction of MUC5B/MUC5AC peaked 7-14 days after inoculation. SARS-CoV-2 infection of HBE cultures induced expression of epidermal growth factor receptor (EGFR) ligands and inflammatory cytokines (e.g., IL-1α/β) associated with mucin gene regulation. Inhibiting EGFR/IL-1R pathways or administration of dexamethasone reduced SARS-CoV-2-induced mucin expression. Conclusions: SARS-CoV-2 infection is associated with a high prevalence of distal airspace mucus accumulation and increased MUC5B expression in COVID-19 autopsy lungs. HBE culture studies identified roles for EGFR and IL-1R signaling in mucin gene regulation after SARS-CoV-2 infection. These data suggest that time-sensitive mucolytic agents, specific pathway inhibitors, or corticosteroid administration may be therapeutic for COVID-19 lung disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Stephen M. Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel S. Chertow
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland; and
| | | | | | | | - Leigh B. Thorne
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Frederic B. Askin
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | |
Collapse
|
23
|
Hoang ON, Ermund A, Jaramillo AM, Fakih D, French CB, Flores JR, Karmouty-Quintana H, Magnusson JM, Fois G, Fauler M, Frick M, Braubach P, Hales JB, Kurten RC, Panettieri R, Vergara L, Ehre C, Adachi R, Tuvim MJ, Hansson GC, Dickey BF. Mucins MUC5AC and MUC5B Are Variably Packaged in the Same and in Separate Secretory Granules. Am J Respir Crit Care Med 2022; 206:1081-1095. [PMID: 35776514 PMCID: PMC9704839 DOI: 10.1164/rccm.202202-0309oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/01/2022] [Indexed: 01/27/2023] Open
Abstract
Rationale: MUC5AC (mucin 5AC, oligomeric gel-forming) and MUC5B (mucin 5B, oligomeric gel-forming) are the predominant secreted polymeric mucins in mammalian airways. They contribute differently to the pathogenesis of various muco-obstructive and interstitial lung diseases, and their genes are separately regulated, but whether they are packaged together or in separate secretory granules is not known. Objectives: To determine the packaging of MUC5AC and MUC5B within individual secretory granules in mouse and human airways under varying conditions of inflammation and along the proximal-distal axis. Methods: Lung tissue was obtained from mice stimulated to upregulate mucin production by the cytokines IL-1β and IL-13 or by porcine pancreatic elastase. Human lung tissue was obtained from donated normal lungs, biopsy samples of transplanted lungs, and explanted lungs from subjects with chronic obstructive pulmonary disease. MUC5AC and MUC5B were labeled with antibodies from different animal species or, in mice only, by transgenic chimeric mucin-fluorescent proteins and imaged using widefield deconvolution or Airyscan fluorescence microscopy. Measurements and Main Results: In both mouse and human airways, most secretory granules contained both mucins interdigitating within the granules. Smaller numbers of granules contained MUC5B alone, and even fewer contained MUC5AC alone. Conclusions: MUC5AC and MUC5B are variably stored both in the same and in separate secretory granules of both mice and humans. The high fraction of granules containing both mucins under a variety of conditions makes it unlikely that their secretion can be differentially controlled as a therapeutic strategy. This work also advances knowledge of the packaging of mucins within secretory granules to understand mechanisms of epithelial stress in the pathogenesis of chronic lung diseases.
Collapse
Affiliation(s)
- Oanh N. Hoang
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anna Ermund
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ana M. Jaramillo
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dalia Fakih
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Cory B. French
- Washington University School of Medicine, St. Louis, Missouri
| | - Jose R. Flores
- Washington University School of Medicine, St. Louis, Missouri
| | - Harry Karmouty-Quintana
- Division of Critical Care, Pulmonary, and Sleep Medicine, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jesper M. Magnusson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Joshua B. Hales
- Washington University School of Medicine, St. Louis, Missouri
| | | | | | - Leoncio Vergara
- Institute of Biosciences and Technology, Texas A&M School of Medicine, Houston, Texas; and
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Roberto Adachi
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael J. Tuvim
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Burton F. Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
24
|
Kurche JS, Stancil IT, Michalski JE, Yang IV, Schwartz DA. Dysregulated Cell-Cell Communication Characterizes Pulmonary Fibrosis. Cells 2022; 11:3319. [PMID: 36291184 PMCID: PMC9600037 DOI: 10.3390/cells11203319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/27/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease of older adults characterized by fibrotic replacement of functional gas exchange units in the lung. The strongest risk factor for IPF is a genetic variantin the promoter region of the gel-forming mucin, MUC5B. To better understand how the MUC5B variant influences development of fibrosis, we used the NicheNet R package and leveraged publicly available single-cell RNA sequencing data to identify and evaluate how epithelia participating in gas exchange are influenced by ligands expressed in control, MUC5B variant, and fibrotic environments. We observed that loss of type-I alveolar epithelia (AECI) characterizes the single-cell RNA transcriptome in fibrotic lung and validated the pattern of AECI loss using single nuclear RNA sequencing. Examining AECI transcriptomes, we found enrichment of transcriptional signatures for IL6 and AREG, which we have previously shown to mediate aberrant epithelial fluidization in IPF and murine bleomycin models. Moreover, we found that the protease ADAM17, which is upstream of IL6 trans-signaling, was enriched in control MUC5B variant donors. We used immunofluorescence to validate a role for enhanced expression of ADAM17 among MUC5B variants, suggesting involvement in IPF pathogenesis and maintenance.
