1
|
Krivošová M, Barošová R, Lukáčová E, Hanusrichterová J, Nemcová N, Kolomazník M, Mokrý J, Mokrá D. Exploring the Asthma - Obesity Link Using Advanced Imaging Techniques. Physiol Res 2025; 74:19-29. [PMID: 40116547 PMCID: PMC11995934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/26/2024] [Indexed: 03/23/2025] Open
Abstract
The global rise in obesity has emerged as a significant health concern, amplifying susceptibility to various diseases, including asthma. Epidemiological evidence demonstrates a higher prevalence of asthma among obese individuals, with obesity exacerbating asthma severity and control. This review aims to explore the interplay between asthma and obesity assessed by objective imaging methods and discusses the consistency between anthropometric and imaging methods. A literature search was conducted with the main keywords "asthma", "obesity", and "imaging techniques" using databases such as PubMed, Web of Sciences, and Scopus for the relevant articles published up to January 2024. The consistency between Body Mass Index (BMI), Waist Circumference (WC), and results from imaging techniques is uncertain. Unlike anthropometric methods, imaging methods provide us with the exact location of adipose tissue as well as fat and lean mass distinction, which can be further correlated with different airway parameters and respiratory system functions and dysfunctions. Studies indicate that the relationship between lung functions and obesity is more complex in females. Abdominal visceral fat is supposed to be the major asthma predictor already in the pediatric population. The connection between obesity and asthma is already evident in children and adolescents. Imaging methods can measure visceral and subcutaneous fat mass and both contribute to the association between obesity and lung functions. These methods are more accurate and reproducible but require more time and expertise. Key words Asthma, Obesity, Magnetic resonance imaging, Dual-energy, X-ray absorptiometry, Bioimpedance analysis.
Collapse
Affiliation(s)
- M Krivošová
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Sun K, Chang Y, Jie J, Wang C, Gu Y. The J-shaped relationship between body roundness index and adult asthma: insights from NHANES 2001-2018. Front Nutr 2025; 12:1516003. [PMID: 40181938 PMCID: PMC11967368 DOI: 10.3389/fnut.2025.1516003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Background Many studies have used Body Mass Index (BMI) to define obesity and examine its potential link to adult asthma. However, BMI overlooks body fat distribution, which may significantly impact health. Unlike BMI, the Body Roundness Index (BRI) can more accurately reflect body fat distribution. Therefore, this study examined BRI's relationship with asthma prevalence in U.S. adults. Methods This study was based on data from the National Health and Nutrition Examination Survey (NHANES) between 2001 and 2018 and covered 40,052 adult participants. Participants were categorized into four quartile groups based on their BRI levels: Quartile 1 (1.05, 3.80); Quartile 2 (3.80, 5.06); Quartile 3 (5.06, 6.61); Quartile 4 (6.61, 23.48). The association between BRI and asthma prevalence was assessed via weighted multivariate logistic regression, smoothed curve fitting, threshold effects, subgroup, and sensitivity analysis. BRI's predictive power was compared to BMI and waist circumference using z-scores. Results Of the study population, 5,605 participants had asthma (13.99% prevalence). After adjusting for possible confounders, the results showed that higher BRI was linked to greater asthma prevalence (OR = 1.41, 95% CI:1.27, 1.56, p < 0.0001). A J-shaped relationship between BRI and asthma prevalence (p-nonlinearity = 0) was found, with asthma prevalence rising significantly when BRI surpassed 4.34. BRI outperformed BMI and waist circumference in predicting asthma (BRI: OR = 1.180; BMI: OR = 1.169; W.C.: OR = 1.166). Subgroup and sensitivity analyses confirmed our results' robustness. Conclusion Adult asthma prevalence increases with increasing BRI levels, showing a J-shaped relationship. Keeping BRI under 4.34 is vital for lowering asthma prevalence, especially for overweight or obese individuals. In addition, BRI outperformed BMI and waist circumference in predicting asthma occurrence.
Collapse
Affiliation(s)
- Kunpeng Sun
- Department of Respiratory and Critical Care Medicine, First Hospital of Jilin University, Changchun, China
| | - Yiyi Chang
- Department of Respiratory and Critical Care Medicine, First Hospital of Jilin University, Changchun, China
| | - Jing Jie
- Department of Respiratory and Critical Care Medicine, First Hospital of Jilin University, Changchun, China
| | - Chunyan Wang
- Department of General Medicine, First Hospital of Jilin University, Changchun, China
| | - Yue Gu
- Department of Respiratory and Critical Care Medicine, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Yin P, Tao S, Xing Z, Luo S, Yang Z, Xue Z, Yang R, Liu L, Wu S, Ge J. Association between visceral adipose tissue and asthma based on the NHANES and Mendelian randomization study. Postgrad Med J 2024; 100:642-648. [PMID: 38538571 DOI: 10.1093/postmj/qgae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/24/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Obesity is a crucial risk factor for asthma. Observational studies have examined the association between abdominal obesity and asthma symptoms. This study aimed to investigate the causal relationship between visceral adipose tissue (VAT) and asthma and its potential as an independent indicator. METHODS This study utilized data from the National Health and Nutrition Examination Survey spanning 2011-8. Multivariable logistic regression and stratified variable selection were employed to identify associations between asthma and VAT. Moreover, a two-sample Mendelian randomization analysis, using 221 genetic variants as instrumental variables, was conducted to assess this relationship further. RESULTS Our findings indicated that individuals with higher VAT levels were more likely to develop asthma. Visceral obesity remained a significant risk factor for asthma after adjusting for demographic characteristics. Genetic predictions suggest a positive association between VAT and an elevated risk of asthma (odds ratio [OR] = 1.393, 95% confidence interval [CI]: 1.266-1.534, and P = 1.43E-11). No significant polymorphisms were detected using the Mendelian randomization-Egger intercept test. CONCLUSIONS This study presents potential evidence supporting the causal role of VAT in asthma development. Furthermore, the findings from the Mendelian randomization analysis further reinforce the relationship between VAT and asthma risk.
