1
|
Zhu S, Liu B, Fu G, Yang L, Wei D, Zhang L, Zhang Q, Gao Y, Sun D, Wei W. PKC-θ is an important driver of fluoride-induced immune imbalance of regulatory T cells/effector T cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173081. [PMID: 38754514 DOI: 10.1016/j.scitotenv.2024.173081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Fluoride is unnecessary in the human body. Long-term fluoride exposure may lead to immune system abnormalities. However, the mechanism remains unclear. This study aim to explore the mechanism of fluoride interference in the immune system and also identify the key indicators of fluoride-induced immune damage. Questionnaires were used to collect basic information. Multiple linear analyses and other statistical methods were used in order to process the data. Flow cytometry was used to detect relevant immunomarkers and analyze immune damage. Simultaneously, Wistar rats and cell models exposed to fluoride were established to detect the effects of fluoride on immune homeostasis. The results showed that sex, residence time, smoking, and Corona Virus Disease 2019 (COVID-19) infection may indirectly influence fluoride-induced immune damage. In residents of fluoride-exposed areas, there was a significant decrease in CD3+ T lymphocytes and CD4+ and CD8+ cells and a downward trend in the CD4+/CD8+ cell ratio. CD4+CD8+/CD4+, regulatory T cells (Tregs), and Tregs/effector T cells (Teffs) ratios showed opposite changes. Fluoride inhibits T cell activation by inhibiting the expression and phosphorylation of Protein Kinase C-θ (PKC-θ), hinders the internalization of T cell receptors, and affects NF-kB and c-Jun protein expression, leading to homeostatic Treg/Teff imbalance in vivo and in vitro experiments. This study represents the first evidence suggesting that PKC-θ may be the key to immune imbalance in the body under fluoride exposure. It is possible that Tregs/Teffs cell ratio provide a reference point for the diagnosis and treatment of fluoride-induced immune damage.
Collapse
Affiliation(s)
- Siqi Zhu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Bingshu Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Guiyu Fu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Liu Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Dan Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Liwei Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| | - Qiong Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China.
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China.
| | - Wei Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
2
|
Brace N, Megson IL, Rossi AG, Doherty MK, Whitfield PD. SILAC-based quantitative proteomics to investigate the eicosanoid associated inflammatory response in activated macrophages. J Inflamm (Lond) 2022; 19:12. [PMID: 36050729 PMCID: PMC9438320 DOI: 10.1186/s12950-022-00309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Macrophages play a central role in inflammation by phagocytosing invading pathogens, apoptotic cells and debris, as well as mediating repair of tissues damaged by trauma. In order to do this, these dynamic cells generate a variety of inflammatory mediators including eicosanoids such as prostaglandins, leukotrienes and hydroxyeicosatraenoic acids (HETEs) that are formed through the cyclooxygenase, lipoxygenase and cytochrome P450 pathways. The ability to examine the effects of eicosanoid production at the protein level is therefore critical to understanding the mechanisms associated with macrophage activation. RESULTS This study presents a stable isotope labelling with amino acids in cell culture (SILAC) -based proteomics strategy to quantify the changes in macrophage protein abundance following inflammatory stimulation with Kdo2-lipid A and ATP, with a focus on eicosanoid metabolism and regulation. Detailed gene ontology analysis, at the protein level, revealed several key pathways with a decrease in expression in response to macrophage activation, which included a promotion of macrophage polarisation and dynamic changes to energy requirements, transcription and translation. These findings suggest that, whilst there is evidence for the induction of a pro-inflammatory response in the form of prostaglandin secretion, there is also metabolic reprogramming along with a change in cell polarisation towards a reduced pro-inflammatory phenotype. CONCLUSIONS Advanced quantitative proteomics in conjunction with functional pathway network analysis is a useful tool to investigate the molecular pathways involved in inflammation.
Collapse
Affiliation(s)
- Nicole Brace
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness, IV2 3JH, UK
| | - Ian L Megson
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness, IV2 3JH, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Mary K Doherty
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness, IV2 3JH, UK
| | - Phillip D Whitfield
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness, IV2 3JH, UK.
- Present Address: Glasgow Polyomics, Garscube Campus, University of Glasgow, Glasgow, G61 1BD, UK.
| |
Collapse
|
3
|
Rakkar K, Bayraktutan U. Increases in intracellular calcium perturb blood–brain barrier via protein kinase C-alpha and apoptosis. Biochim Biophys Acta Mol Basis Dis 2016; 1862:56-71. [DOI: 10.1016/j.bbadis.2015.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
|
4
|
Noris M, Mele C, Remuzzi G. Podocyte dysfunction in atypical haemolytic uraemic syndrome. Nat Rev Nephrol 2015; 11:245-52. [PMID: 25599621 DOI: 10.1038/nrneph.2014.250] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetic or autoimmune defects that lead to dysregulation of the alternative pathway of complement have been associated with the development of atypical haemolytic uraemic syndrome (aHUS), which is characterized by thrombocytopenia, haemolytic anaemia and acute kidney injury. The relationship between aHUS, podocyte dysfunction and the resultant proteinuria has not been adequately investigated. However, the report of mutations in diacylglycerol kinase ε (DGKE) as a cause of recessive infantile aHUS characterized by proteinuria, highlighted podocyte dysfunction as a potential complication of aHUS. DGKE deficiency was originally thought to trigger aHUS through pathogenetic mechanisms distinct from complement dysregulation; however, emerging findings suggest an interplay between DGKE and complement systems. Podocyte dysfunction with nephrotic-range proteinuria can also occur in forms of aHUS associated with genetic or autoimmune complement dysregulation without evidence of DGKE mutations. Furthermore, proteinuric glomerulonephritides can be complicated by aHUS, possibly as a consequence of podocyte dysfunction inducing endothelial injury and prothrombotic abnormalities.
