1
|
Mach N. The forecasting power of the mucin-microbiome interplay in livestock respiratory diseases. Vet Q 2024; 44:1-18. [PMID: 38606662 PMCID: PMC11018052 DOI: 10.1080/01652176.2024.2340003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Complex respiratory diseases are a significant challenge for the livestock industry worldwide. These diseases considerably impact animal health and welfare and cause severe economic losses. One of the first lines of pathogen defense combines the respiratory tract mucus, a highly viscous material primarily composed of mucins, and a thriving multi-kingdom microbial ecosystem. The microbiome-mucin interplay protects from unwanted substances and organisms, but its dysfunction may enable pathogenic infections and the onset of respiratory disease. Emerging evidence also shows that noncoding regulatory RNAs might modulate the structure and function of the microbiome-mucin relationship. This opinion paper unearths the current understanding of the triangular relationship between mucins, the microbiome, and noncoding RNAs in the context of respiratory infections in animals of veterinary interest. There is a need to look at these molecular underpinnings that dictate distinct health and disease outcomes to implement effective prevention, surveillance, and timely intervention strategies tailored to the different epidemiological contexts.
Collapse
Affiliation(s)
- Núria Mach
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
2
|
Mohamedien D, Gaber W, Hirayama M, Awad M. Detection of MUC1+/MUC2 and MUC5AC- Membrane-Associated Mucins in the Intraepithelial Surface Mucous Cells of the Developing Rabbit Esophagus. Cells Tissues Organs 2024:1-13. [PMID: 39396509 DOI: 10.1159/000541836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024] Open
Abstract
INTRODUCTION Mucins are polydisperse molecules created to perform a variety of functions at the mucosal surface of the adult gastrointestinal tract. Two main groups of mucins could be identified: the membrane-associated mucins (MUC1, MUC4, MUC13, and MUC16), those bound to the apical plasma membrane of epithelial cells, and the secreted mucins (MUC2, MUC5AC, MUC5B, and MUC6), those secreted from the goblet cells. Little is known about the types and distribution patterns of mucins in prenatal life. METHODS We detected mucin-secreting cells in the developing rabbit esophagus though these cells are absent in the adult one. In order to identify the content and possible functions of these cells, we investigated the histochemical and immunohistochemical characteristics of their mucins. RESULTS Starting at 16th day of pregnancy, periodic acid Schiff (PAS), alcian blue (AB) pH (2.5), and PAS-AB combination intensely stained the mucous content, demonstrating both acidic and neutral mucopolysaccharides. Some blebs could be recognized on the free surface of the esophageal epithelium. Also, the mucous cells and some basal cells strongly immunoreacted with MUC1, but not MUC2, nor MUC5AC antibodies. CONCLUSION Collectively, these data suggest that surface mucous cells are modified epithelial cells, not goblet cells, and may originate from the basal layer of the epithelial cells. A possible regulatory role for these MUC1-positive mucins in esophageal epithelial and mesenchymal cell differentiation and late organogenesis is suggested. However, future functional studies are recommended.
Collapse
Affiliation(s)
- Dalia Mohamedien
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt,
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan,
| | - Wafaa Gaber
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Makoto Hirayama
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Mahmoud Awad
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Hernández-Huerta MT, Martínez-Cruz R, Pérez-Campos Mayoral L, Pina-Canseco MDS, Solórzano-Mata CJ, Martínez-Cruz M, Vásquez Martínez IP, Zenteno E, Laguna Barrios LÁ, Matias-Cervantes CA, Pérez-Campos Mayoral E, Pérez-Campos E. Association between O-GlcNAc levels and platelet function in obese insulin-resistant subjects. Glycoconj J 2024; 41:291-300. [PMID: 39300054 DOI: 10.1007/s10719-024-10164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/22/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Obesity is an epidemic associated with platelet and vascular disorders. Platelet O-GlcNAcylation has been poorly studied in obese subjects. We aimed to evaluate O-linked N-acetyl-glucosamine (O-GlcNAc) levels and platelet activity in obese insulin-resistant (ObIR) subjects. Six healthy and six insulin-resistant obese subjects with a body mass index of 22.6 kg/m2 (SD ± 2.2) and 35.6 kg/m2 (SD ± 3.8), respectively, were included. Flow cytometry was used to measure markers of platelet activity, expression of P-selectin (CD62P antibody), glycoprotein IIb/IIIa (integrins αIIbβ3 binding to PAC-1 antibody), and thrombin stimulation. O-GlcNAc was determined in the platelets of all test subjects by cytofluometry, intracellular calcium, percentage of platelet aggregation, and immunofluorescence microscopy and Western blot were used to assess O-GlcNAc and OGT (O-GlcNAc transferase) in platelets. Platelets from ObIR subjects had on average 221.4 nM intracellular calcium, 81.89% PAC-1, 22.85% CD62P, 57.48% OGT, and 66.62% O-GlcNAc, while platelets from healthy subjects had on average 719.2 nM intracellular calcium, 4.99% PAC-1, 3.17% CD62P, 18.38% OGT, and 23.41% O-GlcNAc. ObIR subjects showed lower platelet aggregation than healthy subjects, 13.83% and 54%, respectively. The results show that ObIR subjects have increased O-GlcNAc, and increased intraplatelet calcium associated with platelet hyperactivity and compared to healthy subjects, suggesting that changes in platelet protein O-GlcNAcylation and platelet activity might serve as a possible prognostic tool for insulin resistance, prediabetes and its progression to type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | - Ruth Martínez-Cruz
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, 68020, México
| | - Laura Pérez-Campos Mayoral
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, 68020, México
| | - María Del Socorro Pina-Canseco
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, 68020, México
| | - Carlos Josué Solórzano-Mata
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, 68020, México
- Facultad de Odontología, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca City, 68120, México
| | | | - Itzel Patricia Vásquez Martínez
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, 68020, México
| | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04360, México
| | - Luis Ángel Laguna Barrios
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, 68020, México
| | | | - Eduardo Pérez-Campos Mayoral
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, 68020, México
| | - Eduardo Pérez-Campos
- Tecnológico Nacional de México/IT de Oaxaca, Oaxaca, 68030, México.
- Laboratorio de Patología Clínica, "Dr. Eduardo Pérez Ortega,", Oaxaca, 68000, México.
| |
Collapse
|
4
|
Kim HW, Kim JH, Han GP, Kil DY. Increasing concentrations of dietary threonine, tryptophan, and glycine improve growth performance and intestinal health with decreasing stress responses in broiler chickens raised under multiple stress conditions. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:145-153. [PMID: 39257858 PMCID: PMC11385068 DOI: 10.1016/j.aninu.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 09/12/2024]
Abstract
The current study aimed to compare the effects of increasing concentrations of dietary threonine (Thr), tryptophan (Trp), and glycine (Gly) on growth performance, stress biomarkers, and intestinal function in broiler chickens under multiple stress conditions. Five hundred sixty broiler chickens at 21 d old were randomly allotted to 5 treatments with 8 replicates. Birds in a positive control (PC) treatment were raised under low stock density (16.9 birds/m2 per cage) with recommended environmental conditions, whereas birds in 4 treatments were subjected to multiple stress conditions: a cyclic heat stress of 30 ± 0.3 °C for 10 h and 23 ± 0.2 °C for 14 h per day with high stock density (25.3 birds/m2 per cage). A basal diet was assigned to both PC and negative control (NC) treatments. Three additional diets were individually formulated to contain double concentrations of digestible Thr, Trp, or Gly + Ser compared with their concentrations in the basal diet. The experiment lasted for 14 d. Results showed that NC treatment had less growth performance (P < 0.001), jejunal goblet cell counts (P = 0.018), and trans-epithelial electrical resistance (TEER; P < 0.001), but greater (P = 0.026) feather corticosterone (CORT) concentrations than PC treatment. Thr treatment showed the least (P < 0.001) feed conversion ratio (FCR) among treatments under multiple stress conditions. Thr, Trp, and Gly treatments had less (P = 0.026) feather CORT concentrations, but had greater (P < 0.001) TEER than NC treatment. In conclusion, increasing concentrations of dietary Thr, Trp, or Gly improve the growth performance and intestinal health in broiler chickens with decreasing stress response under multiple stress conditions.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jong Hyuk Kim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Gi Ppeum Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| |
Collapse
|
5
|
Romero-Ruiz A, Granados-Rodríguez M, Bura FI, Valenzuela-Molina F, Rufián-Andújar B, Martínez-López A, Rodríguez-Ortiz L, Ortega-Salas R, Torres-Martínez M, Moreno-Serrano A, Castaño J, Michán C, Alhama J, Vázquez-Borrego MC, Arjona-Sánchez Á. Breaking the Mucin Barrier: A New Affinity Chromatography-Mass Spectrometry Approach to Unveil Potential Cell Markers and Pathways Altered in Pseudomyxoma Peritonei. Biol Proced Online 2024; 26:13. [PMID: 38750435 PMCID: PMC11094946 DOI: 10.1186/s12575-024-00239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Pseudomyxoma peritonei (PMP) is a rare peritoneal mucinous carcinomatosis with largely unknown underlying molecular mechanisms. Cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy is the only therapeutic option; however, despite its use, recurrence with a fatal outcome is common. The lack of molecular characterisation of PMP and other mucinous tumours is mainly due to the physicochemical properties of mucin. RESULTS This manuscript describes the first protocol capable of breaking the mucin barrier and isolating proteins from mucinous tumours. Briefly, mucinous tumour samples were homogenised and subjected to liquid chromatography using two specific columns to reduce mainly glycoproteins, albumins and immunoglobulin G. The protein fractions were then subjected to mass spectrometry analysis and the proteomic profile obtained was analysed using various bioinformatic tools. Thus, we present here the first proteome analysed in PMP and identified a distinct mucin isoform profile in soft compared to hard mucin tumour tissues as well as key biological processes/pathways altered in mucinous tumours. Importantly, this protocol also allowed us to identify MUC13 as a potential tumour cell marker in PMP. CONCLUSIONS In sum, our results demonstrate that this protein isolation protocol from mucin will have a high impact, allowing the oncology research community to more rapidly advance in the knowledge of PMP and other mucinous neoplasms, as well as develop new and effective therapeutic strategies.
Collapse
Affiliation(s)
- Antonio Romero-Ruiz
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain.
