1
|
Yang J, Zhou X, Qiao X, Shi M. Friend or foe: the role of platelets in acute lung injury. Front Immunol 2025; 16:1556923. [PMID: 40438116 PMCID: PMC12116376 DOI: 10.3389/fimmu.2025.1556923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/24/2025] [Indexed: 06/01/2025] Open
Abstract
Lung diseases, including acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), are associated with various etiological factors and are characterized by high mortality rates. Current treatment strategies primarily focus on lung-protective ventilation and careful fluid management. Despite over 50 years of basic and clinical research, effective treatment options remain limited, and the search for novel strategies continues. Traditionally, platelets have been viewed primarily as contributors to blood coagulation; however, recent research has revealed their significant role in inflammation and immune regulation. While the relationship between platelet count and ALI/ARDS has remained unclear, emerging studies highlight the "dual role" of platelets in these conditions. On one hand, platelets interact with neutrophils to form neutrophil extracellular traps (NETs), promoting immune thrombosis and exacerbating lung inflammation. On the other hand, platelets also play a protective role by modulating inflammation, promoting regulatory T cell (Treg) activity, and assisting in alveolar macrophage reprogramming. This dual functionality of platelets has important implications for the pathogenesis and resolution of ALI/ARDS. This review examines the multifaceted roles of platelets in ALI/ARDS, focusing on their immunomodulatory effects, the platelet-neutrophil interaction, and the critical involvement of platelet-Treg cell complexes in shaping the inflammatory environment in ALI.
Collapse
Affiliation(s)
- Jichun Yang
- Department of Thoracic and Cardiovascular Surgery, Hua Shan Hospital, Affiliated with Fudan University, Shanghai, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xun Zhou
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinrui Qiao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Shi
- Department of Thoracic and Cardiovascular Surgery, Hua Shan Hospital, Affiliated with Fudan University, Shanghai, China
| |
Collapse
|
2
|
Schousboe P, Uslu B, Schousboe A, Nebrich L, Wiese L, Verder H, Scoutaris N, Verder P, Nielsen HB. Lung Surfactant Deficiency in Severe Respiratory Failure: A Potential Biomarker for Clinical Assessment. Diagnostics (Basel) 2025; 15:847. [PMID: 40218197 PMCID: PMC11988291 DOI: 10.3390/diagnostics15070847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Critical lung infection affects alveolar cells and probably also their ability to perform surfactant procedures, but bedside tools for monitoring lung surfactants are lacking. In this descriptive exploratory study, we aimed to evaluate lung surfactant levels in bronchial aspirate (BA) from patients admitted to the intensive care unit due to severe respiratory failure. Methods: Bronchial aspirates were collected from nine patients (median age: 72 years, range: 52-85) who required orotracheal intubation. Samples were obtained within 24 h of mechanical ventilation initiation (T1), after three days on a ventilator (T2), and on day seven (T3) for four patients. The concentration of dipalmitoylphosphatidylcholine (DPPC), a key surfactant component, was assessed in the lamellar body precipitate. Results: Across the nine patients at T1, the DPPC level was 12 µM (range: 3-20 µM). By T2, the DPPC level declined to 8 µM (range: 2-22 µM), with a statistically significant decrease from T1 (p = 0.0039). At T3, the DPPC level in four patients ranged from 2 to 5 µM, though the difference from T2 was not statistically significant. A surfactant biomarker would assist clinical decision-making when dealing with patients in severe respiratory failure where exogenous surfactant therapy may be considered. Conclusions: DPPC levels obtained from bronchial aspirate can be measured in patients with severe respiratory failure and may serve as a useful biomarker for lung surfactant status, which suggests the potential for bedside assessment in clinical practice with a dedicated test device.
Collapse
Affiliation(s)
- Peter Schousboe
- Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
| | - Bülent Uslu
- Department of Anesthesia and Intensive Care, Zealand University Hospital, 4000 Roskilde, Denmark (H.B.N.)
| | - Amalie Schousboe
- Department of Infectious Diseases, Zealand University Hospital, 4000 Roskilde, Denmark
| | - Lars Nebrich
- Department of Anesthesia and Intensive Care, Zealand University Hospital, 4600 Koege, Denmark
| | - Lothar Wiese
- Department of Infectious Diseases, Zealand University Hospital, 4000 Roskilde, Denmark
| | - Henrik Verder
- Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
| | | | - Povl Verder
- Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
| | - Henning Bay Nielsen
- Department of Anesthesia and Intensive Care, Zealand University Hospital, 4000 Roskilde, Denmark (H.B.N.)
- Department of Clinical Medicine, University of Copenhagen, 1172 København, Denmark
| |
Collapse
|
3
|
Zhou K, Qin Q, Lu J. Pathophysiological mechanisms of ARDS: a narrative review from molecular to organ-level perspectives. Respir Res 2025; 26:54. [PMID: 39948645 PMCID: PMC11827456 DOI: 10.1186/s12931-025-03137-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) remains a life-threatening pulmonary condition with persistently high mortality rates despite significant advancements in supportive care. Its complex pathophysiology involves an intricate interplay of molecular and cellular processes, including cytokine storms, oxidative stress, programmed cell death, and disruption of the alveolar-capillary barrier. These mechanisms drive localized lung injury and contribute to systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Unlike prior reviews that primarily focus on isolated mechanisms, this narrative review synthesizes the key pathophysiological processes of ARDS across molecular, cellular, tissue, and organ levels. MAIN BODY By integrating classical theories with recent research advancements, we provide a comprehensive analysis of how inflammatory mediators, metabolic reprogramming, oxidative stress, and immune dysregulation synergistically drive ARDS onset and progression. Furthermore, we critically evaluate current evidence-based therapeutic strategies, such as lung-protective ventilation and prone positioning, while exploring innovative therapies, including stem cell therapy, gene therapy, and immunotherapy. We emphasize the significance of ARDS subtypes and their inherent heterogeneity in guiding the development of personalized treatment strategies. CONCLUSIONS This narrative review provides fresh perspectives for future research, ultimately enhancing patient outcomes and optimizing management approaches in ARDS.