Collapse
Affiliation(s)
- Pan Yin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shiran Tao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zixuan Xing
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shenglin Luo
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhiluo Yang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zihan Xue
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ruida Yang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Luyu Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shaobo Wu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Juan Ge
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
4
|
Koch S, Peralta GP, Carsin AE, Abellan A, Roda C, Torrent M, Iñiguez C, Ballester F, Ferrero A, Zabaleta C, Lertxundi A, Guxens M, Vrijheid M, Sunyer J, Casas M, Garcia-Aymerich J. Physical activity and body mass related to catch-up lung function growth in childhood: a population-based accelerated cohort study. Thorax 2024; 79:762-769. [PMID: 38448222 DOI: 10.1136/thorax-2022-219666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE The existence of catch-up lung function growth and its predictors is uncertain. We aimed to identify lung function trajectories and their predictors in a population-based birth cohort. METHODS We applied group-based trajectory modelling to z-scores of forced expiratory volume in 1 second (zFEV1) and z-scores of forced vital capacity (zFVC) from 1151 children assessed at around 4, 7, 9, 10, 11, 14 and 18 years. Multinomial logistic regression models were used to test whether potential prenatal and postnatal predictors were associated with lung function trajectories. RESULTS We identified four lung function trajectories: a low (19% and 19% of the sample for zFEV1 and zFVC, respectively), normal (62% and 63%), and high trajectory (16% and 13%) running in parallel, and a catch-up trajectory (2% and 5%) with catch-up occurring between 4 and 10 years. Fewer child allergic diseases and higher body mass index z-score (zBMI) at 4 years were associated with the high and normal compared with the low trajectories, both for zFEV1 and zFVC. Increased children's physical activity during early childhood and higher zBMI at 4 years were associated with the catch-up compared with the low zFEV1 trajectory (relative risk ratios: 1.59 per physical activity category (1.03-2.46) and 1.47 per zBMI (0.97-2.23), respectively). No predictors were identified for zFVC catch-up growth. CONCLUSION We found three parallel-running and one catch-up zFEV1 and zFVC trajectories, and identified physical activity and body mass at 4 years as predictors of zFEV1 but not zFVC catch-up growth.
Collapse
Affiliation(s)
- Sarah Koch
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Gabriela Prado Peralta
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Anne-Elie Carsin
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Alicia Abellan
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Celine Roda
- Université Paris Cité, Sorbonne Paris-Nord, INRAe, INSERM, UMR 1153-CRESS, HERA Team, Paris, France
- Faculté de Pharmacie de Paris, Université Paris Cité, Paris, France
| | - Maties Torrent
- Area de Salut de Menorca, IB-SALUT, Mahon, Menorca, Spain
| | - Carmen Iñiguez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Statistics and Operations Research, Universitat de València, Burjassot, Spain
| | - Ferran Ballester
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I - Universitat de València, Valencia, Spain
- Nursing Department, Universitat de Valencia, Valencia, Spain
| | - Amparo Ferrero
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carlos Zabaleta
- Servicio de Pediatria del Hospital Zumarraga, Zumarraga, Spain
- Health Research Institute BioGipuzkoa, San Sebastian, Spain
| | - Aitana Lertxundi
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Health Research Institute BioGipuzkoa, San Sebastian, Spain
- Preventive Medicine and Public Health Department, University of Basque Country, Spain
| | - Mònica Guxens
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maribel Casas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Judith Garcia-Aymerich
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
5
|
Wu T, Santos S, Quezada-Pinedo HG, Vernooij MW, Jaddoe VWV, Klein S, Duijts L, Oei EHG. Body composition and respiratory outcomes in children: a population-based prospective cohort study. Thorax 2024; 79:448-456. [PMID: 38182426 DOI: 10.1136/thorax-2023-220014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 12/09/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Body composition might influence lung function and asthma in children, but its longitudinal relations are unclear. We aimed to identify critical periods for body composition changes during childhood and adolescence in relation to respiratory outcomes in adolescents. METHODS In a population-based prospective cohort study, we measured body mass index, fat mass index (FMI), lean mass index (LMI) and the ratio of android fat mass divided by gynoid fat mass (A/G ratio) by dual-energy X-ray absorptiometry at 6, 10 and 13 years. At 13 years, lung function was measured by spirometry, and current asthma was assessed by questionnaire. RESULTS Most prominently and consistently, higher FMI and A/G ratio at age 13 years were associated with lower forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) and forced expiratory flow after exhaling 75% of FVC (FEF75) (range Z-score difference -0.13 (95% CI -0.16 to -0.10) to -0.08 (95% CI -0.11 to -0.05) per SD score increase), and higher LMI at all ages was associated with higher FEF75 (range Z-score difference 0.05 (95% CI 0.01 to 0.08) to 0.09 (95% CI 0.06 to 0.13)). Between the ages of 6 and 13 years, normal to high FMI and A/G ratio were associated with lower FEV1/FVC and FEF75 (range Z-score difference -0.20 (95% CI -0.30 to -0.10) to -0.17 (95% CI -0.28 to -0.06)) and high to high LMI with higher FEF75 (range Z-score difference0.32 (95% CI 0.23 to 0.41)). Body composition changes were not associated with asthma. CONCLUSION Adolescents with higher total and abdominal fat indices may have impaired lung function, while those with a higher lean mass during childhood and adolescence may have better small airway function. Public health measures should focus on a healthy body composition in adolescents to minimise respiratory morbidity.
Collapse
Affiliation(s)
- Tong Wu
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hugo G Quezada-Pinedo
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Stefan Klein
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Morgan AD. Unravelling the obesity-asthma connection in childhood and adolescence: does body shape matter? Thorax 2024; 79:393-394. [PMID: 38453470 DOI: 10.1136/thorax-2023-221345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Affiliation(s)
- Ann D Morgan
- School of Public Health, Imperial College London Faculty of Medicine, London, UK
| |
Collapse
|
7
|
Ofenheimer A, Breyer MK, Wouters EFM, Schiffers C, Hartl S, Burghuber OC, Krach F, Maninno DM, Franssen FME, Mraz T, Puchhammer P, Breyer-Kohansal R. The effect of body compartments on lung function in childhood and adolescence. Clin Nutr 2024; 43:476-481. [PMID: 38181525 DOI: 10.1016/j.clnu.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND There is an association between body composition and lung function, assessed by spirometry, but the effects of body compartments on static lung volumes and its changes during lung growth remain to be explored. We aimed to investigate the association of appendicular lean mass, reflecting skeletal muscle mass, and fat mass on forced and static lung function measures in childhood and adolescence. METHODS In total, 1489 children and adolescents (6-18 years) of the observational, longitudinal (first and second visit within 4 years), general population-based LEAD study have been investigated. The association of appendicular lean mass and fat mass indices (ALMI and FMI; assessed by dual-energy X-ray absorptiometry) on lung function by spirometry (FEV1, FVC) and body plethysmography (TLC, RV, FRC) was investigated cross-sectionally. Longitudinal associations between lung function and body compartment changes between the two visits were analyzed. FINDINGS The ALMI is positively associated with FEV1, FVC, and TLC. Contrary, FMI is inversely associated with lung function measures including FRC and RV. During the phase of lung growth, higher gain in muscle mass is associated with higher increases of FVC and TLC. INTERPRETATION This study demonstrates the different effects of muscle and fat mass on forced expiratory and static lung volumes. Achieving and maintaining muscle mass in childhood and adolescence might become an important preventive strategy for lung health in adulthood.
