1
|
He Y, Cai J, Xie X, Zhang X, Qu L, Liu J, Cao Y. Dimethyl Itaconate Alleviates Escherichia coli-Induced Endometritis Through the Guanosine-CXCL14 Axis via Increasing the Abundance of norank_f_Muribaculaceae. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414792. [PMID: 40227949 DOI: 10.1002/advs.202414792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/07/2025] [Indexed: 04/16/2025]
Abstract
Endometritis, a prevalent reproductive system disease with high incidence, leads to reproductive dysfunction in humans and animals, causing huge economic losses. Dimethyl itaconate (DI) has been demonstrated to exert protective effects in multiple inflammatory diseases. Nevertheless, the efficacy of DI in preventing endometritis and the role played by the gut microbiota remain unknown. In this study, it is found that DI ameliorated Escherichia coli (E. coli) induced endometritis in mice. The protective effect is abolished by antibiotic-induced depletion of the gut microbiota, and fecal microbiota transplantation (FMT) from DI-treated mice to recipient mice ameliorated E. coli-induced endometritis. Integrative multiomics reveals that DI promotes the multiplication of norank_f_Muribaculaceae in vivo, and supplementation of Muribaculum intestinale (DSM 28989), which belongs to the norank_f_Muribaculaceae genus, upregulates the level of guanosine in the uterus. Mechanistically, the protective effect of guanosine in endometritis is mediated by activating the expression of CXCL14 in uterine epithelial cells. Moreover, the antibody-neutralizing experiment of CXCL14 eliminated this protective effect. In conclusion, this study elucidates the significant role of the gut microbiota and its metabolites in the protection of DI against endometritis, and provides new evidence for the regulation of distal organ by the gut microbiota.
Collapse
Affiliation(s)
- Yuhang He
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jiapei Cai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xufeng Xie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xinyu Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Linkai Qu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jiuxi Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yongguo Cao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| |
Collapse
|
2
|
Zhu J, Huang Z, Lin Y, Zhu W, Zeng B, Tang D. Intestinal-pulmonary axis: a 'Force For Good' against respiratory viral infections. Front Immunol 2025; 16:1534241. [PMID: 40170840 PMCID: PMC11959011 DOI: 10.3389/fimmu.2025.1534241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Respiratory viral infections are a major global public health concern, and current antiviral therapies still have limitations. In recent years, research has revealed significant similarities between the immune systems of the gut and lungs, which interact through the complex physiological network known as the "gut-lung axis." As one of the largest immune organs, the gut, along with the lungs, forms an inter-organ immune network, with strong parallels in innate immune mechanisms, such as the activation of pattern recognition receptors (PRRs). Furthermore, the gut microbiota influences antiviral immune responses in the lungs through mechanisms such as systemic transport of gut microbiota-derived metabolites, immune cell migration, and cytokine regulation. Studies have shown that gut dysbiosis can exacerbate the severity of respiratory infections and may impact the efficacy of antiviral therapies. This review discusses the synergistic role of the gut-lung axis in antiviral immunity against respiratory viruses and explores potential strategies for modulating the gut microbiota to mitigate respiratory viral infections. Future research should focus on the immune mechanisms of the gut-lung axis to drive the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Jianing Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zihang Huang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Ying Lin
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wenxu Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Binbin Zeng
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Yangzhou, China
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China
| |
Collapse
|
3
|
Narayana JK, Mac Aogáin M, Hansbro PM, Chotirmall SH. The bronchiectasis microbiome: current understanding and treatment implications. Curr Opin Pulm Med 2025; 31:135-144. [PMID: 39492755 DOI: 10.1097/mcp.0000000000001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
PURPOSE OF REVIEW Advances in DNA sequencing and analysis of the respiratory microbiome highlight its close association with bronchiectasis phenotypes, revealing fresh opportunities for diagnosis, stratification, and personalized clinical intervention. An under-recognized condition, bronchiectasis is increasingly the subject of recent large-scale, multicentre, and longitudinal clinical studies including detailed analysis of the microbiome. In this review, we summarize recent progress in our understanding of the bronchiectasis microbiome within the context of its potential use in treatment decisions. RECENT FINDINGS Diverse microbiome profiles exist in bronchiectasis, in line with the established disease heterogeneity including treatment response. Classical microbiology has established Pseudomonas aeruginosa and Haemophilus influenza as two microbial markers of disease, while holistic microbiome analysis has uncovered important associations with less common bacterial taxa including commensal an/or pathobiont species, including the emerging role of the fungal mycobiome, virome, and interactome. Integration of airway microbiomes with other high-dimensional biological and clinical datasets holds significant promise to determining treatable traits and mechanisms of disease related to the microbiome. SUMMARY The bronchiectasis microbiome is an emerging and key area of study with significant implications for understanding bronchiectasis, influencing treatment decisions and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Jayanth Kumar Narayana
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Micheál Mac Aogáin
- Department of Biochemistry, St. James's Hospital
- School of Medicine, Trinity College, Dublin, Ireland
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
4
|
Ivan FX, Tiew PY, Jaggi TK, Thng KX, Pang PH, Ong TH, Abisheganaden JA, Koh MS, Chotirmall SH. Sputum metagenomics reveals a multidrug resistant Pseudomonas-dominant severe asthma phenotype in an Asian population. Respirology 2025; 30:217-229. [PMID: 39622769 DOI: 10.1111/resp.14863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/20/2024] [Indexed: 03/04/2025]
Abstract
BACKGROUND AND OBJECTIVE While the lung microbiome in severe asthma has been studied, work has employed targeted amplicon-based sequencing approaches without functional assessment with none focused on multi-ethnic Asian populations. Here we investigate the clinical relevance of microbial phenotypes of severe asthma in Asians using metagenomics. METHODS Prospective assessment of clinical, radiological, and immunological measures were performed in a multi-ethnic Asian severe asthma cohort (N = 70) recruited across two centres in Singapore. Sputum was subjected to shotgun metagenomic sequencing and patients followed up for a 2-year period. Metagenomic assessment of sputum microbiomes, resistomes and virulomes were related to clinical outcomes. RESULTS The lung microbiome in a multi-ethnic Asian cohort with severe asthma demonstrates an increased abundance of Pseudomonas species. Unsupervised clustering of sputum metagenomes identified two patient clusters: C1 (n = 52) characterized by upper airway commensals and C2 (n = 18) dominated by established respiratory pathogens including M. catarrhalis, S. aureus and most significantly P. aeruginosa. C2 patients demonstrated a significantly increased exacerbation frequency on 2-year follow up and an antimicrobial resistome characterized by multidrug resistance. Virulomes appear indistinguishable between severe asthmatics with or without co-existing bronchiectasis, and C2 patients exhibit increased gene expression related to biofilm formation, effector delivery systems and microbial motility. Independent comparison of the C2 cluster to a non-asthmatic bronchiectasis cohort demonstrates analogous airway microbial virulence patterns. CONCLUSION Sputum metagenomics demonstrates a multidrug-resistant Pseudomonas-dominant severe asthma phenotype in Asians, characterized by poor clinical outcome including increased exacerbations which is independent of co-existing bronchiectasis.
Collapse
Affiliation(s)
| | - Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kai Xian Thng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Collaborative Institute, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, Singapore
| | - Pee Hwee Pang
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Thun How Ong
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - John Arputhan Abisheganaden
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Mariko Siyue Koh
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
5
|
Baker JM, Dickson RP. The Microbiome and Pulmonary Immune Function. Clin Chest Med 2025; 46:77-91. [PMID: 39890294 DOI: 10.1016/j.ccm.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
In the last decade, the lung microbiome field has matured into a promising area of translational and clinical research due to emerging evidence indicating a role for respiratory microbiota in lung immunity and pathogenesis. Here, we review recent insights pertaining to the lung microbiome's relationship with pulmonary immune function. We discuss areas of future investigation that will be essential to the development of immunomodulatory therapies targeting the respiratory microbiome.
Collapse
Affiliation(s)
- Jennifer M Baker
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert P Dickson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Weil Institute for Critical Care Research & Innovation, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Tadese DA, Mwangi J, Luo L, Zhang H, Huang X, Michira BB, Zhou S, Kamau PM, Lu Q, Lai R. The microbiome's influence on obesity: mechanisms and therapeutic potential. SCIENCE CHINA. LIFE SCIENCES 2025; 68:657-672. [PMID: 39617855 DOI: 10.1007/s11427-024-2759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/16/2024] [Indexed: 01/03/2025]
Abstract
In 2023, the World Obesity Atlas Federation concluded that more than 50% of the world's population would be overweight or obese within the next 12 years. At the heart of this epidemic lies the gut microbiota, a complex ecosystem that profoundly influences obesity-related metabolic health. Its multifaced role encompasses energy harvesting, inflammation, satiety signaling, gut barrier function, gut-brain communication, and adipose tissue homeostasis. Recognizing the complexities of the cross-talk between host physiology and gut microbiota is crucial for developing cutting-edge, microbiome-targeted therapies to address the global obesity crisis and its alarming health and economic repercussions. This narrative review analyzed the current state of knowledge, illuminating emerging research areas and their implications for leveraging gut microbial manipulations as therapeutic strategies to prevent and treat obesity and related disorders in humans. By elucidating the complex relationship between gut microflora and obesity, we aim to contribute to the growing body of knowledge underpinning this critical field, potentially paving the way for novel interventions to combat the worldwide obesity epidemic.
Collapse
Affiliation(s)
- Dawit Adisu Tadese
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James Mwangi
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Luo
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Zhang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiaoshan Huang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Brenda B Michira
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengwen Zhou
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peter Muiruri Kamau
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiumin Lu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ren Lai
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Zhang PA, Wang JL, Fu SY, Luo HL, Qin RD, Li J. Mediators of the association between allergic diseases and bronchiectasis: A bi-directional univariable and multivariable Mendelian randomization study and mediation analysis. World Allergy Organ J 2025; 18:101038. [PMID: 40151543 PMCID: PMC11946760 DOI: 10.1016/j.waojou.2025.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
Background Emerging research indicates that bronchiectasis often coexists with a range of allergic illnesses. The pathogenesis of both conditions is highly complex, involving a variety of interconnected factors, such as immune responses, metabolic pathways, and gut microbiota. However, the precise causal relationship between bronchiectasis and allergy-related conditions remains poorly understood. Materials and methods We obtained published GWAS datasets for 5 allergic disorders (allergic asthma, allergic rhinitis, atopic conjunctivitis, atopic dermatitis, and chronic rhinosinusitis) and bronchiectasis, along with data on 731 immune cells, 91 inflammatory proteins, 1400 plasma metabolites, and 473 gut microbiotas. Using bi-directional two-sample Mendelian Randomization (TSMR), we explored causal relationships between allergic diseases and bronchiectasis and validated these findings in a replication cohort. We also applied Linkage Disequilibrium Score Regression (LDSC) to assess genetic correlations between the conditions. Additionally, the mediating effects of immune cells, inflammatory proteins, metabolites, and gut microbiota on the relationship between allergic disorders and bronchiectasis were assessed through two-step TSMR and multivariate MR analysis. Results Our study revealed that allergic asthma, allergic rhinitis, atopic conjunctivitis, and atopic dermatitis all increased the risk of developing bronchiectasis, with no causal relationship identified in the reverse direction. Additionally, positive genetic associations were observed between allergic asthma, allergic rhinitis, atopic dermatitis, and bronchiectasis, respectively. We identified a total of forty immune cells, 5 inflammatory proteins, ninety plasma metabolites, and nineteen gut microbiota species as causal factors contributing to bronchiectasis onset. In mediation analysis, we found that the metabolic ratio of Retinol (Vitamin A) to oleoyl-linoleoyl-glycerol (18:1 to 18:2) was a risk factor for allergic asthma developing bronchiectasis, while the level of CD14 on CD33dim HLA-DR + CD11b + cells was a risk factor for allergic rhinitis. Two specific metabolic ratios-the Aspartate to N-acetylglucosamine to N-acetylgalactosamine ratio and the Methionine to phosphate ratio-served as, respectively, risk and protective factors for atopic dermatitis-developing bronchiectasis. Conclusion Our findings suggest that allergic asthma, allergic rhinitis, atopic conjunctivitis, and atopic dermatitis increase the risk of developing bronchiectasis, with no evidence of a reverse causal relationship. Specifically, 3 metabolic ratios were identified as mediators between allergic diseases and bronchiectasis. Further studies are needed to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Ping-An Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, 151, Yanjiangxi Rd, Guangzhou, Guangdong, 510120, China
| | - Jie-Lin Wang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shi-Yan Fu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, 151, Yanjiangxi Rd, Guangzhou, Guangdong, 510120, China
| | - Hua-Lian Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, 151, Yanjiangxi Rd, Guangzhou, Guangdong, 510120, China
| | - Run-Dong Qin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, 151, Yanjiangxi Rd, Guangzhou, Guangdong, 510120, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, 151, Yanjiangxi Rd, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
8
|
Wang LL, Shen X, Xie Y, Ge A, Lu H, Gu S, Kong L, Narayana JK, Mattner J, Chotirmall SH, Xu JF. A gut Eggerthella lenta-derived metabolite impairs neutrophil function to aggravate bacterial lung infection. Sci Transl Med 2025; 17:eadq4409. [PMID: 40009694 DOI: 10.1126/scitranslmed.adq4409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/25/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
The composition of the gut microbiota in patients with bronchiectasis has been proven to be distinct from that of healthy individuals, and this disrupted gut microbiota can exacerbate lung infections. However, the responsible microbes and mechanisms in the "gut-lung" axis in bronchiectasis remain unknown. Here, we report that Eggerthella lenta was enriched in the gut, and taurine ursodeoxycholic acid (TUDCA) was enriched in both the guts and sera of patients with bronchiectasis, with both being associated with disease severity. Fecal microbiota transfer from patients with bronchiectasis as well as administration of E. lenta independently exacerbated pulmonary Pseudomonas aeruginosa infections in murine models. E. lenta-associated TUDCA bound adenosine monophosphate-activated protein kinase (AMPK) within neutrophils and interfered with the interaction between liver kinase B1 and AMPK, with a consequential decrease in AMPK phosphorylation. This ultimately reduced ATP production in neutrophils, inhibited their function, and compromised P. aeruginosa elimination from the lung, aggravating tissue injury. Metformin treatment improved disease severity and outcome in the mouse models. In sum, the gut bacterium E. lenta raises the stakes of bacterial lung infection because it causes dysfunction of neutrophils circulated from serum to lung via the metabolite TUDCA. Interventions targeting E. lenta or AMPK phosphorylation may serve as adjunctive strategies to complement existing approaches for managing chronic pulmonary infection in bronchiectasis and other chronic respiratory disease states.