Collapse
Affiliation(s)
- Kaihuan Zhou
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Qianqian Qin
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Junyu Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
| |
Collapse
|
4
|
Manji A, Wang L, Pape CM, McCaig LA, Troitskaya A, Batnyam O, McDonald LJ, Appleton CT, Veldhuizen RA, Gill SE. Effect of aging on pulmonary cellular responses during mechanical ventilation. JCI Insight 2025; 10:e185834. [PMID: 39946196 PMCID: PMC11949020 DOI: 10.1172/jci.insight.185834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/28/2025] [Indexed: 03/25/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS) results in substantial morbidity and mortality, especially in elderly people. Mechanical ventilation, a common supportive treatment for ARDS, is necessary for maintaining gas exchange but can also propagate injury. We hypothesized that aging leads to alterations in surfactant function, inflammatory signaling, and microvascular permeability within the lung during mechanical ventilation. Young and aged male mice were mechanically ventilated, and surfactant function, inflammation, and vascular permeability were assessed. Additionally, single-cell RNA-Seq was used to delineate cell-specific transcriptional changes. The results showed that, in aged mice, surfactant dysfunction and vascular permeability were significantly augmented, while inflammation was less pronounced. Differential gene expression and pathway analyses revealed that alveolar macrophages in aged mice showed a blunted inflammatory response, while aged endothelial cells exhibited altered cell-cell junction formation. In vitro functional analysis revealed that aged endothelial cells had an impaired ability to form a barrier. These results highlight the complex interplay between aging and mechanical ventilation, including an age-related predisposition to endothelial barrier dysfunction, due to altered cell-cell junction formation, and decreased inflammation, potentially due to immune exhaustion. It is concluded that age-related vascular changes may underlie the increased susceptibility to injury during mechanical ventilation in elderly patients.
Collapse
Affiliation(s)
- Aminmohamed Manji
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
| | - Lefeng Wang
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Medicine, and
| | - Cynthia M. Pape
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Medicine, and
| | - Lynda A. McCaig
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Medicine, and
| | - Alexandra Troitskaya
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
| | - Onon Batnyam
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
| | - Leah J.J. McDonald
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - Ruud A.W. Veldhuizen
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
- Department of Medicine, and
| | - Sean E. Gill
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
- Department of Medicine, and
| |
Collapse
|
5
|
Abstract
The understanding of acute respiratory distress syndrome (ARDS) has evolved greatly since it was first described in a 1967 case series, with several subsequent updates to the definition of the syndrome. Basic science advances and clinical trials have provided insight into the mechanisms of lung injury in ARDS and led to reduced mortality through comprehensive critical care interventions. This review summarizes the current understanding of the epidemiology, pathophysiology, and management of ARDS. Key highlights include a recommended new global definition of ARDS and updated guidelines for managing ARDS on a backbone of established interventions such as low tidal volume ventilation, prone positioning, and a conservative fluid strategy. Future priorities for investigation of ARDS are also highlighted.
Collapse
Affiliation(s)
- Katherine D Wick
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lorraine B Ware
- Departments of Medicine and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Goss VM, Dushianthan A, McCorkell J, Morton K, Goss KCW, Marsh MJ, Pappachan JV, Postle AD. Surfactant Phospholipid Kinetics in Ventilated Children after Therapeutic Surfactant Supplementation. Int J Mol Sci 2024; 25:10480. [PMID: 39408809 PMCID: PMC11477192 DOI: 10.3390/ijms251910480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Acute lung Injury leads to alterations in surfactant lipid composition and metabolism. Although several mechanisms contribute to dysregulated surfactant metabolism, studies investigating in vivo surfactant metabolism are limited. The aim of this study is to characterise surfactant phospholipid composition and flux utilising a stable isotope labelling technique in mechanically ventilated paediatric patients. Paediatric patients (<16 years of age) received 3.6 mg/kg intravenous methyl-D9-choline chloride followed by the endotracheal instillation of 100 mg/kg of exogenous surfactant after 24 h. Bronchioalveolar fluid samples were taken at baseline and 12, 24, 36, 48, 72 and 96 h after methyl-D9-choline infusion. Nine participants (median age of 48 days) were recruited. The primary phosphatidylcholine (PC) composition consisted of PC16:0/16:0 or DPPC (32.0 ± 4.5%). Surfactant supplementation resulted in a 30% increase in DPPC. Methyl-D9 PC enrichment was detected after 12 h and differed significantly between patients, suggesting variability in surfactant synthesis/secretion by the CDP-choline pathway. Peak enrichment was achieved (0.94 ± 0.15% of total PC) at 24 h after methyl-D9-choline infusion. There was a trend towards reduced enrichment with the duration of mechanical ventilation prior to study recruitment; however, this was not statistically significant (p = 0.19). In this study, we demonstrated the fractional molecular composition and turnover of surfactant phospholipids, which was highly variable between patients.