Collapse
Affiliation(s)
- Jonathan S. Kurche
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Ian T. Stancil
- Program in Cellular Biology and Biophysics, Graduate School, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob E. Michalski
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ivana V. Yang
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David A. Schwartz
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
25
|
Kumar A, Elko E, Bruno SR, Mark ZF, Chamberlain N, Mihavics BK, Chandrasekaran R, Walzer J, Ruban M, Gold C, Lam YW, Ghandikota S, Jegga AG, Gomez JL, Janssen-Heininger YM, Anathy V. Inhibition of PDIA3 in club cells attenuates osteopontin production and lung fibrosis. Thorax 2022; 77:669-678. [PMID: 34400514 PMCID: PMC8847543 DOI: 10.1136/thoraxjnl-2021-216882] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND The role of club cells in the pathology of idiopathic pulmonary fibrosis (IPF) is not well understood. Protein disulfide isomerase A3 (PDIA3), an endoplasmic reticulum-based redox chaperone required for the functions of various fibrosis-related proteins; however, the mechanisms of action of PDIA3 in pulmonary fibrosis are not fully elucidated. OBJECTIVES To examine the role of club cells and PDIA3 in the pathology of pulmonary fibrosis and the therapeutic potential of inhibition of PDIA3 in lung fibrosis. METHODS Role of PDIA3 and aberrant club cells in lung fibrosis was studied by analyses of human transcriptome dataset from Lung Genomics Research Consortium, other public resources, the specific deletion or inhibition of PDIA3 in club cells and blocking SPP1 downstream of PDIA3 in mice. RESULTS PDIA3 and club cell secretory protein (SCGB1A1) signatures are upregulated in IPF compared with control patients. PDIA3 or SCGB1A1 increases also correlate with a decrease in lung function in patients with IPF. The bleomycin (BLM) model of lung fibrosis showed increases in PDIA3 in SCGB1A1 cells in the lung parenchyma. Ablation of Pdia3, specifically in SCGB1A1 cells, decreases parenchymal SCGB1A1 cells along with fibrosis in mice. The administration of a PDI inhibitor LOC14 reversed the BLM-induced parenchymal SCGB1A1 cells and fibrosis in mice. Evaluation of PDIA3 partners revealed that SPP1 is a major interactor in fibrosis. Blocking SPP1 attenuated the development of lung fibrosis in mice. CONCLUSIONS Our study reveals a new relationship with distally localised club cells, PDIA3 and SPP1 in lung fibrosis and inhibition of PDIA3 or SPP1 attenuates lung fibrosis.
Collapse
Affiliation(s)
- Amit Kumar
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Evan Elko
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Sierra R Bruno
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Zoe F Mark
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Nicolas Chamberlain
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | | | - Ravishankar Chandrasekaran
- Department of Pulmonary, Critical Care Medicine, Larner College of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Joseph Walzer
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Mona Ruban
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Clarissa Gold
- Department of Biology & Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, Vermont, USA
| | - Ying Wai Lam
- Department of Biology & Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, Vermont, USA
| | - Sudhir Ghandikota
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Computer Science, University of Cincinnati College of Engineering and Applied Science, Cincinnati, Ohio, USA
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Computer Science, University of Cincinnati College of Engineering and Applied Science, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jose L Gomez
- Internal Medicine-Pulmonary, Critical Care and Sleep Section, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Vikas Anathy
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
26
|
Ribeiro CMP, Hull-Ryde EA. Functional role of the ER stress transducer IRE1α in CF airway epithelial inflammation. Curr Opin Pharmacol 2022; 65:102258. [PMID: 35749907 DOI: 10.1016/j.coph.2022.102258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022]
Abstract
Excessive and chronic airway inflammation associated with increased morbidity and mortality is a hallmark of cystic fibrosis (CF) airway disease. Previous studies underscored the role of endoplasmic reticulum (ER) signaling in CF airway inflammatory responses. In this review we discuss 1) how airway inflammation induces ER stress-triggered activation of the unfolded protein response and 2) the functional importance of the ER stress transducer inositol requiring enzyme 1α (IRE1α) in CF airway epithelial inflammatory responses. We also briefly review the current understanding of IRE1α activation and the development of small molecules aimed at modulating IRE1α kinase and RNase activities. Inhibition of IRE1α kinase and RNase may be considered as a novel therapeutic strategy to ameliorate the robust inflammatory status of CF airways.
Collapse
Affiliation(s)
- Carla M P Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC, 27599-7248, USA; Department of Medicine, University of North Carolina, Chapel Hill, NC, 27599-7248, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599-7248, USA.
| | - Emily A Hull-Ryde
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC, 27599-7248, USA
| |
Collapse
|
27
|
Duan Q, Zhou Y, Yang D. Endoplasmic reticulum stress in airway hyperresponsiveness. Biomed Pharmacother 2022; 149:112904. [PMID: 35367759 DOI: 10.1016/j.biopha.2022.112904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/18/2022] [Accepted: 03/27/2022] [Indexed: 11/15/2022] Open
Abstract
Airway hyperresponsiveness(AHR) is a major clinical phenomenon in lung diseases (asthma, COPD and pulmonary fibrosis) and not only a high-risk factor for perioperative airway spasm leading to hypoxaemia, haemodynamic instability and even "silent lung", but also a potential risk for increased mortality from underlying diseases (e.g. asthma, COPD). Airway reactivity is closely linked to airway inflammation, remodelling and increased mucus secretion, and endoplasmic reticulum stress is an important mechanism for the development of these pathologies. This review, therefore, focuses on the effects of endoplasmic reticulum stress on the immune cells involved in airway hyperreactivity (epithelial cells, dendritic cells, eosinophils and neutrophils) in inflammation and mucus & sputum secretion; and on the differentiation and remodelling of airway smooth muscle cells and epithelial cells. The aim is to clarify the mechanisms associated with endoplasmic reticulum stress in airway hyperresponsiveness and to find new ideas and methods for the prevention of airway hyperresponsiveness in the perioperative period.
Collapse
Affiliation(s)
- Qirui Duan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China
| | - Ying Zhou
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China
| | - Dong Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China.
| |
Collapse
|
28
|
Tang X, Teder T, Samuelsson B, Haeggström JZ. The IRE1α Inhibitor KIRA6 Blocks Leukotriene Biosynthesis in Human Phagocytes. Front Pharmacol 2022; 13:806240. [PMID: 35392553 PMCID: PMC8980214 DOI: 10.3389/fphar.2022.806240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
The ER stress and Unfolded Protein Response (UPR) component inositol-requiring enzyme 1α (IRE1α) has been linked to inflammation and lipid mediator production. Here we report that the potent IRE1α inhibitor, KIRA6, blocks leukotriene biosynthesis in human phagocytes activated with lipopolysaccharide (LPS) plus N-formyl-methionyl-leucyl-phenylalanine (fMLP) or thapsigargin (Tg). The inhibition affects both leukotriene B4 (LTB4) and cysteinyl leukotriene (cys-LTs) production at submicromolar concentration. Macrophages made deficient of IRE1α were still sensitive to KIRA6 thus demonstrating that the compound’s effect on leukotriene production is IRE1α-independent. KIRA6 did not exhibit any direct inhibitory effect on key enzymes in the leukotriene pathway, as assessed by phospholipase A2 (PLA2), 5-lipoxygenase (5-LOX), LTA4 hydrolase (LTA4H), and LTC4 synthase (LTC4S) enzyme activity measurements in cell lysates. However, we find that KIRA6 dose-dependently blocks phosphorylation of p38 and ERK, mitogen-activated protein kinases (MAPKs) that have established roles in activating cytosolic PLA2α (cPLA2α) and 5-LOX. The reduction of p38 and ERK phosphorylation is associated with a decrease in cPLA2α phosphorylation and attenuated leukotriene production. Furthermore, KIRA6 inhibits p38 activity, and molecular modelling indicates that it can directly interact with the ATP-binding pocket of p38. This potent and unexpected, non-canonical effect of KIRA6 on p38 and ERK MAPKs and leukotriene biosynthesis may account for some of the immune-modulating properties of this widely used IRE1α inhibitor.
