1
|
Asare-Baah M, Johnston L, Dominique L, Lauzardo M, Séraphin MN. Timing and predictors of disease incidence among named contacts of reported tuberculosis patients in a low incidence setting. PLoS One 2025; 20:e0313801. [PMID: 40334208 PMCID: PMC12058168 DOI: 10.1371/journal.pone.0313801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/04/2025] [Indexed: 05/09/2025] Open
Abstract
Contact investigations are crucial for tuberculosis (TB) control, yet the temporal dynamics of disease progression among exposed contacts remain poorly understood. We conducted a retrospective cohort study of 44,106 contacts linked to 6,243 index TB cases diagnosed between 2009 and 2023. During the 15-year follow-up, 454 contacts developed TB disease, with 43.4% being incident cases. Using time-to-event analysis with left truncation to account for varying follow-up times, and mixed effect Cox models to account for index case and county-level variability, we estimated the median time to TB incidence at 11 (IQR 4-48) months after initiating contact investigation. The risk of TB disease varied markedly by age and immune status. Children aged 0-15 showed over nine times higher risk compared to adults aged 25-44 (aHR = 9.59; 95% CI: 3.17-29.02; p < 0.001). Contacts co-infected with HIV demonstrated a three-fold increased risk of TB (aHR = 2.35; 95% CI: 1.08-5.10; p = 0.031) relative to those without HIV. A history of a previous TB diagnosis conferred a protective effect on the risk of TB incident (aHR = 0.40; 95% CI: 0.20-0.80; p = 0.009). Additionally, individuals who had incomplete therapy for latent TB infection (LTBI) also experienced a protective effect (aHR = 0.32; 95% CI: 0.15-0.71; p = 0.005). These findings highlight a critical window for intervention with follow-up needed for at least 1-4 years after initial contact investigations. The results also emphasize the need for targeted, risk-stratified surveillance and LTBI treatment for children and individuals with HIV who are contacts of confirmed TB cases.
Collapse
Affiliation(s)
- Michael Asare-Baah
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Division of Infectious Diseases and Global Medicine, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Lori Johnston
- Florida Department of Health, Bureau of Tuberculosis Control, Tallahassee, Florida, United States of America
| | - Lina Dominique
- Florida Department of Health, Bureau of Tuberculosis Control, Tallahassee, Florida, United States of America
| | - Michael Lauzardo
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Division of Infectious Diseases and Global Medicine, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Marie Nancy Séraphin
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Division of Infectious Diseases and Global Medicine, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| |
Collapse
|
2
|
Fujita K, Elkington PT. Cancer immunotherapy with immune checkpoint inhibitors and infections: A particular focus on mycobacterial infections. Respir Investig 2024; 62:339-347. [PMID: 38417355 DOI: 10.1016/j.resinv.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 02/11/2024] [Indexed: 03/01/2024]
Abstract
Cancer treatment is undergoing a major transformation with the advent of immunotherapy with immune checkpoint inhibitors. These drugs, which have a different mechanism of action from conventional cytotoxic chemotherapy, are transforming treatment paradigms for many patients suffering from advanced cancer. On the other hand, they are often complicated by specific adverse events, known as immune-related adverse events (irAEs). Infections occurring during immunotherapy with immune checkpoint inhibitors have recently received increasing attention and sometimes are seen as part of irAEs. Amongst these, mycobacterial infections have attracted particular attention. Recent reports have shown that infections occurring during immunotherapy can not only be caused by immunosuppression, but in addition new type of infections are observed that are not caused by immunosuppression. Specifically, tuberculosis (TB) has recently been shown to develop as a result of an imbalance in immunoregulation and an excessive immune response. This review highlights reports of infections during immunotherapy with immune checkpoint inhibitors, followed by a focus on the association with TB and nontuberculous mycobacteria. It concludes with a discussion of the possible mechanisms of pathogenesis and the implications for clinical practice.