Collapse
Affiliation(s)
- Le-Le Wang
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Xiyue Shen
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Yingzhou Xie
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Ai Ge
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Haiwen Lu
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Shuyi Gu
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Lingxin Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Jayanth Kumar Narayana
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen 91054, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), FAU Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Jin-Fu Xu
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai 200040, People's Republic of China
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, People's Republic of China
| |
Collapse
|
9
|
Wang L, Liang Z, Chai Z, Cong W, Zhu L, Guo Z, Song M, Ma J, Guo T, Zhang W, Zheng W, Jiang Z. Construction and evolution of artificial reef ecosystems: Response and regulation of marine microorganisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125610. [PMID: 39743195 DOI: 10.1016/j.envpol.2024.125610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Artificial reefs (ARs) are an important means of improving marine ecological environments and promoting the sustainable use of marine biological resources. After AR deployment, biological communities undergo dynamic changes as species succession and shifts in community structure. As the most sensitive frontier affected by the environment, the complex and dynamic changes of microbial communities play a crucial role in the health and stability of the ecosystem. This article reviews how AR construction affects the composition and function of marine microorganisms, their contributions to ecosystem stability, and the interaction mechanisms between microbial and macroecological systems. We focus on the responses and regulatory roles of microorganisms in AR ecosystems, including changes in microbial abundance, diversity, and distribution in the environment and on reef surfaces. Additionally, we examine their roles in nutrient cycling, the carbon sequestration, and their interactions with higher trophic organisms. We identify critical knowledge gaps and research deficiencies regarding microbial community risks that need to be addressed, which provide a framework for studying the complex relationships among marine environments, microbial communities and macrobiotic communities in the process of marine ranching construction.
Collapse
Affiliation(s)
- Lu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zitong Chai
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Wei Cong
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Lixin Zhu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhansheng Guo
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Minpeng Song
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Junyang Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Tingting Guo
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Wenyu Zhang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Wenmeng Zheng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhaoyang Jiang
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
10
|
Zhang Y, Xu Y, Hu L, Wang X. Advancements related to probiotics for preventing and treating recurrent respiratory tract infections in children. Front Pediatr 2025; 13:1508613. [PMID: 39981209 PMCID: PMC11839809 DOI: 10.3389/fped.2025.1508613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
Recurrent respiratory tract infections (RRTIs) are a common condition in pediatrics and significantly impact children's quality of life; however, their pathogenesis and contributing factors are not yet fully elucidated. Probiotics have recently emerged as promising agents for modulating intestinal microecology and have gained considerable attention in clinical research on preventing and treating RRTIs in children. This article provides an initial overview of the concept, classification, and mechanisms underlying probiotics. It emphasizes their beneficial effects on respiratory health by modulating intestinal microbial equilibrium, augmenting immune system functionality, and attenuating inflammatory responses. Subsequently, we examine existing research regarding the use of probiotics in pediatric RRTIs. Numerous clinical trials have unequivocally demonstrated that supplementing with probiotics can significantly reduce both the frequency and severity of RRTIs in children while also simultaneously decreasing antibiotic usage. However, there are ongoing controversies and challenges in current research concerning the influence of probiotic type, dosage, duration of use, and other factors on efficacy. Furthermore, variations have been observed across different studies. Additionally, it is crucial to further evaluate the safety and potential long-term side effects associated with probiotic use in children with RRTIs. In conclusion, we propose future research directions including conducting more high-quality randomized controlled trials to optimize application strategies for probiotics alongside other treatments while considering variations based on age and health conditions among pediatric populations. Finally, in summary although probiotics exhibit promising benefits in preventing and treating RRTIs in children; additional studies are necessary to refine their application strategies ensuring both safety and effectiveness.
Collapse
Affiliation(s)
- Yali Zhang
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yingying Xu
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ling Hu
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomei Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
11
|
Niu Q, Lu Y, Ren M, Zhu J, Zhao Y, Zhang R, Yang X, Sun Q. Alterations of lung and gut microbiota in sodium butyrate alleviating heat stress-induced lung injury of broilers. Poult Sci 2025; 104:104796. [PMID: 39799858 PMCID: PMC11770502 DOI: 10.1016/j.psj.2025.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025] Open
Abstract
Heat-induced stress has a significant impact on the health of broilers. It induces panting behavior and elevates oxygen consumption, leading to considerable strain on the broiler lungs. However, the precise effects of heat stress on lung injury, along with changes in the lung and gut microbiota, are not yet fully understood. In our study, Arbor Acres (AA) broilers were employed as a model to assess the efficacy of sodium butyrate (SB) in mitigating heat stress-induced lung injury, while concurrently exploring the potential role of lung and gut microbiota in this phenomenon. Heat stress negatively affected broilers, particularly leading to lung injury, which was alleviated by dietary supplementation with SB. However, antibiotic-induced dysbiosis of the microbiota diminished the protective effects of SB, highlighting the critical importance of gut microbiota homeostasis. Heat stress resulted in a reduction in lung microbial diversity and altered its composition, primarily due to the depletion of g_Clostridia and the proliferation of g_Staphylococcus. SB supplementation helped restore beneficial microbes and improved their adaptation to heat stress. Heat stress induced comparable effects on the gut microbiota, resulting in a decline in p_Firmicutes and an elevation in p_Bacteroidetes. However, SB supplementation effectively modulated these alterations in the gut microbiota, promoting a more beneficial microbial profile. Our findings highlighted the significant contributions of both lung and gut microbiota in maintaining homeostasis during heat stress. Moreover, SB administration demonstrated its efficacy in mitigating heat stress-induced lung injury in broilers. This study provides critical insights for developing dietary strategies to reduce heat stress and promote broiler health.
Collapse
Affiliation(s)
- Qiang Niu
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yiwen Lu
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Meijuan Ren
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Jiale Zhu
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yan Zhao
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - RuMeng Zhang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
12
|
Xu Y, Yang Y, Chen R, Li C, Li M, Yuan Q, Gao H. The impact of oral postbiotics on the restoration of pelvic floor muscle function. J Obstet Gynaecol Res 2025; 51:e16236. [PMID: 39924142 DOI: 10.1111/jog.16236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
AIM To elucidate the efficacy and underlying mechanisms of postbiotics in ameliorating stress urinary incontinence (SUI) in a rat model. METHODS SUI model was established via pelvic floor injury and bilateral ovariectomy to simulate postmenopausal conditions. Following successful model induction, subjects were randomly allocated into control, model, positive drug, and experimental groups. The positive drug group received midodrine hydrochloride (20 mg/kg), while the experimental group received postbiotics (75 mg/kg) daily for 28 days. Urodynamic and abdominal leak point pressure tests were conducted on days 7, 14, 21, and 28. After 28 days, histopathology and western blot analysis for collagen I (Col I), collagen III (Col III), and elastin, as well as quantitative polymerase chain reaction for gene expression, were performed. RESULTS The model group showed abnormal urodynamic waveforms and lower maximum abdominal leak point pressure compared to controls. Histopathology revealed muscle fiber disarray, fiber rupture, and decreased muscle thickness. Both mRNA and protein levels of Col I, Col III, and Elastin were reduced. Midodrine improved urodynamic parameters and pathology, increasing Col I, Col III, and Elastin levels. Postbiotics also improved urodynamic parameters and pathology, with increased protein levels of Col I, Col III, and Elastin, and upregulated mRNA levels of Col I, Col III, Elastin, and transforming growth factor β1. CONCLUSION Postbiotics demonstrate therapeutic potential in alleviating SUI in rats by upregulating the expression of Col I, Col III, Elastin, and transforming growth factor β1 genes, enhancing collagen and elastin protein content in sphincter and pubococcygeus muscles, and consequently restoring muscle contractility and function.
Collapse
Affiliation(s)
- Yuan Xu
- Shandong Nice Health Technology Co., Ltd., Jinan, China
| | - Yawei Yang
- Shandong Nice Health Technology Co., Ltd., Jinan, China
| | - Ruxin Chen
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Can Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Mingdian Li
- Shandong Nice Health Technology Co., Ltd., Jinan, China
| | - Qingxi Yuan
- Shandong Nice Health Technology Co., Ltd., Jinan, China
| | - He Gao
- Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
13
|
Jiang M, Yan Y, Wang T, Wang B, Li Y, Tang J, Zheng Y. Chronic exposure to diesel engine exhaust and alteration of the airway bacteriome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117857. [PMID: 39933232 DOI: 10.1016/j.ecoenv.2025.117857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
The detrimental effects of diesel engine exhaust (DEE) on public health are receiving increasing attention, particularly concerning respiratory health. Our understanding of the associations of the airway bacterial ecosystem with exposure to DEE and respiratory health remains limited. Our study aimed to identify the airway bacterial signature and assess its correlation with respiratory health in occupational populations. In this study, we collected induced sputum from 54 diesel-exposed workers and 52 unexposed controls. The exposed participants experienced lower forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) than controls. Importantly, the overall airway bacterial signature and assemblage in exposed individuals differed significantly from controls. The relative abundance of Prevotella nanceiensis, Prevotella shahii, Aggregatibacter segnis, and Lachnoanaerobaculum umeaense displayed remarkable differences between the two groups. Furthermore, exposed individuals showed a less robust correlation network and fewer keystone species in their airway bacteriome than controls. Furthermore, the Spearman analysis indicated notable correlations of specific species with carbon content in airway macrophages (CCAM), club cell protein (CC16), FVC and FEV1. Taken together, our study provided new information on the difference in the airway bacterial signature under exposure to DEE and supported a potential new link between specific species and lung function in occupational populations.
Collapse
Affiliation(s)
- Menghui Jiang
- School of Public Health, Qingdao University, Qingdao, Shandong, China.
| | - Yongwei Yan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Tao Wang
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Bojia Wang
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Yanting Li
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
14
|
Wang W, Qu Y, Chen H, Huang L, Gu L. The microbial co-infection interaction network in apical periodontitis with sinus tracts. J Dent 2025; 153:105496. [PMID: 39626841 DOI: 10.1016/j.jdent.2024.105496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024] Open
Abstract
OBJECTIVES This study aims to characterize the bacterial co-occurrence features and potential interactions associated with the presence of sinus tracts in apical periodontitis in a Chinese population by using 16S rRNA next-generation sequencing (NGS). METHODS Thirty-one samples from twenty-six patients were collected from root canals. Following the extraction of the bacterial DNA, the V3-V4 hypervariable regions of the 16S rRNA gene were sequenced. Compositional diversity, prominent taxa and co-occurrence network analysis were compared according to the presence or absence of sinus tracts. RESULTS The overall microbiota in two groups exhibited distinguished patterns. Actinomyces dominated in samples with sinus tracts while Prevotella was the most abundant in samples without sinus tracts. The major pathogens in sinus tracts exhibited a complex co-occurrence network, in which Pseudomonas formed a distinctive cluster with enriched abundance, and the extensive correlations centered on Desulfovibrio and Pseudoramibacter may suggest novel dependencies. In the network without sinus tracts, the Bacteroidetes and Firmicutes taxa presented close internal associations. CONCLUSIONS The sequencing results confirmed the complexity of the microbiota in AP. The presence of sinus tracts was associated with distinctive infective patterns and complicated microbial co-infection interaction networks. Further investigations should be adopted to elucidate the relationship between the novel interactions and disease progression. CLINICAL SIGNIFICANCE Exploring the microbial interactions leads to a better understanding of etiology of apical periodontitis. Utilizing next generation sequencing techniques, our research uncovered the bacterial community structure and observed co-infection networks associated with sinus tracts, providing potential insights for prognosis prediction and targeted therapeutics of persistent inflammation.