Collapse
Affiliation(s)
- Xiao Tang
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tarvi Teder
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Samuelsson
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Alsheikh AJ, Wollenhaupt S, King EA, Reeb J, Ghosh S, Stolzenburg LR, Tamim S, Lazar J, Davis JW, Jacob HJ. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. BMC Med Genomics 2022; 15:74. [PMID: 35365203 PMCID: PMC8973751 DOI: 10.1186/s12920-022-01216-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Background The remarkable growth of genome-wide association studies (GWAS) has created a critical need to experimentally validate the disease-associated variants, 90% of which involve non-coding variants. Methods To determine how the field is addressing this urgent need, we performed a comprehensive literature review identifying 36,676 articles. These were reduced to 1454 articles through a set of filters using natural language processing and ontology-based text-mining. This was followed by manual curation and cross-referencing against the GWAS catalog, yielding a final set of 286 articles. Results We identified 309 experimentally validated non-coding GWAS variants, regulating 252 genes across 130 human disease traits. These variants covered a variety of regulatory mechanisms. Interestingly, 70% (215/309) acted through cis-regulatory elements, with the remaining through promoters (22%, 70/309) or non-coding RNAs (8%, 24/309). Several validation approaches were utilized in these studies, including gene expression (n = 272), transcription factor binding (n = 175), reporter assays (n = 171), in vivo models (n = 104), genome editing (n = 96) and chromatin interaction (n = 33). Conclusions This review of the literature is the first to systematically evaluate the status and the landscape of experimentation being used to validate non-coding GWAS-identified variants. Our results clearly underscore the multifaceted approach needed for experimental validation, have practical implications on variant prioritization and considerations of target gene nomination. While the field has a long way to go to validate the thousands of GWAS associations, we show that progress is being made and provide exemplars of validation studies covering a wide variety of mechanisms, target genes, and disease areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01216-w.
Collapse
Affiliation(s)
- Ammar J Alsheikh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA.
| | - Sabrina Wollenhaupt
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Emily A King
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jonas Reeb
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Sujana Ghosh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | | | - Saleh Tamim
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jozef Lazar
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - J Wade Davis
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Howard J Jacob
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| |
Collapse
|
30
|
Chakraborty A, Mastalerz M, Ansari M, Schiller HB, Staab-Weijnitz CA. Emerging Roles of Airway Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11061050. [PMID: 35326501 PMCID: PMC8947093 DOI: 10.3390/cells11061050] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with incompletely understood aetiology and limited treatment options. Traditionally, IPF was believed to be mainly caused by repetitive injuries to the alveolar epithelium. Several recent lines of evidence, however, suggest that IPF equally involves an aberrant airway epithelial response, which contributes significantly to disease development and progression. In this review, based on recent clinical, high-resolution imaging, genetic, and single-cell RNA sequencing data, we summarize alterations in airway structure, function, and cell type composition in IPF. We furthermore give a comprehensive overview on the genetic and mechanistic evidence pointing towards an essential role of airway epithelial cells in IPF pathogenesis and describe potentially implicated aberrant epithelial signalling pathways and regulation mechanisms in this context. The collected evidence argues for the investigation of possible therapeutic avenues targeting these processes, which thus represent important future directions of research.
Collapse
|
31
|
Methods of Sputum and Mucus Assessment for Muco-Obstructive Lung Diseases in 2022: Time to “Unplug” from Our Daily Routine! Cells 2022; 11:cells11050812. [PMID: 35269434 PMCID: PMC8909676 DOI: 10.3390/cells11050812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
Obstructive lung diseases, such as chronic obstructive pulmonary disease, asthma, or non-cystic fibrosis bronchiectasis, share some major pathophysiological features: small airway involvement, dysregulation of adaptive and innate pulmonary immune homeostasis, mucus hyperproduction, and/or hyperconcentration. Mucus regulation is particularly valuable from a therapeutic perspective given it contributes to airflow obstruction, symptom intensity, disease severity, and to some extent, disease prognosis in these diseases. It is therefore crucial to understand the mucus constitution of our patients, its behavior in a stable state and during exacerbation, and its regulatory mechanisms. These are all elements representing potential therapeutic targets, especially in the era of biologics. Here, we first briefly discuss the composition and characteristics of sputum. We focus on mucus and mucins, and then elaborate on the different sample collection procedures and how their quality is ensured. We then give an overview of the different direct analytical techniques available in both clinical routine and more experimental settings, giving their advantages and limitations. We also report on indirect mucus assessment procedures (questionnaires, high-resolution computed tomography scanning of the chest, lung function tests). Finally, we consider ways of integrating these techniques with current and future therapeutic options. Cystic fibrosis will not be discussed given its monogenic nature.