- Maimonides Biomedical Research Institute of Córdoba, IMIBIC and University of Córdoba, Av. Menéndez Pidal, s/n, Córdoba, 14004, Spain.
| | - Melissa Granados-Rodríguez
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- Maimonides Biomedical Research Institute of Córdoba, IMIBIC and University of Córdoba, Av. Menéndez Pidal, s/n, Córdoba, 14004, Spain
| | - Florina I Bura
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- Maimonides Biomedical Research Institute of Córdoba, IMIBIC and University of Córdoba, Av. Menéndez Pidal, s/n, Córdoba, 14004, Spain
| | - Francisca Valenzuela-Molina
- Maimonides Biomedical Research Institute of Córdoba, IMIBIC and University of Córdoba, Av. Menéndez Pidal, s/n, Córdoba, 14004, Spain
- Surgical Oncology Unit, Surgery Department, Reina Sofía University Hospital, Córdoba, Spain
| | - Blanca Rufián-Andújar
- Maimonides Biomedical Research Institute of Córdoba, IMIBIC and University of Córdoba, Av. Menéndez Pidal, s/n, Córdoba, 14004, Spain
- Surgical Oncology Unit, Surgery Department, Reina Sofía University Hospital, Córdoba, Spain
| | - Ana Martínez-López
- Maimonides Biomedical Research Institute of Córdoba, IMIBIC and University of Córdoba, Av. Menéndez Pidal, s/n, Córdoba, 14004, Spain
- Pathology Unit, HURS, Córdoba, Spain
| | - Lidia Rodríguez-Ortiz
- Maimonides Biomedical Research Institute of Córdoba, IMIBIC and University of Córdoba, Av. Menéndez Pidal, s/n, Córdoba, 14004, Spain
- Surgical Oncology Unit, Surgery Department, Reina Sofía University Hospital, Córdoba, Spain
| | - Rosa Ortega-Salas
- Maimonides Biomedical Research Institute of Córdoba, IMIBIC and University of Córdoba, Av. Menéndez Pidal, s/n, Córdoba, 14004, Spain
- Pathology Unit, HURS, Córdoba, Spain
| | - María Torres-Martínez
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- Maimonides Biomedical Research Institute of Córdoba, IMIBIC and University of Córdoba, Av. Menéndez Pidal, s/n, Córdoba, 14004, Spain
| | - Ana Moreno-Serrano
- Maimonides Biomedical Research Institute of Córdoba, IMIBIC and University of Córdoba, Av. Menéndez Pidal, s/n, Córdoba, 14004, Spain
| | - Justo Castaño
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición, Córdoba, Spain
| | - Carmen Michán
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- Maimonides Biomedical Research Institute of Córdoba, IMIBIC and University of Córdoba, Av. Menéndez Pidal, s/n, Córdoba, 14004, Spain
| | - José Alhama
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- Maimonides Biomedical Research Institute of Córdoba, IMIBIC and University of Córdoba, Av. Menéndez Pidal, s/n, Córdoba, 14004, Spain
| | - Mari C Vázquez-Borrego
- Maimonides Biomedical Research Institute of Córdoba, IMIBIC and University of Córdoba, Av. Menéndez Pidal, s/n, Córdoba, 14004, Spain.
| | - Álvaro Arjona-Sánchez
- Maimonides Biomedical Research Institute of Córdoba, IMIBIC and University of Córdoba, Av. Menéndez Pidal, s/n, Córdoba, 14004, Spain
- Surgical Oncology Unit, Surgery Department, Reina Sofía University Hospital, Córdoba, Spain
| |
Collapse
|
6
|
Shani MA, Irani M. Feeding strategy and prebiotic supplementation: Effects on immune responses and gut health in the early life stage of broiler chickens. Res Vet Sci 2024; 171:105226. [PMID: 38502998 DOI: 10.1016/j.rvsc.2024.105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
This study aimed to investigate the effects of early or late feeding strategies and prebiotic, on immune responses and gut health during the early life stage of broiler chickens. A total of 240 day-old male broiler chicks were used in a 2 × 3 factorial arrangement of treatments that comprised 2 feeding strategies (early or late) and 3 levels of prebiotic (0, recommended dosage or three times the recommended dosage) in a completely randomized design with 4 pen replicates and 10 broilers per each. Compared to broiler chickens that had early access to feed, delayed access to feed resulted in an increased population of Escherichia coli and a decreased population of Lactobacillus spp. and Bifidobacterium spp. in the ileum (P < 0.05). Additionally, delayed access to feed led to a decrease in villus height, crypt depth, villus height: villus width ratio, goblet cell density, and mucin 2 gene expression in the ileum (P < 0.05). The supplementation of prebiotics in both the late and early feeding strategy groups resulted in increased villus height, crypt depth, goblet cell density, mucin 2 gene expression, and antibodies against Infectious Bursal Disease (IBD). Additionally, it led to an improvement in the foot web thickness index (P < 0.05). Furthermore, it resulted in a significant decrease in the population of Escherichia coli, while the populations of Lactobacillus spp. and Bifidobacterium spp. in the ileum were significantly increased (P < 0.05). Therefore, this study suggests that incorporating prebiotics in the starter diet can effectively enhance immune responses and promote gut health, regardless of the feeding strategy (early or late). In conclusion, this study demonstrates the potential benefits of incorporating prebiotics into poultry diets to alleviate the detrimental effects of delayed access to feed and improve gut health during the early life stage of broiler chickens.
Collapse
Affiliation(s)
- Mostafa Abbasnejad Shani
- Department of Animal Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Mazandaran, Iran
| | - Mehrdad Irani
- Department of Animal Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Mazandaran, Iran.
| |
Collapse
|
7
|
Fang S, Wu J, Niu W, Zhang T, Hong T, Zhang H, Zhan X. Sialylation of dietary mucin modulate its digestibility and the gut microbiota of elderly individuals. Food Res Int 2024; 184:114246. [PMID: 38609225 DOI: 10.1016/j.foodres.2024.114246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Food-derived mucins are glycoproteins rich in sialic acid, but their digestive properties and potential health benefits for humans have been scarcely investigated. In this work, ovomucin (OVM, rich in N-acetylneuraminic acid, about 3 %), porcine small intestinal mucin (PSIM, rich in N-glycolylneuraminic acid, about 1 %), the desialylated OVM (AOVM) and the desialylated PSIM (APSIM) were selected to examine their digestion and their impact on the gut microbiota of elderly individuals. The results shown that, the proportion of low-molecular-weight proteins increased after simulated digestion of these four mucins, with concomitant comparable antioxidant activity observed. Desialylation markedly increased the degradation and digestion rate of mucins. In vitro fecal fermentation was conducted with these mucins using fecal samples from individuals of different age groups: young, low-age and high-age elderly. Fecal fermentation with mucin digestive solution stimulated the production of organic acids in the group with fecal sample of the elderly individuals. Among them, the OVM group demonstrated the most favorable outcomes. The OVM and APSIM groups elevated the relative abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium, while diminishing the presence of pathogenic bacteria such as Klebsiella. Conversely, the probiotic effects of AOVM and PSIM were attenuated or even exhibited adverse effects. Hence, mucins originating from different sources and possessing distinct glycosylation patterns exhibit diverse biological functions. Our findings can offer valuable insights for developing a well-balanced and nutritious diet tailored to the elderly population.
Collapse
Affiliation(s)
- Su Fang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Wenxuan Niu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tiantian Hong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Kim HW, Lee SY, Hur SJ, Kil DY, Kim JH. Effects of functional nutrients on chicken intestinal epithelial cells induced with oxidative stress. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1040-1052. [PMID: 37969347 PMCID: PMC10640939 DOI: 10.5187/jast.2023.e22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 11/17/2023]
Abstract
The objective of this study was to investigate the protective effects of functional nutrients including various functional amino acids, vitamins, and minerals on chicken intestinal epithelial cells (cIECs) treated with oxidative stress. The cIECs were isolated from specific pathogen free eggs. Cells were exposed to 0 mM supplement (control), 20 mM threonine (Thr), 0.4 mM tryptophan (Trp), 1 mM glycine (Gly), 10 μM vitamin C (VC), 40 μM vitamin E (VE), 5 μM vitamin A (VA), 34 μM chromium (Cr), 0.42 μM selenium (Se), and 50 μM zinc (Zn) for 24 h with 6 replicates for each treatment. After 24 h, cells were further incubated with fresh culture medium (positive control, PC) or 1 mM H2O2 with different supplements (negative control, NC and each treatment). Oxidative stress was measured by cell proliferation, whereas tight junction barrier function was analyzed by fluorescein isothiocyanate (FITC)-dextran permeability and transepithelial electrical resistance (TEER). Results indicated that cell viability and TEER values were less (p < 0.05) in NC treatments with oxidative stress than in PC treatments. In addition, FITC-dextran values were greater (p < 0.05) in NC treatments with oxidative stress than in PC treatments. The supplementations of Thr, Trp, Gly, VC, and VE in cells treated with H2O2 showed greater (p < 0.05) cell viability than the supplementation of VA, Cr, Se, and Zn. The supplementations of Trp, Gly, VC, and Se in cells treated with H2O2 showed the least (p < 0.05) cellular permeability. In addition, the supplementation of Thr, VE, VA, Cr, and Zn in cells treated with H2O2 decreased (p < 0.05) cellular permeability. At 48 h, the supplementations of Thr, Trp, and Gly in cells treated with H2O2 showed the greatest (p < 0.05) TEER values among all treatments, and the supplementations of VC and VE in cells treated with H2O2 showed greater (p < 0.05) TEER values than the supplementations of VA, Cr, Se, and Zn in cells treated with H2O2. In conclusion, Thr, Trp, Gly, and VC supplements were effective in improving cell viability and intestinal barrier function of cIECs exposed to oxidative stress.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Yun Lee
- Department of Animal Science (BK21 Four),
Institute of Agriculture Life Science, Gyeongsang National
University, Jinju 52725, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dong Yong Kil
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jong Hyuk Kim
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| |
Collapse
|
9
|
Gautam SK, Khan P, Natarajan G, Atri P, Aithal A, Ganti AK, Batra SK, Nasser MW, Jain M. Mucins as Potential Biomarkers for Early Detection of Cancer. Cancers (Basel) 2023; 15:1640. [PMID: 36980526 PMCID: PMC10046558 DOI: 10.3390/cancers15061640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Early detection significantly correlates with improved survival in cancer patients. So far, a limited number of biomarkers have been validated to diagnose cancers at an early stage. Considering the leading cancer types that contribute to more than 50% of deaths in the USA, we discuss the ongoing endeavors toward early detection of lung, breast, ovarian, colon, prostate, liver, and pancreatic cancers to highlight the significance of mucin glycoproteins in cancer diagnosis. As mucin deregulation is one of the earliest events in most epithelial malignancies following oncogenic transformation, these high-molecular-weight glycoproteins are considered potential candidates for biomarker development. The diagnostic potential of mucins is mainly attributed to their deregulated expression, altered glycosylation, splicing, and ability to induce autoantibodies. Secretory and shed mucins are commonly detected in patients' sera, body fluids, and tumor biopsies. For instance, CA125, also called MUC16, is one of the biomarkers implemented for the diagnosis of ovarian cancer and is currently being investigated for other malignancies. Similarly, MUC5AC, a secretory mucin, is a potential biomarker for pancreatic cancer. Moreover, anti-mucin autoantibodies and mucin-packaged exosomes have opened new avenues of biomarker development for early cancer diagnosis. In this review, we discuss the diagnostic potential of mucins in epithelial cancers and provide evidence and a rationale for developing a mucin-based biomarker panel for early cancer detection.
