1
|
Figat M, Wiśniewska A, Plichta J, Miłkowska-Dymanowska J, Majewski S, Karbownik MS, Kuna P, Panek MG. Potential association between obstructive lung diseases and cognitive decline. Front Immunol 2024; 15:1363373. [PMID: 39104536 PMCID: PMC11298337 DOI: 10.3389/fimmu.2024.1363373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Chronic obstructive lung diseases, such as asthma and COPD, appear to have a more extensive impact on overall functioning than previously believed. The latest data from clinical trials suggests a potential link between cognitive deterioration and chronic obstructive inflammatory lung disease. This raises the question of whether these diseases affect cognitive functions and whether any relevant biomarker may be identified. Methods This prospective observational study included 78 patients divided equally into asthma, COPD, and control groups (n=26, 27 and 25 respectively). The participants underwent identical examinations at the beginning of the study and after at least 12 months. The test battery comprised 16 questionnaires (11 self-rated, 5 observer-rated, assessing cognition and mental state), spirometry, and blood samples taken for PKA and CREB mRNA evaluation. Results A 2.3-fold increase in CREB mRNA was observed between examinations (p=0.014) for all participants; no distinctions were observed between the asthma, COPD, and control groups. Pooled, adjusted data revealed a borderline interaction between diagnosis and CREB expression in predicting MMSE (p=0.055) in COPD, CREB expression is also associated with MMSE (β=0.273, p=0.034) like with the other conducted tests (β=0.327, p=0.024) from COPD patients. No correlations were generally found for PKA, although one significant negative correlation was found between the first and second time points in the COPD group (β=-0.4157, p=0.049),. Discussion Chronic obstructive lung diseases, such as asthma and COPD, may have some linkage to impairment of cognitive functions. However, the noted rise in CREB mRNA expression might suggest a potential avenue for assessing possible changes in cognition, especially in COPD; such findings may reveal additional transcription factors linked to cognitive decline.
Collapse
Affiliation(s)
- Magdalena Figat
- Department of Internal Medicine, Asthma and Allergy, IIChair of Internal Medicine, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Wiśniewska
- Department of Clinical Pharmacology, IChair of Internal Medicine, Medical University of Lodz, Lodz, Poland
| | - Jacek Plichta
- Department of Internal Medicine, Asthma and Allergy, IIChair of Internal Medicine, Medical University of Lodz, Lodz, Poland
| | | | | | - Michał S. Karbownik
- Department of Pharmacology and Toxicology, Medical University of Lodz, Lodz, Poland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, IIChair of Internal Medicine, Medical University of Lodz, Lodz, Poland
| | - Michał G. Panek
- Department of Internal Medicine, Asthma and Allergy, IIChair of Internal Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Sharma P, Tiufekchiev S, Lising V, Chung SW, Suk JS, Chung BM. Keratin 19 interacts with GSK3β to regulate its nuclear accumulation and degradation of cyclin D3. Mol Biol Cell 2021; 32:ar21. [PMID: 34406791 PMCID: PMC8693971 DOI: 10.1091/mbc.e21-05-0255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclin D3 regulates the G1/S transition and is frequently overexpressed in several cancer types including breast cancer, where it promotes tumor progression. Here we show that a cytoskeletal protein keratin 19 (K19) physically interacts with a serine/threonine kinase GSK3β and prevents GSK3β-dependent degradation of cyclin D3. The absence of K19 allowed active GSK3β to accumulate in the nucleus and degrade cyclin D3. Specifically, the head (H) domain of K19 was required to sustain inhibitory phosphorylation of GSK3β Ser9, prevent nuclear accumulation of GSK3β, and maintain cyclin D3 levels and cell proliferation. K19 was found to interact with GSK3β and K19–GSK3β interaction was mapped out to require Ser10 and Ser35 residues on the H domain of K19. Unlike wildtype K19, S10A and S35A mutants failed to maintain total and nuclear cyclin D3 levels and induce cell proliferation. Finally, we show that the K19–GSK3β-cyclin D3 pathway affected sensitivity of cells toward inhibitors to cyclin-dependent kinase 4 and 6 (CDK4/6). Overall, these findings establish a role for K19 in the regulation of GSK3β-cyclin D3 pathway and demonstrate a potential strategy for overcoming resistance to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Sarah Tiufekchiev