Collapse
|
32
|
Morrison CB, Shaffer KM, Araba KC, Markovetz MR, Wykoff JA, Quinney NL, Hao S, Delion MF, Flen AL, Morton LC, Liao J, Hill DB, Drumm ML, O’Neal WK, Kesimer M, Gentzsch M, Ehre C. Treatment of cystic fibrosis airway cells with CFTR modulators reverses aberrant mucus properties via hydration. Eur Respir J 2022; 59:13993003.00185-2021. [PMID: 34172469 PMCID: PMC8859811 DOI: 10.1183/13993003.00185-2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/11/2021] [Indexed: 02/05/2023]
Abstract
QUESTION Cystic fibrosis (CF) is characterised by the accumulation of viscous adherent mucus in the lungs. While several hypotheses invoke a direct relationship with cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction (i.e. acidic airway surface liquid (ASL) pH, low bicarbonate (HCO3 -) concentration, airway dehydration), the dominant biochemical alteration of CF mucus remains unknown. MATERIALS/METHODS We characterised a novel cell line (CFTR-KO Calu3 cells) and the responses of human bronchial epithelial (HBE) cells from subjects with G551D or F508del mutations to ivacaftor and elexacaftor-tezacaftor-ivacaftor. A spectrum of assays such as short-circuit currents, quantitative PCR, ASL pH, Western blotting, light scattering/refractometry (size-exclusion chromatography with inline multi-angle light scattering), scanning electron microscopy, percentage solids and particle tracking were performed to determine the impact of CFTR function on mucus properties. RESULTS Loss of CFTR function in Calu3 cells resulted in ASL pH acidification and mucus hyperconcentration (dehydration). Modulation of CFTR in CF HBE cells did not affect ASL pH or mucin mRNA expression, but decreased mucus concentration, relaxed mucus network ultrastructure and improved mucus transport. In contrast with modulator-treated cells, a large fraction of airway mucins remained attached to naïve CF cells following short apical washes, as revealed by the use of reducing agents to remove residual mucus from the cell surfaces. Extended hydration, but not buffers alkalised with sodium hydroxide or HCO3 -, normalised mucus recovery to modulator-treated cell levels. CONCLUSION These results indicate that airway dehydration, not acidic pH and/or low [HCO3 -], is responsible for abnormal mucus properties in CF airways and CFTR modulation predominantly restores normal mucin entanglement.
Collapse
Affiliation(s)
- Cameron B. Morrison
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Kendall M. Shaffer
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Kenza C. Araba
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Matthew R. Markovetz
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Jason A. Wykoff
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Nancy L. Quinney
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Shuyu Hao
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill
| | - Martial F. Delion
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Alexis L. Flen
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Lisa C. Morton
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Jimmy Liao
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - David B. Hill
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill,Department of Physics and Astronomy, The University of North Carolina at Chapel Hill
| | - Mitchell L. Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine
| | - Wanda K. O’Neal
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Mehmet Kesimer
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Martina Gentzsch
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill,Division of Pediatric Pulmonology, The University of North Carolina at Chapel Hill,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill
| | - Camille Ehre
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill,Division of Pediatric Pulmonology, The University of North Carolina at Chapel Hill,To whom correspondence should be addressed:
| |
Collapse
|
33
|
Abstract
Pulmonary fibrosis, a kind of terminal pathological changes in the lung, is caused by aberrant wound healing, deposition of extracellular matrix (ECM), and eventually replacement of lung parenchyma by ECM. Pulmonary fibrosis induced by acute lung injury and some diseases is reversible under treatment. While idiopathic pulmonary fibrosis is persistent and irreversible even after treatment. Currently, the pathogenesis of irreversible pulmonary fibrosis is not fully elucidated. The known factors associated with the development of irreversible fibrosis include apoptosis resistance of (myo)fibroblasts, dysfunction of pulmonary vessel, cell mitochondria and autophagy, aberrant epithelia hyperplasia and lipid metabolism disorder. In this review, other than a brief introduction of reversible pulmonary fibrosis, we focus on the underlying pathogenesis of irreversible pulmonary fibrosis from the above aspects as well as preclinical disease models, and also suggest directions for future studies.
Collapse
Affiliation(s)
- Qing Yang Yu
- 1State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Xiao Tang
- 1State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,2Guangzhou Laboratory, Bio-island, Guangzhou, China
| |
Collapse
|
34
|
Gooptu B. Surfactant protein C mutations and familial pulmonary fibrosis: stuck in a loop on the scenic route. Eur Respir J 2022; 59:59/1/2102147. [PMID: 35086844 DOI: 10.1183/13993003.02147-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/27/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Bibek Gooptu
- Dept of Respiratory Medicine, University Hospitals of Leicester, Institute for Lung Health, NIHR Biomedical Research Centre, Leicester, UK .,Dept of Respiratory Sciences, University of Leicester, Glenfield Hospital, Leicester, UK.,Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, UK
| |
Collapse
|
35
|
Moss BJ, Ryter SW, Rosas IO. Pathogenic Mechanisms Underlying Idiopathic Pulmonary Fibrosis. ANNUAL REVIEW OF PATHOLOGY 2022; 17:515-546. [PMID: 34813355 DOI: 10.1146/annurev-pathol-042320-030240] [Citation(s) in RCA: 358] [Impact Index Per Article: 119.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogenesis of idiopathic pulmonary fibrosis (IPF) involves a complex interplay of cell types and signaling pathways. Recurrent alveolar epithelial cell (AEC) injury may occur in the context of predisposing factors (e.g., genetic, environmental, epigenetic, immunologic, and gerontologic), leading to metabolic dysfunction, senescence, aberrant epithelial cell activation, and dysregulated epithelial repair. The dysregulated epithelial cell interacts with mesenchymal, immune, and endothelial cells via multiple signaling mechanisms to trigger fibroblast and myofibroblast activation. Recent single-cell RNA sequencing studies of IPF lungs support the epithelial injury model. These studies have uncovered a novel type of AEC with characteristics of an aberrant basal cell, which may disrupt normal epithelial repair and propagate a profibrotic phenotype. Here, we review the pathogenesis of IPF in the context of novel bioinformatics tools as strategies to discover pathways of disease, cell-specific mechanisms, and cell-cell interactions that propagate the profibrotic niche.
Collapse
Affiliation(s)
- Benjamin J Moss
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Ivan O Rosas
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| |
Collapse
|
36
|
Mei Q, Liu Z, Zuo H, Yang Z, Qu J. Idiopathic Pulmonary Fibrosis: An Update on Pathogenesis. Front Pharmacol 2022; 12:797292. [PMID: 35126134 PMCID: PMC8807692 DOI: 10.3389/fphar.2021.797292] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, lethal fibrotic lung disease that occurs primarily in middle-aged and elderly adults. It is a major cause of morbidity and mortality. With an increase in life expectancy, the economic burden of IPF is expected to continuously rise in the near future. Although the exact pathophysiological mechanisms underlying IPF remain not known. Significant progress has been made in our understanding of the pathogenesis of this devastating disease in last decade. The current paradigm assumes that IPF results from sustained or repetitive lung epithelial injury and subsequent activation of fibroblasts and myofibroblast differentiation. Persistent myofibroblast phenotype contributes to excessive deposition of the extracellular matrix (ECM) and aberrant lung repair, leading to tissue scar formation, distortion of the alveolar structure, and irreversible loss of lung function. Treatments of patients with IPF by pirfenidone and nintedanib have shown significant reduction of lung function decline and slowing of disease progression in patients with IPF. However, these drugs do not cure the disease. In this review, we discuss recent advances on the pathogenesis of IPF and highlight the development of novel therapeutic strategies against the disease.