Collapse
Affiliation(s)
- Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar K. Ganti
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd W. Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
10
|
Kayongo A, Robertson NM, Siddharthan T, Ntayi ML, Ndawula JC, Sande OJ, Bagaya BS, Kirenga B, Mayanja-Kizza H, Joloba ML, Forslund SK. Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease. Front Immunol 2023; 13:1085551. [PMID: 36741369 PMCID: PMC9890194 DOI: 10.3389/fimmu.2022.1085551] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) has significantly contributed to global mortality, with three million deaths reported annually. This impact is expected to increase over the next 40 years, with approximately 5 million people predicted to succumb to COPD-related deaths annually. Immune mechanisms driving disease progression have not been fully elucidated. Airway microbiota have been implicated. However, it is still unclear how changes in the airway microbiome drive persistent immune activation and consequent lung damage. Mechanisms mediating microbiome-immune crosstalk in the airways remain unclear. In this review, we examine how dysbiosis mediates airway inflammation in COPD. We give a detailed account of how airway commensal bacteria interact with the mucosal innate and adaptive immune system to regulate immune responses in healthy or diseased airways. Immune-phenotyping airway microbiota could advance COPD immunotherapeutics and identify key open questions that future research must address to further such translation.
Collapse
Affiliation(s)
- Alex Kayongo
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Medicine, Center for Emerging Pathogens, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, United States
| | | | - Trishul Siddharthan
- Division of Pulmonary Medicine, School of Medicine, University of Miami, Miami, FL, United States
| | - Moses Levi Ntayi
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Josephine Caren Ndawula
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Obondo J. Sande
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bernard S. Bagaya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bruce Kirenga
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Harriet Mayanja-Kizza
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany,Experimental and Clinical Research Center, a cooperation of Charité - Universitatsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany,Charité-Universitatsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany,*Correspondence: Sofia K. Forslund,
| |
Collapse
|
11
|
Izadifar Z, Sontheimer-Phelps A, Lubamba BA, Bai H, Fadel C, Stejskalova A, Ozkan A, Dasgupta Q, Bein A, Junaid A, Gulati A, Mahajan G, Kim S, LoGrande NT, Naziripour A, Ingber DE. Modeling mucus physiology and pathophysiology in human organs-on-chips. Adv Drug Deliv Rev 2022; 191:114542. [PMID: 36179916 DOI: 10.1016/j.addr.2022.114542] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023]
Abstract
The surfaces of human internal organs are lined by a mucus layer that ensures symbiotic relationships with commensal microbiome while protecting against potentially injurious environmental chemicals, toxins, and pathogens, and disruption of this layer can contribute to disease development. Studying mucus biology has been challenging due to the lack of physiologically relevant human in vitro models. Here we review recent progress that has been made in the development of human organ-on-a-chip microfluidic culture models that reconstitute epithelial tissue barriers and physiologically relevant mucus layers with a focus on lung, colon, small intestine, cervix and vagina. These organ-on-a-chip models that incorporate dynamic fluid flow, air-liquid interfaces, and physiologically relevant mechanical cues can be used to study mucus composition, mechanics, and structure, as well as investigate its contributions to human health and disease with a level of biomimicry not possible in the past.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | | | - Bob A Lubamba
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Cicely Fadel
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Anna Stejskalova
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Alican Ozkan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Queeny Dasgupta
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Amir Bein
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Abidemi Junaid
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Aakanksha Gulati
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Gautam Mahajan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Seongmin Kim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Arash Naziripour
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States; Vascular Biology Program, Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02115, United States; Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United Kingdom.
| |
Collapse
|
12
|
Abstract
Coronavirus disease 2019 (COVID-19) is a worldwide pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has affected millions of lives. Individuals who survive severe COVID-19 can experience sustained respiratory symptoms that persist for months after initial infection. In other airway diseases, abnormal airway mucus contributes to sustained airway symptoms. However, the impact of SARS-CoV-2 on airway mucus has received limited attention. In the current review, we assess literature describing the impact of SARS-CoV-2 on airway pathophysiology with specific emphasis on mucus production. Accumulating evidence suggests that the 2 major secreted airway mucin glycoproteins, MUC5AC and MUC5B, are abnormal in some patients with COVID-19. Aberrations in MUC5AC or MUC5B in response to SARS-CoV-2 infection are likely due to inflammation, though the responsible mechanisms have yet to be determined. Thus, we also provide a proposed model highlighting mechanisms that can contribute to acute and sustained mucus abnormalities in SARS-CoV-2, with an emphasis on inflammatory cells and mediators, including mast cells and histamine. Last, we bring to light the challenges of studying abnormal mucus production in SARS-CoV-2 infections and discuss the strengths and limitations of model systems commonly used to study COVID-19. The evidence to date suggests that ferrets, nonhuman primates, and cats may have advantages over other models to investigate mucus in COVID-19.
Collapse
|
13
|
Robinson KA, Prostak SM, Campbell Grant EH, Fritz-Laylin LK. Amphibian mucus triggers a developmental transition in the frog-killing chytrid fungus. Curr Biol 2022; 32:2765-2771.e4. [DOI: 10.1016/j.cub.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022]
|
14
|
Yan D, Qiang Y, Tian T, Lu D, Wu C. The Effect of Endotoxin on the Intestinal Mucus Layer in Non- and Post-pregnancy Mice. Front Vet Sci 2022; 8:824170. [PMID: 35224078 PMCID: PMC8866870 DOI: 10.3389/fvets.2021.824170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022] Open
Abstract
The intestine is the most extensive storage organ of bacteria and endotoxins, and the mucosal immune system is the first barrier of the intestine. Mucin-2 (MUC2) is the major component of the mucus layers. In this study, we explored whether MUC2 plays a role in how lipopolysaccharide (LPS) invades the fetus from the gut to the uterus in pregnant mice. The results showed that the LPS levels of the ileum, colon, and uterus were significantly increased, and the content of secretory IgA (sIgA) in the ileum, colon, and uterus tissues was significantly decreased in the LPS(+) group on the 35th day after LPS treatment. On the 16th day of pregnancy, compared with the LPS(-) group, the level of ileum LPS was significantly decreased, and the content of LPS in the fetus was significantly increased in the LPS(+) group. The sIgA content in the fetus was significantly decreased in the uterus and placenta. The expression of MUC2 in the uterus, ileum, and colon was increased significantly in the LPS(+) group, especially in the uterus. It is suggested that endotoxins accumulate in the uterus during non-pregnancy. The high expression of MUC2 in the uterus can prevent LPS from translocating into uterine tissue. After pregnancy, MUC2 still protects uterine tissue, allowing a large amount of LPS to enter the fetal body through blood circulation. Therefore, the level of sIgA significantly decreased, resulting in a decline in fetal innate immune function.
Collapse
Affiliation(s)
- Dujian Yan
- AKS Vocational and Technical College, Aksu, China
| | - Yuyun Qiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Tian Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Dezhang Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Chenchen Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
15
|
Abdelwhab A, Shaker O, Aggour RL. Expression of Mucin1 in saliva in oral squamous cell carcinoma and oral potentially malignant disorders (case control study). Oral Dis 2022; 29:1487-1494. [PMID: 35080082 DOI: 10.1111/odi.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Overexpression of mucin1 is found in head and neck squamous cell carcinoma tissues compared with adjacent non-neoplastic tissues and higher levels are associated with metastasis and invasion. The expression level of mucin1 in saliva of normal individuals, oral potentially malignant disorders and oral squamous cell carcinoma patients and its correlation to clinical and histological variables was evaluated. SUBJECTS AND METHODS Forty oral potentially malignant disorders, 40 oral squamous cell carcinoma subjects, and 20 age matched-controls were included. Stimulated salivary samples were collected from all participants, and mucin1 expression was measured by real-time PCR. RESULTS Mucin1 expression in saliva was significantly elevated in oral potentially malignant disorders when compared with controls. Similarly, mucin1 expression was significantly elevated in oral squamous cell carcinoma group when compared with oral potentially malignant disorders and controls. Mucin1 expression in OSCC patient showed significant positive correlations with T classification and distant Metastasis. Mucin1 expression in oral potentially malignant disorders patients showed significant positive correlations with degree of dysplasia. CONCLUSIONS The expression level of mucin1 in saliva might be a potential biomarker for diagnosing oral potentially malignant disorders and oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Amira Abdelwhab
- Lecturer of Oral Medicine, Diagnosis and Periodontology Faculty of dentistry‐ October 6 University
| | - Olfat Shaker
- Professor of Medical Biochemistry and Molecular Biology Faculty of Medicine Cairo University
| | - Reham Lotfy Aggour
- Associate Professor of Oral Medicine, Diagnosis and Periodontology Faculty of dentistry ‐ October 6 University
| |
Collapse
|
16
|
Quinones Tavarez Z, Li D, Croft DP, Gill SR, Ossip DJ, Rahman I. The Interplay Between Respiratory Microbiota and Innate Immunity in Flavor E-Cigarette Vaping Induced Lung Dysfunction. Front Microbiol 2020; 11:589501. [PMID: 33391205 PMCID: PMC7772214 DOI: 10.3389/fmicb.2020.589501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Global usage of electronic nicotine delivery systems (ENDS) has been increasing in the last decade. ENDS are non-combustible tobacco products that heat and aerosolize a liquid containing humectants, with added flavorings and often nicotine. Though ENDS are promoted as a less harmful alternative to smoking, current evidence links their use to a wide range of deleterious health effects including acute and chronic lung damage. ENDS can elicit an inflammatory response and impair the innate immune response in the lungs. Exposure to ENDS flavorings results in abnormal activation of the lung epithelial cells and β-defensins, dysfunction of the macrophage phagocytic activity, increased levels of mucin (MUC5AC) and abnormal activation of the neutrophilic response (NETosis). ENDS menthol flavorings disrupt innate immunity and might be associated with allergies and asthma through activation of transient receptor potential ankyrin 1 (TRAP1). Recent studies have expanded our understanding of the relationship between the homeostasis of lung innate immunity and the immunomodulatory effect of the host-microbiota interaction. Alterations of the normal respiratory microbiota have been associated with chronic obstructive pulmonary disease (COPD), asthma, atopy and cystic fibrosis complications which are strongly associated with smoking and potentially with ENDS use. Little is known about the short-and long-term effects of ENDS on the respiratory microbiota, their impact on the innate immune response and their link to pulmonary health and disease. Here we review the interaction between the innate immune system and the respiratory microbiota in the pathogenesis of ENDS-induced pulmonary dysfunction and identify future areas of research.