Collapse
Affiliation(s)
- Victoria M. Goss
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK; (V.M.G.); (J.M.); (K.M.); (K.C.W.G.); (J.V.P.)
| | - Ahilanandan Dushianthan
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK; (V.M.G.); (J.M.); (K.M.); (K.C.W.G.); (J.V.P.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| | - Jenni McCorkell
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK; (V.M.G.); (J.M.); (K.M.); (K.C.W.G.); (J.V.P.)
- Paediatric Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK;
| | - Katy Morton
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK; (V.M.G.); (J.M.); (K.M.); (K.C.W.G.); (J.V.P.)
- Paediatric Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK;
| | - Kevin C. W. Goss
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK; (V.M.G.); (J.M.); (K.M.); (K.C.W.G.); (J.V.P.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| | - Michael J. Marsh
- Paediatric Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK;
| | - John V. Pappachan
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK; (V.M.G.); (J.M.); (K.M.); (K.C.W.G.); (J.V.P.)
- Paediatric Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK;
| | - Anthony D. Postle
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| |
Collapse
|
7
|
Gabela-Zuniga B, Shukla VC, Bobba C, Higuita-Castro N, Powell HM, Englert JA, Ghadiali SN. A micro-scale humanized ventilator-on-a-chip to examine the injurious effects of mechanical ventilation. LAB ON A CHIP 2024; 24:4390-4402. [PMID: 39161999 PMCID: PMC11407794 DOI: 10.1039/d4lc00143e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Patients with compromised respiratory function frequently require mechanical ventilation to survive. Unfortunately, non-uniform ventilation of injured lungs generates complex mechanical forces that lead to ventilator induced lung injury (VILI). Although investigators have developed lung-on-a-chip systems to simulate normal respiration, modeling the complex mechanics of VILI as well as the subsequent recovery phase is a challenge. Here we present a novel humanized in vitro ventilator-on-a-chip (VOC) model of the lung microenvironment that simulates the different types of injurious forces generated in the lung during mechanical ventilation. We used transepithelial/endothelial electrical impedance measurements to investigate how individual and simultaneous application of mechanical forces alters real-time changes in barrier integrity during and after injury. We find that compressive stress (i.e. barotrauma) does not significantly alter barrier integrity while over-distention (20% cyclic radial strain, volutrauma) results in decreased barrier integrity that quickly recovers upon removal of mechanical stress. Conversely, surface tension forces generated during airway reopening (atelectrauma), result in a rapid loss of barrier integrity with a delayed recovery relative to volutrauma. Simultaneous application of cyclic stretching (volutrauma) and airway reopening (atelectrauma), indicates that the surface tension forces associated with reopening fluid-occluded lung regions are the primary driver of barrier disruption. Thus, our novel VOC system can monitor the effects of different types of injurious forces on barrier disruption and recovery in real-time and can be used to interogate the biomechanical mechanisms of VILI.
Collapse
Affiliation(s)
- Basia Gabela-Zuniga
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - Vasudha C Shukla
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - Christopher Bobba
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Heather M Powell
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, USA
- Scientific Staff, Shriners Children's Ohio, Dayton, Ohio, USA
| | - Joshua A Englert
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Samir N Ghadiali
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
8
|
Wang Z, Cheng Q, Huang S, Sun J, Xu J, Xie J, Cao H, Guo F. Effect of perioperative sigh ventilation on postoperative hypoxemia and pulmonary complications after on-pump cardiac surgery (E-SIGHT): study protocol for a randomized controlled trial. Trials 2024; 25:585. [PMID: 39232795 PMCID: PMC11373100 DOI: 10.1186/s13063-024-08416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Postoperative hypoxemia and pulmonary complications remain a frequent event after on-pump cardiac surgery and mostly characterized by pulmonary atelectasis. Surfactant dysfunction or hyposecretion happens prior to atelectasis formation, and sigh represents the strongest stimulus for surfactant secretion. The role of sigh breaths added to conventional lung protective ventilation in reducing postoperative hypoxemia and pulmonary complications among cardiac surgery is unknown. METHODS The perioperative sigh ventilation in cardiac surgery (E-SIGHT) trial is a single-center, two-arm, randomized controlled trial. In total, 192 patients scheduled for elective cardiac surgery with cardiopulmonary bypass (CPB) and aortic cross-clamp will be randomized into one of the two treatment arms. In the experimental group, besides conventional lung protective ventilation, sigh volumes producing plateau pressures of 35 cmH2O (or 40 cmH2O for patients with body mass index > 35 kg/m2) delivered once every 6 min from intubation to extubation. In the control group, conventional lung protective ventilation without preplanned recruitment maneuvers is used. Lung protective ventilation (LPV) consists of low tidal volumes (6-8 mL/kg of predicted body weight) and positive end-expiratory pressure (PEEP) setting according to low PEEP/FiO2 table for acute respiratory distress syndrome (ARDS). The primary endpoint is time-weighted average SpO2/FiO2 ratio during the initial post-extubation hour. Main secondary endpoint is the severity of postoperative pulmonary complications (PPCs) computed by postoperative day 7. DISCUSSION The E-SIGHT trial will be the first randomized controlled trial to evaluate the impact of perioperative sigh ventilation on the postoperative outcomes after on-pump cardiac surgery. The trial will introduce and assess a novel perioperative ventilation approach to mitigate the risk of postoperative hypoxemia and PPCs in patients undergoing cardiac surgery. Also provide the basis for a future larger trial aiming at verifying the impact of sigh ventilation on postoperative pulmonary complications. TRIAL REGISTRATION ClinicalTrials.gov NCT06248320. Registered on January 30, 2024. Last updated February 26, 2024.