Collapse
Affiliation(s)
- Wenying Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yang Qu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lijia Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Lisha Gu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Li Y, Wang K, Shen D, Liu J, Li S, Liu L, Nagaoka K, Li C. Mogroside V protects lipopolysaccharides-induced lung inflammation chicken via suppressing inflammation mediated by the Th17 through the gut-lung axis. J Anim Sci 2025; 103:skae388. [PMID: 39716346 PMCID: PMC11773191 DOI: 10.1093/jas/skae388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/22/2024] [Indexed: 12/25/2024] Open
Abstract
Lipopolysaccharide (LPS) exposure triggers pulmonary inflammation, leading to compromised lung function in broiler. As amplified by policy restrictions on antibiotic usage, seeking antibiotic alternatives has become imperative. Mogroside V (MGV) has been reported to have a beneficial role in livestock and poultry production due to its remarkable antiinflammatory effects. Despite evidence showcasing MGV's efficacy against LPS-triggered lung inflammation, its precise mechanism of action remains elusive. In this study, we transplanted normal fecal microbiota (CF), fecal microbiota modified by MGV (MF), and sterile fecal filtrate (MS) into broiler with LPS-induced pneumonia. The results showed that through fecal microbiota transplantation (FMT), transplanting MGV-induced microbial populations significantly mitigated tissue damage induced by LPS and enhanced the mRNA level of pulmonary tight junction proteins and mucoprotein (P < 0.01). The expression levels of RORα (P < 0.001), Foxp3 (P < 0.01), and PD-L1 (P < 0.01) were significantly increased in the MF group than CF group. The concentrations of IL-6 and IL-17 in broilers lung tissue of MF group were lower than those in broilers of CF group (P < 0.05). Furthermore, the concentration of TGF-β in broilers serum of MS and MF groups was higher than those in broilers of CF group (P < 0.05). Microbial community analysis demonstrated that at genus level, the harmful bacterial populations Escherichia-Shigella and Helicobacter following FMT treatment were significantly reduced in MF group (P < 0.05), potentially mediating its protective effects. Compared with CF group, valerate content and FFAR2 mRNA expression levels in MF group were significantly increased (P < 0.05). The study suggests that MGV via the gut-lung axis, attenuates Th17-mediated inflammation, offering promise as a therapeutic strategy against LPS-induced lung inflammation in chickens.
Collapse
Affiliation(s)
- Yuan Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kai Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dan Shen
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Junze Liu
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Sheng Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Luyao Liu
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Gou Y, Lin F, Dan L, Zhang D. Exposure to toluene diisocyanate induces dysbiosis of gut-lung homeostasis: Involvement of gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125119. [PMID: 39414067 DOI: 10.1016/j.envpol.2024.125119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Toluene diisocyanate (TDI) is a major industrial compound that induces occupational asthma with steroid-resistant properties. Recent studies suggest that the gastrointestinal tract may be an effective target for the treatment of respiratory diseases. However, the alterations of the gut-lung axis in TDI-induced asthma remain unexplored. Therefore, in this study, a model of stable occupational asthma caused by TDI exposure was established to detect the alteration of the gut-lung axis. Exposure to TDI resulted in dysbiosis of the gut microbiome, with significant decreases in Barnesiella_intestinihominis, Faecalicoccus_pleomorphus, Lactobacillus_apodemi, and Lactobacillus_intestinalis, but increases in Alistipes_shahii and Odoribacter_laneus. The largest change in abundance was in Barnesiella_intestinihominis, which decreased from 12.14 per cent to 6.18 per cent. The histopathological abnormalities, including shorter length of intestinal villi, thinner thickness of muscularis, reduced number of goblet cells and inflammatory cell infiltration, were found in TDI-treated mice compared to control mice. In addition, increased permeability (evidenced by significantly reduced levels of ZO-1, Occludin and Claudin-1) and activation of TLR4/NF-κB signaling were observed in the intestine of these TDI-exposed mice. Concurrently, exposure to TDI resulted in airway hyperresponsiveness, overt cytokine production (e.g., IL-4, IL-5, IL-13, IL-25, and IL-33), and elevated IgE level within the respiratory tract. The expression of tight junction proteins is reduced and TLR4/NF-κB signaling is activated in the lung following TDI treatment. In addition, correlation analyses showed that changes in the gut microbiota were correlated with TDI exposure-induced airway inflammation. In conclusion, the present study suggests that the immune gut-lung axis may be involved in the development of TDI-induced asthma, which may have implications for potential interventions against steroid-resistant asthma.
Collapse
Affiliation(s)
- Yuxuan Gou
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou, 561113, China.
| | - Fu Lin
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Li Dan
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Dianyu Zhang
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| |
Collapse
|
17
|
Szklenarik G, Kiraly P, Szegvari G, Dora D, Lohinai Z. Predicting cancer-related mycobiome aspects in gastrointestinal cancers: a systematic review. Front Med (Lausanne) 2024; 11:1488377. [PMID: 39678030 PMCID: PMC11637848 DOI: 10.3389/fmed.2024.1488377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Background Colonization of the human gut and tumor tissue by non-pathogenic fungi has emerged as a potential risk factor associated with cancer epidemics. Therefore, we aimed to conduct a systematic review to assess the role of fungal colonization in gastrointestinal (GI) tumors in increasing diagnostic efficiency. Methods A PubMed citation search was conducted for publications up to and including March 2023, followed by full-text screening. Results were reported according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines. According to the Patient, Intervention, Comparison, Outcome (PICO) framework, patients diagnosed with early-and advanced-stage GI cancers, GI adenoma patients, and healthy subjects were included with metagenomic (MG) or internal transcribed spacer (ITS) sequencing on tumor tissue, adjacent normal tissue, stool, and blood samples. Results Fourteen studies were eligible based on the inclusion criteria and methodological quality. Studies were conducted in stool (n = 8) or tissue (n = 7) as the most common specimens to be used for molecular analysis. In the collected data, ITS was used in n = 10 cases and metagenomic analyses in n = 3 cases. Observing the interindividual variability, we found that the Ascomycota/Basidiomycota (A/B) ratio from healthy to cancer state decreased in n = 2, increased in n = 1 cases, and did not change significantly in n = 2 studies. An increase in the relative abundance of Malassezia was identified in n = 4, of Candida in n = 5, of Saccharomyces in n = 2, and of Aspergillus in n = 2 cases. Intraindividual differences in the A/B ratio were identified in cancer and adjacent tissue (n = 4) and cancer vs. stool (n = 1) studies. Intraindividual variability of the A/B ratio showed an increase in n = 2 and no change in n = 3 studies for cancer tissue. Conclusion In conclusion, the advent of highly sensitive sequencing methods may aid in the identification and the differentiation of cancerous from healthy human fungal colonizations with potential future diagnostic applications. Further studies are needed to establish reliable biomarkers for GI cancer screening.
Collapse
Affiliation(s)
- György Szklenarik
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Peter Kiraly
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Gabor Szegvari
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| |
Collapse
|
18
|
Li Y, Pan G, Wang S, Li Z, Yang R, Jiang Y, Chen Y, Li SC, Shen B. Comprehensive human respiratory genome catalogue underlies the high resolution and precision of the respiratory microbiome. Brief Bioinform 2024; 26:bbae620. [PMID: 39581874 PMCID: PMC11586125 DOI: 10.1093/bib/bbae620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
The human respiratory microbiome plays a crucial role in respiratory health, but there is no comprehensive respiratory genome catalogue (RGC) for studying the microbiome. In this study, we collected whole-metagenome shotgun sequencing data from 4067 samples and sequenced long reads of 124 samples, yielding 9.08 and 0.42 Tbp of short- and long-read data, respectively. By submitting these data with a novel assembly algorithm, we obtained a comprehensive human RGC. This high-quality RGC contains 190,443 contigs over 1 kbps and an N50 length exceeding 13 kbps; it comprises 159 high-quality and 393 medium-quality genomes, including 117 previously uncharacterized respiratory bacteria. Moreover, the RGC contains 209 respiratory-specific species not captured by the unified human gastrointestinal genome. Using the RGC, we revisited a study on a pediatric pneumonia dataset and identified 17 pneumonia-specific respiratory pathogens, reversing an inaccurate etiological conclusion due to the previous incomplete reference. Furthermore, we applied the RGC to the data of 62 participants with a clinical diagnosis of infection. Compared to the Nucleotide database, the RGC yielded greater specificity (0 versus 0.444, respectively) and sensitivity (0.852 versus 0.881, respectively), suggesting that the RGC provides superior sensitivity and specificity for the clinical diagnosis of respiratory diseases.
Collapse
Affiliation(s)
- Yinhu Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 2222 Xinchuan Road, Gaoxin District, Chengdu 610212, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, No. 1068 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Guangze Pan
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Shuai Wang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, No. 1 Kangda Road, Haizhu District, Guangzhou 510120, China
| | - Ru Yang
- Department of Neonatology Nursing, West China Second University Hospital, West China School of Nursing, Sichuan University, No. 1416 Chenglong Avenue, Jinjiang District, Chengdu 610041, China
| | - Yiqi Jiang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, No. 1068 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 2222 Xinchuan Road, Gaoxin District, Chengdu 610212, China
| |
Collapse
|
19
|
Wang Z, Qu J, Chang C, Sun Y. Association of the gut microbiome and different phenotypes of COPD and asthma: a bidirectional Mendelian randomization study. Microbiol Spectr 2024; 12:e0176024. [PMID: 39373519 PMCID: PMC11537028 DOI: 10.1128/spectrum.01760-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/14/2024] [Indexed: 10/08/2024] Open
Abstract
Mounting evidence has revealed the association between gut microbiota and both chronic obstructive pulmonary disease (COPD) and asthma; however, the causal association between gut microbiota and specific disease phenotypes remains to be determined. This study employed bidirectional two-sample Mendelian randomization (MR) analyses to investigate the potential causal relationship between gut microbiota and these conditions. The research utilized genome-wide association study (GWAS) data from the MiBioGen consortium for gut microbiota and the integrative epidemiology unit (IEU) Open GWAS for these conditions. Four MR analysis methods were employed: the inverse variance weighted (IVW) test, MR-Egger, weighted median, and weighted mode methods. The IVW method results are considered the primary findings. Sensitivity analyses, including heterogeneity tests, horizontal pleiotropy analysis, and leave-one-out analysis, were used to enhance robustness. Our MR study identified eight gut microbiota taxa potentially associated with the risk of different types of COPD and asthma. These include two taxa for early-onset COPD: Streptococcaceae [odds ratio (OR) = 1.315, 95% confidence interval (CI) = 1.071-1.616, P = 0.009] and Holdemanella (OR = 1.199, 95% CI = 1.063-1.352, P = 0.003); three for later-onset COPD: Acidaminococcaceae (OR = 1.312, 95% CI = 1.098-1.567, P = 0.003), Holdemania (OR = 1.165, 95% CI = 1.039-1.305, P = 0.009), and Marvinbryantia (OR = 0.814, 95% CI = 0.697-0.951, P = 0.009); one for allergic asthma: Butyricimonas (OR = 0.794, 95% CI = 0.693-0.908, P = 0.001); and two for non-allergic asthma: Clostridia (OR = 1.255, 95% CI = 1.043-1.511, P = 0.016) and Clostridiales (OR = 1.256, 95% CI = 1.048-1.506, P = 0.014).IMPORTANCEIndividuals with diverse phenotypes of chronic obstructive pulmonary disease (COPD) and asthma exhibit different responses to the conventional "one treatment fits all" approach. Recent research has revealed the significant role of the gut-lung axis in both COPD and asthma. However, the specific impact of gut microbiota on different subtypes of these conditions remains poorly understood. Our study has identified eight gut microbiota that may be associated with the risk of different types of COPD and asthma. These findings provide evidence suggesting a potential causal relationship between gut microbiota and various phenotypes of COPD and asthma. This offers a new perspective on the origins of different disease phenotypes and points toward future exploration of phenotype-specific and personalized therapies.