Collapse
Affiliation(s)
- Alina Ofenheimer
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Marie-Kathrin Breyer
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; Department of Respiratory and Pulmonary Diseases, Clinic Penzing, Vienna Health Care Group, Vienna, Austria
| | - Emiel F M Wouters
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Sylvia Hartl
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; Department of Respiratory and Pulmonary Diseases, Clinic Penzing, Vienna Health Care Group, Vienna, Austria; Sigmund Freud University, Medical School, Vienna, Austria
| | - Otto C Burghuber
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; Sigmund Freud University, Medical School, Vienna, Austria
| | - Florian Krach
- ETH Zürich, Department of Mathematics, Zurich, Switzerland
| | - David M Maninno
- University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Frits M E Franssen
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Research and Education, CIRO, Horn, the Netherlands
| | - Tobias Mraz
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; Department of Respiratory and Pulmonary Diseases, Clinic Penzing, Vienna Health Care Group, Vienna, Austria
| | | | - Robab Breyer-Kohansal
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; Department of Respiratory and Pulmonary Diseases, Clinic Hietzing, Vienna Health Care Group, Vienna, Austria
| |
Collapse
|
8
|
Tashiro H, Kurihara Y, Kuwahara Y, Takahashi K. Impact of obesity in asthma: Possible future therapies. Allergol Int 2024; 73:48-57. [PMID: 37659887 DOI: 10.1016/j.alit.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 09/04/2023] Open
Abstract
Obesity is one of the factors associated with the severity of asthma. Obesity is associated with aggravation of the pathophysiology of asthma, including exacerbations, airway inflammation, decreased pulmonary function, and airway hyperresponsiveness. The present review addresses the characteristics of asthma with obesity, focusing especially on the heterogeneity caused by the degree of type 2 inflammation, sex differences, the onset of asthma, and race differences. To understand the severity mechanisms in asthma and obesity, such as corticosteroid resistance, fatty acids, gut microbiome, and cytokines, several basic research studies are evaluated. Finally, possible future therapies, including weight reduction, microbiome-targeted therapies, and other molecular targeted therapies are addressed. We believe that the present review will contribute to better understanding of the severity mechanisms and the establishment of novel treatments for severe asthma patients with obesity.
Collapse
Affiliation(s)
- Hiroki Tashiro
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan.
| | - Yuki Kurihara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Kuwahara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Koichiro Takahashi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
9
|
Di Cicco M, Ghezzi M, Kantar A, Song WJ, Bush A, Peroni D, D'Auria E. Pediatric obesity and severe asthma: Targeting pathways driving inflammation. Pharmacol Res 2023; 188:106658. [PMID: 36642111 DOI: 10.1016/j.phrs.2023.106658] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Asthma affects more than 300 million people of all ages worldwide, including about 10-15% of school-aged children, and its prevalence is increasing. Severe asthma (SA) is a particular and rare phenotype requiring treatment with high-dose inhaled corticosteroids plus a second controller and/or systemic glucocorticoid courses to achieve symptom control or remaining "uncontrolled" despite this therapy. In SA, other diagnoses have been excluded, and potential exacerbating factors have been addressed. Notably, obese asthmatics are at higher risk of developing SA. Obesity is both a major risk factor and a disease modifier of asthma in children and adults: two main "obese asthma" phenotypes have been described in childhood with high or low levels of Type 2 inflammation biomarkers, respectively, the former characterized by early onset and eosinophilic inflammation and the latter by neutrophilic inflammation and late-onset. Nevertheless, the interplay between obesity and asthma is far more complex and includes obese tissue-driven inflammatory pathways, mechanical factors, comorbidities, and poor response to corticosteroids. This review outlines the most recent findings on SA in obese children, particularly focusing on inflammatory pathways, which are becoming of pivotal importance in order to identify selective targets for specific treatments, such as biological agents.
Collapse
Affiliation(s)
- Maria Di Cicco
- Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michele Ghezzi
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Gruppo Ospedaliero San Donato, Bergamo, Italy and Università Vita Salute San Raffaele, Milan, Italy
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Andrew Bush
- Dept of Paediatric Respiratory Medicine, Royal Brompton Hospital and National Heart and Lung Institute, School of Medicine, Imperial College London, London, UK
| | - Diego Peroni
- Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enza D'Auria
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.
| |
Collapse
|
10
|
Wang CJ, Noble PB, Elliot JG, James AL, Wang KCW. From Beneath the Skin to the Airway Wall: Understanding the Pathological Role of Adipose Tissue in Comorbid Asthma-Obesity. Compr Physiol 2023; 13:4321-4353. [PMID: 36715283 DOI: 10.1002/cphy.c220011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This article provides a contemporary report on the role of adipose tissue in respiratory dysfunction. Adipose tissue is distributed throughout the body, accumulating beneath the skin (subcutaneous), around organs (visceral), and importantly in the context of respiratory disease, has recently been shown to accumulate within the airway wall: "airway-associated adipose tissue." Excessive adipose tissue deposition compromises respiratory function and increases the severity of diseases such as asthma. The mechanisms of respiratory impairment are inflammatory, structural, and mechanical in nature, vary depending on the anatomical site of deposition and adipose tissue subtype, and likely contribute to different phenotypes of comorbid asthma-obesity. An understanding of adipose tissue-driven pathophysiology provides an opportunity for diagnostic advancement and patient-specific treatment. As an exemplar, the potential impact of airway-associated adipose tissue is highlighted, and how this may change the management of a patient with asthma who is also obese. © 2023 American Physiological Society. Compr Physiol 13:4321-4353, 2023.