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Victoria Lising
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Seung Woo Chung
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231
| | - Jung Soo Suk
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231
| | - Byung Min Chung
- Department of Biology, The Catholic University of America, Washington, DC 20064
| |
Collapse
|
3
|
Wu Y, Lu Y, Zou F, Fan X, Li X, Zhang H, Chen H, Sun X, Liu Y. PTEN participates in airway remodeling of asthma by regulating CD38/Ca 2+/CREB signaling. Aging (Albany NY) 2020; 12:16326-16340. [PMID: 32889801 PMCID: PMC7485701 DOI: 10.18632/aging.103664] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
Both phosphatase and tensin homologue deleted on chromosome ten (PTEN) and cluster of differentiation 38 (CD38) have been suggested to be key regulators of the pathogenesis of asthma. However, the precise role and molecular mechanisms by which PTEN and CD38 are involved in airway remodeling throughout asthma pathogenesis remains poorly understood. This study aimed to elucidate the role of PTEN and CD38 in airway remodeling of asthma. Exposure to tumor necrosis factor-α (TNF-α) in airway smooth muscle (ASM) cells markedly decreased PTEN expression, and increased expression of CD38. Overexpression of PTEN suppressed the expression of CD38 and downregulated proliferation and migration induced by TNF-α stimulation, which was partially reversed by CD38 overexpression. PTEN/CD38 axis regulated Ca2+ levels and cyclic AMP response-element binding protein (CREB) phosphorylation in TNF-α-stimulated ASM cells. The in vitro knockdown of CD38 or overexpression of PTEN remarkably restricted airway remodeling and decreased Ca2+ concentrations and CREB phosphorylation in asthmatic mice. CD38 overexpression abolished the inhibitory effects of PTEN overexpression on airway remodeling. These findings demonstrate that PTEN inhibits airway remodeling of asthma through the downregulation of CD38-mediated Ca2+/CREB signaling, highlighting a key role of PTEN/CD38/Ca2+/CREB signaling in the molecular pathogenesis of asthma.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Yiyi Lu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Fan Zou
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Xinping Fan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Xudong Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Hongni Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Haijuan Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Xiuzhen Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| |
Collapse
|
4
|
Smith SA, Newby AC, Bond M. Ending Restenosis: Inhibition of Vascular Smooth Muscle Cell Proliferation by cAMP. Cells 2019; 8:cells8111447. [PMID: 31744111 PMCID: PMC6912325 DOI: 10.3390/cells8111447] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
Increased vascular smooth muscle cell (VSMC) proliferation contributes towards restenosis after angioplasty, vein graft intimal thickening and atherogenesis. The second messenger 3′ 5′ cyclic adenosine monophosphate (cAMP) plays an important role in maintaining VSMC quiescence in healthy vessels and repressing VSMC proliferation during resolution of vascular injury. Although the anti-mitogenic properties of cAMP in VSMC have been recognised for many years, it is only recently that we gained a detailed understanding of the underlying signalling mechanisms. Stimuli that elevate cAMP in VSMC inhibit G1-S phase cell cycle progression by inhibiting expression of cyclins and preventing S-Phase Kinase Associated Protein-2 (Skp2-mediated degradation of cyclin-dependent kinase inhibitors. Early studies implicated inhibition of MAPK signalling, although this does not fully explain the anti-mitogenic effects of cAMP. The cAMP effectors, Protein Kinase A (PKA) and Exchange Protein Activated by cAMP (EPAC) act together to inhibit VSMC proliferation by inducing Cyclic-AMP Response Element Binding protein (CREB) activity and inhibiting members of the RhoGTPases, which results in remodelling of the actin cytoskeleton. Cyclic-AMP induced actin remodelling controls proliferation by modulating the activity of Serum Response Factor (SRF) and TEA Domain Transcription Factors (TEAD), which regulate expression of genes required for proliferation. Here we review recent research characterising these mechanisms, highlighting novel drug targets that may allow the anti-mitogenic properties of cAMP to be harnessed therapeutically to limit restenosis.