Collapse
Affiliation(s)
- Zihan Wang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Jingge Qu
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Chun Chang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| |
Collapse
|
20
|
Long MB, Chotirmall SH, Shteinberg M, Chalmers JD. Rethinking bronchiectasis as an inflammatory disease. THE LANCET. RESPIRATORY MEDICINE 2024; 12:901-914. [PMID: 38971168 DOI: 10.1016/s2213-2600(24)00176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/08/2024]
Abstract
Bronchiectasis is understood to be the result of a complex interaction between infection, impaired mucociliary clearance, inflammation, and lung damage. Current therapeutic approaches to bronchiectasis are heavily focused on management of infection along with enhancing mucus clearance. Long-term antibiotics have had limited success in clinical trials, suggesting a need to re-evaluate the concept of bronchiectasis as an infective disorder. We invoke the example of asthma, for which treatment paradigms shifted away from targeting smooth muscle constriction, towards permanently suppressing airway inflammation, reducing risk and ultimately inducing remission with precision anti-inflammatory treatments. In this Review, we argue that bronchiectasis is primarily a chronic inflammatory disease, requiring early identification of at-risk individuals, and we introduce a novel concept of disease activity with important implications for clinical practice and future research. A new generation of novel anti-inflammatory treatments are under development and repurposing of anti-inflammatory agents from other diseases could revolutionise patient care.
Collapse
Affiliation(s)
- Merete B Long
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel; The Technion, Israel Institute of Technology, The B Rappaport Faculty of Medicine, Haifa, Israel
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
21
|
Hashimoto K, Abe Y, Fukushima K, Niitsu T, Komukai S, Miyamoto S, Nii T, Matsuki T, Takeuchi N, Morimoto K, Kida H. Epidemiology of bronchiectasis at a single center in Japan: a retrospective cohort study. BMC Pulm Med 2024; 24:531. [PMID: 39448945 PMCID: PMC11520111 DOI: 10.1186/s12890-024-03337-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The characteristics of bronchiectasis (BE) in Asia, including Japan, remain largely unknown. We aimed to provide insights into the clinical characteristics and treatment outcomes of BE, especially regarding nontuberculous mycobacteria (NTM) infection and its poorly understood impact on prognosis. We also aimed to clarify the effect of long-term macrolide antibiotic use in patients with BE, who had no history of exacerbations. METHODS In this single-center, retrospective study, the medical records of patients who satisfied the BE criteria between January 1, 2012, and August 31, 2023, were reviewed. Severe exacerbations and mortality during the observation period were recorded. Baseline characteristics and overall survival of patients with and without NTM infection, and factors influencing the time to the first exacerbation and death were analyzed. Additionally, the effects of long-term macrolide antibiotic use in patients without a history of severe exacerbations were estimated. RESULTS In a cohort of 1044 patients with BE, the rate of severe exacerbation was 22.3%, with mortality rates of 3.2% over 3 years. Notably, the high prevalence of NTM infection (n = 410, 39.3%) in this cohort was distinctive. NTM infection was not associated with either the time to first severe exacerbation (p = 0.5676, adjusted hazard ratio = 1.11) or mortality (p = 0.4139, adjusted hazard ratio = 0.78). Compared with the NTM group, the non-NTM group had a higher proportion of elevated inflammatory markers, with significant differences in C-reactive protein levels (p = 0.0301) and blood neutrophil counts (p = 0.0273). Pseudomonas aeruginosa colonization was more frequent in the non-NTM group (p = 0.0003). Among patients with non-NTM infection and without a history of exacerbation in the past 2 years, 38.2% received long-term macrolide antibiotics that did not invariably prolong the time to first severe exacerbation (p = 0.4517, IPW p = 0.3555). CONCLUSIONS This study highlights BE epidemiology in Japan, noting that the presence of NTM infection may not necessarily worsen the prognostic outcomes and advising caution in the casual use of macrolides for milder cases without a history of exacerbations. CLINICAL TRIAL REGISTRATION UMIN Clinical Trials Registry Number: UMIN000054726 (Registered on 21 June 2024).
Collapse
Affiliation(s)
- Kazuki Hashimoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuko Abe
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kiyoharu Fukushima
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Biomedical Statistics, Graduate School of Medicine, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Takayuki Niitsu
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sho Komukai
- Department of Biomedical Statistics, Graduate School of Medicine, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Miyamoto
- Department of Respiratory Medicine, National Hospital Organization, Osaka Toneyama Medical Centre, 5-1-1 Toneyama, Toyonaka, Osaka, 560-8552, Japan
| | - Takuro Nii
- Department of Respiratory Medicine, National Hospital Organization, Osaka Toneyama Medical Centre, 5-1-1 Toneyama, Toyonaka, Osaka, 560-8552, Japan
| | - Takanori Matsuki
- Department of Respiratory Medicine, National Hospital Organization, Osaka Toneyama Medical Centre, 5-1-1 Toneyama, Toyonaka, Osaka, 560-8552, Japan
| | - Noriyuki Takeuchi
- Department of Radiology, National Hospital Organization, Osaka Toneyama Medical Centre, 5-1-1 Toneyama, Toyonaka, Osaka, 560-8552, Japan
| | - Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo, 204-8522, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine, National Hospital Organization, Osaka Toneyama Medical Centre, 5-1-1 Toneyama, Toyonaka, Osaka, 560-8552, Japan
| |
Collapse
|
22
|
Lu F, Huang T, Chen R, Yin H. Multi-omics analysis reveals the interplay between pulmonary microbiome and host in immunocompromised patients with sepsis-induced acute lung injury. Microbiol Spectr 2024; 12:e0142424. [PMID: 39422492 PMCID: PMC11619524 DOI: 10.1128/spectrum.01424-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The mechanisms behind the high inflammatory state and immunocompromise in severe sepsis remain unclear. While microbiota's role in immune regulation is known, the impact of pulmonary microbiota on sepsis progression is not fully understood. This study aims to investigate pulmonary microbial characteristics in septic patients and their relationship with host immune-related genes and clinical features. Fifty-four sepsis patients were divided into the immunocompromised host (ICH) group (n = 18) and the control group (n = 36). Bronchoalveolar lavage fluid (BALF) was analyzed using metagenomic next-generation sequencing (mNGS) to assess the pulmonary microbiome, and transcriptomic sequencing evaluated host gene expression. The pulmonary microbiota network in the ICH group showed notable alterations. Symbiotic bacteria like Streptococcus salivarius and Streptococcus oralis were key taxa in the control group. In contrast, opportunistic pathogens such as Campylobacter concisus and Prevotella melaninogenica, typically linked to infections in various body sites, dominated in the ICH group. Transcriptomic analysis revealed differential genes between the two groups. The downregulated differential genes in the ICH group were primarily enriched in pathways related to T-cell activation and the Type I interferon signaling pathway, both crucial for the immune system. Further correlation analysis identified significant associations between certain microbes and host genes, as well as clinical indicators, particularly with species like Campylobacter concisus, Streptococcus salivarius, Streptococcus oralis, and several species of Veillonella. These findings suggest that alterations in the pulmonary microbiome, especially the presence of opportunistic pathogens, may contribute to immune dysregulation in immunocompromised septic patients, warranting further research to explore causal relationships. IMPORTANCE Recent research has substantiated the significant role of microbiota in immune regulation, which could influence high inflammatory state and immunocompromise in patients with severe sepsis, as well as provide new opportunities for acute lung injury induced by sepsis diagnosis and treatment. Our study identified some potential critical microbes (Campylobacter concisus and several species of Veillonella), which were correlated with immune-related genes and might be the novel target to regulate immunotherapy in sepsis.
Collapse
Affiliation(s)
- Fan Lu
- Department of Emergency, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ting Huang
- Department of Obstetrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ruichang Chen
- Department of Emergency, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiyan Yin
- Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
23
|
Li H, Du Y, Cheng K, Chen Y, Wei L, Pei Y, Wang X, Wang L, Zhang Y, Hu X, Lu Y, Zhu X. Gut microbiota-derived indole-3-acetic acid suppresses high myopia progression by promoting type I collagen synthesis. Cell Discov 2024; 10:89. [PMID: 39187483 PMCID: PMC11347609 DOI: 10.1038/s41421-024-00709-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/08/2024] [Indexed: 08/28/2024] Open
Abstract
High myopia (HM) is a leading cause of blindness worldwide with currently no effective interventions available. A major hurdle lies in its often isolated perception as a purely ocular morbidity, disregarding potential systemic implications. Recent evidence suggests the existence of a gut-eye axis; however, the role of gut microbiota in the pathogenesis of HM remains largely unexplored. Herein, we provide a potential crosstalk among HM's gut dysbiosis, microbial metabolites, and scleral remodeling. Utilizing 16S rRNA gene sequencing, we observed an altered gut microbiota profile in HM patients with a significant reduction in probiotic abundance compared with healthy controls. Subsequent targeted metabolic profiling revealed a notable decrease in plasma levels of the gut microbiota-derived metabolite indole-3-acetic acid (3-IAA) among HM patients, which is closely associated with the reduced probiotics, both negatively correlated with HM severity. Genetic analyses determined that gut microbiota are causally associated with myopia risk. Importantly, when mice subjected to HM modeling receive fecal microbiota transplantation from healthy donors, there is an increase in 3-IAA plasma levels and simultaneous retardation of HM progression along with better maintenance of collagen type I alpha 1 (COL1A1) expression in the sclera. Furthermore, 3-IAA gavage achieves similar effects. Mechanistic investigations confirm the transcriptional activation of COL1A1 by 3-IAA via promoting the enrichment of SP1 to its promoter. Together, our findings provide novel insights into the gut microbiota-eye axis in the pathogenesis of HM and propose new strategies for HM intervention by remodeling the gut microbiota and indole supplementation.
Collapse
Affiliation(s)
- Hao Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Du
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Kaiwen Cheng
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yuxi Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Ling Wei
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yujun Pei
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xiaoyu Wang
- Mass Spectrometry Platform, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lan Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Ye Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xiaoxin Hu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yi Lu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
| | - Xiangjia Zhu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
| |
Collapse
|
24
|
Katsoulis O, Pitts OR, Singanayagam A. The airway mycobiome and interactions with immunity in health and chronic lung disease. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae009. [PMID: 39206335 PMCID: PMC11357796 DOI: 10.1093/oxfimm/iqae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
The existence of commensal fungi that reside within the respiratory tract, termed the airway mycobiome, has only recently been discovered. Studies are beginning to characterize the spectrum of fungi that inhabit the human upper and lower respiratory tract but heterogeneous sampling and analysis techniques have limited the generalizability of findings to date. In this review, we discuss existing studies that have examined the respiratory mycobiota in healthy individuals and in those with inflammatory lung conditions such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. Associations between specific fungi and features of disease pathogenesis are emerging but the precise functional consequences imparted by mycobiota upon the immune system remain poorly understood. It is imperative that further research is conducted in this important area as a more detailed understanding could facilitate the development of novel approaches to manipulating the mycobiome for therapeutic benefit.
Collapse
Affiliation(s)
- Orestis Katsoulis
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| | - Oliver R Pitts
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| | - Aran Singanayagam
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
- National Heart and Lung Institute, Imperial College London, London SW7 2DD, UK
| |
Collapse
|
25
|
He S, Zhuo Y, Cui L, Zhang S, Tu Z, Wang M, Lv X, Ge L, Lin J, Yang L, Wang X. Naringin dihydrochalcone alleviates sepsis-induced acute lung injury via improving gut microbial homeostasis and activating GPR18 receptor. Int Immunopharmacol 2024; 137:112418. [PMID: 38901244 DOI: 10.1016/j.intimp.2024.112418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Acute lung injury (ALI) is a life-threatening disease characterized by severe lung inflammation and intestinal microbiota disorder. The GPR18 receptor has been demonstrated to be a potential therapeutic target against ALI. Extracting Naringin dihydrochalcone (NDC) from the life-sustaining orange peel is known for its diverse anti-inflammatory properties, yet the specific action target remains uncertain. In the present study, we identified NDC as a potential agonist of the GPR18 receptor using virtual screening and investigated the pharmacological effects of NDC on sepsis-induced acute lung injury in rats and explored underlying mechanisms. In in vivo experiments, CLP-induced ALI model was established by cecum puncture and treated with NDC gavage one hour prior to drug administration, lung histopathology and inflammatory cytokines were evaluated, and feces were subjected to 16s rRNA sequencing and untargeted metabolomics analysis. In in vitro experiments, the anti-inflammatory properties were exerted by evaluating NDC targeting the GPR18 receptor to inhibit lipopolysaccharide (LPS)-induced secretion of TNF-α, IL-6, IL-1β and activation of inflammatory signaling pathways in MH-S cells. Our findings showed that NDC significantly ameliorated lung damage and pro-inflammatory cytokine levels (TNF-α, IL-6, IL-1β) in both cells and lung tissues via inhibiting the activation of STAT3, NF-κB, and NLRP3 inflammatory signaling pathways through GRP18 receptor activation. In addition, NDC can also partly reverse the imbalance of gut microbiota composition caused by CLP via increasing the proportion of Firmicutes/Bacteroidetes and Lactobacillus and decreasing the relative abundance of Proteobacteria. Meanwhile, the fecal metabolites in the NDC treatment group also significantly were changed, including decreased secretion of Phenylalanin, Glycine, and bile secretion, and increased secretion of Lysine. In conclusion, these findings suggest that NDC can alleviate sepsis-induced ALI via improving gut microbial homeostasis and metabolism and mitigate inflammation via activating GPR18 receptor. In conclusion, the results indicate that NDC, derived from the typical orange peel of food, could significantly contribute to development by enhancing intestinal microbial balance and metabolic processes, and reducing inflammation by activating the GPR18 receptor, thus mitigating sepsis-induced ALI and expanding the range of functional foods.