Collapse
Affiliation(s)
- Marina Noris
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Clinical Research Centre for Rare Diseases "Aldo e Cele Daccò", Via Camozzi 3, 24020, Ranica, Bergamo, Italy
| | - Caterina Mele
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Clinical Research Centre for Rare Diseases "Aldo e Cele Daccò", Via Camozzi 3, 24020, Ranica, Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Clinical Research Centre for Rare Diseases "Aldo e Cele Daccò", Via Camozzi 3, 24020, Ranica, Bergamo, Italy
| |
Collapse
|
5
|
Transient activation of protein kinase C contributes to fluoride-induced apoptosis of rat erythrocytes. Toxicol In Vitro 2013. [DOI: 10.1016/j.tiv.2013.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Potts LB, Bradley PD, Xu W, Kuo L, Hein TW. Role of endothelium in vasomotor responses to endothelin system and protein kinase C activation in porcine retinal arterioles. Invest Ophthalmol Vis Sci 2013; 54:7587-94. [PMID: 24243985 DOI: 10.1167/iovs13-13178] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Endothelial cells synthesize vasodilator nitric oxide (NO) and vasoconstrictor endothelin-1 (ET-1) from NO synthase (eNOS) and endothelin-converting enzyme-1 (ECE-1), respectively. Protein kinase C (PKC) and Rho kinase (ROCK) are major signaling molecules mediating vasoconstriction. Although endothelial cells express eNOS, ECE-1, endothelin B (ET(B)) receptors, PKC, and ROCK, their influences on ET-1-induced vasoconstriction remain elusive. We studied whether these endothelial signaling molecules modulate retinal arteriolar constriction to ET-1. METHODS Porcine retinal arterioles were isolated and pressurized for vasomotor study, under conditions with intact or denuded endothelium, using videomicroscopic techniques. RESULTS Retinal arterioles developed similar resting tone (≈45% of maximum diameter) with or without endothelium. Endothelial denudation attenuated vasoconstriction to ET-1 precursor, big ET-1, by almost equal to 50%, but did not affect vasoconstrictions to ET-1, ET(B) agonist sarafotoxin S6c, or PKC activator phorbol-12, 13-dibutyrate (PDBu). The ROCK inhibitor H-1152 caused vasodilation, and abolished vasoconstrictions to ET-1 and PDBu independent of endothelium. With L-type voltage-operated calcium channel (L-VOCC) blocker nifedipine, PDBu-induced vasoconstriction was abolished and converted to NO-mediated vasodilation in the presence of endothelium. The ET-1-induced vasoconstriction was unaffected by NO released from endothelium during flow elevation. CONCLUSIONS Endothelial and smooth muscle ECE-1 contribute equally to synthesis of vasoactive ET-1 in retinal arterioles, with nominal role of endothelial ETB receptors in vasoconstriction to ET-1. The PKC activation leads to endothelium-dependent NO-mediated vasodilation when smooth muscle contraction is ablated by L-VOCC blockade. Endothelial cells and NO appear to have modest roles in modulating ROCK-dependent vasoconstriction, and are insufficient to counteract smooth muscle contractions to ET-1 and PKC activation.
Collapse
Affiliation(s)
- Luke B Potts
- Department of Medical Physiology, Scott & White Healthcare, College of Medicine, Texas A&M Health Science Center, Temple, Texas
| | | | | | | | | |
Collapse
|
7
|
Agalakova NI, Gusev GP. Molecular Mechanisms of Cytotoxicity and Apoptosis Induced by Inorganic Fluoride. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/403835] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fluoride (F) is ubiquitous natural substance and widespread industrial pollutant. Although low fluoride concentrations are beneficial for normal tooth and bone development, acute or chronic exposure to high fluoride doses results in adverse health effects. The molecular mechanisms underlying fluoride toxicity are different by nature. Fluoride is able to stimulate G-proteins with subsequent activation of downstream signal transduction pathways such as PKA-, PKC-, PI3-kinase-, Ca2+-, and MAPK-dependent systems. G-protein-independent routes include tyrosine phosphorylation and protein phosphatase inhibition. Along with other toxic effects, fluoride was shown to induce oxidative stress leading to excessive generation of ROS, lipid peroxidation, decrease in the GSH/GSSH ratio, and alterations in activities of antioxidant enzymes, as well as to inhibit glycolysis thus causing the depletion of cellular ATP and disturbances in cellular metabolism. Fluoride triggers the disruption of mitochondria outer membrane and release of cytochrome c into cytosol, what activates caspases-9 and -3 (intrinsic) apoptotic pathway. Extrinsic (death receptor) Fas/FasL-caspase-8 and -3 pathway was also described to be implicated in fluoride-induced apoptosis. Fluoride decreases the ratio of antiapoptotic/proapoptotic Bcl-2 family proteins and upregulates the expression of p53 protein. Finally, fluoride changes the expression profile of apoptosis-related genes and causes endoplasmic reticulum stress leading to inhibition of protein synthesis.
Collapse
Affiliation(s)
- Natalia Ivanovna Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 M. Thorez Avenue, Sankt-Petersburg 194223, Russia
| | - Gennadii Petrovich Gusev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 M. Thorez Avenue, Sankt-Petersburg 194223, Russia
| |
Collapse
|
8
|
Regard JB, Scheek S, Borbiev T, Lanahan AA, Schneider A, Demetriades AM, Hiemisch H, Barnes CA, Verin AD, Worley PF. Verge: a novel vascular early response gene. J Neurosci 2004; 24:4092-103. [PMID: 15102925 PMCID: PMC6729408 DOI: 10.1523/jneurosci.4252-03.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Vascular endothelium forms a continuous, semipermeable barrier that regulates the transvascular movement of hormones, macromolecules, and other solutes. Here, we describe a novel immediate early gene that is expressed selectively in vascular endothelial cells, verge (vascular early response gene). Verge protein includes an N-terminal region of approximately 70 amino acids with modest homology (approximately 30% identity) to Apolipoprotein L but is otherwise unique. Verge mRNA and protein are induced selectively in the endothelium of adult vasculature by electrical or chemical seizures. Verge expression appears to be responsive to local tissue conditions, because it is induced in the hemisphere ipsilateral to transient focal cerebral ischemia. In contrast to the transient expression in adult, Verge mRNA and protein are constitutively expressed at high levels in the endothelium of developing tissues (particularly heart) in association with angiogenesis. Verge mRNA is induced in cultured endothelial cells by defined growth factors and hypoxia. Verge protein is dramatically increased by cysteine proteinase inhibitors, suggesting rapid turnover, and is localized to focal regions near the periphery of the cells. Endothelial cell lines that stably express Verge form monolayers that show enhanced permeability in response to activation of protein kinase C by phorbol esters. This response is accompanied by reorganization of the actin cytoskeleton and the formation of paracellular gaps. These studies suggest that Verge functions as a dynamic regulator of endothelial cell signaling and vascular function.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Brain Ischemia/metabolism
- Cell Hypoxia
- Cell Membrane Permeability/physiology
- Cells, Cultured
- Disease Models, Animal
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Enzyme Activators/pharmacology
- Gene Expression Regulation, Developmental/physiology
- Genes, Immediate-Early/genetics
- Growth Substances/pharmacology
- Humans
- Immediate-Early Proteins/biosynthesis
- Immediate-Early Proteins/genetics
- Mice
- Molecular Sequence Data
- Myocardium/metabolism
- Neovascularization, Physiologic/genetics
- Organ Specificity
- Protein Kinase C/metabolism
- RNA, Messenger/biosynthesis
- Rats
- Seizures/chemically induced
- Seizures/metabolism
- Sequence Homology, Amino Acid
- Transfection
Collapse
Affiliation(s)
- Jean B Regard
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Shikata Y, Birukov KG, Birukova AA, Verin A, Garcia JGN. Involvement of site-specific FAK phosphorylation in sphingosine-1 phosphate- and thrombin-induced focal adhesion remodeling: role of Src and GIT. FASEB J 2004; 17:2240-9. [PMID: 14656986 DOI: 10.1096/fj.03-0198com] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sphingosine-1 phosphate (S1P) and thrombin are agents with profound but divergent effects on vascular endothelial cell (EC) barrier properties. We have previously reported that S1P-induced focal adhesion (FA) remodeling involves interactions between focal adhesion kinase (FAK), paxillin, and G-protein-coupled receptor kinase-interacting proteins GIT1 and GIT2 and suggested a critical involvement of focal adhesions in the EC barrier regulation. In this study, we examined redistribution of FA proteins (FAK, paxillin, GIT1, and GIT2) and site-specific FAK tyrosine phosphorylation in human pulmonary artery endothelial cells stimulated with thrombin. In contrast to S1P, which we have shown to induce peripheral translocation of FA proteins associated with cortical actin ring formation, thrombin caused the redistribution of FA proteins to the ends of the newly formed massive stress fibers. S1P and thrombin induced distinct patterns of FAK site-specific phosphorylation with the FAK Y576 phosphorylation site targeted by SIP challenge and phosphorylation of three FAK sites (Y397, Y576, and Y925) in response to thrombin stimulation. Pharmacological inhibition of Src with Src-specific inhibitor PP2 abolished S1P-induced translocation of FA proteins, cortical actin ring formation, and FAK [Y576] phosphorylation. However, PP2 failed to alter thrombin-induced morphological changes and exhibited only partial inhibition of FAK site-specific tyrosine phosphorylation. These observations highlight the differential mechanisms of focal adhesion protein complex remodeling and FAK activation by S1P and thrombin and link differential FA remodeling to EC barrier regulation.