Collapse
Affiliation(s)
| | | | - Mark Bond
- Correspondence: ; Tel.: +44-117-3423586
| |
Collapse
|
5
|
Hudson C, Kimura TE, Duggirala A, Sala-Newby GB, Newby AC, Bond M. Dual Role of CREB in The Regulation of VSMC Proliferation: Mode of Activation Determines Pro- or Anti-Mitogenic Function. Sci Rep 2018; 8:4904. [PMID: 29559698 PMCID: PMC5861041 DOI: 10.1038/s41598-018-23199-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/06/2018] [Indexed: 11/15/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation has been implicated in the development of restenosis after angioplasty, vein graft intimal thickening and atherogenesis. We investigated the mechanisms underlying positive and negative regulation of VSMC proliferation by the transcription factor cyclic AMP response element binding protein (CREB). Incubation with the cAMP elevating stimuli, adenosine, prostacyclin mimetics or low levels of forksolin activated CREB without changing CREB phosphorylation on serine-133 but induced nuclear translocation of the CREB co-factors CRTC-2 and CRTC-3. Overexpression of CRTC-2 or -3 significantly increased CREB activity and inhibited VSMC proliferation, whereas CRTC-2/3 silencing inhibited CREB activity and reversed the anti-mitogenic effects of adenosine A2B receptor agonists. By contrast, stimulation with serum or PDGFBB significantly increased CREB activity, dependent on increased CREB phosphorylation at serine-133 but not on CRTC-2/3 activation. CREB silencing significantly inhibited basal and PDGF induced proliferation. These data demonstrate that cAMP activation of CREB, which is CRTC2/3 dependent and serine-133 independent, is anti-mitogenic. Growth factor activation of CREB, which is serine-133-dependent and CRTC2/3 independent, is pro-mitogenic. Hence, CREB plays a dual role in the regulation of VSMC proliferation with the mode of activation determining its pro- or anti-mitogenic function.
Collapse
Affiliation(s)
- Claire Hudson
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Tomomi E Kimura
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK.,School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Aparna Duggirala
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Graciela B Sala-Newby
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Andrew C Newby
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Mark Bond
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK.
| |
Collapse
|
6
|
Hotchkiss A, Robinson J, MacLean J, Feridooni T, Wafa K, Pasumarthi KBS. Role of D-type cyclins in heart development and disease. Can J Physiol Pharmacol 2012; 90:1197-207. [PMID: 22900666 DOI: 10.1139/y2012-037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A defining feature of embryonic cardiomyocytes is their relatively high rates of proliferation. A gradual reduction in proliferative capacity throughout development culminates in permanent cell cycle exit by the vast majority of cardiomyocytes around the perinatal period. Accordingly, the adult heart has severely limited capacity for regeneration in response to injury or disease. The D-type cyclins (cyclin D1, D2, and D3) along with their catalytically active partners, the cyclin dependent kinases, are positive cell cycle regulators that play important roles in regulating proliferation of cardiomyocytes during normal heart development. While expression of D-type cyclins is generally low in the adult heart, expression levels are augmented in association with cardiac hypertrophy, but are uncoupled from myocyte cell division. Accordingly, re-activation of D-type cyclin expression in the adult heart has been implicated in pathophysiological processes via mechanisms distinct from those that drive proliferation during cardiac development. Growth factors and other exogenous agents regulate D-type cyclin production and activity in embryonic and adult cardiomyocytes. Understanding differences in the precise intracellular mediators downstream from these signalling molecules in embryonic versus adult cardiomyocytes could prove valuable for designing strategies to reactivate the cell cycle in cardiomyocytes in the setting of cardiovascular disease in the adult heart.