Collapse
Affiliation(s)
- Siqi He
- Graduate School, Tianjin Medical University, Tianjin 300270, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital Tianjin Medical University, Tianjin 300100, China
| | - Lingzhi Cui
- Graduate School, Tianjin Medical University, Tianjin 300270, China
| | - Sijia Zhang
- Graduate School, Tianjin Medical University, Tianjin 300270, China
| | - Zhengwei Tu
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital Tianjin Medical University, Tianjin 300100, China
| | - Mukuo Wang
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Xinyue Lv
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Lixiu Ge
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital Tianjin Medical University, Tianjin 300100, China
| | - Jianping Lin
- College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital Tianjin Medical University, Tianjin 300100, China.
| | - Ximo Wang
- Graduate School, Tianjin Medical University, Tianjin 300270, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Medical University Third Center Clinical College, Tianjin 300170, China.
| |
Collapse
|
26
|
Li N, Tan G, Xie Z, Chen W, Yang Z, Wang Z, Liu S, He M. Distinct enterotypes and dysbiosis: unraveling gut microbiota in pulmonary and critical care medicine inpatients. Respir Res 2024; 25:304. [PMID: 39127664 PMCID: PMC11316369 DOI: 10.1186/s12931-024-02943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The gut-lung axis, pivotal for respiratory health, is inadequately explored in pulmonary and critical care medicine (PCCM) inpatients. METHODS Examining PCCM inpatients from three medical university-affiliated hospitals, we conducted 16S ribosomal RNA sequencing on stool samples (inpatients, n = 374; healthy controls, n = 105). We conducted statistical analyses to examine the gut microbiota composition in PCCM inpatients, comparing it to that of healthy controls. Additionally, we explored the associations between gut microbiota composition and various clinical factors, including age, white blood cell count, neutrophil count, platelet count, albumin level, hemoglobin level, length of hospital stay, and medical costs. RESULTS PCCM inpatients exhibited lower gut microbiota diversity than healthy controls. Principal Coordinates Analysis revealed marked overall microbiota structure differences. Four enterotypes, including the exclusive Enterococcaceae enterotype in inpatients, were identified. Although no distinctions were found at the phylum level, 15 bacterial families exhibited varying abundances. Specifically, the inpatient population from PCCM showed a significantly higher abundance of Enterococcaceae, Lactobacillaceae, Erysipelatoclostridiaceae, Clostridiaceae, and Tannerellaceae. Using random forest analyses, we calculated the areas under the receiver operating characteristic curves (AUCs) to be 0.75 (95% CIs 0.69-0.80) for distinguishing healthy individuals from inpatients. The four most abundant genera retained in the classifier were Blautia, Subdoligranulum, Enterococcus, and Klebsiella. CONCLUSIONS Evidence of gut microbiota dysbiosis in PCCM inpatients underscores the gut-lung axis's significance, promising further avenues in respiratory health research.
Collapse
Affiliation(s)
- Naijian Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guiyan Tan
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Zhiling Xie
- Department of Pulmonary and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, People's Republic of China
| | - Weixin Chen
- Department of Chinese and Western Medicine in Clinical Medicine, The Clinical School of Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhaowei Yang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhang Wang
- Biomedical Research Center, Institute of Ecological Sciences, School of Life Sciences, State Key Laboratory of Respiratory Disease, South China Normal University, Guangzhou, People's Republic of China
| | - Sha Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People's Republic of China.
| | - Mengzhang He
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
27
|
Sey EA, Warris A. The gut-lung axis: the impact of the gut mycobiome on pulmonary diseases and infections. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae008. [PMID: 39193472 PMCID: PMC11316619 DOI: 10.1093/oxfimm/iqae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 08/29/2024] Open
Abstract
The gastrointestinal tract contains a diverse microbiome consisting of bacteria, fungi, viruses and archaea. Although these microbes usually reside as commensal organisms, it is now well established that higher abundance of specific bacterial or fungal species, or loss of diversity in the microbiome can significantly affect development, progression and outcomes in disease. Studies have mainly focused on the effects of bacteria, however, the impact of other microbes, such as fungi, has received increased attention in the last few years. Fungi only represent around 0.1% of the total gut microbial population. However, key fungal taxa such as Candida, Aspergillus and Wallemia have been shown to significantly impact health and disease. The composition of the gut mycobiome has been shown to affect immunity at distal sites, such as the heart, lung, brain, pancreas, and liver. In the case of the lung this phenomenon is referred to as the 'gut-lung axis'. Recent studies have begun to explore and unveil the relationship between gut fungi and lung immunity in diseases such as asthma and lung cancer, and lung infections caused by viruses, bacteria and fungi. In this review we will summarize the current, rapidly growing, literature describing the impact of the gut mycobiome on respiratory disease and infection.
Collapse
Affiliation(s)
- Emily A Sey
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, EX4 4QD, UK
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
28
|
De Angelis A, Johnson ED, Sutharsan S, Aliberti S. Exacerbations of bronchiectasis. Eur Respir Rev 2024; 33:240085. [PMID: 39048130 PMCID: PMC11267293 DOI: 10.1183/16000617.0085-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Bronchiectasis presents a significant challenge due to its rising prevalence, associated economic burden and clinical heterogeneity. This review synthesises contemporary understanding and literature of bronchiectasis exacerbations, addressing the transition from stable state to exacerbations, underlining the importance of early and precise recognition, rigorous severity assessment, prompt treatment, and prevention measures, as well as emphasising the need for strategies to assess and improve early and long-term patient outcomes. The review highlights the interplay between stable state phases and exacerbations in bronchiectasis, introducing the concept of "exogenous and endogenous changes in airways homeostasis" and the "adapted island model" with a particular focus on "frequent exacerbators", a group of patients associated with specific clinical characteristics and worse outcomes. The pathophysiology of exacerbations is explored through the lens of microbial and nonmicrobial triggers and the presence and the activity of comorbidities, elaborating on the impact of both exogenous insults, such as infections and pollution, and endogenous factors such as inflammatory endotypes. Finally, the review proposes a multidisciplinary approach to care, integrating advancements in precision medicine and biomarker research, paving the way for tailored treatments that challenge the traditional antibiotic paradigm.
Collapse
Affiliation(s)
- Alessandro De Angelis
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| | - Emma D Johnson
- University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Sivagurunathan Sutharsan
- Division of Cystic Fibrosis, Department of Pulmonary Medicine, University Medicine Essen -Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| |
Collapse
|
29
|
Perea L, Faner R, Chalmers JD, Sibila O. Pathophysiology and genomics of bronchiectasis. Eur Respir Rev 2024; 33:240055. [PMID: 38960613 PMCID: PMC11220622 DOI: 10.1183/16000617.0055-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is a complex and heterogeneous inflammatory chronic respiratory disease with an unknown cause in around 30-40% of patients. The presence of airway infection together with chronic inflammation, airway mucociliary dysfunction and lung damage are key components of the vicious vortex model that better describes its pathophysiology. Although bronchiectasis research has significantly increased over the past years and different endotypes have been identified, there are still major gaps in the understanding of the pathophysiology. Genomic approaches may help to identify new endotypes, as has been shown in other chronic airway diseases, such as COPD.Different studies have started to work in this direction, and significant contributions to the understanding of the microbiome and proteome diversity have been made in bronchiectasis in recent years. However, the systematic application of omics approaches to identify new molecular insights into the pathophysiology of bronchiectasis (endotypes) is still limited compared with other respiratory diseases.Given the complexity and diversity of these technologies, this review describes the key components of the pathophysiology of bronchiectasis and how genomics can be applied to increase our knowledge, including the study of new techniques such as proteomics, metabolomics and epigenomics. Furthermore, we propose that the novel concept of trained innate immunity, which is driven by microbiome exposures leading to epigenetic modifications, can complement our current understanding of the vicious vortex. Finally, we discuss the challenges, opportunities and implications of genomics application in clinical practice for better patient stratification into new therapies.