Collapse
Affiliation(s)
- Kohei Fujita
- Division of Respiratory Medicine, Center for Respiratory Diseases, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.
| | - Paul T Elkington
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
3
|
Vaddi A, Hulsebus HJ, O’Neill EL, Knight V, Chan ED. A narrative review of the controversy on the risk of mycobacterial infections with immune checkpoint inhibitor use: does Goldilocks have the answer? J Thorac Dis 2024; 16:1601-1624. [PMID: 38505086 PMCID: PMC10944775 DOI: 10.21037/jtd-23-1395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/11/2024] [Indexed: 03/21/2024]
Abstract
Background and Objective Immune checkpoint inhibitors (ICIs) have revolutionized oncologic treatment. Whether ICIs increase susceptibility to or provide protection against mycobacterial infections remains controversial. The objective of this narrative review is to summarize the literature on the link between ICI use and mycobacterial infections-tuberculosis and non-tuberculous mycobacterial (NTM) infections-and to critically discuss evidence linking ICIs with mycobacterial infections, the possible confounders, and, if indeed the ICIs predispose to such infections, the potential mechanisms of how this may occur. Methods We conducted a literature search on PubMed for relevant articles published from 2011 to current time [2024] utilizing specific keywords of "immune checkpoint inhibitors", "programmed cell death protein-1", "PD-1", "programmed death-ligand 1", "PD-L1", "cytotoxic T-lymphocyte-associated protein-4", or "CTLA-4" with that of "non-tuberculous mycobacterial lung disease", "tuberculosis", or "mycobacteria". The bibliographies of identified papers were perused for additional relevant articles. Key Content and Findings Ex vivo studies using human cells indicate that ICIs would be salubrious for the host against mycobacteria. Yet, many case reports associate ICI use with mycobacterial infections, mostly tuberculosis. Potential confounders include immunosuppression from the cancer, concomitant use of immunosuppressive drugs, lung injury and distortion from chemotherapeutics or radiation, and reporting bias. Mice with genetic disruption of the programmed cell death protein-1 (PD-1) gene are paradoxically more susceptible to Mycobacterium tuberculosis (M. tuberculosis). In contrast, mice administered neutralizing antibody to T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) or knocked out for TIM3 gene have greater capacity to control an M. tuberculosis infection. We posit that hosts with greater baseline immunodeficiency are more likely to derive benefit from ICIs against mycobacterial infections than those with more intact immunity, where ICIs are more likely to be detrimental. Conclusions Studies are needed to test the hypothesis that ICIs may either protect or predispose to mycobacterial infections, depending on the baseline host immune status. Prospective studies are required of patients on ICIs that control for potential confounders as anecdotal case reports are insufficient to provide a causal link. Murine studies with ICIs are also required to corroborate or refute studies of mice with genetic disruption of an immune checkpoint.
Collapse
Affiliation(s)
- Akshara Vaddi
- Department of Biology, University of Wisconsin, Madison, WI, USA
| | - Holly J. Hulsebus
- Complement Laboratory, Advance Diagnostics, National Jewish Health, Denver, CO, USA
| | - Emily L. O’Neill
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vijaya Knight
- Clinical and Translational Allergy and Immunology Laboratory, Children’s Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Edward D. Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA
- Department of Academic Affairs, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
4
|
Yang J, Zhang L, Qiao W, Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e353. [PMID: 37674971 PMCID: PMC10477518 DOI: 10.1002/mco2.353] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Tuberculosis (TB) remains a significant public health concern in the 21st century, especially due to drug resistance, coinfection with diseases like immunodeficiency syndrome (AIDS) and coronavirus disease 2019, and the lengthy and costly treatment protocols. In this review, we summarize the pathogenesis of TB infection, therapeutic targets, and corresponding modulators, including first-line medications, current clinical trial drugs and molecules in preclinical assessment. Understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection and important biological targets can lead to innovative treatments. While most antitubercular agents target pathogen-related processes, host-directed therapy (HDT) modalities addressing immune defense, survival mechanisms, and immunopathology also hold promise. Mtb's adaptation to the human host involves manipulating host cellular mechanisms, and HDT aims to disrupt this manipulation to enhance treatment effectiveness. Our review provides valuable insights for future anti-TB drug development efforts.