Collapse
Affiliation(s)
- Zahira Quinones Tavarez
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Daniel P. Croft
- Department of Medicine, Pulmonary Diseases and Critical Care, University of Rochester, Rochester, NY, United States
| | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Deborah J. Ossip
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
17
|
Jiang S, El-Senousey HK, Fan Q, Lin X, Gou Z, Li L, Wang Y, Fouad AM, Jiang Z. Effects of dietary threonine supplementation on productivity and expression of genes related to protein deposition and amino acid transportation in breeder hens of yellow-feathered chicken and their offspring. Poult Sci 2019; 98:6826-6836. [PMID: 31504946 PMCID: PMC6870553 DOI: 10.3382/ps/pez420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/30/2019] [Indexed: 01/07/2023] Open
Abstract
This study investigated the effects of the dietary threonine (Thr) levels on the performance, offspring traits, embryo amino acid transportation, and protein deposition in breeder hens of yellow-feathered chickens. In total, 720 breeder hens of Lingnan yellow-feathered chickens were randomly assigned to 1 of 6 dietary treatments, with 6 replicates per treatment (20 birds per replicate). The breeder hens were fed either basal diet (Thr = 0.38%) or basal diet supplemented with 0.12, 0.24, 0.36, 0.48, or 0.60% Thr from 197 to 266 D. There was a positive response in terms of the laying rate after adding different levels of Thr to the diet, but no significant effects on the average daily gain, average daily egg weight, feed conversion ratio, average broken eggs, and unqualified egg rate (P > 0.05). However, the eggshell strength and eggshell percentage decreased in a linear manner as the dietary Thr concentration increased (P = 0.05). Dietary supplementation with Thr had significant effects on the expression of mucin 2 (MUC2) in the uterus and zonula occludens protein 1 (ZO-1) in the duodenum of breeders (P < 0.05). In chick embryos at embryonic age 18 D, significant upregulation of poultry target of rapamycin (pTOR) occurred in the liver and breast muscle, as well as threonine dehydrogenase (TDH) in the thigh, and aminopeptidase (ANPEP) (P < 0.05) in the duodenum and ileum due to dietary Thr supplementation, but there were no effects on MUC2 expression in the duodenum and ileum (P > 0.05). The livability of the progeny broilers tended to increase with the dietary Thr concentration (quadratic, P = 0.08). Thus, dietary supplementation with Thr had positive effects on the laying production by breeder hens and offspring performance, and it also regulated the expression levels of genes related to amino acid transportation and protein deposition. The optimal dietary Thr concentration that maximized the laying rate in yellow-feathered chicken breeders aged 197 to 266 D was 0.68% according to quadratic regression analysis.
Collapse
Affiliation(s)
- Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, P. R. China,Corresponding author:
| | - HebatAllah Kasem El-Senousey
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, P. R. China,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Qiuli Fan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, P. R. China
| | - Xiajing Lin
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, P. R. China
| | - Zhongyong Gou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, P. R. China
| | - Long Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, P. R. China
| | - Yibing Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, P. R. China
| | - Ahmed Mohamed Fouad
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, P. R. China,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, P. R. China,Corresponding author:
| |
Collapse
|
18
|
Atanasova KR, Reznikov LR. Strategies for measuring airway mucus and mucins. Respir Res 2019; 20:261. [PMID: 31752894 PMCID: PMC6873701 DOI: 10.1186/s12931-019-1239-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
Mucus secretion and mucociliary transport are essential defense mechanisms of the airways. Deviations in mucus composition and secretion can impede mucociliary transport and elicit airway obstruction. As such, mucus abnormalities are hallmark features of many respiratory diseases, including asthma, cystic fibrosis and chronic obstructive pulmonary disease (COPD). Studying mucus composition and its physical properties has therefore been of significant interest both clinically and scientifically. Yet, measuring mucus production, output, composition and transport presents several challenges. Here we summarize and discuss the advantages and limitations of several techniques from five broadly characterized strategies used to measure mucus secretion, composition and mucociliary transport, with an emphasis on the gel-forming mucins. Further, we summarize advances in the field, as well as suggest potential areas of improvement moving forward.
Collapse
Affiliation(s)
- Kalina R Atanasova
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA.
| |
Collapse
|
19
|
Abstract
People worldwide are living longer, and it is estimated that by 2050, the proportion of the world's population over 60 years of age will nearly double. Natural lung aging is associated with molecular and physiological changes that cause alterations in lung function, diminished pulmonary remodeling and regenerative capacity, and increased susceptibility to acute and chronic lung diseases. As the aging population rapidly grows, it is essential to examine how alterations in cellular function and cell-to-cell interactions of pulmonary resident cells and systemic immune cells contribute to a higher risk of increased susceptibility to infection and development of chronic diseases, such as chronic obstructive pulmonary disease and interstitial pulmonary fibrosis. This review provides an overview of physiological, structural, and cellular changes in the aging lung and immune system that facilitate the development and progression of disease.
Collapse
Affiliation(s)
- Soo Jung Cho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Heather W Stout-Delgado
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| |
Collapse
|
20
|
Morera-Ocon FJ, Navarro-Campoy C. History of pseudomyxoma peritonei from its origin to the first decades of the twenty-first century. World J Gastrointest Surg 2019; 11:358-364. [PMID: 31572561 PMCID: PMC6766476 DOI: 10.4240/wjgs.v11.i9.358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Pseudomyxoma peritonei (PMP) is a disease surrounded by misunderstanding and controversies. Knowledge about the etymology of pseudomyxoma is useful to remove the ambiguity around that term. The word pseudomyxoma derives from pseudomucin, a type of mucin. PMP was first described in a case of a woman alleged to have a ruptured pseudomucinous cystadenoma of the ovary, a term that has disappeared from today’s classifications of cystic ovarian neoplasms. It is known today that in the majority of cases, the origin for PMP is an appendiceal neoplasm, often of low histological grade. Currently, ovarian tumors are wrongly being considered a significant recognized etiology of PMP. PMP classification continues to be under discussion, and experts’ panels strive for consensus. Malignancy is also under discussion, and it is shown in this review that there is a long-standing historical reason for that. Surgery is the main tool in the treatment armamentarium for PMP, and the only therapy with potential curative option.
Collapse
Affiliation(s)
| | - Clara Navarro-Campoy
- Department of Gynecology and Obstetrics, Hospital 9 Octubre, Valencia 46340, Spain
| |
Collapse
|
21
|
Fini ME, Jeong S, Gong H, Martinez-Carrasco R, Laver NMV, Hijikata M, Keicho N, Argüeso P. Membrane-associated mucins of the ocular surface: New genes, new protein functions and new biological roles in human and mouse. Prog Retin Eye Res 2019; 75:100777. [PMID: 31493487 DOI: 10.1016/j.preteyeres.2019.100777] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 01/17/2023]
Abstract
The mucosal glycocalyx of the ocular surface constitutes the point of interaction between the tear film and the apical epithelial cells. Membrane-associated mucins (MAMs) are the defining molecules of the glycocalyx in all mucosal epithelia. Long recognized for their biophysical properties of hydration, lubrication, anti-adhesion and repulsion, MAMs maintain the wet ocular surface, lubricate the blink, stabilize the tear film and create a physical barrier to the outside world. However, it is increasingly appreciated that MAMs also function as cell surface receptors that transduce information from the outside to the inside of the cell. A number of excellent review articles have provided perspective on the field as it has progressed since 1987, when molecular cloning of the first MAM was reported. The current article provides an update for the ocular surface, placing it into the broad context of findings made in other organ systems, and including new genes, new protein functions and new biological roles. We discuss the epithelial tissue-equivalent with mucosal differentiation, the key model system making these advances possible. In addition, we make the first systematic comparison of MAMs in human and mouse, establishing the basis for using knockout mice for investigations with the complexity of an in vivo system. Lastly, we discuss findings from human genetics/genomics, which are providing clues to new MAM roles previously unimagined. Taken together, this information allows us to generate hypotheses for the next stage of investigation to expand our knowledge of MAM function in intracellular signaling and roles unique to the ocular surface.
Collapse
Affiliation(s)
- M Elizabeth Fini
- Department of Ophthalmology, Tufts University School of Medicine, at New England Eye Center, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| | - Shinwu Jeong
- USC Roski Eye Institute and Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, 1975 Zonal Ave, Los Angeles, CA, 90033, USA.
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, 72 E Concord St, Boston, MA, 02118, USA.
| | - Rafael Martinez-Carrasco
- Department of Ophthalmology, Tufts University School of Medicine, at New England Eye Center, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| | - Nora M V Laver
- Department of Ophthalmology, Tufts University School of Medicine, at New England Eye Center, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose-shi, Tokyo, 204-8533, Japan.
| | - Naoto Keicho
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose-shi, Tokyo, 204-8533, Japan.
| | - Pablo Argüeso
- Department of Ophthalmology, Harvard Medical School, at Schepens Eye Research Institute of Mass. Eye and Ear, 20 Staniford St, Boston, MA, 02114, USA.
| |
Collapse
|
22
|
Ji S, Qi X, Ma S, Liu X, Liu S, Min Y. A deficient or an excess of dietary threonine level affects intestinal mucosal integrity and barrier function in broiler chickens. J Anim Physiol Anim Nutr (Berl) 2019; 103:1792-1799. [PMID: 31435969 DOI: 10.1111/jpn.13185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 12/28/2022]
Abstract
The aim of this study was to investigate the effects of deficient or excess of dietary threonine (Thr) levels on intestinal integrity and barrier function of broilers. A total of 432 1-day-old commercial broilers (Arbor Acre) were assigned to four experiment groups consisting of six replicates of 18 birds. The treatments were designed as follows: 85%, 100%, 125% and 150% of NRC (Nutrient requirements of poultry (9th edn). Washington, DC: The National Academies Press, 1994) recommendations. The results indicated that expressions of jejunal and ileal secretory immunoglobulin A (sIgA) mRNA were increased linearly or quadratically by increasing Thr (p < .05), and the highest sIgA mRNA abundance was obtained in 125% Thr level. Likewise, the intestinal sIgA content showed similar increasing trend with the intestinal sIgA gene expression in this instance. The high level of Thr inclusion upregulated mucin 2 (MUC2) mRNA expression in the jejunum and ileum (p < .05). In addition, on day 21, the expression levels of jejunal zonula occludens-2 (ZO-2) and ileal zonula occludens-1 (ZO-1) decreased then increased with increasing Thr level (p < .05), whereas, the mRNA expressions of occludin in the jejunum and ileum had no significant difference amongst groups (p >.05). On day 42, Thr treatments did not affect the mRNA abundance of measured genes in the jejunum and ileum (p > .05). These findings suggested that Thr might be a nutrient immunomodulator that affects intestinal barrier function, moreover, 125% of the NRC (1994) recommendations Thr level was optimum.