Collapse
Affiliation(s)
- Yasushi Shikata
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
10
|
Birukova AA, Smurova K, Birukov KG, Kaibuchi K, Garcia JGN, Verin AD. Role of Rho GTPases in thrombin-induced lung vascular endothelial cells barrier dysfunction. Microvasc Res 2004; 67:64-77. [PMID: 14709404 DOI: 10.1016/j.mvr.2003.09.007] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thrombin-induced barrier dysfunction of pulmonary endothelial monolayer is associated with dramatic cytoskeletal reorganization, activation of actomyosin contraction, and gap formation. Phosphorylation of regulatory myosin light chains (MLC) is a key mechanism of endothelial cell (EC) contraction and barrier dysfunction, which is triggered by Ca(2+)/calmodulin-dependent MLC kinase (MLCK) and Rho-associated kinase (Rho-kinase). The role of MLCK in EC barrier regulation has been previously described; however, Rho-mediated pathway in thrombin-induced pulmonary EC dysfunction is not yet precisely characterized. Here, we demonstrate that thrombin-induced decreases in transendothelial electrical resistance (TER) indicating EC barrier dysfunction are universal for human and bovine pulmonary endothelium, and involve membrane translocation and direct activation of small GTPase Rho and its downstream target Rho-kinase. Transient Rho membrane translocation coincided with translocation of upstream Rho activator, guanosine nucleotide exchange factor p115-RhoGEF. Rho mediated activation of downstream target, Rho-kinase induced phosphorylation of the EC MLC phosphatase (MYPT1) at Thr(686) and Thr(850), resulting in MYPT1 inactivation, accumulation of diphospho-MLC, actin remodeling, and cell contraction. The specific Rho-kinase inhibitor, Y27632, abolished MYPT1 phosphorylation, MLC phosphorylation, significantly attenuated stress fiber formation and thrombin-induced TER decrease. Furthermore, expression of dominant-negative Rho and Rho-kinase abolished thrombin-induced stress fiber formation and MLC phosphorylation. Our data, which provide comprehensive analysis of Rho-mediated signal transduction in pulmonary EC, demonstrate involvement of guanosine nucleotide exchange factor, p115-RhoGEF, in thrombin-mediated Rho regulation, and suggest Rho, Rho-kinase, and MYPT1 as potential pharmacological and gene therapy targets critical for prevention of thrombin-induced EC barrier disruption and pulmonary edema associated with acute lung injury.
Collapse
Affiliation(s)
- Anna A Birukova
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
11
|
Refsnes M, Schwarze PE, Holme JA, Låg M. Fluoride-induced apoptosis in human epithelial lung cells (A549 cells): role of different G protein-linked signal systems. Hum Exp Toxicol 2003; 22:111-23. [PMID: 12723891 DOI: 10.1191/0960327103ht322oa] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the present study, possible mechanisms involved in fluoride-induced apoptosis in a human epithelial lung cell line (A549) were examined. Sodium fluoride (NaF) induced apoptosis in the A549 cells, with a maximum at 5-7.5 mM after 20 hours of exposure. The number of cells with plasma membrane damage (PI-positive cells) increased moderately up to 5 mM, but markedly at 7.5 mM. Deferoxamine (an Al3+ chelator) almost completely prevented these NaF-induced responses, which may suggest a role for G protein activation. The apoptotic effect was partially reduced by the PKA inhibitor H89. NaF induced a weak but sustained increase in PKC activity, whereas the PKC activator TPA induced a transient effect. TPA, which enhanced the NaF-induced PKC activity, was not apoptotic when added alone, but facilitated the NaF-induced apoptosis and the increase in PI-positive cells. PKC downregulation induced by TPA pretreatment almost completely prevented the NaF-induced apoptosis and the increase in PI-positive cells. Pretreatment with the PKC inhibitor GF109203X, which abolished the PKC activity after 3 hours, enhanced the NaF-induced apoptosis. KN93 (a CaM kinase II inhibitor) and W7 (a calmodulin inhibitor) seem to reduce the apoptotic effect of NaF, whereas BAPTA-AM (a Ca2+ chelator) was without effect. The tyrosine kinase inhibitor genistein also markedly reduced the NaF-induced apoptosis, whereas the PI-3 kinase inhibitor wortmannin augmented the response. In conclusion, the present results suggest that NaF induces an apoptotic effect and an increase in PI-positive A549 cells via similar mechanisms, involving PKC, PKA, tyrosine kinase and Ca2+-linked enzymes, whereas PI-3 kinase seems to exert a counteracting effect.
Collapse
Affiliation(s)
- Magne Refsnes
- Division of Environmental Medicine, Norwegian Institute of Public Health, Geitmyrsvn. 75, PO Box 4404 Nydalen, N-0403 Oslo, Norway.
| | | | | | | |
Collapse
|
12
|
Haddock RE, Hirst GDS, Hill CE. Voltage independence of vasomotion in isolated irideal arterioles of the rat. J Physiol 2002; 540:219-29. [PMID: 11927681 PMCID: PMC2290219 DOI: 10.1113/jphysiol.2001.013698] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The cellular mechanisms underlying vasomotion of irideal arterioles from juvenile rats have been studied using electrophysiological methods, ratiometric calcium measurements and video microscopy. Vasomotion was not affected by removal of the endothelium. Spontaneous contractions were preceded by spontaneous depolarizations. Both were abolished by the intracellular calcium chelator, BAPTA AM (20 microM), but not by ryanodine (10 microM), suggesting a dependence on the cyclical release of calcium from intracellular stores, other than those operated by ryanodine receptors. Oscillations were little changed when the membrane potential of short segments of arteriole was either depolarized or hyperpolarized. When the segments were voltage clamped, oscillating inward currents were recorded, indicating that the changes in membrane potential were voltage independent. Vasomotion was preceded by intracellular calcium oscillations and both were abolished by inhibitors of phospholipase C (U73122, 10 microM), phospholipase A(2) (AACOCF(3), 30 microM) and protein kinase C (chelerythrine chloride, 5 microM, and myristoylated protein kinase C peptide, 10 microM). Inhibition of vasomotion by the dual lipoxygenase and cyclo-oxygenase inhibitor, NDGA (10 microM), the lipoxygenase inhibitor, ETI (1 microM) but not by the cyclo-oxygenase inhibitors, aspirin (10 microM) and indomethacin (10 microM), or the cytochrome P450 inhibitor 17-ODYA (10 microM), suggested an involvement of the lipoxygenase pathway. The observations suggest that vasomotion of iris arterioles is voltage independent and results from the cyclical release of calcium from IP(3)-sensitive stores which are activated by cross talk between the phospholipase C and phospholipase A(2) pathways in vascular smooth muscle.