Collapse
Affiliation(s)
- Zhichang Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Qiyu Cheng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Shenglun Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jie Sun
- Department of Anesthesiology, Surgery and Pain Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jingyuan Xu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Hailong Cao
- Department of Cardiothoracic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Fengmei Guo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Yue H, Yong T. Progress in the relationship between mechanical ventilation parameters and ventilator-related complications during perioperative anesthesia. Postgrad Med J 2024; 100:619-625. [PMID: 38507221 DOI: 10.1093/postmj/qgae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Mechanical ventilation, as an important respiratory support, plays an important role in general anesthesia and it is the cornerstone of intraoperative management of surgical patients. Different from spontaneous respiration, intraoperative mechanical ventilation can lead to postoperative lung injury, and its impact on surgical mortality cannot be ignored. Postoperative lung injury increases hospital stay and is related to preoperative conditions, anesthesia time, and intraoperative ventilation settings. METHOD Through reading literature and research reports, the relationship between perioperative input parameters and output parameters related to mechanical ventilation and ventilator-related complications was reviewed, providing reference for the subsequent setting of input parameters of mechanical ventilation and new ventilation strategies. RESULTS The parameters of inspiratory pressure rise time and inspiratory time can change the gas distribution, gas flow rate and airway pressure into the lungs, but there are few clinical studies on them. It can be used as a prospective intervention to study the effect of specific protective ventilation strategies on pulmonary complications after perioperative anesthesia. CONCLUSION There are many factors affecting lung function after perioperative mechanical ventilation. Due to the difference of human body, the ventilation parameters suitable for each patient are different, and the deviation of each ventilation parameter can lead to postoperative pulmonary complications. Inspiratory pressure rise time and inspiratory time will be used as the new ventilation strategy.
Collapse
Affiliation(s)
- Hu Yue
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu District, Chengdu (West China Airport Hospital of Sichuan University), Chengdu 610200, China
| | - Tao Yong
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu District, Chengdu (West China Airport Hospital of Sichuan University), Chengdu 610200, China
| |
Collapse
|
10
|
Perlman CE, Knudsen L, Smith BJ. The fix is not yet in: recommendation for fixation of lungs within physiological/pathophysiological volume range in preclinical pulmonary structure-function studies. Am J Physiol Lung Cell Mol Physiol 2024; 327:L218-L231. [PMID: 38712433 PMCID: PMC11444500 DOI: 10.1152/ajplung.00341.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/14/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
Quantitative characterization of lung structures by morphometrical or stereological analysis of histological sections is a powerful means of elucidating pulmonary structure-function relations. The overwhelming majority of studies, however, fix lungs for histology at pressures outside the physiological/pathophysiological respiratory volume range. Thus, valuable information is being lost. In this perspective article, we argue that investigators performing pulmonary histological studies should consider whether the aims of their studies would benefit from fixation at functional transpulmonary pressures, particularly those of end-inspiration and end-expiration. We survey the pressures at which lungs are typically fixed in preclinical structure-function studies, provide examples of conditions that would benefit from histological evaluation at functional lung volumes, summarize available fixation methods, discuss alternative imaging modalities, and discuss challenges to implementing the suggested approach and means of addressing those challenges. We aim to persuade investigators that modifying or complementing the traditional histological approach by fixing lungs at minimal and maximal functional volumes could enable new understanding of pulmonary structure-function relations.
Collapse
Affiliation(s)
- Carrie E Perlman
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, United States
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Bradford J Smith
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
11
|
Inoue S, Nagao J, Kawamoto K, Kan-o K, Fukuyama S, Sasaki S, Kudo S, Okamoto I, Sera T. Overstretching alveolar epithelial type II cells decreases surfactant secretion via actin polymerization and intracellular trafficking alteration. Heliyon 2024; 10:e33499. [PMID: 39040228 PMCID: PMC11260927 DOI: 10.1016/j.heliyon.2024.e33499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Pulmonary surfactant is essential for maintaining proper lung function. Alveolar epithelial type II (AE2) cells secrete surfactants via lamellar bodies (LBs). In tidal loading during each breath, the physiological cyclic stretching of AE2 cells promotes surfactant secretion. Excessive stretching inhibits surfactant secretion, which is considered to contribute to the development of lung damage. However, its precise mechanism remains unknown. This study tested whether actin polymerization and intracellular transport are required for pulmonary surfactant secretion and the association of actin polymerization and transport in identical human AE2-derived A549 cells using live-cell imaging, not in the bulk cells population. We found that overstretching approximately doubled actin polymerization into filaments (F-actin) and suppressed LB secretion by half in the fluorescent area ratio, compared with physiological stretching (F-actin: 1.495 vs 0.643 (P < 0.01); LB: 0.739 vs 0.332 (P < 0.01)). An inhibitor of actin polymerization increased LB secretion. Intracellular tracking using fluorescent particles revealed that cyclic stretching shifted the particle motion perpendicularly to the direction of stretching according to the orientation of the F-actin (proportion of perpendicular axis motion prior particle: 0h 40.12 % vs 2h 63.13 % (P < 0.01)), and particle motion was restricted over time in the cells subjected to overstretching, indicating that overstretching regulates intracellular transport dynamics (proportion of stop motion particle: 0h 1.01 % vs 2h 11.04 % (P < 0.01)). These findings suggest that overstretching changes secretion through the cytoskeleton: overstretching AE2 cells inhibits pulmonary surfactant secretion, at least through accelerating actin polymerization and decreasing intracellular trafficking, and the change in actin orientation would modulate intracellular trafficking.