Collapse
Affiliation(s)
- Carolyn J Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
11
|
Miliku K, Moraes TJ, Subbarao P. Obesity and asthma: the egg, the chicken, or both? J Bras Pneumol 2023; 48:e20220441. [PMID: 36651442 PMCID: PMC9747136 DOI: 10.36416/1806-3756/e20220441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Kozeta Miliku
- . Department of Nutritional Sciences, University of Toronto, Toronto (ON) Canada.,. Department of Medicine, McMaster University, Hamilton (ON) Canada
| | - Theo J Moraes
- . Program in Translational Medicine, Hospital for Sick Children, University of Toronto, Toronto (ON) Canada
| | - Padmaja Subbarao
- . Department of Medicine, McMaster University, Hamilton (ON) Canada.,. Program in Translational Medicine, Hospital for Sick Children, University of Toronto, Toronto (ON) Canada.,. Department of Physiology, University of Toronto, Toronto (ON) Canada
| |
Collapse
|
12
|
Peralta GP, Granell R, Bédard A, Carsin AE, Fuertes E, Howe LD, Márquez S, Jarvis DL, Garcia-Aymerich J. Mid-childhood fat mass and airflow limitation at 15 years: The mediating role of insulin resistance and C-reactive protein. Pediatr Allergy Immunol 2022; 33:e13894. [PMID: 36564882 DOI: 10.1111/pai.13894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND We previously reported an association of high fat mass levels from age 9 to 15 years with lower forced expiratory flow in 1 s (FEV1 )/forced vital capacity (FVC) ratio (i.e., increased risk of airflow limitation) at 15 years. Here, we aimed to assess whether insulin resistance and C-reactive protein (CRP) at 15 years partially mediate this association. METHODS We included 2263 children from the UK Avon Longitudinal Study of Parents and Children population-based cohort (ALSPAC). Four fat mass index (FMI) trajectories ("low," "medium-low," "medium-high," "high") from 9 to 15 years were previously identified using Group-Based Trajectory Modeling. Data on CRP, glucose, insulin, and post-bronchodilator FEV1 /FVC were available at 15 years. We defined insulin resistance by the homeostasis model assessment-estimated insulin resistance index (HOMA-IR). We used adjusted linear regression models and a causal mediation analysis to assess the mediating role of HOMA-IR and CRP. RESULTS Compared to children in the "low" FMI trajectory, children in the "medium-high" and "high" FMI trajectories had lower FEV1 /FVC at 15 years. The percentage of the total effect explained by HOMA-IR was 19.8% [-114.1 to 170.0] and 20.4% [1.6 to 69.0] for the "medium-high" and "high" trajectories, respectively. In contrast, there was little evidence for a mediating role of CRP. CONCLUSION The association between mid-childhood fat mass and FEV1 /FVC ratio at 15 years may be partially mediated by insulin resistance.
Collapse
Affiliation(s)
- Gabriela P Peralta
- ISGlobal, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Raquel Granell
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Annabelle Bédard
- Université Paris-Saclay, UVSQ, University Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, Villejuif, France
| | - Anne-Elie Carsin
- ISGlobal, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Elaine Fuertes
- National Heart and Lung Institute, Imperial College London, London, UK.,MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Laura D Howe
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sandra Márquez
- ISGlobal, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Deborah L Jarvis
- National Heart and Lung Institute, Imperial College London, London, UK.,MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Judith Garcia-Aymerich
- ISGlobal, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
13
|
Grandinetti R, Fainardi V, Caffarelli C, Capoferri G, Lazzara A, Tornesello M, Meoli A, Bergamini BM, Bertelli L, Biserna L, Bottau P, Corinaldesi E, De Paulis N, Dondi A, Guidi B, Lombardi F, Magistrali MS, Marastoni E, Pastorelli S, Piccorossi A, Poloni M, Tagliati S, Vaienti F, Gregori G, Sacchetti R, Mari S, Musetti M, Antodaro F, Bergomi A, Reggiani L, Caramelli F, De Fanti A, Marchetti F, Ricci G, Esposito S. Risk Factors Affecting Development and Persistence of Preschool Wheezing: Consensus Document of the Emilia-Romagna Asthma (ERA) Study Group. J Clin Med 2022; 11:6558. [PMID: 36362786 PMCID: PMC9655250 DOI: 10.3390/jcm11216558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Wheezing at preschool age (i.e., before the age of six) is common, occurring in about 30% of children before the age of three. In terms of health care burden, preschool children with wheeze show double the rate of access to the emergency department and five times the rate of hospital admissions compared with school-age asthmatics. The consensus document aims to analyse the underlying mechanisms involved in the pathogenesis of preschool wheezing and define the risk factors (i.e., allergy, atopy, infection, bronchiolitis, genetics, indoor and outdoor pollution, tobacco smoke exposure, obesity, prematurity) and the protective factors (i.e., probiotics, breastfeeding, vitamin D, influenza vaccination, non-specific immunomodulators) associated with the development of the disease in the young child. A multidisciplinary panel of experts from the Emilia-Romagna Region, Italy, addressed twelve key questions regarding managing preschool wheezing. Clinical questions have been formulated by the expert panel using the PICO format (Patients, Intervention, Comparison, Outcomes). Systematic reviews have been conducted on PubMed to answer these specific questions and formulate recommendations. The GRADE approach has been used for each selected paper to assess the quality of the evidence and the degree of recommendations. Based on a panel of experts and extensive updated literature, this consensus document provides insight into the pathogenesis, risk and protective factors associated with the development and persistence of preschool wheezing. Undoubtedly, more research is needed to improve our understanding of the disease and confirm the associations between certain factors and the risk of wheezing in early life. In addition, preventive strategies must be promoted to avoid children's exposure to risk factors that may permanently affect respiratory health.