Collapse
Affiliation(s)
- R E Haddock
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, GPO Box 334, Canberra, ACT, 2601, Australia.
| | | | | |
Collapse
|
13
|
Borbiev T, Verin AD, Shi S, Liu F, Garcia JG. Regulation of endothelial cell barrier function by calcium/calmodulin-dependent protein kinase II. Am J Physiol Lung Cell Mol Physiol 2001; 280:L983-90. [PMID: 11290523 DOI: 10.1152/ajplung.2001.280.5.l983] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thrombin-induced endothelial cell barrier dysfunction is tightly linked to Ca(2+)-dependent cytoskeletal protein reorganization. In this study, we found that thrombin increased Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II) activities in a Ca(2+)- and time-dependent manner in bovine pulmonary endothelium with maximal activity at 5 min. Pretreatment with KN-93, a specific CaM kinase II inhibitor, attenuated both thrombin-induced increases in monolayer permeability to albumin and decreases in transendothelial electrical resistance (TER). We next explored potential thrombin-induced CaM kinase II cytoskeletal targets and found that thrombin causes translocation and significant phosphorylation of nonmuscle filamin (ABP-280), which was attenuated by KN-93, whereas thrombin-induced myosin light chain phosphorylation was unaffected. Furthermore, a cell-permeable N-myristoylated synthetic filamin peptide (containing the COOH-terminal CaM kinase II phosphorylation site) attenuated both thrombin-induced filamin phosphorylation and decreases in TER. Together, these studies indicate that CaM kinase II activation and filamin phosphorylation may participate in thrombin-induced cytoskeletal reorganization and endothelial barrier dysfunction.
Collapse
Affiliation(s)
- T Borbiev
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
14
|
Shizukuda Y, Tang S, Yokota R, Ware JA. Vascular endothelial growth factor-induced endothelial cell migration and proliferation depend on a nitric oxide-mediated decrease in protein kinase Cdelta activity. Circ Res 1999; 85:247-56. [PMID: 10436167 DOI: 10.1161/01.res.85.3.247] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular endothelial growth factor (VEGF) promotes angiogenesis and endothelial cell (EC) migration and proliferation by affecting intracellular mediators, only some of which are known, distal to its receptors. Protein kinase C (PKC) participates in the function of VEGF, but the role of individual PKC isoenzymes is unknown. In this study, we tested the importance of the activity of specific PKC isoenzymes in human EC migration and proliferation in response to VEGF. PKCdelta specific activity was depressed by the addition of VEGF (by 41+/-8% [P<0.05] at 24 hours) in human umbilical vein ECs (HUVECs) and in a HUVEC-derived EC line, ECV, without changing the total amount of either protein or mRNA encoding PKCdelta. Neither basic fibroblast growth factor (FGF-2) nor serum altered PKCdelta specific activity. The VEGF-induced decrease of PKCdelta activity, which began at 8 hours after stimulation, was strongly blocked by pretreatment with the nitric oxide (NO) synthase inhibitor N(G)-monomethyl-L-arginine in HUVECs; NO release peaked within 2 hours after stimulation. An exogenous NO donor, sodium nitroprusside, also decreased PKCdelta activity. The inhibition by N(G)-monomethyl-L-arginine of VEGF-induced HUVEC migration and proliferation, but not that induced by FGF-2 or serum, suggested that the decrease in PKCdelta via NO pathway is required for VEGF-induced EC migration and proliferation. Overexpression of PKCdelta in ECV cells specifically prevented EC response to VEGF but not to FGF-2 or serum. Thus, we conclude that suppression of PKCdelta activity via a NO synthase mechanism is required for VEGF-induced EC migration and proliferation, but not for that induced by FGF-2 or serum.
Collapse
Affiliation(s)
- Y Shizukuda
- Cardiovascular Division, Department of Medicine, Department of Molecular Pharmacology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | | | | | | |
Collapse
|
15
|
Patterson CE, Stasek JE, Bahler C, Verin AD, Harrington MA, Garcia JG. Regulation of interleukin-1-stimulated GMCSF mRNA levels in human endothelium. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 1998; 6:45-59. [PMID: 9832332 DOI: 10.3109/10623329809053404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The regulation of interleukin-1 (IL-1)-mediated increases in GMCSF mRNA levels in human endothelium was examined and determined to occur in a time- and protein kinase C (PKC)-dependent manner. IL-1beta induced the early activation and translocation of PKC isotypes alpha and beta2 to the nucleus and PKC inhibition attenuated the IL-1-mediated increase in GMCSF mRNA levels. PKC activation by PMA alone, in the absence of IL-1beta activation, however, was insufficient to allow GMCSF mRNA detection. Increasing cyclic adenosine nucleotide (cAMP) levels suppressed IL-1beta-induced increases in GMCSF mRNA levels. In contrast, botulinum toxin C, which mediates the ADP ribosylation of a 21 kD ras-related G protein, augmented IL-1beta-induced GMCSF mRNA expression. Inhibition of protein synthesis (with cycloheximide) raised basal GMCSF mRNA transcripts to detectable levels, augmented IL-1-induced increases in GMCSF mRNA levels, and exhibited negative regulation by cAMP. Finally, disruption of either microtubules (with colchicine) or microfilaments (with cytochalasin B) resulted in reduced GMCSF mRNA expression in response to IL-1beta. These results are compatible with a model wherein IL-1-mediated increases in human endothelial cell GMCSF mRNA may be linked to both nuclear protein kinase C activation and activation of a low molecular weight G-protein, although neither activity alone is sufficient to increase the levels of GMCSF mRNA.
Collapse
Affiliation(s)
- C E Patterson
- Department of Medicine and the Walther Oncology Center, Indiana University School of Medicine, Richard L. Roudebush Veteran's Administration Center, Indianapolis 46202, USA
| | | | | | | | | | | |
Collapse
|
16
|
Verin AD, Gilbert-McClain LI, Patterson CE, Garcia JG. Biochemical regulation of the nonmuscle myosin light chain kinase isoform in bovine endothelium. Am J Respir Cell Mol Biol 1998; 19:767-76. [PMID: 9806741 DOI: 10.1165/ajrcmb.19.5.3126] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Specific models of vascular permeability are critically dependent on myosin light chain phosphorylation, a reaction catalyzed by a novel high molecular-weight (214 kD) Ca2+/calmodulin (CaM)-dependent myosin light chain kinase (MLCK) isoform recently cloned in human endothelium (Am. J. Respir. Cell Mol. Biol., 1997;16:489-494). To evaluate mechanisms of endothelial cell (EC) barrier dysfunction evoked by the serine protease thrombin, we studied the regulation of the 214-kD EC MLCK isoform expressed in bovine endothelium. The EC MLCK isoform bound biotinylated CaM in a Ca2+-dependent manner and co-immunoprecipitated in a functional complex with myosin, actin, and CaM. Thrombin rapidly increased MLCK activity in concert with time-dependent translocation of the enzyme to the actin cytoskeleton. To evaluate whether EC MLCK activity was regulated by direct phosphorylation, amino acid sequence analysis identified multiple potential EC MLCK sites for Ser/Thr phosphorylation, including highly conserved phosphorylation sites for cyclic adenosine monophosphate-dependent protein kinase A (PKA) adjacent to the CaM-binding region. EC MLCK activity was attenuated by either PKA-mediated MLCK phosphorylation or inhibition of Ser/Thr phosphatase activity (fluoride or calyculin), which significantly increased MLCK phosphorylation while decreasing MLCK activity (3- to 4-fold decrease). In summary, although the EC MLCK isoform exhibits multiple features intrinsic to this family of kinases, thrombin-mediated EC contraction and barrier dysfunction requires increased EC MLCK-actin interaction and MLCK translocation to the cytoskeleton. EC MLCK activity appears to be highly dependent upon the phosphorylation status of this key contractile effector.