Collapse
Affiliation(s)
- Shigesato Inoue
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Junpei Nagao
- Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Kouhei Kawamoto
- Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Keiko Kan-o
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Fukuyama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Respiratory Medicine, National Hospital Organization Omuta National Hospital, Fukuoka, Japan
| | - Saori Sasaki
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Susumu Kudo
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshihiro Sera
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
12
|
Zimmermann R, Roeder F, Ruppert C, Smith BJ, Knudsen L. Low-volume ventilation of preinjured lungs degrades lung function via stress concentration and progressive alveolar collapse. Am J Physiol Lung Cell Mol Physiol 2024; 327:L19-L39. [PMID: 38712429 DOI: 10.1152/ajplung.00323.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
Mechanical ventilation can cause ventilation-induced lung injury (VILI). The concept of stress concentrations suggests that surfactant dysfunction-induced microatelectases might impose injurious stresses on adjacent, open alveoli and function as germinal centers for injury propagation. The aim of the present study was to quantify the histopathological pattern of VILI progression and to test the hypothesis that injury progresses at the interface between microatelectases and ventilated lung parenchyma during low-positive end-expiratory pressure (PEEP) ventilation. Bleomycin was used to induce lung injury with microatelectases in rats. Lungs were then mechanically ventilated for up to 6 h at PEEP = 1 cmH2O and compared with bleomycin-treated group ventilated protectively with PEEP = 5 cmH2O to minimize microatelectases. Lung mechanics were measured during ventilation. Afterward, lungs were fixed at end-inspiration or end-expiration for design-based stereology. Before VILI, bleomycin challenge reduced the number of open alveoli [N(alvair,par)] by 29%. No differences between end-inspiration and end-expiration were observed. Collapsed alveoli clustered in areas with a radius of up to 56 µm. After PEEP = 5 cmH2O ventilation for 6 h, N(alvair,par) remained stable while PEEP = 1 cmH2O ventilation led to an additional loss of aerated alveoli by 26%, mainly due to collapse, with a small fraction partly edema filled. Alveolar loss strongly correlated to worsening of tissue elastance, quasistatic compliance, and inspiratory capacity. The radius of areas of collapsed alveoli increased to 94 µm, suggesting growth of the microatelectases. These data provide evidence that alveoli become unstable in neighborhood of microatelectases, which most likely occurs due to stress concentration-induced local vascular leak and surfactant dysfunction.NEW & NOTEWORTHY Low-volume mechanical ventilation in the presence of high surface tension-induced microatelectases leads to the degradation of lung mechanical function via the progressive loss of alveoli. Microatelectases grow at the interfaces of collapsed and open alveoli. Here, stress concentrations might cause injury and alveolar instability. Accumulation of small amounts of alveolar edema can be found in a fraction of partly collapsed alveoli but, in this model, alveolar flooding is not a major driver for degradation of lung mechanics.
Collapse
Affiliation(s)
- Richard Zimmermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Franziska Roeder
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Bradford J Smith
- Department of Bioengineering, College of Engineering, Design & Computing, University of Colorado Denver | Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
Wiener C, Albert RK. ECMO and Prone Position in Patients With Severe ARDS. JAMA 2024; 331:1232. [PMID: 38592395 DOI: 10.1001/jama.2024.1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Affiliation(s)
- Charles Wiener
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | | |
Collapse
|
14
|
Shan F, Tang F, Liu Y, Han X, Wu W, Tang Y, Zhan Q, Zhang N. The effect of adoptive transferring myeloid-derived suppressor cells in ventilator-induced lung injury mice. Heliyon 2024; 10:e25595. [PMID: 38356581 PMCID: PMC10865327 DOI: 10.1016/j.heliyon.2024.e25595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
The effects of adoptive transferring myeloid-derived suppressor cells (MDSCs) to mice with ventilator-induced lung injury (VILI) are unclear. Our objective was to investigate the effects of adoptively transferring MDSCs in VILI. The mouse model was created by introducing mechanical ventilation through a high tidal volume of 20 ml/kg for 4 h. Inflammation-induced MDSCs (iMDSCs) were collected from the bone marrow of mice with cecal ligation and puncture. iMDSCs were administrated through retrobulbar angular vein 1 h before the mechanical ventilation. The control group was anesthetized and maintained spontaneous respiration. After the termination of mechanical ventilation, bronchoalveolar lavage fluid (BALF) and lung samples 6 h were collected. The concentrations of BALF protein, levels of inflammatory mediators, and white blood cells were all significantly decreased in mice treated with iMDSCs. Histological examinations indicated reduced lung damage after iMDSCs treatment. Moreover, adoptive transfer of iMDSCs could reduce CD4+ T-cell counts and inhibit its inflammatory cytokine secretion. iMDSCs treatment was found to had no immunostimulatory effects or cause secondary infections in mice. In conclusion, MDSCs might be a potential targeted therapy for alleviating the inflammatory response of VILI mice in a T-cell dependent manner.