Collapse
Affiliation(s)
- Lidia Perea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Faner
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias M.P. (CIBERES), Barcelona, Spain
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Oriol Sibila
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias M.P. (CIBERES), Barcelona, Spain
- Respiratory Department, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Mac Aogáin M, Xaverius Ivan F, Jaggi TK, Richardson H, Shoemark A, Narayana JK, Dicker AJ, Koh MS, Lee KCH, Thun How O, Poh ME, Chin KK, Hou ALY, Ser Hon P, Low TB, Abisheganaden JA, Dimakou K, Digalaki A, Kosti C, Gkousiou A, Hansbro PM, Blasi F, Aliberti S, Chalmers JD, Chotirmall SH. Airway "Resistotypes" and Clinical Outcomes in Bronchiectasis. Am J Respir Crit Care Med 2024; 210:47-62. [PMID: 38271608 PMCID: PMC11197066 DOI: 10.1164/rccm.202306-1059oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Rationale: Chronic infection and inflammation shapes the airway microbiome in bronchiectasis. Utilizing whole-genome shotgun metagenomics to analyze the airway resistome provides insight into interplay between microbes, resistance genes, and clinical outcomes. Objectives: To apply whole-genome shotgun metagenomics to the airway microbiome in bronchiectasis to highlight a diverse pool of antimicrobial resistance genes: the "resistome," the clinical significance of which remains unclear. Methods: Individuals with bronchiectasis were prospectively recruited into cross-sectional and longitudinal cohorts (n = 280), including the international multicenter cross-sectional Cohort of Asian and Matched European Bronchiectasis 2 (CAMEB 2) study (n = 251) and two independent cohorts, one describing patients experiencing acute exacerbation and a further cohort of patients undergoing Pseudomonas aeruginosa eradication treatment. Sputum was subjected to metagenomic sequencing, and the bronchiectasis resistome was evaluated in association with clinical outcomes and underlying host microbiomes. Measurements and Main Results: The bronchiectasis resistome features a unique resistance gene profile and increased counts of aminoglycoside, bicyclomycin, phenicol, triclosan, and multidrug resistance genes. Longitudinally, it exhibits within-patient stability over time and during exacerbations despite between-patient heterogeneity. Proportional differences in baseline resistome profiles, including increased macrolide and multidrug resistance genes, associate with shorter intervals to the next exacerbation, whereas distinct resistome archetypes associate with frequent exacerbations, poorer lung function, geographic origin, and the host microbiome. Unsupervised analysis of resistome profiles identified two clinically relevant "resistotypes," RT1 and RT2, the latter characterized by poor clinical outcomes, increased multidrug resistance, and P. aeruginosa. Successful targeted eradication in P. aeruginosa-colonized individuals mediated reversion from RT2 to RT1, a more clinically favorable resistome profile demonstrating reduced resistance gene diversity. Conclusions: The bronchiectasis resistome associates with clinical outcomes, geographic origin, and the underlying host microbiome. Bronchiectasis resistotypes link to clinical disease and are modifiable through targeted antimicrobial therapy.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James’s Hospital, Dublin, Ireland
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Hollian Richardson
- University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Amelia Shoemark
- University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | | | - Alison J. Dicker
- University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Mariko Siyue Koh
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | - Ken Cheah Hooi Lee
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | - Ong Thun How
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | - Mau Ern Poh
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ka Kiat Chin
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Albert Lim Yick Hou
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Puah Ser Hon
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Teck Boon Low
- Department of Respiratory and Critical Care Medicine, Changi General Hospital, Singapore
| | - John Arputhan Abisheganaden
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Katerina Dimakou
- 5th Respiratory Medicine Department, General Hospital for Chest Diseases of Athens “Sotiria”, Athens, Greece
| | - Antonia Digalaki
- 5th Respiratory Medicine Department, General Hospital for Chest Diseases of Athens “Sotiria”, Athens, Greece
| | - Chrysavgi Kosti
- 5th Respiratory Medicine Department, General Hospital for Chest Diseases of Athens “Sotiria”, Athens, Greece
| | - Anna Gkousiou
- 5th Respiratory Medicine Department, General Hospital for Chest Diseases of Athens “Sotiria”, Athens, Greece
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Francesco Blasi
- Respiratory Unit and Cystic Fibrosis Center, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; and
- IRCCS Humanitas Research Hospital, Respiratory Unit, Rozzano, Milan, Italy
| | - James D. Chalmers
- University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
31
|
Mac Aogáin M, Dicker AJ, Mertsch P, Chotirmall SH. Infection and the microbiome in bronchiectasis. Eur Respir Rev 2024; 33:240038. [PMID: 38960615 PMCID: PMC11220623 DOI: 10.1183/16000617.0038-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is marked by bronchial dilatation, recurrent infections and significant morbidity, underpinned by a complex interplay between microbial dysbiosis and immune dysregulation. The identification of distinct endophenotypes have refined our understanding of its pathogenesis, including its heterogeneous disease mechanisms that influence treatment and prognosis responses. Next-generation sequencing (NGS) has revolutionised the way we view airway microbiology, allowing insights into the "unculturable". Understanding the bronchiectasis microbiome through targeted amplicon sequencing and/or shotgun metagenomics has provided key information on the interplay of the microbiome and host immunity, a central feature of disease progression. The rapid increase in translational and clinical studies in bronchiectasis now provides scope for the application of precision medicine and a better understanding of the efficacy of interventions aimed at restoring microbial balance and/or modulating immune responses. Holistic integration of these insights is driving an evolving paradigm shift in our understanding of bronchiectasis, which includes the critical role of the microbiome and its unique interplay with clinical, inflammatory, immunological and metabolic factors. Here, we review the current state of infection and the microbiome in bronchiectasis and provide views on the future directions in this field.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Alison J Dicker
- Respiratory Research Group, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Pontus Mertsch
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center (CPC), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
32
|
Chotirmall SH, Chalmers JD. The Precision Medicine Era of Bronchiectasis. Am J Respir Crit Care Med 2024; 210:24-34. [PMID: 38949497 PMCID: PMC11197062 DOI: 10.1164/rccm.202403-0473pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 07/02/2024] Open
Affiliation(s)
- Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore; and
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| |
Collapse
|
33
|
Shteinberg M, Chalmers JD, Narayana JK, Dicker AJ, Rahat MA, Simanovitch E, Bidgood L, Cohen S, Stein N, Abo-Hilu N, Abbott J, Avital S, Fireman-Klein E, Richardson H, Muhammad E, Jrbashyan J, Schneer S, Nasrallah N, Eisenberg I, Chotirmall SH, Adir Y. Bronchiectasis with Chronic Rhinosinusitis Is Associated with Eosinophilic Airway Inflammation and Is Distinct from Asthma. Ann Am Thorac Soc 2024; 21:748-758. [PMID: 38194593 DOI: 10.1513/annalsats.202306-551oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024] Open
Abstract
Rationale: Bronchiectasis is an airway inflammatory disease that is frequently associated with chronic rhinosinusitis (CRS). An eosinophilic endotype of bronchiectasis has recently been described, but detailed testing to differentiate eosinophilic bronchiectasis from asthma has not been performed. Objectives: This prospective observational study aimed to test the hypotheses that bronchiectasis with CRS is enriched for the eosinophilic phenotype in comparison with bronchiectasis alone and that the eosinophilic bronchiectasis phenotype exists as a separate entity from bronchiectasis associated with asthma. Methods: People with idiopathic or postinfectious bronchiectasis were assessed for concomitant CRS. We excluded people with asthma or primary ciliary dyskinesia and smokers. We assessed sputum and blood cell counts, nasal NO and fractional excreted NO, methacholine reactivity, skin allergy testing and total and specific immunoglobulin (Ig) E, cytokines in the sputum and serum, and the microbiome in the sputum and nasopharynx. Results: A total of 22 people with CRS (BE + CRS) and 17 without CRS (BE - CRS) were included. Sex, age, Reiff score, and bronchiectasis severity were similar. Median sputum eosinophil percentages were 0% (IQR, 0-1.5%) in BE - CRS and 3% (1-12%) in BE + CRS (P = 0.012). Blood eosinophil counts were predictive of sputum eosinophilia (counts ⩾3%; area under the receiver operating characteristic curve, 0.68; 95% confidence interval, 0.50-0.85). Inclusion of CRS improved the prediction of sputum eosinophilia by blood eosinophil counts (area under the receiver operating characteristic curve, 0.79; 95% confidence interval, 0.65-0.94). Methacholine tests were negative in 85.7% of patients in the BE - CRS group and 85.2% of patients in the BE + CRS group (P > 0.99). Specific IgE and skin testing were similar between the groups, but total IgE levels were increased in people with increased sputum eosinophils. Microbiome analysis demonstrated distinct microbiota in nasopharyngeal and airway samples in the BE + CRS and BE - CRS groups, without significant differences between groups. However, interactome analysis revealed altered interactomes in individuals with high sputum eosinophil counts and CRS. Conclusions: Bronchiectasis with CRS is associated with an eosinophilic airway inflammation that is distinct from asthma.
Collapse
Affiliation(s)
- Michal Shteinberg
- Pulmonology Institute and CF Center
- Technion-Israel Institute of Technology, The B. Rappoport Faculty of Medicine, Haifa, Israel
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | - Jayanth K Narayana
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; and
| | - Alison J Dicker
- Division of Molecular and Clinical Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | - Michal A Rahat
- Immunotherapy Laboratory
- Technion-Israel Institute of Technology, The B. Rappoport Faculty of Medicine, Haifa, Israel
| | | | - Lucy Bidgood
- Division of Molecular and Clinical Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | - Shai Cohen
- Allergy and Immunology Unit
- Technion-Israel Institute of Technology, The B. Rappoport Faculty of Medicine, Haifa, Israel
| | - Nili Stein
- Community Medicine and Epidemiology Department
| | | | - James Abbott
- Division of Molecular and Clinical Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | | | - Einat Fireman-Klein
- Pulmonology Institute and CF Center
- Technion-Israel Institute of Technology, The B. Rappoport Faculty of Medicine, Haifa, Israel
| | - Hollian Richardson
- Division of Molecular and Clinical Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | | | | | - Sonia Schneer
- Pulmonology Institute and CF Center
- Technion-Israel Institute of Technology, The B. Rappoport Faculty of Medicine, Haifa, Israel
| | | | - Iya Eisenberg
- Radiology Department, Carmel Medical Center, Haifa, Israel
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; and
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Yochai Adir
- Pulmonology Institute and CF Center
- Technion-Israel Institute of Technology, The B. Rappoport Faculty of Medicine, Haifa, Israel
| |
Collapse
|
34
|
Wang Y, Qu Z, Chu J, Han S. Aging Gut Microbiome in Healthy and Unhealthy Aging. Aging Dis 2024; 16:980-1002. [PMID: 38607737 PMCID: PMC11964416 DOI: 10.14336/ad.2024.0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
The characteristics of human aging manifest in tissue and organ function decline, heightening susceptibility to age-related ailments, thereby presenting novel challenges to fostering and sustaining healthy longevity. In recent years, an abundance of research on human aging has surfaced. Intriguingly, evidence suggests a pervasive correlation among gut microbiota, bodily functions, and chronic diseases. From infancy to later stages of adulthood, healthy individuals witness dynamic shifts in gut microbiota composition. This microbial community is associated with tissue and organ function deterioration (e.g., brain, bones, muscles, immune system, vascular system) and heightened risk of age-related diseases. Thus, we present a narrative review of the aging gut microbiome in both healthy and unhealthy aging contexts. Additionally, we explore the potential for adjustments to physical health based on gut microbiome analysis and how targeting the gut microbiome can potentially slow down the aging process.
Collapse
Affiliation(s)
- Yangyanqiu Wang
- Huzhou Central Hospital, Affiliated Central Hospital Zhejiang University, Huzhou, Zhejiang, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, Zhejiang, China.
| | - Zhanbo Qu
- Huzhou Central Hospital, Affiliated Central Hospital Zhejiang University, Huzhou, Zhejiang, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, Zhejiang, China.
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang, China.
| | - Jian Chu
- Huzhou Central Hospital, Affiliated Central Hospital Zhejiang University, Huzhou, Zhejiang, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, Zhejiang, China.
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang, China.
| | - Shuwen Han
- Huzhou Central Hospital, Affiliated Central Hospital Zhejiang University, Huzhou, Zhejiang, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, Zhejiang, China.
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang, China.
| |
Collapse
|
35
|
Zheng L, Liu C, Wang H, Zhang J, Mao L, Dong X, Hu S, Li N, Pi D, Qiu J, Xu F, Chen C, Zou Z. Intact lung tissue and bronchoalveolar lavage fluid are both suitable for the evaluation of murine lung microbiome in acute lung injury. MICROBIOME 2024; 12:56. [PMID: 38494479 PMCID: PMC10946114 DOI: 10.1186/s40168-024-01772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/30/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Accumulating clinical evidence suggests that lung microbiome is closely linked to the progression of pulmonary diseases; however, it is still controversial which specimen type is preferred for the evaluation of lung microbiome. METHODS AND RESULTS To address this issue, we established a classical acute lung injury (ALI) mice model by intratracheal instillation of lipopolysaccharides (LPS). We found that the bacterial DNA obtained from the bronchoalveolar lavage fluid (BALF), intact lung tissue [Lung(i)], lung tissue after perfused [Lung(p)], and feces of one mouse were enough for 16S rRNA sequencing, except the BALF of mice treated with phosphate buffer saline (PBS), which might be due to the biomass of lung microbiome in the BALF were upregulated in the mice treated with LPS. Although the alpha diversity among the three specimens from lungs had minimal differences, Lung(p) had higher sample-to-sample variation compared with BALF and Lung(i). Consistently, PCoA analysis at phylum level indicated that BALF was similar to Lung(i), but not Lung(p), in the lungs of mice treated with LPS, suggesting that BALF and Lung(i) were suitable for the evaluation of lung microbiome in ALI. Importantly, Actinobacteria and Firmicutes were identified as the mostly changed phyla in the lungs and might be important factors involved in the gut-lung axis in ALI mice. Moreover, Actinobacteria and Proteobacteria might play indicative roles in the severity of lung injury. CONCLUSION This study shows both Lung(i) and BALF are suitable for the evaluation of murine lung microbiome in ALI, and several bacterial phyla, such as Actinobacteria, may serve as potential biomarkers for the severity of ALI. Video Abstract.
Collapse
Affiliation(s)
- Lijun Zheng
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chengjun Liu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Hongjing Wang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing, 400016, People's Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaomei Dong
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Siyao Hu
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Na Li
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dandan Pi
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Research Center for Environment and Human Health, School of Public Health, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
36
|
Rosenboom I, Thavarasa A, Richardson H, Long MB, Wiehlmann L, Davenport CF, Shoemark A, Chalmers JD, Tümmler B. Sputum metagenomics of people with bronchiectasis. ERJ Open Res 2024; 10:01008-2023. [PMID: 38444657 PMCID: PMC10910388 DOI: 10.1183/23120541.01008-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 03/07/2024] Open
Abstract
Background The microbiota in the sputum of people with bronchiectasis has repeatedly been investigated in cohorts of different geographic origin, but so far has not been studied to the species level in comparison to control populations including healthy adults and smokers without lung disease. Methods The microbial metagenome from sputa of 101 European Bronchiectasis Registry (EMBARC) study participants was examined by using whole-genome shotgun sequencing. Results Our analysis of the metagenome of people with bronchiectasis revealed four clusters characterised by a predominance of Haemophilus influenzae, Pseudomonas aeruginosa or polymicrobial communities with varying compositions of nonpathogenic commensals and opportunistic pathogens. The metagenomes of the severely affected patients showed individual profiles characterised by low alpha diversity. Importantly, nearly 50% of patients with severe disease were grouped in a cluster characterised by commensals. Comparisons with the sputum metagenomes of healthy smokers and healthy nonsmokers revealed a gradient of depletion of taxa in bronchiectasis, most often Neisseria subflava, Fusobacterium periodonticum and Eubacterium sulci. Conclusion The gradient of depletion of commensal taxa found in healthy airways is a key feature of bronchiectasis associated with disease severity.