Collapse
Affiliation(s)
- Adam Hotchkiss
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Guo ZY, Hao XH, Tan FF, Pei X, Shang LM, Jiang XL, Yang F. The elements of human cyclin D1 promoter and regulation involved. Clin Epigenetics 2011; 2:63-76. [PMID: 22704330 PMCID: PMC3365593 DOI: 10.1007/s13148-010-0018-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 12/07/2010] [Indexed: 02/07/2023] Open
Abstract
Cyclin D1 is a cell cycle machine, a sensor of extracellular signals and plays an important role in G1-S phase progression. The human cyclin D1 promoter contains multiple transcription factor binding sites such as AP-1, NF-қB, E2F, Oct-1, and so on. The extracellular signals functions through the signal transduction pathways converging at the binding sites to active or inhibit the promoter activity and regulate the cell cycle progression. Different signal transduction pathways regulate the promoter at different time to get the correct cell cycle switch. Disorder regulation or special extracellular stimuli can result in cell cycle out of control through the promoter activity regulation. Epigenetic modifications such as DNA methylation and histone acetylation may involved in cyclin D1 transcriptional regulation.
Collapse
Affiliation(s)
- Zhi-Yi Guo
- Experimental and Research Center, Hebei United University, № 57 JianShe South Road, TangShan, Hebei 063000 People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
8
|
Selige J, Tenor H, Hatzelmann A, Dunkern T. Cytokine-dependent balance of mitogenic effects in primary human lung fibroblasts related to cyclic AMP signaling and phosphodiesterase 4 inhibition. J Cell Physiol 2010; 223:317-26. [PMID: 20082309 DOI: 10.1002/jcp.22037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interleukin-1beta (IL-1beta) and basic fibroblast growth factor (bFGF) are important regulators of proliferation, and their expression is increased in lungs of patients with asthma, idiopathic pulmonary fibrosis (IPF), or chronic obstructive pulmonary disease (COPD). We investigated the effect of IL-1beta and bFGF on proliferation of human lung fibroblasts and the role of COX-2, PGE(2), and cAMP in this process. Furthermore, the effect of phosphodiesterase (PDE) 3 and 4 inhibition was analyzed. In primary human lung fibroblasts low concentrations of IL-1beta (<10 pg/ml) potentiated the bFGF-induced DNA synthesis, whereas higher concentrations revealed antiproliferative effects. Higher concentrations of IL-1beta-induced COX-2 mRNA and protein associated with an increase in PGE(2) and cAMP, and all of these parameters were potentiated by bFGF. The PDE4 inhibitor piclamilast concentration-dependently reduced proliferation by a partial G1 arrest. The PDE3 inhibitor motapizone was inactive by itself but enhanced the effect of the PDE4 inhibitor. This study demonstrates that bFGF and IL-1beta act in concert to fine-tune lung fibroblast proliferation resulting in amplification or reduction. The antiproliferative effect of IL-1beta is likely attributed to the induction of COX-2, which is further potentiated by bFGF, and the subsequent generation of PGE(2) and cAMP. Inhibition of PDE4 inhibition (rather than PDE3) may diminish proliferation of human lung fibroblasts and therefore could be useful in the therapy of pathological remodeling in lung diseases.
Collapse
Affiliation(s)
- Jens Selige
- Department of In-Vitro Biology 1, Nycomed GmbH, Konstanz, Germany.
| | | | | | | |
Collapse
|
9
|
Tliba O, Panettieri RA. Noncontractile functions of airway smooth muscle cells in asthma. Annu Rev Physiol 2009; 71:509-35. [PMID: 18851708 DOI: 10.1146/annurev.physiol.010908.163227] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although pivotal in regulating bronchomotor tone in asthma, airway smooth muscle (ASM) also modulates airway inflammation and undergoes hypertrophy and hyperplasia, contributing to airway remodeling in asthma. ASM myocytes secrete or express a wide array of immunomodulatory mediators in response to extracellular stimuli, and in chronic severe asthma, increases in ASM mass may render the airway irreversibly obstructed. Although the mechanisms by which ASM secretes cytokines and chemokines are the same as those regulating immune cells, there exist unique ASM signaling pathways that may provide novel therapeutic targets. This review provides an overview of our current understanding of the proliferative as well as the synthetic properties of ASM.