Collapse
Affiliation(s)
- Fangzhen Shan
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Shandong, China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Fenglian Tang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Yuan Liu
- Department of Intensive care unit III, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Xiao Han
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Wei Wu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Yanhua Tang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Nannan Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Shandong, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
15
|
Fumagalli J, Pesenti A. Ventilation during extracorporeal gas exchange in acute respiratory distress syndrome. Curr Opin Crit Care 2024; 30:69-75. [PMID: 38085872 PMCID: PMC10919266 DOI: 10.1097/mcc.0000000000001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Accumulating evidence ascribes the benefit of extracorporeal gas exchange, at least in most severe cases, to the provision of a lung healing environment through the mitigation of ventilator-induced lung injury (VILI) risk. In spite of pretty homogeneous criteria for extracorporeal gas exchange application (according to the degree of hypoxemia/hypercapnia), ventilatory management during extracorporeal membrane oxygenation (ECMO)/carbon dioxide removal (ECCO 2 R) varies across centers. Here we summarize the recent evidence regarding the management of mechanical ventilation during extracorporeal gas exchange for respiratory support. RECENT FINDINGS At present, the most common approach to protect the native lung against VILI following ECMO initiation involves lowering tidal volume and driving pressure, making modest reductions in respiratory rate, while typically maintaining positive end-expiratory pressure levels unchanged.Regarding ECCO 2 R treatment, higher efficiency devices are required in order to reduce significantly respiratory rate and/or tidal volume. SUMMARY The best compromise between reduction of native lung ventilatory load, extracorporeal gas exchange efficiency, and strategies to preserve lung aeration deserves further investigation.
Collapse
Affiliation(s)
- Jacopo Fumagalli
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e cura a Carattere Scientifico Ca’ Granda Ospedale Maggiore Policlinico
| | - Antonio Pesenti
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e cura a Carattere Scientifico Ca’ Granda Ospedale Maggiore Policlinico
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Albert RK, Jurkovich GJ, Connett J, Helgeson ES, Keniston A, Voelker H, Lindberg S, Proper JL, Bochicchio G, Stein DM, Cain C, Tesoriero R, Brown CVR, Davis J, Napolitano L, Carver T, Cipolle M, Cardenas L, Minei J, Nirula R, Doucet J, Miller PR, Johnson J, Inaba K, Kao L. Sigh Ventilation in Patients With Trauma: The SiVent Randomized Clinical Trial. JAMA 2023; 330:1982-1990. [PMID: 37877609 PMCID: PMC10600720 DOI: 10.1001/jama.2023.21739] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023]
Abstract
Importance Among patients receiving mechanical ventilation, tidal volumes with each breath are often constant or similar. This may lead to ventilator-induced lung injury by altering or depleting surfactant. The role of sigh breaths in reducing ventilator-induced lung injury among trauma patients at risk of poor outcomes is unknown. Objective To determine whether adding sigh breaths improves clinical outcomes. Design, Setting, and Participants A pragmatic, randomized trial of sigh breaths plus usual care conducted from 2016 to 2022 with 28-day follow-up in 15 academic trauma centers in the US. Inclusion criteria were age older than 18 years, mechanical ventilation because of trauma for less than 24 hours, 1 or more of 5 risk factors for developing acute respiratory distress syndrome, expected duration of ventilation longer than 24 hours, and predicted survival longer than 48 hours. Interventions Sigh volumes producing plateau pressures of 35 cm H2O (or 40 cm H2O for inpatients with body mass indexes >35) delivered once every 6 minutes. Usual care was defined as the patient's physician(s) treating the patient as they wished. Main Outcomes and Measures The primary outcome was ventilator-free days. Prespecified secondary outcomes included all-cause 28-day mortality. Results Of 5753 patients screened, 524 were enrolled (mean [SD] age, 43.9 [19.2] years; 394 [75.2%] were male). The median ventilator-free days was 18.4 (IQR, 7.0-25.2) in patients randomized to sighs and 16.1 (IQR, 1.1-24.4) in those receiving usual care alone (P = .08). The unadjusted mean difference in ventilator-free days between groups was 1.9 days (95% CI, 0.1 to 3.6) and the prespecified adjusted mean difference was 1.4 days (95% CI, -0.2 to 3.0). For the prespecified secondary outcome, patients randomized to sighs had 28-day mortality of 11.6% (30/259) vs 17.6% (46/261) in those receiving usual care (P = .05). No differences were observed in nonfatal adverse events comparing patients with sighs (80/259 [30.9%]) vs those without (80/261 [30.7%]). Conclusions and Relevance In a pragmatic, randomized trial among trauma patients receiving mechanical ventilation with risk factors for developing acute respiratory distress syndrome, the addition of sigh breaths did not significantly increase ventilator-free days. Prespecified secondary outcome data suggest that sighs are well-tolerated and may improve clinical outcomes. Trial Registration ClinicalTrials.gov Identifier: NCT02582957.