Collapse
Affiliation(s)
- A D Verin
- Department of Medicine, Physiology and Biophysics, Indiana University School of Medicine, Richard Roudebush Veterans Administration Center, Indianapolis, Indiana, USA
| | | | | | | |
Collapse
|
17
|
Baker VL, Murai JT, Taylor RN. Downregulation of protein kinase C by phorbol ester increases expression of epidermal growth factor receptors in transformed trophoblasts and amplifies human chorionic gonadotropin production. Placenta 1998; 19:475-82. [PMID: 9778120 DOI: 10.1016/s0143-4004(98)91040-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Epidermal growth factor (EGF) and its homologue, transforming growth factor-alpha (TGF-alpha), regulate human chorionic gonadotropin (hCG) synthesis in the human placenta. The current study was designed to investigate the involvement of the protein kinase C pathway in EGF-mediated hCG-beta production by JAr choriocarcinoma cells. Downregulation of protein kinase C activity by chronic exposure to the phorbol ester, phorbol 12,13-dibutyrate (PDB), produced a greater increase in hCG-beta secretion than did activation of protein kinase C activity by short-term exposure to PDB. Pretreatment with the protein kinase C inhibitors calphostin and chelerythrine also resulted in enhanced basal and EGF-stimulated hCG-beta production. Individual concentrations (5 nM EGF and 500 nM PDB) that maximally stimulated hCG production, were additive in combination. The additive effect of PDB on EGF-induced hCG-beta secretion was mediated in part by increased JAr cell EGF-receptor concentrations detected by Western blot and Scatchard analyses. The results suggest that EGF and PDB stimulate hCG production in JAr cells by different but interactive mechanisms. It is speculated that downregulation of protein kinase C stimulates basal and EGF-mediated hCG-beta production by uninhibiting other signalling pathways that regulate hCG-beta secretion in trophoblasts.
Collapse
Affiliation(s)
- V L Baker
- Reproductive Endocrinology Center, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco 94143-0132, USA
| | | | | |
Collapse
|
18
|
Gurley LR, Umbarger KO, Kim JM, Bradbury EM, Lehnert BE. High-performance liquid chromatographic analysis of staurosporine in vivo. Its translocation and pharmacokinetics in rats. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1998; 712:211-24. [PMID: 9698244 DOI: 10.1016/s0378-4347(98)00077-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The protein kinase inhibitor staurosporine (Stsp) has been used extensively to study physiological functions, biochemical mechanisms, and cancer therapy. Using an HPLC assay for Stsp developed in our laboratory, we find that only 0.7% of Stsp remains in circulating blood of rats 5 min after injection. In vitro, Stsp is adsorbed to red blood cells (RBC) weakly and reversibly. In vivo, all but 1.2-2.5% of Stsp injected is adsorbed by the heart and lungs in one passage through them, indicating that the endothelium acts as a major Stsp sink. Following initial adsorption, pharmacokinetic studies demonstrated that Stsp had a half-life of 51.6 min in plasma and 75.3 min in RBC. Thus, plasma Stsp was in the cancer therapy range of 1-10 ng/ml for 2.7 h following a bolus injection. This data indicates that a bolus injection of Stsp must be followed by a continuous infusion of low Stsp concentration for several days to produce the G1 arrest in cells necessary to stop cell proliferation.
Collapse
Affiliation(s)
- L R Gurley
- Life Sciences Division, Los Alamos National Laboratory, NM 87545, USA
| | | | | | | | | |
Collapse
|
19
|
Rosenstock M, Danon A, Rimon G. Prostaglandin H synthase: protein synthesis-independent regulation in bovine aortic endothelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1749-55. [PMID: 9374663 DOI: 10.1152/ajpcell.1997.273.5.c1749] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The objective of the present study was to examine whether prostaglandin H synthase (PGHS) can be regulated by pathways independent of de novo synthesis of PGHS. Incubation of bovine aortic endothelial cells (BAEC) for as short as 5 min with NaF (40 mM) resulted in a 60% increase in PGHS activity. PGHS activity induced by NaF was unaffected by either 10 microM cycloheximide or 1 microM actinomycin D. Aspirin (25 microM) completely inhibited resting PGHS activity, and NaF did not induce further stimulation. NS-398 (500 nM), a specific PGHS-2 inhibitor, was ineffective. Basic fibroblast growth factor (bFGF) induced a significant increase in PGHS activity within 30 min and was insensitive to cycloheximide. The levels of PGHS-1 and PGHS-2 proteins, as measured by Western blots, were not affected by NaF or bFGF. The tyrosine kinase inhibitor genistein attenuated PGHS activity that was induced by NaF and bFGF, whereas the tyrosine phosphatase inhibitor, sodium orthovanadate, augmented these responses. The G protein activators 5'-guanylyl imidodiphosphate and guanosine 5'-O-(3-thiotriphosphate) inhibited both resting and NaF-induced PGHS activities. These results suggest-that, in BAEC, PGHS-1 activity can be regulated by tyrosine kinase and/or G proteins, independently of de novo protein synthesis.