Collapse
Affiliation(s)
- Shuyun Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xi Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuxue Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shengguo Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuna Min
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
23
|
Abdaljaleel R, Alsadwi A, Leyva-Jimenez H, Al-Ajeeli M, Al-Jumaa Y, Bailey C. Evaluating the effect of yeast cell wall supplementation on ideal threonine to lysine ratios in broilers as measured by performance, intestinal mucin secretion, morphology, and goblet cell number. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfy058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Vanneste P, Page C. Otitis media with effusion in children: Pathophysiology, diagnosis, and treatment. A review. J Otol 2019; 14:33-39. [PMID: 31223299 PMCID: PMC6570640 DOI: 10.1016/j.joto.2019.01.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022] Open
Abstract
Otitis media with effusion (OME) is a frequent paediatric disorder. The condition is often asymptomatic, and so can easily be missed. However, OME can lead to hearing loss that impairs the child's language and behavioural development. The diagnosis is essentially clinical, and is based on otoscopy and (in some cases) tympanometry. Nasal endoscopy is only indicated in cases of unilateral OME or when obstructive adenoid hypertrophy is suspected. Otitis media with effusion is defined as the observation of middle-ear effusion at consultations three months apart. Hearing must be evaluated (using an age-appropriate audiometry technique) before and after treatment, so as not to miss another underlying cause of deafness (e.g. perception deafness). Craniofacial dysmorphism, respiratory allergy and gastro-oesophageal reflux all favour the development of OME. Although a certain number of medications (antibiotics, corticoids, antihistamines, mucokinetic agents, and nasal decongestants) can be used to treat OME, they are not reliably effective and rarely provide long-term relief. The benchmark treatment for OME is placement of tympanostomy tubes (TTs) and (in some cases) adjunct adenoidectomy. The TTs rapidly normalize hearing and effectively prevent the development of cholesteatoma in the middle ear. In contrast, TTs do not prevent progression towards tympanic atrophy or a retraction pocket. Adenoidectomy enhances the effectiveness of TTs. In children with adenoid hypertrophy, adenoidectomy is indicated before the age of 4 but can be performed later when OME is identified by nasal endoscopy. Children must be followed up until OME has disappeared completely, so that any complications are not missed.
Collapse
Affiliation(s)
- Pauline Vanneste
- Department of Otorhinolaryngology and Head & Neck Surgery, Amiens University Hospital, Amiens, France
| | - Cyril Page
- Department of Otorhinolaryngology and Head & Neck Surgery, Amiens University Hospital, Amiens, France
| |
Collapse
|
25
|
Chang TC, Wei PL, Makondi PT, Chen WT, Huang CY, Chang YJ. Bromelain inhibits the ability of colorectal cancer cells to proliferate via activation of ROS production and autophagy. PLoS One 2019; 14:e0210274. [PMID: 30657763 PMCID: PMC6338369 DOI: 10.1371/journal.pone.0210274] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Advanced colorectal cancer (CRC) survival rates are still low despite advances in cytotoxic and targeted therapies. The development of new effective or alternative therapies is therefore urgently needed. Bromelain, an extract of pineapple, was shown to have anticancer effects, but its mechanisms in CRC have not been fully explored. Therefore, the roles of bromelain in CRC progression were investigated using different CRC cell lines, a zebrafish model, and a xenograft mouse model. The anticancer mechanisms were explored by assessing the role of bromelain in inducing reactive oxygen species (ROS), superoxide, autophagosomes, and lysosomes. The role of bromelain in the induction of apoptosis was also assessed. It was found that bromelain inhibited CRC cell growth in cell lines and tumor growth in the zebrafish and xenograft mouse models. It also induced high levels of ROS and superoxide, plus autophagosome and lysosome formation. High levels of apoptosis were also induced, which were associated with elevated amounts of apoptotic proteins like apoptotic induction factor, Endo G, and caspases-3, -8, and -9 according to a qPCR analysis. In a Western blot analysis, increases in levels of ATG5/12, beclin, p62, and LC3 conversion rates were found after bromelain treatment. Levels of cleaved caspase-3, caspase-8, caspase-9, and poly(ADP ribose) polymerase (PARP)-1 increased after bromelain exposure. This study explored the role of bromelain in CRC while giving insights into its mechanisms of action. This compound can offer a cheap alternative to current therapies.
Collapse
Affiliation(s)
- Tung-Cheng Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Po-Li Wei
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Precious Takondwa Makondi
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- International PhD Program in Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ting Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Yu Huang
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- * E-mail: (CH);(YC)
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- International PhD Program in Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail: (CH);(YC)
| |
Collapse
|
26
|
Bi Y, Nan XM, Zheng SS, Jiang LS, Xiong BH. Effects of dietary threonine and immune stress on growth performance, carcass trait, serum immune parameters, and intestinal muc2 and NF-κb gene expression in Pekin ducks from hatch to 21 days. Poult Sci 2018; 97:177-187. [PMID: 29087516 DOI: 10.3382/ps/pex283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/26/2017] [Indexed: 11/20/2022] Open
Abstract
An experiment was conducted to investigate the effects of different dietary threonine (Thr) levels and immune stress on Pekin ducklings' growth performance, carcass traits, serum immune parameters, and intestinal mucin 2 (MUC2) and nuclear factor kB (NF-κB) gene expressions. A total of 320 Pekin ducklings was randomly assigned to a 5 × 2 factorial arrangement of treatments. Each treatment group consisted of 4 replicate pens with 8 ducks per pen. Ducklings were fed 5 graded levels of Thr: 0.49, 0.56, 0.60, 0.65, and 0.76% from hatch to 21 d of age. At 11 d of age, ducks in the stressed groups were challenged with bovine serum albumin (BSA), and ducks in the unstressed groups were injected with normal saline water. The results showed that increasing Thr supplementation from 0.49 to 0.56% in the diet can improve BWG; feed consumption; weight and relative weight of breast and leg; weight of liver, bursa of Fabricius, spleen, and thymus; serum natural immune globulin A (IgA) concentration; and MUC2 gene expression in the ileum of 21-day-old Pekin ducks, significantly (P < 0.05). Immune stress with BSA had a significant effect on 21-day-old Pekin ducklings' BWG, feed consumption, and weight and relative weight of breast and thymus (P < 0.05), but no interaction between BSA and dietary Thr content was noticed in our experiment in 21-day-old Pekin ducks (P < 0.05). Dietary Thr requirements of the unstressed groups and stressed groups based on broken-line model analyses for ducks' BWG were 0.705 and 0.603%, respectively, and for ducks' feed consumption were 0.724 and 0.705%, respectively.
Collapse
Affiliation(s)
- Y Bi
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - X M Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - S S Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - L S Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, 102206, China
| | - B H Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
27
|
Influencing the adhesion properties and wettability of mucin protein films by variation of the environmental pH. Sci Rep 2018; 8:9660. [PMID: 29942027 PMCID: PMC6018421 DOI: 10.1038/s41598-018-28047-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/13/2018] [Indexed: 12/24/2022] Open
Abstract
Mucins, the main component of the mucus secretions of goblet and epithelial cells, are known for exhibiting a different behaviour in accordance with their surrounding environment (i.e. among others the environmental pH), which induces a drastic change in their measured mechanical properties. In this work, we have first employed Atomic Force Microscopy (AFM) in Force Spectroscopy mode to evaluate the adhesion of porcine mucin films at the nanoscale, and the changes caused in this particular factor by a pH variation between 7.0 and 4.0, both quite common values in biological conditions. Measurements also involved additional varying factors such as the indenting tip chemistry (hydrophobic vs hydrophilic), its residence time on the measured film (0, 1 and/or 2 seconds), and increasing pulling rates (ranging from 0.1 up to 10 µm/s). A second approach regarded the macroscale behaviour of the films, due to their potential applicability in the development of a new set of stimuli-responsive biomaterials. This was possible by means of complementary Wilhelmy plate method (to test the wetting properties) and cell proliferation studies on films previously exposed to the corresponding pH solution. According to our results, treatment with lowest pH (4.0) provides porcine mucin with a more hydrophilic character, showing a much stronger adhesion for analogous chemistries, as well as enhanced capability for cell attachment and proliferation, which opens new pathways for their future use and consideration as scaffold-forming material.
Collapse
|
28
|
Laurén P, Paukkonen H, Lipiäinen T, Dong Y, Oksanen T, Räikkönen H, Ehlers H, Laaksonen P, Yliperttula M, Laaksonen T. Pectin and Mucin Enhance the Bioadhesion of Drug Loaded Nanofibrillated Cellulose Films. Pharm Res 2018; 35:145. [PMID: 29790010 DOI: 10.1007/s11095-018-2428-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/09/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE Bioadhesion is an important property of biological membranes, that can be utilized in pharmaceutical and biomedical applications. In this study, we have fabricated mucoadhesive drug releasing films with bio-based, non-toxic and biodegradable polymers that do not require chemical modifications. METHODS Nanofibrillar cellulose and anionic type nanofibrillar cellulose were used as film forming materials with known mucoadhesive components mucin, pectin and chitosan as functional bioadhesion enhancers. Different polymer combinations were investigated to study the adhesiveness, solid state characteristics, film morphology, swelling, mechanical properties, drug release with the model compound metronidazole and in vitro cytotoxicity using TR146 cells to model buccal epithelium. RESULTS SEM revealed lamellar structures within the films, which had a thickness ranging 40-240 μm depending on the film polymer composition. All bioadhesive components were non-toxic and showed high adhesiveness. Rapid drug release was observed, as 60-80% of the total amount of metronidazole was released in 30 min depending on the film formulation. CONCLUSIONS The liquid molding used was a straightforward and simple method to produce drug releasing highly mucoadhesive films, which could be utilized in treating local oral diseases, such as periodontitis. All materials used were natural biodegradable polymers from renewable sources, which are generally regarded as safe.