Collapse
Affiliation(s)
- Jiaxing Yang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Laiying Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wenliang Qiao
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Lung Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
5
|
Fujita K, Elkington P, Redelman-Sidi G, Kanai O, Yamamoto Y, Imakita T, Okamura M, Nakatani K, Mio T. Serial interferon-gamma release assay in lung cancer patients receiving immune checkpoint inhibitors: a prospective cohort study. Cancer Immunol Immunother 2022; 71:2757-2764. [PMID: 35429244 PMCID: PMC10992338 DOI: 10.1007/s00262-022-03198-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/30/2022] [Indexed: 11/30/2022]
Abstract
Recent advancements in cancer immunotherapy using immune checkpoint inhibitors (ICIs) have received considerable attention. Although advantageous, ICI therapies cause unique immune-related adverse events (irAEs) in some patients. Moreover, infectious diseases, such as tuberculosis, have been recognized as emerging concerns during immunotherapy. We aimed to evaluate the interferon-gamma release assay (IGRA) conversion rate and active tuberculosis incidence during immunotherapy to elucidate the incidence of tuberculosis reactivation after ICI therapy induction.We prospectively assessed IGRA results in lung cancer patients who received ICI monotherapy before ICI treatment and at 6 and 12 months after ICI treatment. We also assessed computed tomography findings to determine the presence of active tuberculosis when positive IGRA results were obtained. The ICIs used were nivolumab, pembrolizumab, atezolizumab, and durvalumab.In all, 178 patients were prospectively recruited between March 2017 and March 2020. Of these, 123 completed serial IGRAs, of whom 18, 101, and 4, respectively, had positive, negative, and indeterminate IGRAs at baseline. Three and four patients, respectively, showed IGRA reversion and conversion during immunotherapy. One patient with a sustained, stable positive IGRA and one with IGRA conversion developed active pulmonary tuberculosis during immunotherapy.We found that 3.3% and 1.6% of the patients developed IGRA conversion and active tuberculosis, respectively. Of the four patients who developed IGRA conversion, one developed active pulmonary tuberculosis during immunotherapy. Another patient with sustained, stable positive IGRA developed active tuberculosis. Physicians should be alert to tuberculosis development during ICI therapy, and IGRA testing is a useful tool to assess the risk of developing active tuberculosis.
Collapse
Affiliation(s)
- Kohei Fujita
- Division of Respiratory Medicine, Center for Respiratory Diseases, National Hospital Organization Kyoto Medical Center, 1-1, Fukakusa-Mukaihata, Fushimi-ku, Kyoto, 612-8555, Japan.
| | - Paul Elkington
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Gil Redelman-Sidi
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Osamu Kanai
- Division of Respiratory Medicine, Center for Respiratory Diseases, National Hospital Organization Kyoto Medical Center, 1-1, Fukakusa-Mukaihata, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Yuki Yamamoto
- Division of Respiratory Medicine, Center for Respiratory Diseases, National Hospital Organization Kyoto Medical Center, 1-1, Fukakusa-Mukaihata, Fushimi-ku, Kyoto, 612-8555, Japan
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuma Imakita
- Division of Respiratory Medicine, Center for Respiratory Diseases, National Hospital Organization Kyoto Medical Center, 1-1, Fukakusa-Mukaihata, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Misato Okamura
- Division of Respiratory Medicine, Center for Respiratory Diseases, National Hospital Organization Kyoto Medical Center, 1-1, Fukakusa-Mukaihata, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Koichi Nakatani
- Division of Respiratory Medicine, Center for Respiratory Diseases, National Hospital Organization Kyoto Medical Center, 1-1, Fukakusa-Mukaihata, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Tadashi Mio
- Division of Respiratory Medicine, Center for Respiratory Diseases, National Hospital Organization Kyoto Medical Center, 1-1, Fukakusa-Mukaihata, Fushimi-ku, Kyoto, 612-8555, Japan
| |
Collapse
|
6
|
Shao MM, Yi FS, Huang ZY, Peng P, Wu FY, Shi HZ, Zhai K. T Cell Receptor Repertoire Analysis Reveals Signatures of T Cell Responses to Human Mycobacterium tuberculosis. Front Microbiol 2022; 13:829694. [PMID: 35197957 PMCID: PMC8859175 DOI: 10.3389/fmicb.2022.829694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022] Open
Abstract
Characterization of T cell receptor (TCR) repertoires is essential for understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection involving T cell adaptive immunity. The characteristics of TCR sequences and distinctive signatures of T cell subsets in tuberculous patients are still unclear. By combining single-cell TCR sequencing (sc-TCR seq) with single-cell RNA sequencing (sc-RNA seq) and flow cytometry to characterize T cells in tuberculous pleural effusions (TPEs), we identified 41,718 CD3+ T cells in TPEs and paired blood samples, including 30,515 CD4+ T cells and 11,203 CD8+ T cells. Compared with controls, no differences in length and profile of length distribution were observed in complementarity determining region 3 (CDR3) in both CD4+ and CD8+ T cells in TPE. Altered hydrophobicity was demonstrated in CDR3 in CD8+ T cells and a significant imbalance in the TCR usage pattern of T cells with preferential expression of TRBV4-1 in TPE. A significant increase in clonality was observed in TCR repertoires in CD4+ T cells, but not in CD8+ T cells, although both enriched CD4+ and CD8+ T cells showed TH1 and cytotoxic signatures. Furthermore, we identified a new subset of polyfunctional CD4+ T cells with CD1-restricted, TH1, and cytotoxic characteristics, and this subset might provide protective immunity against Mtb.