Collapse
Affiliation(s)
- M Rosenstock
- Department of Clinical Pharmacology, Corob Center for Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | | | | |
Collapse
|
20
|
van den Eijnden-Schrauwen Y, Atsma DE, Lupu F, de Vries RE, Kooistra T, Emeis JJ. Involvement of calcium and G proteins in the acute release of tissue-type plasminogen activator and von Willebrand factor from cultured human endothelial cells. Arterioscler Thromb Vasc Biol 1997; 17:2177-87. [PMID: 9351387 DOI: 10.1161/01.atv.17.10.2177] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, we investigated the role of Ca2+ and G proteins in thrombin-induced acute release (regulated secretion) of tissue-type plasminogen activator (TPA) and von Willebrand factor (vWF), using a previously described system of primary human umbilical vein endothelial cells (HUVECs). The acute release of TPA and vWF, as induced by alpha-thrombin, was almost zero after chelation of Ca2+i, showing that an increase in [Ca2+]i was required. It did not matter whether the increase in [Ca2+]i came from an intracellular or extracellular Ca2+ source. Thrombin-induced release of TPA and vWF already started at low [Ca2+]i, around 100 nmol/L. Half-maximal release was found at a [Ca2+]i, of 261 nmol/L for TPA and at 222 nmol/L for vWF. The Ca2+ signal was transduced to calmodulin, as calmodulin inhibitors inhibited TPA and vWF release. The Ca2+ ionophore ionomycin dose dependently released vWF; half-maximal vWF release occurred at a [Ca2+]i of 311 nmol/L. In contrast, no TPA release was found at all below a [Ca2+]i of 500 nmol/L. Thus, below 500 nmol/L [Ca2+]i, an increase in [Ca2+]i alone was sufficient to induce vWF release but not sufficient to induce TPA release. Protein kinase C did not appear to be involved in TPA or vWF release, as neither an activator nor an inhibitor of protein kinase C significantly influenced release. Inhibition of phospholipase A2 also did not reduce thrombin-induced TPA and vWF release. The involvement of G proteins was studied by using both saponin-permeabilized and intact cells. GDP-beta-S, which inhibits heterotrimeric and small G proteins, significantly inhibited thrombin-induced vWF and TPA release from permeabilized cells. AlF-4, which activates heterotrimeric G proteins, induced TPA and vWF release in both intact and permeabilized HUVECs. Preincubation of HUVECs with pertussis toxin significantly inhibited thrombin-induced vWF release, due to inhibition of thrombin-induced Ca2+ influx. Pertussis toxin did not affect ionomycin-induced release. The inhibitory effect of pertussis toxin was less obvious in thrombin-induced TPA release, because it was counterbalanced by a positive effect of the toxin on TPA release. Thus, both inhibitory and stimulatory (pertussis toxin-sensitive) G proteins were involved in TPA release. Therefore, thrombin-induced acute release of TPA and vWF differed in two respects. First, below a [Ca2+]i of 500 nmol/L, an increase in Ca2+ was sufficient for vWF release but not for TPA release. Second, pertussis toxin-sensitive G proteins were differentially involved in acute TPA and vWF release.
Collapse
|
21
|
Lee HZ. Inhibitory effect of 2-phenyl-4-quinolone on serotonin-mediated changes in the morphology and permeability of endothelial monolayers. Eur J Pharmacol 1997; 335:245-54. [PMID: 9369380 DOI: 10.1016/s0014-2999(97)01203-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The integrity of endothelial cell monolayers, a critical requirement for barrier maintenance, is needed for the prevention of edema formation. To investigate the mechanisms by which 2-phenyl-4-quinolone (YT-1) provided protection against serotonin-induced exudation, rat heart endothelial cell cultures were used. In this study, serotonin and phorbol myristate acetate (PMA) caused endothelial cells to became permeable to macromolecules by causing cell contraction and intercellular gap formation. These responses were attenuated by staurosporine, a protein kinase C inhibitor. Further experiments showed that YT-1 (1) did not alter serotonin-mediated early signal events such as protein kinase C activation, (2) protected against serotonin-induced endothelial barrier dysfunction by increasing intracellular cAMP levels, (3) played a role in regulating adenylate cyclase activity, (4) reversed serotonin-induced permeability to macromolecules, an effect which did not correlate with intracellular cGMP concentrations. This study demonstrates a possible mechanism by which YT-1 protects endothelial function and preserves the microvasculature from pharmacologic injury by vasoactive agents.
Collapse
Affiliation(s)
- H Z Lee
- Graduate Institute of Pharmaceutical Chemistry, China Medical College, Taichung, Taiwan
| |
Collapse
|
22
|
Rosenstock M, Katz S, Danon A. Glucocorticoids regulate both phorbol ester and calcium ionophore-induced endothelial prostacyclin synthesis. Prostaglandins Leukot Essent Fatty Acids 1997; 56:1-8. [PMID: 9044429 DOI: 10.1016/s0952-3278(97)90517-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The respective roles of protein kinase C (PKC) and intracellular calcium concentration ([Ca2+]i) in glucocorticoid (GC) action on prostacyclin (PGl2) production by bovine aortic endothelial cells (BAEC) were investigated. Twenty-four hours' pretreatment with dexamethasone (DEX, 10(-6) diminished the response of BAEC to calcium ionophore A23187 (0.001-1 micrograms/ml) and ionomycin (3 microM) by about 50%, as assessed by both PGl2 release and [Ca2+]i elevation. Contrary to control cells, in DEX-penetrated cells short treatment with 12-O-tetradecanoyl phorbol 13-acetate (100 nM) significantly decreased PGl2 production without affecting cyclooxygenase activity. The data suggest that the mechanism of action of GC involves both pathways of intracellular signal transduction, namely the rises in both [Ca2+]i and PKC activity. These actions of DEX may be attributed to a phospholipase A2-inhibiting protein, such as lipocortin, which accumulates during exposure to DEX. Binding of a sufficient fraction of calcium ions and phosphorylation by PKC might be the events needed fro lipocortin activation.
Collapse
Affiliation(s)
- M Rosenstock
- Department of Clinical Pharmacology, Corob Center of Health Sciences, Ben-Gurion University, Beer Sheva, Israel
| | | | | |
Collapse
|
23
|
Kovács P, Csaba G. Effect of phorbol 12-myristate 13-acetate (PMA) on the phosphoinositol (PI) system in Tetrahymena. Study of the 32P incorporation and breakdown of phospholipids. Cell Biochem Funct 1995; 13:85-9. [PMID: 7758152 DOI: 10.1002/cbf.290130204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phorbol 12-myristate 13-acetate (PMA) treatment elicited an increased 32P incorporation into phospholipids namely phosphatidyl-inositol (PI); phosphatidyl-inositol-4-phosphate (PIP); phosphatidyl-inositol-4,5-bis-phosphate (PIP2); phosphatidyl-acid (PA); phosphatidyl-choline (PC) and phosphatidyl-ethanolamine (PE) particularly at the 20-30th min after treatment. The ratio of members of the phosphoinositol system, especially PIP and PI, related to the total phospholipid content was increased. PMA (2 x 10(-7) M) was the most effective of the three concentrations tested. The results call attention to the presence of a working phosphoinositol system in Protozoa.
Collapse
Affiliation(s)
- P Kovács
- Department of Biology, Semmelweis University of Medicine, Budapest, Hungary
| | | |
Collapse
|
24
|
Wiebelitz KR, Schrör K. Oscillating prostacyclin and thromboxane generation by human vessels: biological and mathematical evidence for negative feedback control. PROSTAGLANDINS 1995; 49:323-37. [PMID: 7480802 DOI: 10.1016/0090-6980(95)00001-q] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The presented study investigates the time-dependent release of PGI2 and TXA2 by isolated human umbilical veins in vitro using the radioimmunoassay for measurement. After changing the nutritional fluid--Krebs-Henseleit solution at pH 7.4, 37 degrees C, 95% O2/5% CO2--the release graph oscillates. These oscillations with time were verified by variance analysis and are very similar for both substances. This indicates one or several negative feedback mechanisms acting on the common path of synthesis from the membrane-bound phospholipids to PGH2, which are effective in the regulation of eicosanoid biosynthesis in vitro. A mathematical function describing the observed PGI2 and TXA2 synthesis is communicated.