Collapse
Affiliation(s)
- Roberto Grandinetti
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Valentina Fainardi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Carlo Caffarelli
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Gaia Capoferri
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Angela Lazzara
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Marco Tornesello
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Aniello Meoli
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Barbara Maria Bergamini
- Paediatric Unit, Department of Medical and Surgical Sciences of Mothers, Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luca Bertelli
- Pediatric Clinic, Scientific Institute for Research and Healthcare (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Loretta Biserna
- Paediatrics and Neonatology Unit, Ravenna Hospital, AUSL Romagna, 48121 Ravenna, Italy
| | - Paolo Bottau
- Paediatrics Unit, Imola Hospital, 40026 Imola, Italy
| | | | - Nicoletta De Paulis
- Paediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
| | - Arianna Dondi
- Pediatric Clinic, Scientific Institute for Research and Healthcare (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Battista Guidi
- Hospital and Territorial Paediatrics Unit, Pavullo, 41026 Pavullo Nel Frignano, Italy
| | | | - Maria Sole Magistrali
- Paediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
| | - Elisabetta Marastoni
- Paediatrics Unit, Santa Maria Nuova Hospital, AUSL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy
| | | | - Alessandra Piccorossi
- Paediatrics and Paediatric Intensive Care Unit, Cesena Hospital, AUSL Romagna, 47521 Cesena, Italy
| | - Maurizio Poloni
- Paediatrics Unit, Rimini Hospital, AUSL Romagna, 47921 Rimini, Italy
| | | | - Francesca Vaienti
- Paediatrics Unit, G.B. Morgagni—L. Pierantoni Hospital, AUSL Romagna, 47121 Forlì, Italy
| | - Giuseppe Gregori
- Primary Care Pediatricians, AUSL Piacenza, 29121 Piacenza, Italy
| | | | - Sandra Mari
- Primary Care Pediatricians, AUSL Parma, 43126 Parma, Italy
| | | | | | - Andrea Bergomi
- Primary Care Pediatricians, AUSL Modena, 41125 Modena, Italy
| | | | - Fabio Caramelli
- Pediatric Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandro De Fanti
- Paediatrics Unit, Santa Maria Nuova Hospital, AUSL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Federico Marchetti
- Paediatrics and Neonatology Unit, Ravenna Hospital, AUSL Romagna, 48121 Ravenna, Italy
| | - Giampaolo Ricci
- Pediatric Clinic, Scientific Institute for Research and Healthcare (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | |
Collapse
|
14
|
Reyes-Angel J, Kaviany P, Rastogi D, Forno E. Obesity-related asthma in children and adolescents. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:713-724. [PMID: 35988550 DOI: 10.1016/s2352-4642(22)00185-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 05/23/2023]
Abstract
There is substantial epidemiological and experimental evidence of an obesity-related asthma phenotype. Compared to children of healthy weight, children with obesity are at higher risk of asthma. Children with obesity who have asthma have greater severity and poorer control of their asthma symptoms, more frequent asthma exacerbations, and overall lower asthma-related quality of life than children with asthma who have a healthy weight. In this Review, we examine some of the latest evidence on the characteristics of this phenotype and its main underlying mechanisms, including genetics and genomics, changes in airway mechanics and lung function, sex hormone differences, alterations in immune responses, systemic and airway inflammation, metabolic dysregulation, and modifications in the microbiome. We also review current recommendations for the treatment of these children, including in the management of their asthma, and current evidence for weight loss interventions. We then discuss initial evidence for potential novel therapeutic approaches, such as dietary modifications and supplements, antidiabetic medications, and statins. Finally, we identify knowledge gaps and future directions to improve our understanding of asthma in children with obesity, and to improve outcomes in these susceptible children. We highlight important needs, such as designing paediatric-specific studies, implementing large multicentric trials with standardised interventions and outcomes, and including racial and ethnic groups along with other under-represented populations that are particularly affected by obesity and asthma.
Collapse
Affiliation(s)
- Jessica Reyes-Angel
- Division of Pulmonary Medicine and Pediatric Asthma Center, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Parisa Kaviany
- Division of Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Deepa Rastogi
- Division of Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Erick Forno
- Division of Pulmonary Medicine and Pediatric Asthma Center, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Lovinsky-Desir S, Lussier SJ, Calatroni A, Gergen PJ, Rivera-Spoljaric K, Bacharier LB, De A, O'Connor GT, Sandel MT, Wood RA, Arteaga-Solis E, Gern JE, Kattan M. Trajectories of adiposity indicators and association with asthma and lung function in urban minority children. J Allergy Clin Immunol 2021; 148:1219-1226.e7. [PMID: 34166677 PMCID: PMC8578316 DOI: 10.1016/j.jaci.2021.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND A relationship between adiposity and asthma has been described in some cohort studies, but little is known about trajectories of adiposity throughout early childhood among children at high risk for developing asthma in urban United States cities. Moreover, early life trajectories of adipokines that have metabolic and immunologic properties have not been comprehensively investigated. OBJECTIVE Our objective was to characterize trajectories of adiposity in a longitudinal birth cohort of predominately Black and Latinx children (n = 418) using several different repeated measures including body mass index (BMI) z score, bioimpedance analysis, leptin, and adiponectin in the first 10 years of life. METHODS In a longitudinal birth cohort of predominately Black and Latinx children, we used repeated annual measures of BMI, bioimpedance analysis (ie, percentage of body fat), leptin, and adiponectin to create trajectories across the first 10 years of life. Across those trajectories, we compared asthma diagnosis and multiple lung function outcomes, including spirometry, impulse oscillometry, and methacholine response. RESULTS Three trajectories were observed for BMI z score, bioimpedance analysis, and leptin and 2 for adiponectin. There was no association between trajectories of BMI, percentage of body fat, leptin, or adipokine and asthma diagnosis or lung function (P > .05). CONCLUSIONS Trajectories of adiposity were not associated with asthma or lung function in children at high risk for developing asthma. Risk factors related to geography as well as social and demographic factors unique to specific populations could explain the lack of association and should be considered in obesity and asthma studies.
Collapse
Affiliation(s)
- Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY.
| | | | | | - Peter J Gergen
- National Institute of Allergy and Infectious Diseases, Rockville, Md
| | - Katherine Rivera-Spoljaric
- Department of Pediatrics, Washington University School of Medicine and St Louis Children's Hospital, St Louis, Mo
| | - Leonard B Bacharier
- Department of Pediatrics, Washington University School of Medicine and St Louis Children's Hospital, St Louis, Mo
| | - Aliva De
- Division of Pediatric Pulmonology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY
| | - George T O'Connor
- Department of Medicine, Boston University School of Medicine, Boston, Mass
| | - Megan T Sandel
- Department of Medicine, Boston University School of Medicine, Boston, Mass
| | - Robert A Wood
- Department of Pediatrics, Johns Hopkins University Medical Center, Baltimore, Md
| | - Emilio Arteaga-Solis
- Division of Pediatric Pulmonology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY
| | - James E Gern
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wis
| | - Meyer Kattan
- Division of Pediatric Pulmonology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY
| |
Collapse
|
16
|
Manuel SS, Luis GM. Nutrition, Obesity and Asthma Inception in Children. The Role of Lung Function. Nutrients 2021; 13:nu13113837. [PMID: 34836093 PMCID: PMC8624093 DOI: 10.3390/nu13113837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity is an important public health problem. WHO estimates that about 39 million children younger than 5 years of age are overweighted or obese. On the other hand, asthma is the most prevalent chronic disease in childhood, and thus, many children share those two conditions. In the present paper we review the epidemiology of children with asthma and obesity, as well as the consequences of being obese on the respiratory system. On the one hand obesity produces an underlying T-helper 2 (TH2) low inflammation state in which numerous cytokines, which could have an impact in the respiratory system play, a role. On the other hand, some respiratory changes have been described in obese children and, specially, the development of the so called “dysanapsis” (the disproportionate scaling of airway dimensions to lung volume) which seems to be common during the first stages of life, probably related to the early development of this condition. Finally, this review deals with the role of adipokines and insulin resistance in the inception and worsening of asthma in the obese child.