Collapse
Affiliation(s)
| | | | | | | | - Jing Qu
- *Correspondence: Zhenhua Yang, ; Jing Qu,
| |
Collapse
|
37
|
Zhang HY, Xie QM, Zhao CC, Sha JF, Ruan Y, Wu HM. CpG Oligodeoxynucleotides Attenuate OVA-Induced Allergic Airway Inflammation via Suppressing JNK-Mediated Endoplasmic Reticulum Stress. J Asthma Allergy 2021; 14:1399-1410. [PMID: 34848975 PMCID: PMC8619852 DOI: 10.2147/jaa.s334541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose CpG-ODN has been found to attenuate allergic airway inflammation in our previous study. Here, we aimed to further investigate whether CpG-ODN exerts such effect via regulating endoplasmic reticulum (ER) stress and revealed the underlying mechanism. Methods Five-week-old C57BL/6 mice were randomly grouped and treated with or without CpG-ODN or/and SP600125. Meantime, RAW264.7 cells were used to investigate the effect of CpG-ODN on OVA-induced ER stress in vitro. The cellularity of bronchoalveolar lavage fluid (BALF) was classified and counted after Wright-Giemsa staining. HE and PAS staining methods were applied to analyze airway inflammation. The protein levels of IL-4, IL-5, IL-13, p-JNK, JNK, CHOP, XBP1, ATF6α and GRP78 in lung tissues were detected by Western blotting. Correspondingly, the ER stress markers were detected by Western blotting and immunofluorescence in RAW264.7 cells. Results In OVA-induced allergic airway inflammation, CpG-ODN significantly suppressed inflammatory cells infiltration, goblet cell hyperplasia and the protein expression of Th2 cytokines. Moreover, OVA exposure strongly increased the activation of ER stress with higher protein expressions of CHOP, XBP1, ATF6α and GRP78. However, these OVA-induced increase of ER stress markers were markedly suppressed by CpG-ODN treatment. In addition, exposure to OVA significantly increased the phosphorylation of JNK, which was significantly reduced by CpG-ODN treatment. Remarkably, single treatment of SP600125, an antagonist of JNK, functioned similarly as CpG-ODN in mitigating allergic airway inflammation and suppressing OVA-induced activation of ER stress; however, no significant synergistic effect was evidenced by combined treatment of SP600125 and CpG-ODN. Furthermore, in OVA-stimulated RAW264.7 cells, we also found that OVA stimulation increased the expressions of ER stress markers, and CpG-ODN significantly reduced their expression levels via suppressing the phosphorylation of JNK. Conclusion These results indicated that CpG-ODN mitigates allergic airway inflammation via suppressing the activation of JNK-medicated ER stress.
Collapse
Affiliation(s)
- Hai-Yun Zhang
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Qiu-Meng Xie
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Cui-Cui Zhao
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Jia-Feng Sha
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Ya Ruan
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Hui-Mei Wu
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| |
Collapse
|
38
|
Jiang H, Ding D, He Y, Li X, Xu Y, Liu X. Xbp1s-Ddit3 promotes MCT-induced pulmonary hypertension. Clin Sci (Lond) 2021; 135:2467-2481. [PMID: 34676402 PMCID: PMC8564003 DOI: 10.1042/cs20210612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Pulmonary hypertension (PH) is a life-threatening disease characterized by vascular remodeling. Exploring new therapy target is urgent. The purpose of the present study is to investigate whether and how spliced x-box binding protein 1 (xbp1s), a key component of endoplasmic reticulum stress (ERS), contributes to the pathogenesis of PH. Forty male SD rats were randomly assigned to four groups: Control, Monocrotaline (MCT), MCT+AAV-CTL (control), and MCT+AAV-xbp1s. The xbp1s protein levels were found to be elevated in lung tissues of the MCT group. Intratracheal injection of adeno-associated virus serotype 1 carrying xbp1s shRNA (AAV-xbp1s) to knock down the expression of xbp1s effectively ameliorated the MCT-induced elevation of right ventricular systolic pressure (RVSP), total pulmonary resistance (TPR), right ventricular hypertrophy and medial wall thickness of muscularized distal pulmonary arterioles. The abnormally increased positive staining rates of proliferating cell nuclear antigen (PCNA) and Ki67 and decreased positive staining rates of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) in pulmonary arterioles were also reversed in the MCT+AAV-xbp1s group. For mechanistic exploration, bioinformatics prediction of the protein network was performed on the STRING database, and further verification was performed by qRT-PCR, Western blots and co-immunoprecipitation (Co-IP). DNA damage-inducible transcript 3 (Ddit3) was identified as a downstream protein that interacted with xbp1s. Overexpression of Ddit3 restored the decreased proliferation, migration and cell viability caused by silencing of xbp1s. The protein level of Ddit3 was also highly consistent with xbp1s in the animal model. Taken together, our study demonstrated that xbp1s-Ddit3 may be a potential target to interfere with vascular remodeling in PH.