Collapse
Affiliation(s)
- Ming-Ming Shao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feng-Shuang Yi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhong-Yin Huang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Peng Peng
- Department of Respiratory and Critical Care Medicine, Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Feng-Yao Wu
- Department of Tuberculosis, Nanning Fourth People’s Hospital, Nanning, China
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Kan Zhai
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Kan Zhai,
| |
Collapse
|
7
|
Elkington P, Polak ME, Reichmann MT, Leslie A. Understanding the tuberculosis granuloma: the matrix revolutions. Trends Mol Med 2022; 28:143-154. [PMID: 34922835 PMCID: PMC8673590 DOI: 10.1016/j.molmed.2021.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) causes the human disease tuberculosis (TB) and remains the top global infectious pandemic after coronavirus disease 2019 (COVID-19). Furthermore, TB has killed many more humans than any other pathogen, after prolonged coevolution to optimise its pathogenic strategies. Full understanding of fundamental disease processes in humans is necessary to successfully combat this highly successful pathogen. While the importance of immunodeficiency has been long recognised, biologic therapies and unbiased approaches are providing unprecedented insights into the intricacy of the host-pathogen interaction. The nature of a protective response is more complex than previously hypothesised. Here, we integrate recent evidence from human studies and unbiased approaches to consider how Mtb causes human TB and highlight the recurring theme of extracellular matrix (ECM) turnover.
Collapse
Affiliation(s)
- Paul Elkington
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Marta E Polak
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Michaela T Reichmann
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Alasdair Leslie
- Department of Infection and Immunity, University College London, London, UK; Africa Health Research Institute, KwaZulu-Natal, South Africa
| |
Collapse
|
8
|
Wang Z, Wang Y, Lin L, Wu T, Zhao Z, Ying B, Chang L. A finger-driven disposable micro-platform based on isothermal amplification for the application of multiplexed and point-of-care diagnosis of tuberculosis. Biosens Bioelectron 2022; 195:113663. [PMID: 34610534 DOI: 10.1016/j.bios.2021.113663] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/29/2021] [Accepted: 09/19/2021] [Indexed: 02/08/2023]
Abstract
Tuberculosis (TB) remains the high-risk infectious pathogen that caused global pandemic and high mortality, particularly in the areas lack in health resources. Clinical TB screening and diagnosis are so far mainly conducted on limited types of commercial platforms, which are expensive and require skilled personnel. In this work, we introduced a low-cost and portable finger-driven microfluidic chip (named Fd-MC) based on recombinase polymerase amplification (RPA) for rapid on-site detection of TB. After injection of the pre-treated sample solution, the pre-packaged buffer was driven by the pressure generated by the finger-actuated operation to accomplish sequential processes of diagnosis in a fully isolated microchannel. An in-situ fluorescence strategy based on FAM-probe was implemented for on-chip results read-out though a hand-held UV lamp. Hence, the Fd-MC proved unique advantageous for avoiding the risk of infection or environmental contamination. In addition, the Fd-MC was designed for multiplexed detection, which is able to not only identify TB/non-TB infection, but also differentiate between human Mycobacterium tuberculosis and Mycobacterium bovis. The platform was verified in 37 clinical samples, statistically with 100% specificity and 95.2% sensitivity as compared to commercial real-time RPA. Overall, the proposed platform eliminates the need on external pumps and skilled personnel, holding promise to POC testing in the resource-limited area.