Collapse
Affiliation(s)
- Sanchez-Solís Manuel
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children’s Hospital, University of Murcia, El Palmar, 30120 Murcia, Spain;
- IMIB Bio-health Research Institute, El Palmar, 30120 Murcia, Spain
- ARADyAL Allergy Network, El Palmar, 30120 Murcia, Spain
| | - García-Marcos Luis
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children’s Hospital, University of Murcia, El Palmar, 30120 Murcia, Spain;
- IMIB Bio-health Research Institute, El Palmar, 30120 Murcia, Spain
- ARADyAL Allergy Network, El Palmar, 30120 Murcia, Spain
- Correspondence:
| |
Collapse
|
17
|
Wang G, Hallberg J, Charalampopoulos D, Sanahuja MC, Breyer-Kohansal R, Langhammer A, Granell R, Vonk JM, Mian A, Olvera N, Laustsen LM, Rönmark E, Abellan A, Agusti A, Arshad SH, Bergström A, Boezen HM, Breyer MK, Burghuber O, Bolund AC, Custovic A, Devereux G, Donaldson GC, Duijts L, Esplugues A, Faner R, Ballester F, Garcia-Aymerich J, Gehring U, Haider S, Hartl S, Backman H, Holloway JW, Koppelman GH, Lertxundi A, Holmen TL, Lowe L, Mensink-Bout SM, Murray CS, Roberts G, Hedman L, Schlünssen V, Sigsgaard T, Simpson A, Sunyer J, Torrent M, Turner S, Van den Berge M, Vermeulen RC, Vikjord SAA, Wedzicha JA, Maitland van der Zee AH, Melén E. Spirometric phenotypes from early childhood to young adulthood: a Chronic Airway Disease Early Stratification study. ERJ Open Res 2021; 7:00457-2021. [PMID: 34881328 PMCID: PMC8646001 DOI: 10.1183/23120541.00457-2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/25/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The prevalences of obstructive and restrictive spirometric phenotypes, and their relation to early-life risk factors from childhood to young adulthood remain poorly understood. The aim was to explore these phenotypes and associations with well-known respiratory risk factors across ages and populations in European cohorts. METHODS We studied 49 334 participants from 14 population-based cohorts in different age groups (≤10, >10-15, >15-20, >20-25 years, and overall, 5-25 years). The obstructive phenotype was defined as forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) z-score less than the lower limit of normal (LLN), whereas the restrictive phenotype was defined as FEV1/FVC z-score ≥LLN, and FVC z-score RESULTS The prevalence of obstructive and restrictive phenotypes varied from 3.2-10.9% and 1.8-7.7%, respectively, without clear age trends. A diagnosis of asthma (adjusted odds ratio (aOR=2.55, 95% CI 2.14-3.04), preterm birth (aOR=1.84, 1.27-2.66), maternal smoking during pregnancy (aOR=1.16, 95% CI 1.01-1.35) and family history of asthma (aOR=1.44, 95% CI 1.25-1.66) were associated with a higher prevalence of obstructive, but not restrictive, phenotype across ages (5-25 years). A higher current body mass index (BMI was more often observed in those with the obstructive phenotype but less in those with the restrictive phenotype (aOR=1.05, 95% CI 1.03-1.06 and aOR=0.81, 95% CI 0.78-0.85, per kg·m-2 increase in BMI, respectively). Current smoking was associated with the obstructive phenotype in participants older than 10 years (aOR=1.24, 95% CI 1.05-1.46). CONCLUSION Obstructive and restrictive phenotypes were found to be relatively prevalent during childhood, which supports the early origins concept. Several well-known respiratory risk factors were associated with the obstructive phenotype, whereas only low BMI was associated with the restrictive phenotype, suggesting different underlying pathobiology of these two phenotypes.
Collapse
Affiliation(s)
- Gang Wang
- Dept of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Sichuan, China
- Dept of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Shared first authors
| | - Jenny Hallberg
- Dept of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs’ Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
- Shared first authors
| | - Dimitrios Charalampopoulos
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Maribel Casas Sanahuja
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Robab Breyer-Kohansal
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Dept of Respiratory and Critical Care Medicine, Clinic Penzing, Vienna, Austria
| | - Arnulf Langhammer
- Dept of Public Health and Nursing, Faculty of Medicine and Health Sciences, HUNT Research Centre, Norwegian University of Science and Technology (NTNU), Levanger, Norway
| | - Raquel Granell
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Judith M. Vonk
- Dept of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Annemiek Mian
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Respiratory Medicine and Allergology, and Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Núria Olvera
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institut d'investigacions biomediques August Pi I Sunyer, Barcelona, Spain
| | - Lisbeth Mølgaard Laustsen
- Dept of Public Health, Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Eva Rönmark
- Dept of Public Health and Clinical Medicine, Section for Sustainable Health, The OLIN Unit, Umeå University, Umeå, Sweden
| | - Alicia Abellan
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Barcelona, Spain
| | - Alvar Agusti
- Institut d'investigacions biomediques August Pi I Sunyer, Barcelona, Spain
- Respiratory Institute, Hospital Clinic, Univ. Barcelona, Barcelona, Spain
- CIBERESP (ISCiii), Barcelona, Spain
| | - Syed Hasan Arshad
- David Hide Asthma and Allergy Research Centre, Newport, UK
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - H. Marike Boezen
- Dept of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marie-Kathrin Breyer
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Dept of Respiratory and Critical Care Medicine, Clinic Penzing, Vienna, Austria
| | - Otto Burghuber
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Faculty of Medicine, Sigmund Freud University, Vienna, Austria
| | - Anneli Clea Bolund
- Dept of Public Health, Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Respiratory Medicine and Allergology, and Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ana Esplugues
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Nursing Department, Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO−Universitat Jaume I−Universitat de València, Valencia, Spain
| | - Rosa Faner
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ferran Ballester
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Nursing Department, Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO−Universitat Jaume I−Universitat de València, Valencia, Spain
| | - Judith Garcia-Aymerich
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Sadia Haider
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sylvia Hartl
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Dept of Respiratory and Critical Care Medicine, Clinic Penzing, Vienna, Austria
- Faculty of Medicine, Sigmund Freud University, Vienna, Austria
| | - Helena Backman
- Dept of Public Health and Clinical Medicine, Section for Sustainable Health, The OLIN Unit, Umeå University, Umeå, Sweden
| | - John W. Holloway
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Gerard H. Koppelman
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
- Dept of Pediatric Pulmonology and Pediatric Allergology, University Medical Center Groningen, Beatrix Children's Hospital, University of Groningen, Groningen, The Netherlands
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Dept of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), Leioa, Spain
- BIODONOSTIA Health Research Institute, Donostia-San Sebastian, Spain
| | - Turid Lingaas Holmen
- Dept of Public Health and General Practice, HUNT Research Center, NTNU, Levanger, Norway
| | - Lesley Lowe
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester Academic Health Science Centre, NIHR, Manchester, UK
- Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Sara M. Mensink-Bout
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Clare S. Murray
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester Academic Health Science Centre, NIHR, Manchester, UK
- Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Graham Roberts
- David Hide Asthma and Allergy Research Centre, Newport, UK
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Linnea Hedman
- Dept of Public Health and Clinical Medicine, Section for Sustainable Health, The OLIN Unit, Umeå University, Umeå, Sweden
| | - Vivi Schlünssen
- Dept of Public Health, Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Torben Sigsgaard
- Dept of Public Health, Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester Academic Health Science Centre, NIHR, Manchester, UK
- Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM-Parc Salut Mar, Barcelona, Spain
| | | | - Stephen Turner
- Royal Aberdeen Children's Hospital NHS Grampian, Aberdeen, UK
| | - Maarten Van den Berge
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
- Dept of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Roel C.H. Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Sigrid Anna Aalberg Vikjord
- Dept of Public Health and Nursing, Faculty of Medicine and Health Sciences, HUNT Research Centre, Norwegian University of Science and Technology (NTNU), Levanger, Norway
- Dept of Medicine and Rehabilitation, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | | | - Anke H. Maitland van der Zee
- Dept of Respiratory Medicine, Amsterdam University Medical Centers (UMC), University of Amsterdam
- Pediatric Respiratory Medicine, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
- Shared last authors
| | - Erik Melén
- Dept of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs’ Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
- Shared last authors
| |
Collapse
|
18
|
Looman KIM, Santos S, Moll HA, Leijten CWE, Grosserichter-Wagener C, Voortman T, Jaddoe VVW, van Zelm MC, Kiefte-de Jong JC. Childhood Adiposity Associated With Expanded Effector Memory CD8+ and Vδ2+Vγ9+ T Cells. J Clin Endocrinol Metab 2021; 106:e3923-e3935. [PMID: 34128988 DOI: 10.1210/clinem/dgab433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Adult obesity is associated with chronic low-grade inflammation and may give rise to future chronic disease. However, it is unclear whether adiposity-related inflammation is already apparent in childhood. OBJECTIVE To study associations between child adiposity measures with circulating monocytes and naive and memory subsets in CD4, CD8, and γδ T cell lineages. METHODS Ten-year-old children (n = 890) from the Generation R Cohort underwent dual-energy x-ray absorptiometry and magnetic resonance imaging for body composition (body mass index [BMI], fat mass index [FMI], android-to-gynoid fat mass ratio, visceral fat index, liver fat fraction). Blood samples were taken for detailed immunophenotyping of leukocytes by 11-color flow cytometry. RESULTS Several statistically significant associations were observed. A 1-SD increase in total FMI was associated with +8.4% (95% CI 2.0, 15.2) Vδ2+Vγ9+ and +7.4% (95% CI 2.4, 12.5) CD8+TEMRO cell numbers. A 1-SD increase in visceral fat index was associated with +10.7% (95% CI 3.3, 18.7) Vδ2+Vγ9+ and +8.3% (95% CI 2.6, 14.4) CD8+TEMRO cell numbers. Higher android-to-gynoid fat mass ratio was only associated with higher Vδ2+Vγ9+ T cells. Liver fat was associated with higher CD8+TEMRO cells but not with Vδ2+Vγ9+ T cells. Only liver fat was associated with lower Th17 cell numbers: a 1-SD increase was associated with -8.9% (95% CI -13.7, -3.7) Th17 cells. No associations for total CD8+, CD4+ T cells, or monocytes were observed. BMI was not associated with immune cells. CONCLUSION Higher Vδ2+Vγ9+ and CD8+TEMRO cell numbers in children with higher visceral fat index could reflect presence of adiposity-related inflammation in children with adiposity of a general population.
Collapse
Affiliation(s)
- Kirsten I M Looman
- Generation R Study Group, Erasmus MC, University Medical Center, GD, Rotterdam,the Netherlands
- Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center, GD, Rotterdam, the Netherlands
| | - Susana Santos
- Generation R Study Group, Erasmus MC, University Medical Center, GD, Rotterdam,the Netherlands
- Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center, GD, Rotterdam, the Netherlands
| | - Henriette A Moll
- Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center, GD, Rotterdam, the Netherlands
| | - Charlotte W E Leijten
- Generation R Study Group, Erasmus MC, University Medical Center, GD, Rotterdam,the Netherlands
- Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center, GD, Rotterdam, the Netherlands
| | | | - Trudy Voortman
- Generation R Study Group, Erasmus MC, University Medical Center, GD, Rotterdam,the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, GD, Rotterdam, the Netherlands
| | - Vincent V W Jaddoe
- Generation R Study Group, Erasmus MC, University Medical Center, GD, Rotterdam,the Netherlands
- Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center, GD, Rotterdam, the Netherlands
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Victoria, Australia
| | - Jessica C Kiefte-de Jong
- Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center, GD, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, GD, Rotterdam, the Netherlands
- Department of Public Health and Primary Care/LUMC Campus The Hague, Leiden University Medical Center, RC, Leiden,The Netherlands
| |
Collapse
|
19
|
Forno E, Abman SH, Singh J, Robbins ME, Selvadurai H, Schumacker PT, Robinson PD. Update in Pediatrics 2020. Am J Respir Crit Care Med 2021; 204:274-284. [PMID: 34126039 DOI: 10.1164/rccm.202103-0605up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Erick Forno
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Steven H Abman
- Department of Pediatrics, Children's Hospital Colorado, Denver, Colorado.,University of Colorado Anschutz School of Medicine, Denver, Colorado
| | - Jagdev Singh
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mary E Robbins
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiran Selvadurai
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Paul T Schumacker
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paul D Robinson
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Mensink-Bout SM, Santos S, de Jongste JC, Jaddoe VWV, Duijts L. Cardio-metabolic risk factors during childhood in relation to lung function and asthma. Pediatr Allergy Immunol 2021; 32:945-952. [PMID: 33759231 PMCID: PMC8360082 DOI: 10.1111/pai.13509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cardio-metabolic risk factors might have an adverse effect on respiratory outcomes, but associations in children are unknown. We aimed to study the longitudinal associations of cardio-metabolic risk factors with lung function and asthma at school age. We also examined whether any association was explained by child's body mass index (BMI). METHODS In a population-based cohort study among 4988 children, cardio-metabolic risk factors were measured at 6 and 10 years and included blood pressure, cholesterol, triglycerides, insulin, and C-reactive protein (CRP) concentrations. At age 10 years, lung function was measured by spirometry and current physician-diagnosed asthma was assessed by questionnaire. RESULTS After adjustment for confounders, child's BMI, and multiple testing, we observed that a higher diastolic blood pressure at the age of 6 years was associated with a higher forced vital capacity (FVC) at the age of 10 years (Z-score difference (95% CI): 0.05 (0.01, 0.08), per SDS increase in diastolic blood pressure). Also, child's CRP concentrations above the 75th percentile at both ages 6 and 10 years were related to a lower FVC as compared to CRP concentrations below the 75th percentile at both ages (Z-score difference (95% CI) -0.21 (-0.36, -0.06)). No consistent associations of other cardio-metabolic risk factors with respiratory outcomes were observed. CONCLUSION Blood pressure and CRP, but not lipids and insulin, were associated with lower lung function but not with asthma. The underlying mechanisms and long-term effects of these associations require further investigation.