Collapse
MESH Headings
- Animals
- Apoptosis
- Arterial Pressure
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/chemically induced
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Male
- Monocrotaline
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Rats, Sprague-Dawley
- Signal Transduction
- Transcription Factor CHOP/genetics
- Transcription Factor CHOP/metabolism
- Vascular Remodeling
- Ventricular Dysfunction, Right/chemically induced
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Function, Right
- X-Box Binding Protein 1/genetics
- X-Box Binding Protein 1/metabolism
- Rats
Collapse
Affiliation(s)
- Hongxia Jiang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Dandan Ding
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yuanzhou He
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| |
Collapse
|
39
|
Chen L, Alam A, Pac-Soo A, Chen Q, Shang Y, Zhao H, Yao S, Ma D. Pretreatment with valproic acid alleviates pulmonary fibrosis through epithelial-mesenchymal transition inhibition in vitro and in vivo. J Transl Med 2021; 101:1166-1175. [PMID: 34168289 PMCID: PMC8367813 DOI: 10.1038/s41374-021-00617-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays a crucial role in the development of pulmonary fibrosis. This study aims to investigate the effects of valproic acid (VPA) on EMT in vitro and in vivo. In vitro, EMT was induced by the administration of transforming growth factor-β1 (TGF-β1) in a human alveolar epithelial cell line (A549). The dose effects of VPA (0.1-3 mM) on EMT were subsequently evaluated at different timepoints. VPA (1 mM) was applied prior to the administration of TGF-β1 and the expression of E-cadherin, vimentin, p-Smad2/3 and p-Akt was assessed. In addition, the effects of a TGF-β type I receptor inhibitor (A8301) and PI3K-Akt inhibitor (LY294002) on EMT were evaluated. In vivo, the effects of VPA on bleomycin-induced lung fibrosis were evaluated by assessing variables such as survival rate, body weight and histopathological changes, whilst the expression of E-cadherin and vimentin in lung tissue was also evaluated. A8301 and LY294002 were used to ascertain the cellular signaling pathways involved in this model. The administration of VPA prior to TGF-β1 in A549 cells prevented EMT in both a time- and concentration-dependent manner. Pretreatment with VPA downregulated the expression of both p-Smad2/3 and p-Akt. A8301 administration increased the expression of E-cadherin and reduced the expression of vimentin. LY294002 inhibited Akt phosphorylation induced by TGF-β1 but failed to prevent EMT. Pretreatment with VPA both increased the survival rate and prevented the loss of body weight in mice with pulmonary fibrosis. Interestingly, both VPA and A8301 prevented EMT and facilitated an improvement in lung structure. Overall, pretreatment with VPA attenuated the development of pulmonary fibrosis by inhibiting EMT in mice, which was associated with Smad2/3 deactivation but without Akt cellular signal involvement.
Collapse
Affiliation(s)
- Lin Chen
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Azeem Alam
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Aurelie Pac-Soo
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Qian Chen
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - You Shang
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailin Zhao
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK.
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Daqing Ma
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| |
Collapse
|
40
|
Stancil IT, Michalski JE, Davis-Hall D, Chu HW, Park JA, Magin CM, Yang IV, Smith BJ, Dobrinskikh E, Schwartz DA. Pulmonary fibrosis distal airway epithelia are dynamically and structurally dysfunctional. Nat Commun 2021; 12:4566. [PMID: 34315881 PMCID: PMC8316442 DOI: 10.1038/s41467-021-24853-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/06/2021] [Indexed: 01/06/2023] Open
Abstract
The airway epithelium serves as the interface between the host and external environment. In many chronic lung diseases, the airway is the site of substantial remodeling after injury. While, idiopathic pulmonary fibrosis (IPF) has traditionally been considered a disease of the alveolus and lung matrix, the dominant environmental (cigarette smoking) and genetic (gain of function MUC5B promoter variant) risk factor primarily affect the distal airway epithelium. Moreover, airway-specific pathogenic features of IPF include bronchiolization of the distal airspace with abnormal airway cell-types and honeycomb cystic terminal airway-like structures with concurrent loss of terminal bronchioles in regions of minimal fibrosis. However, the pathogenic role of the airway epithelium in IPF is unknown. Combining biophysical, genetic, and signaling analyses of primary airway epithelial cells, we demonstrate that healthy and IPF airway epithelia are biophysically distinct, identifying pathologic activation of the ERBB-YAP axis as a specific and modifiable driver of prolongation of the unjammed-to-jammed transition in IPF epithelia. Furthermore, we demonstrate that this biophysical state and signaling axis correlates with epithelial-driven activation of the underlying mesenchyme. Our data illustrate the active mechanisms regulating airway epithelial-driven fibrosis and identify targets to modulate disease progression.
Collapse
Affiliation(s)
- Ian T Stancil
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob E Michalski
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Duncan Davis-Hall
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, USA
| | - Hong Wei Chu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Jin-Ah Park
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ivana V Yang
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bradford J Smith
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Division of Pediatric Pulmonary and Sleep Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Evgenia Dobrinskikh
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David A Schwartz
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
41
|
Linking Fibrotic Remodeling and Ultrastructural Alterations of Alveolar Epithelial Cells after Deletion of Nedd4-2. Int J Mol Sci 2021; 22:ijms22147607. [PMID: 34299227 PMCID: PMC8306112 DOI: 10.3390/ijms22147607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/24/2022] Open
Abstract
Our previous study showed that in adult mice, conditional Nedd4-2-deficiency in club and alveolar epithelial type II (AE2) cells results in impaired mucociliary clearance, accumulation of Muc5b and progressive, terminal pulmonary fibrosis within 16 weeks. In the present study, we investigated ultrastructural alterations of the alveolar epithelium in relation to interstitial remodeling in alveolar septa as a function of disease progression. Two, eight and twelve weeks after induction of Nedd4-2 knockout, lungs were fixed and subjected to design-based stereological investigation at the light and electron microscopic level. Quantitative data did not show any abnormalities until 8 weeks compared to controls. At 12 weeks, however, volume of septal wall tissue increased while volume of acinar airspace and alveolar surface area significantly decreased. Volume and surface area of alveolar epithelial type I cells were reduced, which could not be compensated by a corresponding increase of AE2 cells. The volume of collagen fibrils in septal walls increased and was linked with an increase in blood–gas barrier thickness. A high correlation between parameters reflecting interstitial remodeling and abnormal AE2 cell ultrastructure could be established. Taken together, abnormal regeneration of the alveolar epithelium is correlated with interstitial septal wall remodeling.
Collapse
|
42
|
Spagnolo P, Kropski JA, Jones MG, Lee JS, Rossi G, Karampitsakos T, Maher TM, Tzouvelekis A, Ryerson CJ. Idiopathic pulmonary fibrosis: Disease mechanisms and drug development. Pharmacol Ther 2021; 222:107798. [PMID: 33359599 PMCID: PMC8142468 DOI: 10.1016/j.pharmthera.2020.107798] [Citation(s) in RCA: 335] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease of unknown cause characterized by relentless scarring of the lung parenchyma leading to reduced quality of life and earlier mortality. IPF is an age-related disorder, and with the population aging worldwide, the economic burden of IPF is expected to steadily increase in the future. The mechanisms of fibrosis in IPF remain elusive, with favored concepts of disease pathogenesis involving recurrent microinjuries to a genetically predisposed alveolar epithelium, followed by an aberrant reparative response characterized by excessive collagen deposition. Pirfenidone and nintedanib are approved for treatment of IPF based on their ability to slow functional decline and disease progression; however, they do not offer a cure and are associated with tolerability issues. In this review, we critically discuss how cutting-edge research in disease pathogenesis may translate into identification of new therapeutic targets, thus facilitate drug discovery. There is a growing portfolio of treatment options for IPF. However, targeting the multitude of profibrotic cytokines and growth factors involved in disease pathogenesis may require a combination of therapeutic strategies with different mechanisms of action.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy.