Collapse
Affiliation(s)
| | | | - John Connett
- Division of Biostatistics, University of Minnesota, Minneapolis
| | | | | | - Helen Voelker
- Division of Biostatistics, University of Minnesota, Minneapolis
| | - Sarah Lindberg
- Division of Biostatistics, University of Minnesota, Minneapolis
| | | | - Grant Bochicchio
- Department of Surgery, Washington University, St Louis, St Louis, Missouri
| | | | - Christian Cain
- Department of Surgery, University of Maryland, Baltimore
| | - Ron Tesoriero
- Department of Surgery, University of Maryland, Baltimore
| | | | - James Davis
- Department of Surgery, University of California San Francisco, Fresno
| | | | - Thomas Carver
- Department of Surgery, Medical College of Wisconsin, Milwaukee
| | - Mark Cipolle
- Department of Surgery, Lehigh Valley Health Network, Bethlehem, Pennsylvania
| | - Luis Cardenas
- Department of Surgery, Christiana Care Health System, Wilmington, Delaware
| | - Joseph Minei
- Department of Surgery, University of Texas Southwestern, Dallas
| | | | - Jay Doucet
- Department of Surgery, University of California San Diego
| | - Preston R. Miller
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jeffrey Johnson
- Department of Surgery, Henry Ford Hospital, Detroit, Michigan
| | - Kenji Inaba
- Department of Surgery, University of Southern California Los Angeles County
| | - Lillian Kao
- Department of Surgery, University of Texas, Houston
| |
Collapse
|
17
|
Affiliation(s)
- Giacomo Bellani
- Centre for Medical Sciences CISMed, University of Trento, Trento, Italy
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, APSS Trento, Trento, Italy
| | - Antonio Pesenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
18
|
Garcia MJ, Amarelle L, Malacrida L, Briva A. Novel opportunities from bioimaging to understand the trafficking and maturation of intracellular pulmonary surfactant and its role in lung diseases. Front Immunol 2023; 14:1250350. [PMID: 37638003 PMCID: PMC10448512 DOI: 10.3389/fimmu.2023.1250350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Pulmonary surfactant (PS), a complex mixture of lipids and proteins, is essential for maintaining proper lung function. It reduces surface tension in the alveoli, preventing collapse during expiration and facilitating re-expansion during inspiration. Additionally, PS has crucial roles in the respiratory system's innate defense and immune regulation. Dysfunction of PS contributes to various respiratory diseases, including neonatal respiratory distress syndrome (NRDS), adult respiratory distress syndrome (ARDS), COVID-19-associated ARDS, and ventilator-induced lung injury (VILI), among others. Furthermore, PS alterations play a significant role in chronic lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). The intracellular stage involves storing and releasing a specialized subcellular organelle known as lamellar bodies (LB). The maturation of these organelles requires coordinated signaling to organize their intracellular organization in time and space. LB's intracellular maturation involves the lipid composition and critical processing of surfactant proteins to achieve proper functionality. Over a decade ago, the supramolecular organization of lamellar bodies was studied using electron microscopy. In recent years, novel bioimaging tools combining spectroscopy and microscopy have been utilized to investigate the in cellulo intracellular organization of lamellar bodies temporally and spatially. This short review provides an up-to-date understanding of intracellular LBs. Hyperspectral imaging and phasor analysis have allowed identifying specific transitions in LB's hydration, providing insights into their membrane dynamics and structure. A discussion and overview of the latest approaches that have contributed to a new comprehension of the trafficking and structure of lamellar bodies is presented.
Collapse
Affiliation(s)
- María José Garcia
- Unidad Academica de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Advanced Bioimaging Unit, Institut Pasteur de Montevideo & Universidad de la República, Montevideo, Uruguay
| | - Luciano Amarelle
- Unidad Academica de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Advanced Bioimaging Unit, Institut Pasteur de Montevideo & Universidad de la República, Montevideo, Uruguay
- Unidad Academica de Medicina Intensiva, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Leonel Malacrida
- Unidad Academica de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Advanced Bioimaging Unit, Institut Pasteur de Montevideo & Universidad de la República, Montevideo, Uruguay
| | - Arturo Briva
- Unidad Academica de Medicina Intensiva, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
19
|
Sinnberg T, Lichtensteiger C, Ali OH, Pop OT, Jochum AK, Risch L, Brugger SD, Velic A, Bomze D, Kohler P, Vernazza P, Albrich WC, Kahlert CR, Abdou MT, Wyss N, Hofmeister K, Niessner H, Zinner C, Gilardi M, Tzankov A, Röcken M, Dulovic A, Shambat SM, Ruetalo N, Buehler PK, Scheier TC, Jochum W, Kern L, Henz S, Schneider T, Kuster GM, Lampart M, Siegemund M, Bingisser R, Schindler M, Schneiderhan-Marra N, Kalbacher H, McCoy KD, Spengler W, Brutsche MH, Maček B, Twerenbold R, Penninger JM, Matter MS, Flatz L. Pulmonary Surfactant Proteins Are Inhibited by Immunoglobulin A Autoantibodies in Severe COVID-19. Am J Respir Crit Care Med 2023; 207:38-49. [PMID: 35926164 PMCID: PMC9952873 DOI: 10.1164/rccm.202201-0011oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rationale: Coronavirus disease 2019 (COVID-19) can lead to acute respiratory distress syndrome with fatal outcomes. Evidence suggests that dysregulated immune responses, including autoimmunity, are key pathogenic factors. Objectives: To assess whether IgA autoantibodies target lung-specific proteins and contribute to disease severity. Methods: We collected 147 blood, 9 lung tissue, and 36 BAL fluid samples from three tertiary hospitals in Switzerland and one in Germany. Severe COVID-19 was defined by the need to administer oxygen. We investigated the presence of IgA autoantibodies and their effects on pulmonary surfactant in COVID-19 using the following methods: immunofluorescence on tissue samples, immunoprecipitations followed by mass spectrometry on BAL fluid samples, enzyme-linked immunosorbent assays on blood samples, and surface tension measurements with medical surfactant. Measurements and Main Results: IgA autoantibodies targeting pulmonary surfactant proteins B and C were elevated in patients with severe COVID-19 but not in patients with influenza or bacterial pneumonia. Notably, pulmonary surfactant failed to reduce surface tension after incubation with either plasma or purified IgA from patients with severe COVID-19. Conclusions: Our data suggest that patients with severe COVID-19 harbor IgA autoantibodies against pulmonary surfactant proteins B and C and that these autoantibodies block the function of lung surfactant, potentially contributing to alveolar collapse and poor oxygenation.