Collapse
Affiliation(s)
- Sara M Mensink-Bout
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Johan C de Jongste
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Pediatric obese asthma is a complex disease that remains poorly understood. The increasing worldwide incidence of both asthma and obesity over the last few decades, their current high prevalence and the challenges in treating obese asthmatic patients all highlight the importance of a better understanding of the pathophysiological mechanisms in obese asthma. While it is well established that patients with obesity are at an increased risk of developing asthma, the mechanisms by which obesity drives the onset of asthma, and modifies existing asthma, remain unclear. Here, we will focus on mechanisms by which obesity alters immune function in asthma. RECENT FINDINGS Lung parenchyma has an altered structure in some pediatric obese asthmatics, known as dysanapsis. Central adiposity is linked to reduced pulmonary function and a better predictor of asthma risk in children than BMI. Obesity in young children is associated with an increased risk of developing asthma, as well as early puberty, and hormonal alterations are implicated in obese asthma. Obesity and asthma each yield immunometabolic dysregulation separately and we are learning more about alterations in these pathways in pediatric obese asthma and the potential impact of bariatric surgery on those processes. SUMMARY The recent progress in clarifying the connections between childhood obesity and asthma and their combined impacts on immune function moves us closer to the goals of improved understanding of the pathophysiological mechanisms underpinning obese asthma and improved therapeutic target selection. However, this common inflammatory disease remains understudied, especially in children, and much remains to be learned.
Collapse
Affiliation(s)
- Ceire Hay
- Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Allergy Immunology, Philadelphia, PA
| | - Sarah E. Henrickson
- Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Allergy Immunology, Philadelphia, PA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Kotecha SJ, Lowe J, Granell R, Watkins WJ, Henderson AJ, Kotecha S. The effect of catch-up growth in the first year of life on later wheezing phenotypes. Eur Respir J 2020; 56:13993003.00884-2020. [PMID: 32586886 PMCID: PMC7758542 DOI: 10.1183/13993003.00884-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/14/2020] [Indexed: 11/05/2022]
Abstract
Although wheezing phenotypes have previously been accurately described using well-defined cohorts reporting longitudinal wheezing, early-life factors which lead to development of each wheezing phenotype remain uncertain [1, 2]. Birth weight and catch-up growth affect later respiratory outcomes [3], but the influence of weight gain on specific wheezing phenotypes in term-born children has not been described. Rapid weight gain in early-life is associated with increased rates of childhood wheeze and lower lung function [4, 5]. In one meta-analysis rapid infant weight gain was linked to pre-school wheeze and school-aged asthma; and to increased childhood respiratory symptoms in another meta-analysis [6, 7]. Effect of weight gain in early-life in term-born children on wheezing in early-life is less well reported [8]. In contrast, rapid increase in body mass index in infancy is associated with increased risk of asthma at school-age in preterm-born infants [9]. This study shows that catch-up growth in infancy is associated with increased early wheeze in childhood, so care is needed to not to excessively feed in early infancyhttps://bit.ly/2YPxtBw
Collapse
Affiliation(s)
- Sarah J Kotecha
- Dept of Child Health, Cardiff University School of Medicine, Cardiff, UK.,Joint first authors
| | - John Lowe
- Dept of Child Health, Cardiff University School of Medicine, Cardiff, UK.,Joint first authors
| | - Raquel Granell
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - W John Watkins
- Dept of Child Health, Cardiff University School of Medicine, Cardiff, UK
| | - A John Henderson
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sailesh Kotecha
- Dept of Child Health, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
23
|
Forno E. Moving Beyond the Confines of Body Mass Index in the Quest to Understand Obese Asthma. Am J Respir Crit Care Med 2020; 201:271-272. [PMID: 31682481 PMCID: PMC6999093 DOI: 10.1164/rccm.201910-2031ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Erick Forno
- Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburgh, Pennsylvaniaand.,Division of Pulmonary MedicineChildren's Hospital of PittsburghPittsburgh, Pennsylvania
| |
Collapse
|
24
|
Latimer LE, Duiverman M, Abdel-Aziz MI, Caliskan G, Mensink-Bout SM, Mendoza-Valderrey A, Justet A, Omura J, Srikanthan K, De Brandt J. ERS International Congress 2019: highlights from Best Abstract awardees. Breathe (Sheff) 2019; 15:e143-e149. [PMID: 32269637 PMCID: PMC7121880 DOI: 10.1183/20734735.0330-2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
#ERSCongress 2019: highlights from Best Abstract awardees http://bit.ly/2XWlD7Y.
Collapse
Affiliation(s)
- Lorna E. Latimer
- Centre for Exercise and Rehabilitation Science and Institute for Lung Health, NIHR Leicester Biomedical Research Centre – Respiratory, Leicester, UK
- Dept of Respiratory Sciences, University of Leicester, Leicester, UK
- All authors contributed equally
| | - Marieke Duiverman
- Dept of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- All authors contributed equally
| | - Mahmoud I. Abdel-Aziz
- Dept of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Dept of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- All authors contributed equally
| | - Gulser Caliskan
- Dept of Diagnostics and Public Health, Unit of Epidemiology and Medical Statistics, University of Verona, Verona, Italy
- All authors contributed equally
| | - Sara M. Mensink-Bout
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Dept of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- All authors contributed equally
| | - Alberto Mendoza-Valderrey
- Servicio de Neumología, Hospital Universitario Vall d'Hebron, Departamento de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- All authors contributed equally
| | - Aurelien Justet
- Dept of Respiratory Medicine, CHU de Caen, Caen, France
- All authors contributed equally
| | - Junichi Omura
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
- All authors contributed equally
| | - Karthi Srikanthan
- Royal Brompton and Harefield NHS Foundation Trust, National Heart and Lung Institute, Imperial College, London, UK
- All authors contributed equally
| | - Jana De Brandt
- REVAL– Rehabilitation Research Center, BIOMED – Biomedical Research Institute, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|