| | | | - Mark G Jones
- NIHR Respiratory Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Joyce S Lee
- University of Colorado, School of Medicine, Department of Medicine, Aurora, CO, United States
| | - Giulio Rossi
- Pathology Unit, AUSL della Romagna, St. Maria delle Croci Hospital, Ravenna, Italy
| | | | - Toby M Maher
- National Heart and Lung Institute, Imperial College London and National Institute for Health Research Clinical Research Facility, Royal Brompton Hospital, London, UK; Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada
| |
Collapse
|
43
|
Nakada EM, Sun R, Fujii U, Martin JG. The Impact of Endoplasmic Reticulum-Associated Protein Modifications, Folding and Degradation on Lung Structure and Function. Front Physiol 2021; 12:665622. [PMID: 34122136 PMCID: PMC8188853 DOI: 10.3389/fphys.2021.665622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and induces the unfolded protein response (UPR) and other mechanisms to restore ER homeostasis, including translational shutdown, increased targeting of mRNAs for degradation by the IRE1-dependent decay pathway, selective translation of proteins that contribute to the protein folding capacity of the ER, and activation of the ER-associated degradation machinery. When ER stress is excessive or prolonged and these mechanisms fail to restore proteostasis, the UPR triggers the cell to undergo apoptosis. This review also examines the overlooked role of post-translational modifications and their roles in protein processing and effects on ER stress and the UPR. Finally, these effects are examined in the context of lung structure, function, and disease.
Collapse
Affiliation(s)
- Emily M. Nakada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - Rui Sun
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - Utako Fujii
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - James G. Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Pulmonary fibrosis is a chronic and progressive lung disease involving unclear pathological mechanisms. The present review presents and discusses the major and recent advances in our knowledge of the pathogenesis of lung fibrosis. RECENT FINDINGS The past months have deepened our understanding on the cellular actors of fibrosis with a better characterization of the abnormal lung epithelial cells observed during lung fibrosis. Better insight has been gained into fibroblast biology and the role of immune cells during fibrosis. Mechanistically, senescence appears as a key driver of the fibrotic process. Extracellular vesicles have been discovered as participating in the impaired cellular cross-talk during fibrosis and deeper understanding has been made on developmental signaling in lung fibrosis. SUMMARY This review emphasizes the contribution of different cell types and mechanisms during pulmonary fibrosis, highlights new insights for identification of potential therapeutic strategies, and underlines where future research is needed to answer remaining open questions.
Collapse
|
45
|
Katzen J, Beers MF. Contributions of alveolar epithelial cell quality control to pulmonary fibrosis. J Clin Invest 2021; 130:5088-5099. [PMID: 32870817 DOI: 10.1172/jci139519] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epithelial cell dysfunction has emerged as a central component of the pathophysiology of diffuse parenchymal diseases including idiopathic pulmonary fibrosis (IPF). Alveolar type 2 (AT2) cells represent a metabolically active lung cell population important for surfactant biosynthesis and alveolar homeostasis. AT2 cells and other distal lung epithelia, like all eukaryotic cells, contain an elegant quality control network to respond to intrinsic metabolic and biosynthetic challenges imparted by mutant protein conformers, dysfunctional subcellular organelles, and dysregulated telomeres. Failed AT2 quality control components (the ubiquitin-proteasome system, unfolded protein response, macroautophagy, mitophagy, and telomere maintenance) result in diverse cellular endophenotypes and molecular signatures including ER stress, defective autophagy, mitochondrial dysfunction, apoptosis, inflammatory cell recruitment, profibrotic signaling, and altered progenitor function that ultimately converge to drive downstream fibrotic remodeling in the IPF lung. As this complex network becomes increasingly better understood, opportunities will emerge to identify targets and therapeutic strategies for IPF.
Collapse
Affiliation(s)
- Jeremy Katzen
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, and
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, and.,Penn-CHOP Lung Biology Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
46
|
Bruno SR, Anathy V. Lung epithelial endoplasmic reticulum and mitochondrial 3D ultrastructure: a new frontier in lung diseases. Histochem Cell Biol 2021; 155:291-300. [PMID: 33598824 PMCID: PMC7889473 DOI: 10.1007/s00418-020-01950-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
It has long been appreciated that the endoplasmic reticulum (ER) and mitochondria, organelles important for regular cell function and survival, also play key roles in pathogenesis of various lung diseases, including asthma, fibrosis, and infections. Alterations in processes regulated within these organelles, including but not limited to protein folding in the ER and oxidative phosphorylation in the mitochondria, are important in disease pathogenesis. In recent years it has also become increasingly apparent that organelle structure dictates function. It is now clear that organelles must maintain precise organization and localization for proper function. Newer microscopy capabilities have allowed the scientific community to reveal, via 3D imaging, that the structure of these organelles and their interactions with each other are a main component of regulating function and, therefore, effects on the disease state. In this review, we will examine how 3D imaging through techniques could allow advancements in knowledge of how the ER and mitochondria function and the roles they may play in lung epithelia in progression of lung disease.
Collapse
Affiliation(s)
- Sierra R Bruno
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, 149 Beaumont Ave, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, 149 Beaumont Ave, Burlington, VT, 05405, USA.
| |
Collapse
|
47
|
Gally F, Sasse SK, Kurche JS, Gruca MA, Cardwell JH, Okamoto T, Chu HW, Hou X, Poirion OB, Buchanan J, Preissl S, Ren B, Colgan SP, Dowell RD, Yang IV, Schwartz DA, Gerber AN. The MUC5B-associated variant rs35705950 resides within an enhancer subject to lineage- and disease-dependent epigenetic remodeling. JCI Insight 2021; 6:144294. [PMID: 33320836 PMCID: PMC7934873 DOI: 10.1172/jci.insight.144294] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
The G/T transversion rs35705950, located approximately 3 kb upstream of the MUC5B start site, is the cardinal risk factor for idiopathic pulmonary fibrosis (IPF). Here, we investigate the function and chromatin structure of this –3 kb region and provide evidence that it functions as a classically defined enhancer subject to epigenetic programming. We use nascent transcript analysis to show that RNA polymerase II loads within 10 bp of the G/T transversion site, definitively establishing enhancer function for the region. By integrating Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) analysis of fresh and cultured human airway epithelial cells with nuclease sensitivity data, we demonstrate that this region is in accessible chromatin that affects the expression of MUC5B. Through applying paired single-nucleus RNA- and ATAC-seq to frozen tissue from IPF lungs, we extend these findings directly to disease, with results indicating that epigenetic programming of the –3 kb enhancer in IPF occurs in both MUC5B-expressing and nonexpressing lineages. In aggregate, our results indicate that the MUC5B-associated variant rs35705950 resides within an enhancer that is subject to epigenetic remodeling and contributes to pathologic misexpression in IPF.