Collapse
Affiliation(s)
- Zhiying Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Long Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Tao Wu
- Department of Laboratory Medicine, Med+X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Clinical Laboratory Medicine, People's Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest Minzu University), Yinchuan 750002, China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine, Med+X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, Med+X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
9
|
Rodel HE, Ferreira IATM, Ziegler CGK, Ganga Y, Bernstein M, Hwa SH, Nargan K, Lustig G, Kaplan G, Noursadeghi M, Shalek AK, Steyn AJC, Sigal A. Aggregated Mycobacterium tuberculosis Enhances the Inflammatory Response. Front Microbiol 2021; 12:757134. [PMID: 34925266 PMCID: PMC8674758 DOI: 10.3389/fmicb.2021.757134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) bacilli readily aggregate. We previously reported that Mtb aggregates lead to phagocyte death and subsequent efficient replication in the dead infected cells. Here, we examined the transcriptional response of human monocyte derived macrophages to phagocytosis of aggregated Mtb relative to phagocytosis of non-aggregated single or multiple bacilli. Infection with aggregated Mtb led to an early upregulation of pro-inflammatory associated genes and enhanced TNFα signaling via the NFκB pathway. These pathways were significantly more upregulated relative to infection with single or multiple non-aggregated bacilli per cell. Phagocytosis of aggregates led to a decreased phagosome acidification on a per bacillus basis and increased phagocyte cell death, which was not observed when Mtb aggregates were heat killed prior to phagocytosis. Mtb aggregates, observed in a granuloma from a patient, were found surrounding a lesion cavity. These observations suggest that TB aggregation may be a mechanism for pathogenesis. They raise the possibility that aggregated Mtb, if spread from individual to individual, could facilitate increased inflammation, Mtb growth, and macrophage cell death, potentially leading to active disease, cell necrosis, and additional cycles of transmission.
Collapse
Affiliation(s)
- Hylton E. Rodel
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | | - Carly G. K. Ziegler
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, United States
- Department of Chemistry, Institute for Medical Engineering and Sciences, MIT, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States
| | - Yashica Ganga
- Africa Health Research Institute, Durban, South Africa
| | | | - Shi-Hsia Hwa
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | | - Gila Lustig
- Africa Health Research Institute, Durban, South Africa
| | - Gilla Kaplan
- University of Cape Town, Cape Town, South Africa
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Alex K. Shalek
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, United States
- Department of Chemistry, Institute for Medical Engineering and Sciences, MIT, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States
| | - Adrie J. C. Steyn
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology, Centres for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
10
|
Reichmann MT, Tezera LB, Vallejo AF, Vukmirovic M, Xiao R, Reynolds J, Jogai S, Wilson S, Marshall B, Jones MG, Leslie A, D’Armiento JM, Kaminski N, Polak ME, Elkington P. Integrated transcriptomic analysis of human tuberculosis granulomas and a biomimetic model identifies therapeutic targets. J Clin Invest 2021; 131:148136. [PMID: 34128839 PMCID: PMC8321576 DOI: 10.1172/jci148136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB) is a persistent global pandemic, and standard treatment for it has not changed for 30 years. Mycobacterium tuberculosis (Mtb) has undergone prolonged coevolution with humans, and patients can control Mtb even after extensive infection, demonstrating the fine balance between protective and pathological host responses within infected granulomas. We hypothesized that whole transcriptome analysis of human TB granulomas isolated by laser capture microdissection could identify therapeutic targets, and that comparison with a noninfectious granulomatous disease, sarcoidosis, would identify disease-specific pathological mechanisms. Bioinformatic analysis of RNAseq data identified numerous shared pathways between TB and sarcoidosis lymph nodes, and also specific clusters demonstrating TB results from a dysregulated inflammatory immune response. To translate these insights, we compared 3 primary human cell culture models at the whole transcriptome level and demonstrated that the 3D collagen granuloma model most closely reflected human TB disease. We investigated shared signaling pathways with human disease and identified 12 intracellular enzymes as potential therapeutic targets. Sphingosine kinase 1 inhibition controlled Mtb growth, concurrently reducing intracellular pH in infected monocytes and suppressing inflammatory mediator secretion. Immunohistochemical staining confirmed that sphingosine kinase 1 is expressed in human lung TB granulomas, and therefore represents a host therapeutic target to improve TB outcomes.