Collapse
Affiliation(s)
- Patrick Laurén
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heli Paukkonen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tiina Lipiäinen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Yujiao Dong
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Timo Oksanen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heikki Räikkönen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Henrik Ehlers
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Päivi Laaksonen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Timo Laaksonen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. .,Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland.
| |
Collapse
|
29
|
Kasinathan NK, Subramaniya B, Sivasithamparam ND. NF-κB/twist mediated regulation of colonic inflammation by lupeol in abating dextran sodium sulfate induced colitis in mice. J Funct Foods 2018; 41:240-249. [DOI: 10.1016/j.jff.2017.12.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
30
|
Murgia X, Loretz B, Hartwig O, Hittinger M, Lehr CM. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv Drug Deliv Rev 2018; 124:82-97. [PMID: 29106910 DOI: 10.1016/j.addr.2017.10.009] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/29/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022]
Abstract
A layer of mucus covers the surface of all wet epithelia throughout the human body. Mucus is a hydrogel mainly composed of water, mucins (glycoproteins), DNA, proteins, lipids, and cell debris. This complex composition yields a tenacious viscoelastic hydrogel that lubricates and protects the exposed epithelia from external threats and enzymatic degradation. The natural protective role of mucus is nowadays acknowledged as a major barrier to be overcome in non-invasive drug delivery. The heterogeneity of mucus components offers a wide range of potential chemical interaction sites for macromolecules, while the mesh-like architecture given to mucus by the intermolecular cross-linking of mucin molecules results in a dense network that physically, and in a size-dependent manner, hinders the diffusion of nanoparticles through mucus. Consequently, drug diffusion, epithelial absorption, drug bioavailability, and ultimately therapeutic outcomes of mucosal drug delivery can be attenuated.
Collapse
Affiliation(s)
- Xabier Murgia
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
| | - Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
| | - Marius Hittinger
- PharmBioTec GmbH, Science Park 1 Campus D 1.1, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany; PharmBioTec GmbH, Science Park 1 Campus D 1.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
31
|
Effect of dietary β-glucan supplementation on growth performance, carcass characteristics and gut morphology in broiler chicks fed diets containing different theronine levels. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Amini A, Masoumi-Moghaddam S, Ehteda A, Liauw W, Morris DL. Depletion of mucin in mucin-producing human gastrointestinal carcinoma: Results from in vitro and in vivo studies with bromelain and N-acetylcysteine. Oncotarget 2016; 6:33329-44. [PMID: 26436698 PMCID: PMC4741769 DOI: 10.18632/oncotarget.5259] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/18/2015] [Indexed: 01/02/2023] Open
Abstract
Aberrant expression of membrane-associated and secreted mucins, as evident in epithelial tumors, is known to facilitate tumor growth, progression and metastasis, and to provide protection against adverse growth conditions, chemotherapy and immune surveillance. Emerging evidence provides support for the oncogenic role of MUC1 in gastrointestinal carcinomas and relates its expression to an invasive phenotype. Similarly, mucinous differentiation of gastrointestinal tumors, in particular increased or de novo expression of MUC2 and/or MUC5AC, is widely believed to imply an adverse clinicopathological feature. Through formation of viscous gels, too, MUC2 and MUC5AC significantly contribute to the biology and pathogenesis of mucin-secreting gastrointestinal tumors. Here, we investigated the mucin-depleting effects of bromelain (BR) and N-acetylcysteine (NAC), in nine different regimens as single or combination therapy, in in vitro (MKN45, KATOIII and LS174T cell lines) and in vivo (female nude mice bearing intraperitoneal MKN45 and LS174T) settings. The inhibitory effects of the treatment on cancer cell growth and proliferation were also evaluated in vivo. Our results suggest that a combination of BR and NAC with dual effects on growth and mucin products of mucin-expressing tumor cells is a promising candidate towards the development of novel approaches to gastrointestinal malignancies with the involvement of mucin pathology. This capability supports the use of this combination formulation in locoregional approaches for reducing the adverse effects of the aberrantly secreted gel-forming mucins, as in pseudomyxoma peritonei and similar pathologies with ectopic production of mucin.
Collapse
Affiliation(s)
- Afshin Amini
- Department of Surgery, St George Hospital, The University of New South Wales, Kogarah, Sydney NSW 2217, Australia
| | - Samar Masoumi-Moghaddam
- Department of Surgery, St George Hospital, The University of New South Wales, Kogarah, Sydney NSW 2217, Australia
| | - Anahid Ehteda
- Department of Surgery, St George Hospital, The University of New South Wales, Kogarah, Sydney NSW 2217, Australia
| | - Winston Liauw
- Cancer Care Center, St George Hospital, The University of New South Wales, Kogarah, Sydney NSW 2217, Australia
| | - David L Morris
- Department of Surgery, St George Hospital, The University of New South Wales, Kogarah, Sydney NSW 2217, Australia
| |
Collapse
|
33
|
Is mucin a determinant of peritoneal dissemination of gastrointestinal cancer? Analysis of mucin depletion in two preclinical models. Clin Transl Oncol 2016; 19:261-264. [PMID: 27193208 DOI: 10.1007/s12094-016-1519-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/10/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND Mucinous gastrointestinal cancers may indicate a higher propensity for widespread peritoneal seeding than their non-mucinous counterparts. We hypothesized that mucin content of gastrointestinal cancer cells and tumors is an indicator of cell viability and a determinant of the peritoneal tumor burden and tested our hypothesis in relevant experimental models. METHODS MKN45 and LS174T models of human gastrointestinal cancer were treated with known mucin-depleting agents in vitro and in vivo, their mucin production was evaluated with Western blot immunohistochemistry, PAS staining and ELISA, and its correlation with cell viability and peritoneal tumor burden was analyzed. RESULTS A relationship was found between the viability of cancer cells and their mucin levels in vitro. In agreement, when treated animal models were categorized into low- and high-burden groups (based on the weight and number of the peritoneal nodules), tumoral mucin levels were found to be significantly higher in the latter group. CONCLUSIONS Tumoral mucin is apparently among the factors that dictate the pattern and extent of the peritoneal spread of gastrointestinal cancer, where it allows for enhanced dissemination and redistribution. If further tested and validated, our hypothesis could lay the basis for the development of novel mucin-targeted strategies.
Collapse
|
34
|
Moghaddam HS, Moghaddam HN, Kermanshahi H, Mosavi AH, Raji A. The effect of threonine onmucin2gene expression, intestinal histology and performance of broiler chicken. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2011.e14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Effect of in ovo injection of threonine on Mucin2 gene expression and digestive enzyme activity in Japanese quail (Coturnix japonica). Res Vet Sci 2015; 100:257-62. [DOI: 10.1016/j.rvsc.2015.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/28/2015] [Accepted: 03/14/2015] [Indexed: 01/17/2023]
|
36
|
Uversky VN. The intrinsic disorder alphabet. III. Dual personality of serine. INTRINSICALLY DISORDERED PROTEINS 2015; 3:e1027032. [PMID: 28232888 DOI: 10.1080/21690707.2015.1027032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 02/16/2015] [Accepted: 03/02/2015] [Indexed: 12/23/2022]
Abstract
Proteins are natural polypeptides consisting of 20 major amino acid residues, content and order of which in a given amino acid sequence defines the ability of a related protein to fold into unique functional state or to stay intrinsically disordered. Amino acid sequences code for both foldable (ordered) proteins/domains and for intrinsically disordered proteins (IDPs) and IDP regions (IDPRs), but these sequence codes are dramatically different. This difference starts with a very general property of the corresponding amino acid sequences, namely, their compositions. IDPs/IDPRs are enriched in specific disorder-promoting residues, whereas amino acid sequences of ordered proteins/domains typically contain more order-promoting residues. Therefore, the relative abundances of various amino acids in ordered and disordered proteins can be used to scale amino acids according to their disorder promoting potentials. This review continues a series of publications on the roles of different amino acids in defining the phenomenon of protein intrinsic disorder and represents serine, which is the third most disorder-promoting residue. Similar to previous publications, this review represents some physico-chemical properties of serine and the roles of this residue in structures and functions of ordered proteins, describes major posttranslational modifications tailored to serine, and finally gives an overview of roles of serine in structure and functions of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer Research Institute; Morsani College of Medicine, University of South Florida; Tampa, FL USA; Biology Department; Faculty of Science, King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia; Institute for Biological Instrumentation, Russian Academy of Sciences; Pushchino, Moscow Region, Russia; Laboratory of Structural Dynamics, Stability and Folding of Proteins; Institute of Cytology, Russian Academy of Sciences; St. Petersburg, Russia
| |
Collapse
|
37
|
Le Roy N, Jackson DJ, Marie B, Ramos-Silva P, Marin F. The evolution of metazoan α-carbonic anhydrases and their roles in calcium carbonate biomineralization. Front Zool 2014. [DOI: 10.1186/s12983-014-0075-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
38
|
Zhang Y, Dai Z, Wu G, Zhang R, Dai Y, Li N. Expression of threonine-biosynthetic genes in mammalian cells and transgenic mice. Amino Acids 2014; 46:2177-88. [PMID: 24893662 DOI: 10.1007/s00726-014-1769-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/21/2014] [Indexed: 12/16/2022]
Abstract
Threonine is a nutritionally essential amino acid (EAA) for the growth and development of humans and other nonruminant animals and must be provided in diets to sustain life. The aim of this study was to synthesize threonine in mammalian cells through transgenic techniques. To achieve this goal, we combined the genes involved in bacterial threonine biosynthesis pathways into a single open reading frame separated by self-cleaving peptides (2A) and then linked it into a transposon system (piggyBac). The plasmids pEF1a-IRES-GFP-E2F-his and pEF1a-IRES-GFP-M2F-his expressed Escherichia coli homoserine kinase and threonine synthase efficiently in mouse cells and enabled cells to synthesize threonine from homoserine. This biosynthetic pathway occurred with a low level of efficiency in transgenic mice. Three transgenic mice were identified by Southern blot from 72 newborn mice, raising the possibility that a high level of expression of these genes in mouse embryos might be lethal. The results indicated that it is feasible to synthesize threonine in animal cells using genetic engineering technology. Further work is required to improve the efficiency of this method for introducing genes into mammals. We propose that the transgenic technology provides a promising means to enhance the synthesis of nutritionally EAAs in farm animals and to eliminate or reduce supplementation of these nutrients in diets for livestock, poultry and fish.