Collapse
Affiliation(s)
- K R Wiebelitz
- Department of Neonatology, Children's Hospital, University of Tübingen, Germany
| | | |
Collapse
|
25
|
Garcia JG, Davis HW, Patterson CE. Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J Cell Physiol 1995; 163:510-22. [PMID: 7775594 DOI: 10.1002/jcp.1041630311] [Citation(s) in RCA: 444] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Endothelial cell (EC) contraction results in intercellular gap formation and loss of the selective vascular barrier to circulating macromolecules. We tested the hypothesis that phosphorylation of regulatory myosin light chains (MLC) by Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) is critical to EC barrier dysfunction elicited by thrombin. Thrombin stimulated a rapid (< 15 sec) increase in [Ca2+]i which preceded maximal MLC phosphorylation (60 sec) with a 6 to 8-fold increase above constitutive levels of phosphorylated MLC. Dramatic cellular shape changes indicative of contraction and gap formation were observed at 5 min with maximal increases in albumin permeability occurring by 10 min. Neither the Ca2+ ionophore, A23187, nor phorbol myristate acetate (PMA), a direct activator of protein kinase C (PKC), alone or in combination, produced MLC phosphorylation. The combination was synergistic, however, in stimulating EC contraction/gap formation and barrier dysfunction (3 to 4-fold increase). Down-regulation or inhibition of PKC activity attenuated thrombin-induced MLC phosphorylation (approximately 40% inhibition) and both thrombin- and PMA-induced albumin clearance (approximately 50% inhibition). Agents which augmented [cAMP]i partially blocked thrombin-induced MLC phosphorylation (approximately 50%) and completely inhibited both thrombin- and PMA-induced EC permeability (100% inhibition). Furthermore, cAMP produced significant reduction in the basal levels of constitutive MLC phosphorylation. Finally, MLCK inhibition (with either ML-7 or KT 5926) or Ca2+/calmodulin antagonism (with either trifluoperazine or W-7) attenuated thrombin-induced MLC phosphorylation and barrier dysfunction. These results suggest a model wherein EC contractile events, gap formation and barrier dysfunction occur via MLCK-dependent and independent mechanisms and are significantly modulated by both PKC and cAMP-dependent protein kinase A activities.
Collapse
Affiliation(s)
- J G Garcia
- Department of Medicine, Indiana University School of Medicine, Richard L. Roudebush, Veterans Administration Medical Center, Indianapolis 46202, USA
| | | | | |
Collapse
|
26
|
Gibson RL, Soderland C, Henderson WR, Chi EY, Rubens CE. Group B streptococci (GBS) injure lung endothelium in vitro: GBS invasion and GBS-induced eicosanoid production is greater with microvascular than with pulmonary artery cells. Infect Immun 1995; 63:271-9. [PMID: 7806366 PMCID: PMC172988 DOI: 10.1128/iai.63.1.271-279.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Neonatal group B streptococcal (GBS) sepsis and pneumonia cause lung endothelial cell injury. GBS invasion of the lung endothelium may be a mechanism for injury and the release of vasoactive eicosanoids. Pulmonary artery endothelial cells (PAEC) and lung microvascular endothelial cells (LMvEC) were isolated from neonatal piglets and were characterized as endothelial on the basis of morphology, uptake of acyl low-density lipoprotein, factor VIII staining, and formation of tube-like structures on Matrigel. PAEC and LMvEC monolayers were infected with COH-1 (parent GBS strain), isogenic mutants of COH-1 devoid of capsular sialic acid or all capsular polysaccharide, or a noninvasive Escherichia coli strain, DH5 alpha. Intracellular GBS were assayed by plate counting of colony-forming units resistant to incubation with extracellular antibiotics. All GBS strains invaded LMvEC significantly more than PAEC, showing that the site of lung endothelial cell origin influences invasion. DH5 alpha was not invasive in either cell type. Both isogenic mutants invaded PAEC and LMvEC more than COH-1 did, showing that GBS capsular polysaccharide attenuates invasion. Live GBS caused both LMvEC and PAEC injury as assessed by lactate dehydrogenase release; heat-killed GBS and DH5 alpha caused no significant injury. Supernatants from PAEC and LMvEC were assayed by radioimmunoassay for prostaglandin E2 (PGE2), the stable metabolite of prostacyclin (6-keto-PGF1 alpha), and the thromboxane metabolite thromoxane B2. At 4 h, live COH-1 caused no significant increases in eicosanoids from both PAEC and LMvEC. At 16 h, live COH-1, but not heat-killed COH-1, caused a significant increase in 6-keto-PGF1 alpha greater than PGE2 from LMvEC, but not PAEC. We conclude that live GBS injure and invade the lung microvascular endothelium and induce release of prostacyclin and PGE2. We postulate that GBS invasion and injury of the lung microvasculature contribute to the pathogenesis of GBS disease.
Collapse
Affiliation(s)
- R L Gibson
- Division of Neonatal and Respiratory Diseases, University of Washington School of Medicine, Seattle 98195
| | | | | | | | | |
Collapse
|
27
|
Tran K, Proulx PR, Chan AC. Vitamin E suppresses diacylglycerol (DAG) level in thrombin-stimulated endothelial cells through an increase of DAG kinase activity. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1212:193-202. [PMID: 8180245 DOI: 10.1016/0005-2760(94)90253-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The present study has examined the role of vitamin E, a natural lipid antioxidant, in the production of diacylglycerol (DAG) and phosphatidic acid (PA) in thrombin-stimulated human endothelial cells. Cells were labelled with [3H]myristate and the incorporation and distribution of [3H]myristate into cellular lipids was not affected by vitamin E. However, in response to thrombin stimulation, considerably more PA and less DAG were formed in cells enriched with vitamin E. The time-course of thrombin stimulation indicated that vitamin E attenuated the accumulation of sustained DAG levels with a concomitant increase in PA. Direct determination of DAG mass further confirmed that vitamin E suppresses the accumulation of DAG induced by thrombin. In the presence of ethanol, the formation of [3H]phosphatidylethanol (PEt) in [3H]myristate-labelled cells stimulated by thrombin was unaffected by vitamin E enrichment. DL-Propranolol, a PA phosphohydrolase inhibitor, caused an accumulation of PA, without affecting DAG formation in either vitamin E-treated and untreated cells. This indicated that the increase in PA and decrease in DAG in vitamin E-treated cells was not due to a stimulation of phospholipase D or an inhibition of PA phosphohydrolase. Determination of inositol phosphates formation in response to thrombin showed that the change of DAG levels elicited by vitamin E was independent of phospholipase C-induced hydrolysis of inositol phospholipids. In contrast, analysis of DAG kinase activity revealed that vitamin E enrichment enhanced the activity of the enzyme in both basal and thrombin-stimulated cells. Taken together, these data indicated that vitamin E caused an increased conversion of DAG to PA by activating DAG kinase activity without causing any change in the activities of phospholipase D, PA phosphohydrolase or phospholipase C.