Collapse
Affiliation(s)
- Michaela T. Reichmann
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Liku B. Tezera
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Department of Infection and Immunity, University College London, London, United Kingdom
| | - Andres F. Vallejo
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Milica Vukmirovic
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rui Xiao
- Columbia University Medical Center, New York, New York, USA
| | | | - Sanjay Jogai
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Susan Wilson
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ben Marshall
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mark G. Jones
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Alasdair Leslie
- Department of Infection and Immunity, University College London, London, United Kingdom
- Africa Health Research Institute, KwaZulu Natal, South Africa
| | | | - Naftali Kaminski
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Marta E. Polak
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Paul Elkington
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
11
|
Ogongo P, Tezera LB, Ardain A, Nhamoyebonde S, Ramsuran D, Singh A, Ng’oepe A, Karim F, Naidoo T, Khan K, Dullabh KJ, Fehlings M, Lee BH, Nardin A, Lindestam Arlehamn CS, Sette A, Behar SM, Steyn AJ, Madansein R, Kløverpris HN, Elkington PT, Leslie A. Tissue-resident-like CD4+ T cells secreting IL-17 control Mycobacterium tuberculosis in the human lung. J Clin Invest 2021; 131:142014. [PMID: 33848273 PMCID: PMC8121523 DOI: 10.1172/jci142014] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
T cell immunity is essential for the control of tuberculosis (TB), an important disease of the lung, and is generally studied in humans using peripheral blood cells. Mounting evidence, however, indicates that tissue-resident memory T cells (Trms) are superior at controlling many pathogens, including Mycobacterium tuberculosis (M. tuberculosis), and can be quite different from those in circulation. Using freshly resected lung tissue, from individuals with active or previous TB, we identified distinct CD4+ and CD8+ Trm-like clusters within TB-diseased lung tissue that were functional and enriched for IL-17-producing cells. M. tuberculosis-specific CD4+ T cells producing TNF-α, IL-2, and IL-17 were highly expanded in the lung compared with matched blood samples, in which IL-17+ cells were largely absent. Strikingly, the frequency of M. tuberculosis-specific lung T cells making IL-17, but not other cytokines, inversely correlated with the plasma IL-1β levels, suggesting a potential link with disease severity. Using a human granuloma model, we showed the addition of either exogenous IL-17 or IL-2 enhanced immune control of M. tuberculosis and was associated with increased NO production. Taken together, these data support an important role for M. tuberculosis-specific Trm-like, IL-17-producing cells in the immune control of M. tuberculosis in the human lung.
Collapse
Affiliation(s)
- Paul Ogongo
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Liku B. Tezera
- National Institute for Health Research Southampton Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, and
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Amanda Ardain
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Shepherd Nhamoyebonde
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Alveera Singh
- Africa Health Research Institute, Durban, South Africa
| | | | - Farina Karim
- Africa Health Research Institute, Durban, South Africa
| | - Taryn Naidoo
- Africa Health Research Institute, Durban, South Africa
| | - Khadija Khan
- Africa Health Research Institute, Durban, South Africa
| | - Kaylesh J. Dullabh
- Department of Cardiothoracic Surgery, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | | | | | | | - Alessandro Sette
- La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Adrie J.C. Steyn
- Africa Health Research Institute, Durban, South Africa
- Department of Microbiology and
- Center for AIDS Research and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rajhmun Madansein
- Department of Cardiothoracic Surgery, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Henrik N. Kløverpris
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Paul T. Elkington
- National Institute for Health Research Southampton Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, and
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Alasdair Leslie
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
12
|
Al-Radideh O, Bhavsar N, Chan KH. An Unusual Radiographic Manifestation of Primary Progressive Pulmonary Tuberculosis. Am J Med Sci 2021; 361:e55-e56. [PMID: 33933226 DOI: 10.1016/j.amjms.2020.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/15/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Omar Al-Radideh
- Department of Medical Education, Saint Michael's Medical Center, New York Medical College, Newark, USA
| | - Nilam Bhavsar
- Department of Medical Education, Saint Michael's Medical Center, New York Medical College, Newark, USA
| | - Kok Hoe Chan
- Department of Medical Education, Saint Michael's Medical Center, New York Medical College, Newark, USA.