Collapse
Affiliation(s)
- Yurui Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
39
|
Guan LZ, Xi QY, Sun YP, Wang JL, Zhou JY, Shu G, Jiang QY, Zhang YL. Intestine-specific expression of the β-glucanase in mice. CANADIAN JOURNAL OF ANIMAL SCIENCE 2014. [DOI: 10.4141/cjas2013-125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Guan, L.-Z., Xi, Q.-Y., Sun, Y.-P., Wang, J.-L., Zhou, J.-Y., Shu, G., Jiang, Q.-Y. and Zhang, Y.-L. 2014. Intestine-specific expression of the β-glucanase in mice. Can. J. Anim. Sci. 94: 287–293. The β-glucanase gene (GLU, from Paenibacillus polymyxa CP7) was cloned into a specific expression plasmid (MUC2-GLU-LV). Transgenic mice were prepared by microinjection. Polymerase chain reaction and Southern blot analysis of genomic DNA extracted from the tail tissue of transgenic mice showed that the mice carried the β-glucanase gene. Northern blot analysis indicated that β-glucanase was specifically expressed in the intestine of the transgenic mice. The β-glucanase activity in the intestinal contents was found to be 1.23±0.32 U mL−1. The crude protein, crude fat digestibility of transgenic mice were increased by 9.32 and 5.09% (P<0.05), respectively, compared with that of the non-transgenic mice, while moisture in feces was reduced by 12.16% (P<0.05). These results suggest that the expression of β-glucanase in the intestine of animals offers a promising biological approach to reduce the anti-nutritional effect of β-glucans in feed.
Collapse
Affiliation(s)
- Li-Zeng Guan
- College of Animal Science, SCAU-Alltech Research Joint Alliance, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
- Agriculture College, Yanbian University, Yanji133000, China
- These authors contributed equally to this work
| | - Qian-Yun Xi
- College of Animal Science, SCAU-Alltech Research Joint Alliance, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
- These authors contributed equally to this work
| | - Yu-Ping Sun
- Institute of Animal Science, Guangdong Academy of Agriculture Science, Guangzhou 510640, China
| | - Jing-Lan Wang
- College of Animal Science, SCAU-Alltech Research Joint Alliance, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Jun-Yun Zhou
- College of Animal Science, SCAU-Alltech Research Joint Alliance, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Gang Shu
- College of Animal Science, SCAU-Alltech Research Joint Alliance, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Qing-Yan Jiang
- College of Animal Science, SCAU-Alltech Research Joint Alliance, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Yong-Liang Zhang
- College of Animal Science, SCAU-Alltech Research Joint Alliance, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| |
Collapse
|
40
|
Wachsmann MB, Pop LM, Vitetta ES. Pancreatic ductal adenocarcinoma: a review of immunologic aspects. J Investig Med 2014. [PMID: 22406516 DOI: 10.231/jim.0b013e31824a4d79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the continued failures of both early diagnosis and treatment options for pancreatic cancer, it is now time to comprehensively evaluate the role of the immune system on the development and progression of pancreatic cancer. It is important to develop strategies that harness the molecules and cells of the immune system to treat this disease. This review will focus primarily on the role of immune cells in the development and progression of pancreatic ductal adenocarcinoma and to evaluate what is known about the interaction of immune cells with the tumor microenvironment and their role in tumor growth and metastasis. We will conclude with a brief discussion of therapy for pancreatic cancer and the potential role for immunotherapy. We hypothesize that the role of the immune system in tumor development and progression is tissue specific. Our hope is that better understanding of this process will lead to better treatments for this devastating disease.
Collapse
Affiliation(s)
- Megan B Wachsmann
- Masters Program in Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
41
|
Amini A, Masoumi-Moghaddam S, Ehteda A, Morris DL. Secreted mucins in pseudomyxoma peritonei: pathophysiological significance and potential therapeutic prospects. Orphanet J Rare Dis 2014; 9:71. [PMID: 24886459 PMCID: PMC4013295 DOI: 10.1186/1750-1172-9-71] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/22/2014] [Indexed: 12/22/2022] Open
Abstract
Pseudomyxoma peritonei (PMP, ORPHA26790) is a clinical syndrome characterized by progressive dissemination of mucinous tumors and mucinous ascites in the abdomen and pelvis. PMP is a rare disease with an estimated incidence of 1-2 out of a million. Clinically, PMP usually presents with a variety of unspecific signs and symptoms, including abdominal pain and distention, ascites or even bowel obstruction. It is also diagnosed incidentally at surgical or non-surgical investigations of the abdominopelvic viscera. PMP is a neoplastic disease originating from a primary mucinous tumor of the appendix with a distinctive pattern of the peritoneal spread. Computed tomography and histopathology are the most reliable diagnostic modalities. The differential diagnosis of the disease includes secondary peritoneal carcinomatoses and some rare peritoneal conditions. Optimal elimination of mucin and the mucin-secreting tumor comprises the current standard of care for PMP offered in specialized centers as visceral resections and peritonectomy combined with intraperitoneal chemotherapy. This multidisciplinary approach has reportedly provided a median survival rate of 16.3 years, a median progression-free survival rate of 8.2 years and 10- and 15-year survival rates of 63% and 59%, respectively. Despite its indolent, bland nature as a neoplasm, PMP is a debilitating condition that severely impacts quality of life. It tends to be diagnosed at advanced stages and frequently recurs after treatment. Being ignored in research, however, PMP remains a challenging, enigmatic entity. Clinicopathological features of the PMP syndrome and its morbid complications closely correspond with the multifocal distribution of the secreted mucin collections and mucin-secreting implants. Novel strategies are thus required to facilitate macroscopic, as well as microscopic, elimination of mucin and its source as the key components of the disease. In this regard, MUC2, MUC5AC and MUC5B have been found as the secreted mucins of relevance in PMP. Development of mucin-targeted therapies could be a promising avenue for future research which is addressed in this article.
Collapse
Affiliation(s)
- Afshin Amini
- Department of Surgery, St George Hospital, The University of New South Wales, Level 3, Clinical Sciences (WR Pitney) Building, Gray Street, Kogarah, Sydney, NSW 2217, Australia
| | - Samar Masoumi-Moghaddam
- Department of Surgery, St George Hospital, The University of New South Wales, Level 3, Clinical Sciences (WR Pitney) Building, Gray Street, Kogarah, Sydney, NSW 2217, Australia
| | - Anahid Ehteda
- Department of Surgery, St George Hospital, The University of New South Wales, Level 3, Clinical Sciences (WR Pitney) Building, Gray Street, Kogarah, Sydney, NSW 2217, Australia
| | - David Lawson Morris
- Department of Surgery, St George Hospital, The University of New South Wales, Level 3, Clinical Sciences (WR Pitney) Building, Gray Street, Kogarah, Sydney, NSW 2217, Australia
| |
Collapse
|
42
|
Bansil R, Celli JP, Hardcastle JM, Turner BS. The Influence of Mucus Microstructure and Rheology in Helicobacter pylori Infection. Front Immunol 2013; 4:310. [PMID: 24133493 PMCID: PMC3794295 DOI: 10.3389/fimmu.2013.00310] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/16/2013] [Indexed: 12/24/2022] Open
Abstract
The bacterium Helicobacter pylori (H. pylori), has evolved to survive in the highly acidic environment of the stomach and colonize on the epithelial surface of the gastric mucosa. Its pathogenic effects are well known to cause gastritis, peptic ulcers, and gastric cancer. In order to infect the stomach and establish colonies on the mucus epithelial surface, the bacterium has to move across the gel-like gastric mucus lining of the stomach under acidic conditions. In this review we address the question of how the bacterium gets past the protective mucus barrier from a biophysical perspective. We begin by reviewing the molecular structure of gastric mucin and discuss the current state of understanding concerning mucin polymerization and low pH induced gelation. We then focus on the viscoelasticity of mucin in view of its relevance to the transport of particles and bacteria across mucus, the key first step in H. pylori infection. The second part of the review focuses on the motility of H. pylori in mucin solutions and gels, and how infection with H. pylori in turn impacts the viscoelastic properties of mucin. We present recent microscopic results tracking the motion of H. pylori in mucin solutions and gels. We then discuss how the biochemical strategy of urea hydrolysis required for survival in the acid is also relevant to the mechanism that enables flagella-driven swimming across the mucus gel layer. Other aspects of the influence of H. pylori infection such as, altering gastric mucin expression, its rate of production and its composition, and the influence of mucin on factors controlling H. pylori virulence and proliferation are briefly discussed with references to relevant literature.
Collapse
Affiliation(s)
- Rama Bansil
- Department of Physics, Boston University , Boston, MA , USA
| | | | | | | |
Collapse
|
43
|
Water-evaporation reduction by duplex films: application to the human tear film. Adv Colloid Interface Sci 2013; 197-198:33-57. [PMID: 23694847 DOI: 10.1016/j.cis.2013.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/21/2013] [Accepted: 03/25/2013] [Indexed: 01/28/2023]
Abstract
Water-evaporation reduction by duplex-oil films is especially important to understand the physiology of the human tear film. Secreted lipids, called meibum, form a duplex film that coats the aqueous tear film and purportedly reduces tear evaporation. Lipid-layer deficiency is correlated with the occurrence of dry-eye disease; however, in-vitro experiments fail to show water-evaporation reduction by tear-lipid duplex films. We review the available literature on water-evaporation reduction by duplex-oil films and outline the theoretical underpinnings of spreading and evaporation kinetics that govern behavior of these systems. A dissolution-diffusion model unifies the data reported in the literature and identifies dewetting of duplex films into lenses as a key challenge to obtaining significant evaporation reduction. We develop an improved apparatus for measuring evaporation reduction by duplex-oil films including simultaneous assessment of film coverage, stability, and temperature, all under controlled external mass transfer. New data reported in this study fit into the larger body of work conducted on water-evaporation reduction by duplex-oil films. Duplex-oil films of oxidized mineral oil/mucin (MOx/BSM), human meibum (HM), and bovine meibum (BM) reduce water evaporation by a dissolution-diffusion mechanism, as confirmed by agreement between measurement and theory. The water permeability of oxidized-mineral-oil duplex films agrees with those reported in the literature, after correction for the presence of mucin. We find that duplex-oil films of bovine and human meibum at physiologic temperature reduce water evaporation only 6-8% for a 100-nm film thickness pertinent to the human tear film. Comparison to in-vivo human tear-evaporation measurements is inconclusive because evaporation from a clean-water surface is not measured and because the mass-transfer resistance is not characterized.