Collapse
Affiliation(s)
- K Tran
- Department of Biochemistry, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
28
|
Filler SG, Ibe BO, Ibrahim AS, Ghannoum MA, Raj JU, Edwards JE. Mechanisms by which Candida albicans induces endothelial cell prostaglandin synthesis. Infect Immun 1994; 62:1064-9. [PMID: 8112841 PMCID: PMC186225 DOI: 10.1128/iai.62.3.1064-1069.1994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
One strategy for improving resistance to opportunistic pathogens is to determine host cellular responses during the invasion process and upregulate those responses that are relevant to host defense mechanisms. Within this context, we have shown previously that invasion of endothelial cells by Candida albicans in vitro causes increased production of prostaglandins. As a prerequisite for modulating endothelial cell prostaglandin production, we now characterize the mechanisms through which this process occurs. Endothelial cell invasion by C. albicans appeared to stimulate the conversion of arachidonic acid into prostaglandins by upregulating the synthesis of endothelial cell cyclooxygenase and increasing the activity of the endothelial cell phospholipase. The enhanced activities of these two enzymes were independent of calphostin C-sensitive protein kinase C and resulted in the increased production and extracellular secretion of prostaglandin I2 (PGI2), PGF2 alpha, and PGE2. The secretion of these prostaglandins had no effect on the amount of endothelial cell injury induced by C. albicans. The role of the increased prostaglandin secretion by endothelial cells is likely related to modulation of the leukocyte response at the candida-leukocyte-endothelial cell interface.
Collapse
Affiliation(s)
- S G Filler
- Department of Internal Medicine, UCLA School of Medicine
| | | | | | | | | | | |
Collapse
|
29
|
Wilkinson SE, Hallam TJ. Protein kinase C: is its pivotal role in cellular activation over-stated? Trends Pharmacol Sci 1994; 15:53-7. [PMID: 8165725 DOI: 10.1016/0165-6147(94)90110-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Evidence has emerged over the past decade to suggest that protein kinase C (PKC) is a widespread family of kinases responsible for many diverse and critical cellular functions. With the development of selective agents to activate or inhibit the individual PKC isoenzymes, it is now apparent that much of the literature that implicated PKC in many cellular functions needs to be appraised. In this article, Sandra Wilkinson and Trevor Hallam discuss the problems of the existing methods and the recent evidence that suggests that PKC isotypes are necessary for some, but not all, of those cellular responses where PKC had been thought to play an important role. Selective inhibitors of PKC isoenzymes may have potential for therapeutic use in auto-immune diseases, transplant rejection and oncology.
Collapse
|
30
|
Garcia JG, Patterson C, Bahler C, Aschner J, Hart CM, English D. Thrombin receptor activating peptides induce Ca2+ mobilization, barrier dysfunction, prostaglandin synthesis, and platelet-derived growth factor mRNA expression in cultured endothelium. J Cell Physiol 1993; 156:541-9. [PMID: 8360259 DOI: 10.1002/jcp.1041560313] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Endothelial cell activation by thrombin is a key event in wound healing, inflammation, and hemostasis. To better define thrombin-endothelial cell interactions we synthesized several peptides of varying length corresponding to the initial 14 amino acid sequence of the cloned human platelet thrombin receptor after cleavage at an arginine41 site (R/SFLLRNPNDKYEPF). Thrombin receptor activating peptides (TRAPs) as short as 5 amino acids induced significant levels of PGI2 synthesis and expression of PDGF mRNA in human endothelium and produced dose-dependent cellular contraction and permeability of confluent human umbilical vein and bovine pulmonary artery endothelial monolayers. To explore whether TRAPs utilized similar signal transducing pathways as alpha-thrombin to accomplish endothelial cell activation, phospholipase C production of the Ca2+ secretagogue IP3 was measured and detected 10 seconds after either TRAP 7 or alpha-thrombin. Furthermore, TRAPs ranging from 5-14 residues induced significant dose-dependent increases in Fura-2 fluorescence indicative of Ca2+(1) mobilization. These results indicate that thrombin-mediated proteolytic cleavage of the human and bovine thrombin receptor initiates stimulus/coupling responses such phospholipase C activation, Ca2+ mobilization, and protein kinase C activation. The functional consequence of this cellular activation via the cleaved receptor is enhanced cellular contraction, barrier dysfunction, PGI2 synthesis, and expression of PDGF mRNA.
Collapse
Affiliation(s)
- J G Garcia
- Department of Medicine, Indiana University School of Medicine, Indianapolis 46202
| | | | | | | | | | | |
Collapse
|
31
|
Stasek JE, Patterson CE, Garcia JG. Protein kinase C phosphorylates caldesmon77 and vimentin and enhances albumin permeability across cultured bovine pulmonary artery endothelial cell monolayers. J Cell Physiol 1992; 153:62-75. [PMID: 1522136 DOI: 10.1002/jcp.1041530110] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cytoskeletal protein (CSP) interactions are critical to the contractile response in muscle and non-muscle cells. Current concepts suggest that activation of the contractile apparatus occurs through selective phosphorylation by specific cellular kinase systems. Because the Ca(2+)-phospholipid-dependent protein kinase C (PKC) is involved in the regulation of a number of key endothelial cell responses, the hypothesis that PKC modulates endothelial cell contraction and monolayer permeability was tested. Phorbol myristate acetate (PMA), a direct PKC activator, and alpha-thrombin, a receptor-mediated agonist known to increase endothelial cell permeability, both induced rapid, dose-dependent activation and translocation of PKC in bovine pulmonary artery endothelial cells (BPAEC), as assessed by gamma-[32P]ATP phosphorylation of H1 histone in cellular fractions. This activation was temporally associated with evidence of agonist-mediated endothelial cell contraction as demonstrated by characteristic changes in cellular morphology. Agonist-induced activation of the contractile apparatus was associated with increases in BPAEC monolayer permeability to albumin (approximately 200% increase with 10(-6) MPMA, approximately 400% increase with 10(-8) M alpha-thrombin). To more closely examine the role of PKC in activation of the contractile apparatus, PKC-mediated phosphorylation of two specific CSPs, the actin- and calmodulin-binding protein, caldesmon77, and the intermediate filament protein, vimentin, was assessed. In vitro phosphorylation of both caldesmon and vimentin was demonstrated by addition of exogenous, purified BPAEC PKC to unstimulated BPAEC homogenates, to purified bovine platelet caldesmon77, or to purified smooth muscle caldesmon150. Caldesmon77 and vimentin phosphorylation were observed in intact [32P]-labeled BPAEC monolayers stimulated with either PMA or alpha-thrombin, as detected by immunoprecipitation. In addition, BPAEC pretreatment with the PKC inhibitor, staurosporine, prevented alpha-thrombin- and PMA-induced phosphorylation of both cytoskeletal proteins, attenuated morphologic evidence of contraction, and abolished agonist-induced barrier dysfunction. These results demonstrate that agonist-stimulated PKC activity results in cytoskeletal protein phosphorylation in BPAEC monolayer, an event which occurs in concert with agonist-mediated endothelial cell contraction and resultant barrier dysfunction.
Collapse
Affiliation(s)
- J E Stasek
- Department of Medicine, Indiana University School of Medicine, Indianapolis
| | | | | |
Collapse
|
32
|
Garcia JG, Natarajan V. Signal transduction in pulmonary endothelium. Implications for lung vascular dysfunction. Chest 1992; 102:592-607. [PMID: 1322813 DOI: 10.1378/chest.102.2.592] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- J G Garcia
- Indiana University School of Medicine, VA Medical Center, Indianapolis
| | | |
Collapse
|