| |
Collapse
|
13
|
Ghermi M, Reguieg S, Attab K, Mened N, Ghomari N, Guendouz Elghoul FZ, Saichi F, Bossi S, Bouali-Youcef Y, Bey Baba Hamed M, Kallel Sellami M. Interferon-γ (+874 T/A) and interleukin-10 (-1082 G/A) genes polymorphisms are associated with active tuberculosis in the Algerian population of Oran's city. Indian J Tuberc 2021; 68:221-229. [PMID: 33845956 DOI: 10.1016/j.ijtb.2020.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/20/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIMS Polymorphisms within genes encoding the cytokines involved in anti-tuberculosis immunity have been widely studied and sometimes associated with an increased risk of developing the active form of tuberculosis (TB). This study analyzes for the first time the impact of two polymorphisms, namely IFNG+874 T/A and IL10-1082 G/A, in the Algerian population where tuberculosis is moderately endemic. METHODS This case-control study included 104 healthy controls and 141 active TB patients: 75 extrapulmonary (EPTB) and 66 pulmonary (PTB). They were all genotyped by refractory mutational system-PCR amplification. In order to measure the functional impact of IFNG+874 T/A on the production rate of IFN-γ, 43 patients performed a QuantiFERON®Gold In-tube test. RESULTS The IFNG+874 AA genotype was associated with a higher risk of developing EPTB (OR = 2.52; 95%CI = 1.23-5.18; p = 0.012) while the IFNG+874 TA genotype was associated with a greater protection (OR = 0.34, 95%CI = 0.16-0.74; p = 0.006) which was further characterized by a high production of IFN-γ (p = 0.001). Similarly, the allele A of SNP IL10-1082 G/A, especially in its homozygous form (AA), were overrepresented in PTB patients (p = 0.010 and 0.019, respectively). The combination of both susceptibility genotypes (AA/AA) was strongly associated with risk of development of active TB (OR = 8.58; 95% C.I = 1.95-37.70, p = 0.004). This susceptibility combination was only significant in men regarding PTB (OR = 11.05; 95% C.I = 1.32-92.72, p = 0.027). Additionally, IFNG+874 TA and IL10-1082G∗ genotypes combination was mostly encountered in men controls and conferred the highest protection rate against EPTB (OR = 0.25; 95% C.I = 0.08-0.76, p = 0.015). CONCLUSION These two cytokines genes polymorphisms are associated with active TB susceptibility in the Algerian population. They act synergistically in terms of protection and susceptibility regarding the two forms of the disease. Moreover, these associations were more marked among males suggesting a potential role of gender.
Collapse
Affiliation(s)
- Mohamed Ghermi
- Biotechnology Department, University of Oran1 Ahmed Ben Bella, Oran, Algeria; AQUABIOR Laboratory, University of Oran1 Ahmed Ben Bella, Oran, Algeria; Laboratory of Immuno-Rheumatology (LR05 SP01), La Rabta Hospital, Tunis, Tunisia.
| | - Sofiane Reguieg
- Immunology Department, EHU 1(er) Novembre Hospital, Oran, Algeria
| | - Khadidja Attab
- Biotechnology Department, University of Oran1 Ahmed Ben Bella, Oran, Algeria; AQUABIOR Laboratory, University of Oran1 Ahmed Ben Bella, Oran, Algeria
| | - Nedjma Mened
- Tuberculosis and Lung Disease Control Service (UCTMR) of Essenia, Oran, Algeria
| | - Naima Ghomari
- Tuberculosis and Lung Disease Control Service (UCTMR) of Essenia, Oran, Algeria
| | | | - Fatma Saichi
- Tuberculosis and Lung Disease Control Service (UCTMR) of Essenia, Oran, Algeria
| | - Saliha Bossi
- Tuberculosis and Lung Disease Control Service (UCTMR) of Essenia, Oran, Algeria
| | | | - Mohammed Bey Baba Hamed
- AQUABIOR Laboratory, University of Oran1 Ahmed Ben Bella, Oran, Algeria; Higher School of Biological Sciences of Oran (ESSBO), Oran, Algeria
| | - Maryam Kallel Sellami
- Immunology Department, La Rabta Hospital, Tunis, Tunisia; Laboratory of Immuno-Rheumatology (LR05 SP01), La Rabta Hospital, Tunis, Tunisia
| |
Collapse
|
14
|
Parmar K, Siddiqui A, Nugent K. Bacillus Calmette-Guerin Vaccine and Nonspecific Immunity. Am J Med Sci 2021; 361:683-689. [PMID: 33705721 PMCID: PMC7938189 DOI: 10.1016/j.amjms.2021.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
Bacillus Calmette-Guerin (BCG) vaccine is one of the most widely used vaccines in the world. It protects against many non-mycobacterial infections secondary to its nonspecific immune effects. The mechanism for these effects includes modification of innate and adaptive immunity. The alteration in innate immunity is through histone modifications and epigenetic reprogramming of monocytes to develop an inflammatory phenotype, a process called “trained immunity.” The memory T cells of adaptive immunity are also responsible for resistance against secondary infections after administration of BCG vaccine, a process called “heterologous immunity.” Bacillus Calmette-Guerin vaccine is known to not only boosts immune responses to many vaccines when they are co-administered but also decrease severity of these infections when used alone. The BCG vaccine by itself induces a TH1 type response, and its use as a vector has also shown promising results. This review article summarizes the studies showing effects of BCG vaccines on various viral infections, its role in enhancing vaccine responses, the mechanisms for this protective effect, and information on its effect on COVID-19.