Collapse
Affiliation(s)
- Ilona Rosenboom
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Ajith Thavarasa
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Hollian Richardson
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Merete B. Long
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Lutz Wiehlmann
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | | | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Burkhard Tümmler
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Centre for Lung Research, Hannover, Germany
| |
Collapse
|
37
|
Mac Aogáin M, Tiew PY, Jaggi TK, Narayana JK, Singh S, Hansbro PM, Segal LN, Chotirmall SH. Targeting respiratory microbiomes in COPD and bronchiectasis. Expert Rev Respir Med 2024; 18:111-125. [PMID: 38743428 DOI: 10.1080/17476348.2024.2355155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION This review summarizes our current understanding of the respiratory microbiome in COPD and Bronchiectasis. We explore the interplay between microbial communities, host immune responses, disease pathology, and treatment outcomes. AREAS COVERED We detail the dynamics of the airway microbiome, its influence on chronic respiratory diseases, and analytical challenges. Relevant articles from PubMed and Medline (January 2010-March 2024) were retrieved and summarized. We examine clinical correlations of the microbiome in COPD and bronchiectasis, assessing how current therapies impact upon it. The potential of emerging immunotherapies, antiinflammatories and antimicrobial strategies is discussed, with focus on the pivotal role of commensal taxa in maintaining respiratory health and the promising avenue of microbiome remodeling for disease management. EXPERT OPINION Given the heterogeneity in microbiome composition and its pivotal role in disease development and progression, a shift toward microbiome-directed therapeutics is appealing. This transition, from traditional 'pathogencentric' diagnostic and treatment modalities to those acknowledging the microbiome, can be enabled by evolving crossdisciplinary platforms which have the potential to accelerate microbiome-based interventions into routine clinical practice. Bridging the gap between comprehensive microbiome analysis and clinical application, however, remains challenging, necessitating continued innovation in research, diagnostics, trials, and therapeutic development pipelines.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Shivani Singh
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Leopoldo N Segal
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
38
|
Xu C, Jiang H, Feng LJ, Jiang MZ, Wang YL, Liu SJ. Christensenella minuta interacts with multiple gut bacteria. Front Microbiol 2024; 15:1301073. [PMID: 38440147 PMCID: PMC10910051 DOI: 10.3389/fmicb.2024.1301073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Gut microbes form complex networks that significantly influence host health and disease treatment. Interventions with the probiotic bacteria on the gut microbiota have been demonstrated to improve host well-being. As a representative of next-generation probiotics, Christensenella minuta (C. minuta) plays a critical role in regulating energy balance and metabolic homeostasis in human bodies, showing potential in treating metabolic disorders and reducing inflammation. However, interactions of C. minuta with the members of the networked gut microbiota have rarely been explored. Methods In this study, we investigated the impact of C. minuta on fecal microbiota via metagenomic sequencing, focusing on retrieving bacterial strains and coculture assays of C. minuta with associated microbial partners. Results Our results showed that C. minuta intervention significantly reduced the diversity of fecal microorganisms, but specifically enhanced some groups of bacteria, such as Lactobacillaceae. C. minuta selectively enriched bacterial pathways that compensated for its metabolic defects on vitamin B1, B12, serine, and glutamate synthesis. Meanwhile, C. minuta cross-feeds Faecalibacterium prausnitzii and other bacteria via the production of arginine, branched-chain amino acids, fumaric acids and short-chain fatty acids (SCFAs), such as acetic. Both metagenomic data analysis and culture experiments revealed that C. minuta negatively correlated with Klebsiella pneumoniae and 14 other bacterial taxa, while positively correlated with F. prausnitzii. Our results advance our comprehension of C. minuta's in modulating the gut microbial network. Conclusions C. minuta disrupts the composition of the fecal microbiota. This disturbance is manifested through cross-feeding, nutritional competition, and supplementation of its own metabolic deficiencies, resulting in the specific enrichment or inhibition of the growth of certain bacteria. This study will shed light on the application of C. minuta as a probiotic for effective interventions on gut microbiomes and improvement of host health.
Collapse
Affiliation(s)
- Chang Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - He Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Li-Juan Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min-Zhi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yu-Lin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
van der Bie S, Haaksma ME, Vermin B, van Assema H, van Gorp ECM, Langerak T, Endeman H, Snijders D, van den Akker JPC, van Houten MA, van Lelyveld SFL, Goeijenbier M. A Systematic Review of the Pulmonary Microbiome in Patients with Acute Exacerbation COPD Requiring ICU Admission. J Clin Med 2024; 13:472. [PMID: 38256606 PMCID: PMC10816170 DOI: 10.3390/jcm13020472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is a major health concern. Acute exacerbations (AECOPD) may require intensive care unit (ICU) admission and mechanical ventilation. Acute infections and chronic colonization of the respiratory system are known to precipitate AECOPD. Detailed knowledge of the respiratory microbiome could lead to effective treatment and prevention of exacerbations. Objective: The aim of this review is to summarize the available evidence on the respiratory microbiome of patients with a severe AECOPD requiring mechanical ventilation and intensive care admission. Methods: A systematic literature search was conducted to identify the published papers until January 2023. The collected data were then subjected to qualitative analysis. After the first analysis, a secondary focused review of the most recent publications studying the relationship between microbiome and mortality in AECOPD was performed. Results: Out of 120 screened articles six articles were included in this review. Potentially pathogenic microorganisms (PPMs) were identified in 30% to 72% of the patients with community-acquired bacteria, gram-negative enteric bacilli, Stenotrophomonas and Pseudomonas being the most frequently isolated. During hospitalization, 21% of patients experienced colonization by PPMs. Adequate antimicrobial therapy resulted in the eradication of 77% of the identified PPMs. However, 24% of the bacteria displayed multi-drug resistance leading to prolonged or failure of eradication. Conclusion: PPMs are prevalent in a significant proportion of patients experiencing an AECOPD. The most identified PPMs include community-acquired pathogens and gram-negative enteric bacilli. Notably, no differences in mortality or duration of ventilation were observed between patients with and without isolated PPMs. However, the included studies did not investigate the virome of the patients, which may influence the microbiome and the outcome of infection. Therefore, further research is essential to comprehensively investigate the complete microbial and viral composition of the lower respiratory system in COPD patients admitted to the ICU.
Collapse
Affiliation(s)
- Sjoerd van der Bie
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
| | - Mark E. Haaksma
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
| | - Ben Vermin
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
| | - Hidde van Assema
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
| | - Eric C. M. van Gorp
- Department of Viroscience, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (E.C.M.v.G.); (T.L.)
| | - Thomas Langerak
- Department of Viroscience, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (E.C.M.v.G.); (T.L.)
| | - Henrik Endeman
- Department of Intensive Care Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (H.E.); (J.P.C.v.d.A.)
| | - Dominic Snijders
- Department of Pulmonology, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands;
| | | | - Marlies A. van Houten
- Department of Pediatric Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands;
| | | | - Marco Goeijenbier
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
- Department of Viroscience, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (E.C.M.v.G.); (T.L.)
- Department of Intensive Care Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (H.E.); (J.P.C.v.d.A.)
| |
Collapse
|
40
|
McDaneld TG, Eicher SD, Dickey A, Kritchevsky JE, Bryan KA, Chitko-McKown CG. Probiotics in milk replacer affect the microbiome of the lung in neonatal dairy calves. Front Microbiol 2024; 14:1298570. [PMID: 38249465 PMCID: PMC10797021 DOI: 10.3389/fmicb.2023.1298570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Probiotics have been investigated for their many health benefits and impact on the microbiota of the gut. Recent data have also supported a gut-lung axis regarding the bacterial populations (microbiomes) of the two locations; however, little research has been performed to determine the effects of oral probiotics on the microbiome of the bovine respiratory tract. We hypothesized that probiotic treatment would result in changes in the lung microbiome as measured in lung lavage fluid. Our overall goal was to characterize bacterial populations in the lungs of calves fed probiotics in milk replacer and dry rations from birth to weaning. Methods A group of 20 dairy calves was split into two treatment groups: probiotic (TRT; N = 10, milk replacer +5 g/d probiotics; Bovamine Dairy, Chr. Hansen, Inc., Milwaukee, WI) and control (CON; N = 10, milk replacer only). On day 0, birth weight was obtained, and calves were provided colostrum as per the dairy SOP. On day 2, probiotics were added to the milk replacer of the treated group and then included in their dry ration. Lung lavages were performed on day 52 on five random calves selected from each treatment group. DNA was extracted from lavage fluid, and 16S ribosomal RNA (rRNA) gene hypervariable regions 1-3 were amplified by PCR and sequenced using next-generation sequencing (Illumina MiSeq) for the identification of the bacterial taxa present. Taxa were classified into both operational taxonomic units (OTUs) and amplicon sequence variants (ASVs). Results Overall, the evaluation of these samples revealed that the bacterial genera identified in the lung lavage samples of probiotic-fed calves as compared to the control calves were significantly different based on the OTU dataset (p < 0.05) and approached significance for the ASV dataset (p < 0.06). Additionally, when comparing the diversity of taxa in lung lavage samples to nasal and tonsil samples, taxa diversity of lung samples was significantly lower (p < 0.05). Discussion In conclusion, analysis of the respiratory microbiome in lung lavage samples after probiotic treatment provides insight into the distribution of bacterial populations in response to oral probiotics and demonstrates that oral probiotics affect more than the gut microbiome.
Collapse
Affiliation(s)
- Tara G. McDaneld
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Susan D. Eicher
- Livestock Behavior Research Unit, USDA, ARS, West Lafayette, IN, United States
| | - Aaron Dickey
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Janice E. Kritchevsky
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | | | | |
Collapse
|
41
|
Tian Y, Xu P, Wu X, Gong Z, Yang X, Zhu H, Zhang J, Hu Y, Li G, Sang N, Yue H. Lung injuries induced by ozone exposure in female mice: Potential roles of the gut and lung microbes. ENVIRONMENT INTERNATIONAL 2024; 183:108422. [PMID: 38217903 DOI: 10.1016/j.envint.2024.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Ozone (O3) is one of the most harmful pollutants affecting health. However, the potential effects of O3 exposure on microbes in the gut-lung axis related to lung injuries remain elusive. In this study, female mice were exposed to 0-, 0.5- and 1-ppm O3 for 28 days, followed by routine blood tests, lung function tests and histopathological examination of the colon, nasal cavity and lung. Mouse faeces and lungs were collected for 16s rRNA sequencing to assess the overall microbiological profile and screen for key differential enriched microbes (DEMs). The key DEMs in faecal samples were Butyricimonas, Rikenellaceae RC9 and Escherichia-Shigella, whereas those in lung samples were DNF00809, Fluviicola, Bryobacter, Family XII AD3011 group, Sharpea, MND1 and unclassified Phycisphaeraceae. After a search in microbe-disease databases, these key DEMs were found to be associated with lung diseases such as lung neoplasms, cystic fibrosis, pneumonia, chronic obstructive pulmonary disease, respiratory distress syndrome and bronchiectasis. Subsequently, we used transcriptomic data from Gene Expression Omnibus (GEO) with exposure conditions similar to those in this study to cross-reference with Comparative Toxicogenomic Database (CTD). Il-6 and Ccl2 were identified as the key causative genes and were validated. The findings of this study suggest that exposure to O3 leads to significant changes in the microbial composition of the gut and lungs. These changes are associated with increased levels of inflammatory factors in the lungs and impaired lung function, resulting in an increased risk of lung disease. Altogether, this study provides novel insights into the role of microbes present in the gut-lung axis in O3 exposure-induced lung injury.
Collapse
Affiliation(s)
- Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Pengchong Xu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Zhihua Gong
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tong ji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, PR China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xiaowen Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huizhen Zhu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Jiyue Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yangcheng Hu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
42
|
Zhang C, Li G, Lu T, Liu L, Sui Y, Bai R, Li L, Sun B. The Interaction of Microbiome and Pancreas in Acute Pancreatitis. Biomolecules 2023; 14:59. [PMID: 38254659 PMCID: PMC10813032 DOI: 10.3390/biom14010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Acute pancreatitis (AP) is a common acute abdomen disease characterized by the pathological activation of digestive enzymes and the self-digestion of pancreatic acinar cells. Secondary infection and sepsis are independent prognosticators for AP progression and increased mortality. Accumulating anatomical and epidemiological evidence suggests that the dysbiosis of gut microbiota affects the etiology and severity of AP through intestinal barrier disruption, local or systemic inflammatory response, bacterial translocation, and the regulatory role of microbial metabolites in AP patients and animal models. Recent studies discussing the interactions between gut microbiota and the pancreas have opened new scopes for AP, and new therapeutic interventions that target the bacteria community have received substantial attention. This review concentrates on the alterations of gut microbiota and its roles in modulating gut-pancreas axis in AP. The potential therapies of targeting microbes as well as the major challenges of applying those interventions are explored. We expect to understand the roles of microbes in AP diagnosis and treatment.