Collapse
|
44
|
Wils-Plotz EL, Jenkins MC, Dilger RN. Modulation of the intestinal environment, innate immune response, and barrier function by dietary threonine and purified fiber during a coccidiosis challenge in broiler chicks. Poult Sci 2013; 92:735-45. [PMID: 23436524 DOI: 10.3382/ps.2012-02755] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Coccidiosis is a major contributor to economic losses in the poultry industry due to its detrimental effects on growth performance and nutrient utilization. We hypothesized that the combined effects of supplemental dietary Thr and purified fiber may modulate the intestinal environment and positively affect intestinal immune responses and barrier function in broiler chicks infected with Eimeria maxima. A Thr-deficient basal diet (3.1 g of Thr/kg of diet) was supplemented with 70 g/kg of silica sand (control) or high-methoxy pectin and 1 of 2 concentrations of Thr (1.8 or 5.3 g/kg of diet; 4 diets total), and fed to chicks from hatch to d 16 posthatch. On d 10 posthatch, chicks received 0.5 mL of distilled water or an acute dose of Eimeria maxima (1.5 × 10(3) sporulated oocytes) with 6 replicate pens of 6 chicks per each of 8 treatment combinations (4 diets and 2 inoculation states). Body weight gain, feed intake, and G:F increased (P < 0.01) with addition of 5.3 g of Thr/kg of diet. Eimeria maxima schizonts were present only in intestinal tissue sampled from infected birds (P < 0.01). Weights of cecal digesta were highest (P < 0.01) in pectin-fed birds, and ceca with the heaviest weights also had the highest concentrations of total short-chain fatty acids. Expression of interleukin-12 in ileal mucosa was highest (P < 0.01) in infected birds receiving the control diet with 5.3 g of supplemental Thr/kg. In cecal tonsils, interferon-γ expression was highest in infected birds receiving the control diet (fiber × infection, P < 0.05); interferon-γ expression was lowest in infected birds fed the high Thr diet (Thr × infection, P < 0.05). There were no differences due to infection or Thr supplementation for cytokine expression in birds fed pectin-containing treatments. Overall, we conclude that although pectin has some protective function against coccidiosis, Thr supplementation had the greatest effect on intestinal immune response and maintenance of near normal growth in young broiler chicks infected with E. maxima.
Collapse
Affiliation(s)
- E L Wils-Plotz
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | | | | |
Collapse
|
45
|
MUC16/CA125 in the context of modular proteins with an annotated role in adhesion-related processes: in silico analysis. Int J Mol Sci 2012; 13:10387-10400. [PMID: 22949868 PMCID: PMC3431866 DOI: 10.3390/ijms130810387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/23/2012] [Accepted: 08/09/2012] [Indexed: 11/25/2022] Open
Abstract
Mucin 16 (MUC16) is a type I transmembrane protein, the extracellular portion of which is shed after proteolytic degradation and is denoted as CA125 antigen, a well known tumor marker for ovarian cancer. Regarding its polypeptide and glycan structures, as yet there is no detailed insight into their heterogeneity and ligand properties, which may greatly influence its function and biomarker potential. This study was aimed at obtaining further insight into the biological capacity of MUC16/CA125, using in silico analysis of corresponding mucin sequences, including similarity searches as well as GO (gene ontology)-based function prediction. The results obtained pointed to the similarities within extracellular serine/threonine rich regions of MUC16 to sequences of proteins expressed in evolutionary distant taxa, all having in common an annotated role in adhesion-related processes. Specifically, a homology to conserved domains from the family of herpesvirus major outer envelope protein (BLLF1) was found. In addition, the possible involvement of MUC16/CA125 in carbohydrate-binding interactions or cellular transport of protein/ion was suggested.
Collapse
|
46
|
Abstract
Dietary nutrients are essential for gastrointestinal (GI) growth and function, and nutritional support of GI growth and development is a significant component of infant care. For healthy full-term neonates, nutritional provisions of the mother's milk and/or formula will support normal maturation of structure and function of the GI tract in most infants. The composition of breast milk affects GI barrier function and development of a competent mucosal immune system. The functional nutrients and other bioactive components of milk support a microenvironment for gut protection and maturation. However, premature infants struggle with feeding tolerance impairing normal GI function, leading to intestinal dysfunction and even death. The high prevalence worldwide of enteric diseases and dysfunction in neonates has led to much interest in understanding the role of nutrients and food components in the establishment and maintenance of a functioning GI tract. Neonates who do not receive enteral feeding as either mother's milk or formula are supported by total parental nutrition (TPN). The lack of enteral nutrition can compound intestinal dysfunction, leading to high morbidity and mortality in intestinally compromised infants. Reciprocally, enteral stimulation of an immature GI tract can also compound intestinal dysfunction. Therefore, further understanding of nutrient interactions with the mucosa is necessary to define nutritional requirements of the developing GI tract to minimize intestinal complications and infant morbidity. Piglet models of intestinal development and function are similar to humans, and this review summarizes recent findings regarding nutrient requirements for growth and maintenance of intestinal health. In particular, this article reviews the role of specific amino acids (arginine, glutamine, glutamate, and threonine), fatty acids (long chain polyunsaturated, medium chain, and short chain), various prebiotic carbohydrates (short-chain fructo-oligosaccharide, fructo--oligosaccharide, lacto-N-neotetraose, human milk oligosaccharide, polydextrose, and galacto-oligosaccharide), and probiotics that have been examined in the suckling piglet model of intestinal health.
Collapse
Affiliation(s)
- Sheila K Jacobi
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
47
|
Abstract
With the continued failures of both early diagnosis and treatment options for pancreatic cancer, it is now time to comprehensively evaluate the role of the immune system on the development and progression of pancreatic cancer. It is important to develop strategies that harness the molecules and cells of the immune system to treat this disease. This review will focus primarily on the role of immune cells in the development and progression of pancreatic ductal adenocarcinoma and to evaluate what is known about the interaction of immune cells with the tumor microenvironment and their role in tumor growth and metastasis. We will conclude with a brief discussion of therapy for pancreatic cancer and the potential role for immunotherapy. We hypothesize that the role of the immune system in tumor development and progression is tissue specific. Our hope is that better understanding of this process will lead to better treatments for this devastating disease.
Collapse
Affiliation(s)
- Megan B. Wachsmann
- Masters Program in Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
| | - Laurentiu M. Pop
- The Cancer Immunobiology Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
| | - Ellen S. Vitetta
- The Cancer Immunobiology Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
- The Departments of Microbiology and Immunology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
| |
Collapse
|
48
|
Marín F, Bonet C, Muñoz X, García N, Pardo ML, Ruiz-Liso JM, Alonso P, Capellà G, Sanz-Anquela JM, González CA, Sala N. Genetic variation in MUC1, MUC2 and MUC6 genes and evolution of gastric cancer precursor lesions in a long-term follow-up in a high-risk area in Spain. Carcinogenesis 2012; 33:1072-80. [PMID: 22402132 DOI: 10.1093/carcin/bgs119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In order to assess whether inherited genetic variability in the mucin genes associates with the evolution of gastric cancer precursor lesions (GCPLs), we genotyped 22 tagSNPs in MUC1, MUC6 and MUC2 genes of 387 patients with GCPLs that had been followed up for 12.8 years. According to the diagnosis at recruitment and at the end of follow-up, the lesions did not change in 43.1% of the patients, regressed in 28.7% and progressed in 28.2%. Three SNPs in the 3'-moiety of MUC2 were significantly associated with a decreased risk of progression of the lesions, whereas another four SNPs, located at the 5'-moiety, were found to be significantly associated either with increased [one single-nucleotide polymorphism (SNP)] or decreased (three SNPs) probability of regression. Stratified analysis indicated that significance was maintained only in those subjects positive for Helicobacter pylori infection and in those not consuming non-steroidal anti-inflammatory drugs, which were found protective against lesion progression. Haplotype analyses indicated the presence of two haplotypes, one in each moiety of the gene, that were significantly associated with decreased risk of progression of the lesions [odds ratio (OR) = 0.49 and 0.46; 95% confidence interval (CI) = 0.28-0.85 and 0.25-0.86, respectively]. The 5'-end haplotype was also associated with increased probability of regression (OR = 1.67; 95% CI = 1.02-2.73), altogether suggesting a protective role against progression of the precancerous lesions. No significant association was found with variants in MUC1 and MUC6 genes. These results indicate, for the first time, that genetic variability in MUC2 is associated with evolution of GCPLs, especially in H.pylori infected patients, suggesting a role of this secreted mucin in gastric carcinogenesis.
Collapse
Affiliation(s)
- Fátima Marín
- Translational Research Laboratory, Institut Català d'Oncologia (IDIBELL-ICO), Gran Via, km 2.7 s/n, 08907 L'Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yonezawa S, Higashi M, Yamada N, Yokoyama S, Kitamoto S, Kitajima S, Goto M. Mucins in human neoplasms: clinical pathology, gene expression and diagnostic application. Pathol Int 2011; 61:697-716. [PMID: 22126377 DOI: 10.1111/j.1440-1827.2011.02734.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mucins are high molecular weight glycoproteins that play important roles in carcinogenesis and tumor invasion. Our immunohistochemical studies demonstrated that MUC1 or MUC4 expression is related to the aggressive behavior and poor outcome of human neoplasms. MUC2 is expressed in indolent pancreatobiliary neoplasms, but these tumors sometimes show invasive growth with MUC1 expression in invasive areas. MUC5AC shows de novo high expression in many types of precancerous lesions of pancreatobiliary cancers and is an effective marker for early detection of the neoplasms. The combination of MUC1, MUC2, MUC4 and MUC5AC expression may be useful for early detection and evaluation of the potential for malignancy of pancreatobiliary neoplasms. Regarding the mechanism of mucin expression, we have recently reported that expression of the mucin genes is regulated epigenetically in cancer cell lines, using quantitative MassARRAY analysis, methylation-specific polymerase chain reaction analysis and chromatin immunoprecipitation analysis, with confirmation by the treatment with 5-aza-2'-deoxycytidine and trichostatin A. We have also developed a monoclonal antibody against the MUC1 cytoplasmic tail domain, which has many biological roles. Based on all of the above findings, we suggest that translational research into mucin gene expression mechanisms, including epigenetics, may provide new tools for early and accurate detection of human neoplasms.
Collapse
Affiliation(s)
- Suguru Yonezawa
- Department of Human Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Azzam M, Zou X, Dong X, Xie P. Effect of supplemental l-threonine on mucin 2 gene expression and intestine mucosal immune and digestive enzymes activities of laying hens in environments with high temperature and humidity. Poult Sci 2011; 90:2251-6. [DOI: 10.3382/ps.2011-01574] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|