Collapse
Affiliation(s)
- Kanak Parmar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Afzal Siddiqui
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
15
|
Donald PR, Diacon AH, Thee S. Anton Ghon and His Colleagues and Their Studies of the Primary Focus and Complex of Tuberculosis Infection and Their Relevance for the Twenty-First Century. Respiration 2020; 100:557-567. [PMID: 33321506 DOI: 10.1159/000509522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/16/2020] [Indexed: 11/19/2022] Open
Abstract
Anton Ghon is well known in the field of childhood tuberculosis, and the tuberculosis primary focus and complex are frequently called the Ghon focus and complex; this is largely the result of the wide publication of the English translation of his monograph "Der primäre Lungenherd bei der Tuberkulose der Kinder." Ghon's studies are frequently quoted, but precise details of his monograph are neglected, his results often misquoted, and his later publications virtually unknown. This review highlights aspects of Ghon's anatomical pathology studies in children and adults not necessarily dying of tuberculosis but with signs of tuberculosis infection. Ghon found a single primary tuberculosis focus in approximately 80% of tuberculosis-infected children situated close to the pleura in two-thirds of cases. Cavitation of the focus was common, and lymphatic spread involved lymph nodes in the abdomen and neck in many children. Studies amongst adults and children frequently found the healed primary tuberculosis focus to be completely calcified without histological signs of tuberculosis activity; however, particularly in the presence of pulmonary tuberculosis, histological signs of tuberculosis activity were often found in the lymph nodes of the angulus venosus, despite apparent healing with extensive calcification. Both earlier studies and more recent investigations, with molecular biological tools, unavailable to Ghon and earlier researchers, have confirmed the presence of viable mycobacteria in apparently normal or healed thoracic nodes and also found molecular biological indications of viable mycobacteria in these nodes. As suggested by Ghon, lympho-haematogenous spread of tuberculosis may be more common than is usually appreciated.
Collapse
Affiliation(s)
- Peter R Donald
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa, .,Task Applied Science, Bellville, South Africa,
| | - Andreas H Diacon
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stephanie Thee
- Department of Pediatrics, Division of Pneumonology and Immunology with Intensive Medicine, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
16
|
Abstract
On March 11, 2020, the WHO declared that coronavirus disease 2019 (COVID-19) can be characterized as a pandemic based on the alarming levels of spread and severity and on the alarming levels of inaction. COVID-19 has received worldwide attention as emergency, endangering international public health and economic development. There is a growing body of literatures regarding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as COVID-19. This review will focus on the latest advance of epidemiology, pathogenesis, and clinical characteristics about COVID-19. Meanwhile, tuberculosis (TB) remains the leading representative respiratory tract communicable disease threatening public health. There are limited data on the risk of severe disease or outcomes in patients with concurrence of TB and COVID-19. Nevertheless, co-infection of some virus would aggravate TB, such as measles. And tuberculosis and influenza co-infection compared with tuberculosis single infection was associated with increased risk of death in individuals. This review will also introduce the characteristics about the concurrence of TB and emerging infectious diseases to provide a hint to manage current epidemic.
Collapse
Affiliation(s)
- Heng Yang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuihua Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Basu S, Rao N, Elkington P. Animal Models of Ocular Tuberculosis: Implications for Diagnosis and Treatment. Ocul Immunol Inflamm 2020; 29:1513-1519. [DOI: 10.1080/09273948.2020.1746358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Soumyava Basu
- Retina and Uveitis Services, L V Prasad Eye Institute (MTC Campus), Bhubaneswar, India
| | - Narsing Rao
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paul Elkington
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|