Collapse
Affiliation(s)
- Can Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Tianqi Lu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Liwei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Yuhang Sui
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Rui Bai
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| |
Collapse
|
43
|
Atto B, Anteneh Y, Bialasiewicz S, Binks MJ, Hashemi M, Hill J, Thornton RB, Westaway J, Marsh RL. The Respiratory Microbiome in Paediatric Chronic Wet Cough: What Is Known and Future Directions. J Clin Med 2023; 13:171. [PMID: 38202177 PMCID: PMC10779485 DOI: 10.3390/jcm13010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic wet cough for longer than 4 weeks is a hallmark of chronic suppurative lung diseases (CSLD), including protracted bacterial bronchitis (PBB), and bronchiectasis in children. Severe lower respiratory infection early in life is a major risk factor of PBB and paediatric bronchiectasis. In these conditions, failure to clear an underlying endobronchial infection is hypothesised to drive ongoing inflammation and progressive tissue damage that culminates in irreversible bronchiectasis. Historically, the microbiology of paediatric chronic wet cough has been defined by culture-based studies focused on the detection and eradication of specific bacterial pathogens. Various 'omics technologies now allow for a more nuanced investigation of respiratory pathobiology and are enabling development of endotype-based models of care. Recent years have seen substantial advances in defining respiratory endotypes among adults with CSLD; however, less is understood about diseases affecting children. In this review, we explore the current understanding of the airway microbiome among children with chronic wet cough related to the PBB-bronchiectasis diagnostic continuum. We explore concepts emerging from the gut-lung axis and multi-omic studies that are expected to influence PBB and bronchiectasis endotyping efforts. We also consider how our evolving understanding of the airway microbiome is translating to new approaches in chronic wet cough diagnostics and treatments.
Collapse
Affiliation(s)
- Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Yitayal Anteneh
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
| | - Seweryn Bialasiewicz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Michael J. Binks
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Mostafa Hashemi
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (M.H.); (J.H.)
| | - Jane Hill
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (M.H.); (J.H.)
- Spire Health Technology, PBC, Seattle, WA 98195, USA
| | - Ruth B. Thornton
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA 6009, Australia
| | - Jacob Westaway
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD 4811, Australia
| | - Robyn L. Marsh
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
| |
Collapse
|
44
|
Allinson JP, Vlies BH, Brill SE, Law M, Burnside G, Finney LJ, Alves-Moreira L, Calverley PMA, Walker PP, Wedzicha JA. Reply to Martinez-Garcia et al. and to Wang et al.. Am J Respir Crit Care Med 2023; 208:1144-1145. [PMID: 37734070 PMCID: PMC10867927 DOI: 10.1164/rccm.202309-1604le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023] Open
Affiliation(s)
- James P. Allinson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton Hospital, London, United Kingdom
| | | | - Simon E. Brill
- Thoracic Medicine, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Martin Law
- Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, United Kingdom; and
| | | | | | - Luana Alves-Moreira
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | - Jadwiga A. Wedzicha
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
45
|
Gao J, Yi X, Wang Z. The application of multi-omics in the respiratory microbiome: Progresses, challenges and promises. Comput Struct Biotechnol J 2023; 21:4933-4943. [PMID: 37867968 PMCID: PMC10585227 DOI: 10.1016/j.csbj.2023.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
The study of the respiratory microbiome has entered a multi-omic era. Through integrating different omic data types such as metagenome, metatranscriptome, metaproteome, metabolome, culturome and radiome surveyed from respiratory specimens, holistic insights can be gained on the lung microbiome and its interaction with host immunity and inflammation in respiratory diseases. The power of multi-omics have moved the field forward from associative assessment of microbiome alterations to causative understanding of the lung microbiome in the pathogenesis of chronic, acute and other types of respiratory diseases. However, the application of multi-omics in respiratory microbiome remains with unique challenges from sample processing, data integration, and downstream validation. In this review, we first introduce the respiratory sample types and omic data types applicable to studying the respiratory microbiome. We next describe approaches for multi-omic integration, focusing on dimensionality reduction, multi-omic association and prediction. We then summarize progresses in the application of multi-omics to studying the microbiome in respiratory diseases. We finally discuss current challenges and share our thoughts on future promises in the field.
Collapse
Affiliation(s)
- Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| |
Collapse
|
46
|
Scialò F, Vitale M, D'Agnano V, Mariniello DF, Perrotta F, Castaldo A, Campbell SFM, Pastore L, Cazzola M, Bianco A. Lung Microbiome as a Treatable Trait in Chronic Respiratory Disorders. Lung 2023; 201:455-466. [PMID: 37752217 DOI: 10.1007/s00408-023-00645-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
Once thought to be a sterile environment, it is now established that lungs are populated by various microorganisms that participate in maintaining lung function and play an important role in shaping lung immune surveillance. Although our comprehension of the molecular and metabolic interactions between microbes and lung cells is still in its infancy, any event causing a persistent qualitative or quantitative variation in the composition of lung microbiome, termed "dysbiosis", has been virtually associated with many respiratory diseases. A deep understanding of the composition and function of the "healthy" lung microbiota and how dysbiosis can cause or participate in disease progression will be pivotal in finding specific therapies aimed at preventing diseases and restoring lung function. Here, we review lung microbiome dysbiosis in different lung pathologies and the mechanisms by which these bacteria can cause or contribute to the severity of the disease. Furthermore, we describe how different respiratory disorders can be caused by the same pathogen, and that the real pathogenetic mechanism is not only dependent by the presence and amount of the main pathogen but can be shaped by the interaction it can build with other bacteria, fungi, and viruses present in the lung. Understanding the nature of this bacteria crosstalk could further our understanding of each respiratory disease leading to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Filippo Scialò
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Naples, Italy
- CEINGE-Biotecnologie Avanzate-Franco Salvatore, Naples, Italy
| | - Maria Vitale
- CEINGE-Biotecnologie Avanzate-Franco Salvatore, Naples, Italy
| | - Vito D'Agnano
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Fabio Perrotta
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alice Castaldo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Susan F M Campbell
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate-Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Mario Cazzola
- Dipartimento di Medicina Sperimentale, University of Rome "Tor Vergata", Rome, Italy
| | - Andrea Bianco
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Naples, Italy.
| |
Collapse
|
47
|
Mac Aogáin M, Narayana JK, Chotirmall SH. Reply to Ward et al.. Am J Respir Crit Care Med 2023; 208:631-632. [PMID: 37348125 PMCID: PMC10492252 DOI: 10.1164/rccm.202305-0872le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023] Open
Affiliation(s)
- Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James’s Hospital, Dublin, Ireland
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; and
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
48
|
Ward C, Al Momani H, McDonnell MJ, Murphy DM, Walsh L, Mac Sharry J, Griffin M, Forrest IA, Jones R, Krishnan A, Pearson J, Rutherford RM. The Potential Role of Gastric Microbiology in Respiratory Disease. Am J Respir Crit Care Med 2023; 208:630-631. [PMID: 37348122 PMCID: PMC10492259 DOI: 10.1164/rccm.202303-0366le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023] Open
Affiliation(s)
- Chris Ward
- Translational and Clinical Research Institute and
- Biosciences Institute, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hafez Al Momani
- Translational and Clinical Research Institute and
- Biosciences Institute, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Melissa J. McDonnell
- Department of Respiratory Medicine, Galway University Hospitals, Galway, Ireland
| | - Desmond M. Murphy
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland
- School of Microbiology and
- School of Medicine, APC Institute, University College Cork, Cork, Ireland
| | - Laura Walsh
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland
- School of Microbiology and
- School of Medicine, APC Institute, University College Cork, Cork, Ireland
| | - John Mac Sharry
- School of Microbiology and
- School of Medicine, APC Institute, University College Cork, Cork, Ireland
| | - Mike Griffin
- The Royal College of Surgeons of Edinburgh, Edinburgh, United Kingdom
| | - Ian A. Forrest
- The Chest Clinic, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Rhys Jones
- The James Cook University Hospital, Middlesbrough, United Kingdom; and
| | - Amaran Krishnan
- Yorkshire and The Humber Strategic Health Authority, Leeds, United Kingdom
| | - Jeffrey Pearson
- Translational and Clinical Research Institute and
- Biosciences Institute, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert M. Rutherford
- Department of Respiratory Medicine, Galway University Hospitals, Galway, Ireland
| |
Collapse
|
49
|
Narayana JK, Aliberti S, Mac Aogáin M, Jaggi TK, Ali NABM, Ivan FX, Cheng HS, Yip YS, Vos MIG, Low ZS, Lee JXT, Amati F, Gramegna A, Wong SH, Sung JJY, Tan NS, Tsaneva-Atanasova K, Blasi F, Chotirmall SH. Microbial Dysregulation of the Gut-Lung Axis in Bronchiectasis. Am J Respir Crit Care Med 2023; 207:908-920. [PMID: 36288294 PMCID: PMC10111978 DOI: 10.1164/rccm.202205-0893oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Emerging data support the existence of a microbial "gut-lung" axis that remains unexplored in bronchiectasis. Methods: Prospective and concurrent sampling of gut (stool) and lung (sputum) was performed in a cohort of n = 57 individuals with bronchiectasis and subjected to bacteriome (16S rRNA) and mycobiome (18S Internal Transcribed Spacer) sequencing (total, 228 microbiomes). Shotgun metagenomics was performed in a subset (n = 15; 30 microbiomes). Data from gut and lung compartments were integrated by weighted similarity network fusion, clustered, and subjected to co-occurrence analysis to evaluate gut-lung networks. Murine experiments were undertaken to validate specific Pseudomonas-driven gut-lung interactions. Results: Microbial communities in stable bronchiectasis demonstrate a significant gut-lung interaction. Multibiome integration followed by unsupervised clustering reveals two patient clusters, differing by gut-lung interactions and with contrasting clinical phenotypes. A high gut-lung interaction cluster, characterized by lung Pseudomonas, gut Bacteroides, and gut Saccharomyces, is associated with increased exacerbations and greater radiological and overall bronchiectasis severity, whereas the low gut-lung interaction cluster demonstrates an overrepresentation of lung commensals, including Prevotella, Fusobacterium, and Porphyromonas with gut Candida. The lung Pseudomonas-gut Bacteroides relationship, observed in the high gut-lung interaction bronchiectasis cluster, was validated in a murine model of lung Pseudomonas aeruginosa infection. This interaction was abrogated after antibiotic (imipenem) pretreatment in mice confirming the relevance and therapeutic potential of targeting the gut microbiome to influence the gut-lung axis. Metagenomics in a subset of individuals with bronchiectasis corroborated our findings from targeted analyses. Conclusions: A dysregulated gut-lung axis, driven by lung Pseudomonas, associates with poorer clinical outcomes in bronchiectasis.
Collapse
Affiliation(s)
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James’s Hospital, Dublin, Ireland
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | - Francesco Amati
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Andrea Gramegna
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Sunny H. Wong
- Lee Kong Chian School of Medicine and
- Department of Gastroenterology and
| | - Joseph J. Y. Sung
- Lee Kong Chian School of Medicine and
- Department of Gastroenterology and
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine and
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Statistics and
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Francesco Blasi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine and
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore; and
| |
Collapse
|
50
|
Tiew PY, Meldrum OW, Chotirmall SH. Applying Next-Generation Sequencing and Multi-Omics in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2023; 24:ijms24032955. [PMID: 36769278 PMCID: PMC9918109 DOI: 10.3390/ijms24032955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Microbiomics have significantly advanced over the last decade, driven by the widespread availability of next-generation sequencing (NGS) and multi-omic technologies. Integration of NGS and multi-omic datasets allow for a holistic assessment of endophenotypes across a range of chronic respiratory disease states, including chronic obstructive pulmonary disease (COPD). Valuable insight has been attained into the nature, function, and significance of microbial communities in disease onset, progression, prognosis, and response to treatment in COPD. Moving beyond single-biome assessment, there now exists a growing literature on functional assessment and host-microbe interaction and, in particular, their contribution to disease progression, severity, and outcome. Identifying specific microbes and/or metabolic signatures associated with COPD can open novel avenues for therapeutic intervention and prognosis-related biomarkers. Despite the promise and potential of these approaches, the large amount of data generated by such technologies can be challenging to analyze and interpret, and currently, there remains a lack of standardized methods to address this. This review outlines the current use and proposes future avenues for the application of NGS and multi-omic technologies in the endophenotyping, prognostication, and treatment of COPD.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Oliver W. Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Correspondence:
| |
Collapse
|