Collapse
Affiliation(s)
- Tobias Sinnberg
- Department of Dermatology,,Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies,,Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | | | - Omar Hasan Ali
- Institute of Immunobiology,,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada;,Department of Dermatology
| | | | | | - Lorenz Risch
- Center of Laboratory Medicine, Vaduz, Liechtenstein;,Center of Laboratory Medicine, University Institute of Clinical Chemistry, University Hospital Bern, University of Bern, Bern, Switzerland;,Faculty of Medical Sciences, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | | | - Ana Velic
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology
| | - David Bomze
- Institute of Immunobiology,,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Philipp Kohler
- Division of Infectious Diseases and Hospital Epidemiology
| | | | | | - Christian R. Kahlert
- Division of Infectious Diseases and Hospital Epidemiology,,Department of Infectious Diseases and Hospital Epidemiology, Children’s Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | | | | | | | - Heike Niessner
- Department of Dermatology,,Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies
| | - Carl Zinner
- Pathology, Institute of Medical Genetics and Pathology
| | - Mara Gilardi
- Pathology, Institute of Medical Genetics and Pathology
| | | | - Martin Röcken
- Department of Dermatology,,Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies
| | | | | | | | - Philipp K. Buehler
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | - Gabriela M. Kuster
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB)
| | - Maurin Lampart
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB)
| | - Martin Siegemund
- Intensive Care Unit, Department of Acute Medicine,,Department of Clinical Research, and
| | - Roland Bingisser
- Emergency Department, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | | | - Hubert Kalbacher
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Kathy D. McCoy
- Snyder Institute for Chronic Disease, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Werner Spengler
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, Tübingen, Germany
| | - Martin H. Brutsche
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Boris Maček
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology
| | - Raphael Twerenbold
- Division of Pneumology, and,University Center of Cardiovascular Science and Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Partner Site Hamburg-Kiel-Lübeck, Hamburg, Germany; and
| | - Josef M. Penninger
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada;,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | | | - Lukas Flatz
- Department of Dermatology,,Institute of Immunobiology,,Department of Dermatology, Venereology, and Allergology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland;,Department of Dermatology
| |
Collapse
|
20
|
Andrews P, Shiber J, Madden M, Nieman GF, Camporota L, Habashi NM. Myths and Misconceptions of Airway Pressure Release Ventilation: Getting Past the Noise and on to the Signal. Front Physiol 2022; 13:928562. [PMID: 35957991 PMCID: PMC9358044 DOI: 10.3389/fphys.2022.928562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 12/16/2022] Open
Abstract
In the pursuit of science, competitive ideas and debate are necessary means to attain knowledge and expose our ignorance. To quote Murray Gell-Mann (1969 Nobel Prize laureate in Physics): "Scientific orthodoxy kills truth". In mechanical ventilation, the goal is to provide the best approach to support patients with respiratory failure until the underlying disease resolves, while minimizing iatrogenic damage. This compromise characterizes the philosophy behind the concept of "lung protective" ventilation. Unfortunately, inadequacies of the current conceptual model-that focuses exclusively on a nominal value of low tidal volume and promotes shrinking of the "baby lung" - is reflected in the high mortality rate of patients with moderate and severe acute respiratory distress syndrome. These data call for exploration and investigation of competitive models evaluated thoroughly through a scientific process. Airway Pressure Release Ventilation (APRV) is one of the most studied yet controversial modes of mechanical ventilation that shows promise in experimental and clinical data. Over the last 3 decades APRV has evolved from a rescue strategy to a preemptive lung injury prevention approach with potential to stabilize the lung and restore alveolar homogeneity. However, several obstacles have so far impeded the evaluation of APRV's clinical efficacy in large, randomized trials. For instance, there is no universally accepted standardized method of setting APRV and thus, it is not established whether its effects on clinical outcomes are due to the ventilator mode per se or the method applied. In addition, one distinctive issue that hinders proper scientific evaluation of APRV is the ubiquitous presence of myths and misconceptions repeatedly presented in the literature. In this review we discuss some of these misleading notions and present data to advance scientific discourse around the uses and misuses of APRV in the current literature.
Collapse
Affiliation(s)
- Penny Andrews
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joseph Shiber
- University of Florida College of Medicine, Jacksonville, FL, United States
| | - Maria Madden
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gary F. Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Luigi Camporota
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, Health Centre for Human and Applied Physiological Sciences, London, United Kingdom
| | - Nader M. Habashi
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Performance Characteristics of a Novel 3D-Printed Bubble Intermittent Mandatory Ventilator (B-IMV) for Adult Pulmonary Support. Bioengineering (Basel) 2022; 9:bioengineering9040151. [PMID: 35447711 PMCID: PMC9027535 DOI: 10.3390/bioengineering9040151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
The COVID-19 pandemic has brought attention to the need for developing effective respiratory support that can be rapidly implemented during critical surge capacity scenarios in healthcare settings. Lung support with bubble continuous positive airway pressure (B-CPAP) is a well-established therapeutic approach for supporting neonatal patients. However, the effectiveness of B-CPAP in larger pediatric and adult patients has not been addressed. Using similar principles of B-CPAP pressure generation, application of intermittent positive pressure inflations above CPAP could support gas exchange and high work of breathing levels in larger patients experiencing more severe forms of respiratory failure. This report describes the design and performance characteristics of the BubbleVent, a novel 3D-printed valve system that combined with commonly found tubes, hoses, and connectors can provide intermittent mandatory ventilation (IMV) suitable for adult mechanical ventilation without direct electrification. Testing of the BubbleVent was performed on a passive adult test lung model and compared with a critical care ventilator commonly used in tertiary care centers. The BubbleVent was shown to deliver stable PIP and PEEP levels, as well as timing control of breath delivery that was comparable with a critical care ventilator.
Collapse
|