Collapse
Affiliation(s)
- Fabienne Gally
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Jonathan S Kurche
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Margaret A Gruca
- BioFrontiers Institute, University of Colorado-Boulder (CU Boulder), Boulder, Colorado, USA
| | | | - Tsukasa Okamoto
- Department of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hong W Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Xiaomeng Hou
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Olivier B Poirion
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Justin Buchanan
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Sebastian Preissl
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Bing Ren
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA.,Ludwig Institute for Cancer Research, La Jolla, California, USA
| | - Sean P Colgan
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado-Boulder (CU Boulder), Boulder, Colorado, USA.,Molecular, Cellular and Developmental Biology, and.,Computer Science, CU Boulder, Boulder, Colorado, USA
| | - Ivana V Yang
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - David A Schwartz
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Anthony N Gerber
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
48
|
Bradley KL, Stokes CA, Marciniak SJ, Parker LC, Condliffe AM. Role of unfolded proteins in lung disease. Thorax 2021; 76:92-99. [PMID: 33077618 PMCID: PMC7803888 DOI: 10.1136/thoraxjnl-2019-213738] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/01/2023]
Abstract
The lungs are exposed to a range of environmental toxins (including cigarette smoke, air pollution, asbestos) and pathogens (bacterial, viral and fungal), and most respiratory diseases are associated with local or systemic hypoxia. All of these adverse factors can trigger endoplasmic reticulum (ER) stress. The ER is a key intracellular site for synthesis of secretory and membrane proteins, regulating their folding, assembly into complexes, transport and degradation. Accumulation of misfolded proteins within the lumen results in ER stress, which activates the unfolded protein response (UPR). Effectors of the UPR temporarily reduce protein synthesis, while enhancing degradation of misfolded proteins and increasing the folding capacity of the ER. If successful, homeostasis is restored and protein synthesis resumes, but if ER stress persists, cell death pathways are activated. ER stress and the resulting UPR occur in a range of pulmonary insults and the outcome plays an important role in many respiratory diseases. The UPR is triggered in the airway of patients with several respiratory diseases and in corresponding experimental models. ER stress has been implicated in the initiation and progression of pulmonary fibrosis, and evidence is accumulating suggesting that ER stress occurs in obstructive lung diseases (particularly in asthma), in pulmonary infections (some viral infections and in the setting of the cystic fibrosis airway) and in lung cancer. While a number of small molecule inhibitors have been used to interrogate the role of the UPR in disease models, many of these tools have complex and off-target effects, hence additional evidence (eg, from genetic manipulation) may be required to support conclusions based on the impact of such pharmacological agents. Aberrant activation of the UPR may be linked to disease pathogenesis and progression, but at present, our understanding of the context-specific and disease-specific mechanisms linking these processes is incomplete. Despite this, the ability of the UPR to defend against ER stress and influence a range of respiratory diseases is becoming increasingly evident, and the UPR is therefore attracting attention as a prospective target for therapeutic intervention strategies.
Collapse
Affiliation(s)
- Kirsty L Bradley
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | - Clare A Stokes
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | | | - Lisa C Parker
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| |
Collapse
|
49
|
Aghaei M, Dastghaib S, Aftabi S, Aghanoori MR, Alizadeh J, Mokarram P, Mehrbod P, Ashrafizadeh M, Zarrabi A, McAlinden KD, Eapen MS, Sohal SS, Sharma P, Zeki AA, Ghavami S. The ER Stress/UPR Axis in Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Life (Basel) 2020; 11:1. [PMID: 33374938 PMCID: PMC7821926 DOI: 10.3390/life11010001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular protein homeostasis in the lungs is constantly disrupted by recurrent exposure to various external and internal stressors, which may cause considerable protein secretion pressure on the endoplasmic reticulum (ER), resulting in the survival and differentiation of these cell types to meet the increased functional demands. Cells are able to induce a highly conserved adaptive mechanism, known as the unfolded protein response (UPR), to manage such stresses. UPR dysregulation and ER stress are involved in numerous human illnesses, such as metabolic syndrome, fibrotic diseases, and neurodegeneration, and cancer. Therefore, effective and specific compounds targeting the UPR pathway are being considered as potential therapies. This review focuses on the impact of both external and internal stressors on the ER in idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) and discusses the role of the UPR signaling pathway activation in the control of cellular damage and specifically highlights the potential involvement of non-coding RNAs in COPD. Summaries of pathogenic mechanisms associated with the ER stress/UPR axis contributing to IPF and COPD, and promising pharmacological intervention strategies, are also presented.
Collapse
Affiliation(s)
- Mahmoud Aghaei
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Sanaz Dastghaib
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (S.D.); (P.M.)
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Sajjad Aftabi
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Medical Physics Department, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Mohamad-Reza Aghanoori
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada;
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Pooneh Mokarram
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (S.D.); (P.M.)
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey;
| | - Kielan Darcy McAlinden
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston 7250, Tasmania, Australia; (K.D.M.); (M.S.E.); (S.S.S.)
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston 7250, Tasmania, Australia; (K.D.M.); (M.S.E.); (S.S.S.)
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston 7250, Tasmania, Australia; (K.D.M.); (M.S.E.); (S.S.S.)
| | - Pawan Sharma
- Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Amir A. Zeki
- Davis School of Medicine, Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, UC Davis Lung Center, University of California, Davis, CA 95616, USA;
- Veterans Affairs Medical Center, Mather, CA 95655, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
50
|
Montesi SB, Fisher JH, Martinez FJ, Selman M, Pardo A, Johannson KA. Update in Interstitial Lung Disease 2019. Am J Respir Crit Care Med 2020; 202:500-507. [PMID: 32412784 DOI: 10.1164/rccm.202002-0360up] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sydney B Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jolene H Fisher
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Mexico City, Mexico
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico; and
| | - Kerri A Johannson
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|