Collapse
Affiliation(s)
- Omar Tliba
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
10
|
Pharmacology of airway smooth muscle proliferation. Eur J Pharmacol 2008; 585:385-97. [PMID: 18417114 DOI: 10.1016/j.ejphar.2008.01.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/11/2008] [Accepted: 01/24/2008] [Indexed: 02/03/2023]
Abstract
Airway smooth muscle thickening is a pathological feature that contributes significantly to airflow limitation and airway hyperresponsiveness in asthma. Ongoing research efforts aimed at identifying the mechanisms responsible for the increased airway smooth muscle mass have indicated that hyperplasia of airway smooth muscle, due in part to airway myocyte proliferation, is likely a major factor. Airway smooth muscle proliferation has been studied extensively in culture and in animal models of asthma, and these studies have revealed that a variety of receptors and mediators contributes to this response. This review aims to provide an overview of the receptors and mediators that control airway smooth muscle cell proliferation, with emphasis on the intracellular signalling mechanisms involved.
Collapse
|
11
|
Goldsmith AM, Hershenson MB, Wolbert MP, Bentley JK. Regulation of airway smooth muscle alpha-actin expression by glucocorticoids. Am J Physiol Lung Cell Mol Physiol 2006; 292:L99-L106. [PMID: 16980374 DOI: 10.1152/ajplung.00269.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway smooth muscle hypertrophy appears to be present in severe asthma. However, the effect of corticosteroids on airway smooth muscle cell size or contractile protein expression has not been studied. We examined the effects of dexamethasone, fluticasone, and salmeterol on contractile protein expression in transforming growth factor (TGF)-beta-treated primary bronchial smooth muscle cells. Dexamethasone and fluticasone, but not salmeterol, each reduced expression of alpha-smooth muscle actin and the short isoform of myosin light chain kinase. Steady-state alpha-actin mRNA level and stability were unchanged, consistent with posttranscriptional control. Fluticasone significantly decreased alpha-actin protein synthesis following treatment with the transcriptional inhibitor actinomycin D, indicative of an inhibitory effect on mRNA translation. Fluticasone also significantly increased alpha-actin protein turnover. Finally, fluticasone reduced TGF-beta-induced incorporation of alpha-actin into filamentous actin, cell length, and cell shortening in response to ACh and KCl. We conclude that glucocorticoids reduce human airway smooth muscle alpha-smooth muscle actin expression and incorporation into contractile filaments, as well as contractile function, in part by attenuation of mRNA translation and enhancement of protein degradation.
Collapse
Affiliation(s)
- Adam M Goldsmith
- Department of Pediatrics, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0688, USA
| | | | | | | |
Collapse
|
12
|
Garat CV, Fankell D, Erickson PF, Reusch JEB, Bauer NN, McMurtry IF, Klemm DJ. Platelet-derived growth factor BB induces nuclear export and proteasomal degradation of CREB via phosphatidylinositol 3-kinase/Akt signaling in pulmonary artery smooth muscle cells. Mol Cell Biol 2006; 26:4934-48. [PMID: 16782881 PMCID: PMC1489168 DOI: 10.1128/mcb.02477-05] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 02/01/2006] [Accepted: 04/14/2006] [Indexed: 01/05/2023] Open
Abstract
Cyclic AMP response element binding protein (CREB) content is diminished in smooth muscle cells (SMCs) in remodeled pulmonary arteries from animals with pulmonary hypertension and in the SMC layers of atherogenic systemic arteries and cardiomyocytes from hypertensive individuals. Loss of CREB can be induced in cultured SMCs by chronic exposure to hypoxia or platelet-derived growth factor BB (PDGF-BB). Here we investigated the signaling pathways and mechanisms by which PDGF elicits depletion of SMC CREB. Chronic PDGF treatment increased CREB ubiquitination in SMCs, while treatment of SMCs with the proteasome inhibitor lactacystin prevented decreases in CREB content. The nuclear export inhibitor leptomycin B also prevented depletion of SMC CREB alone or in combination with lactacystin. Subsequent studies showed that PDGF activated extracellular signal-regulated kinase, Jun N-terminal protein kinase, and phosphatidylinositol 3 (PI3)-kinase pathways in SMCs. Inhibition of these pathways blocked SMC proliferation in response to PDGF, but only inhibition of PI3-kinase or its effector, Akt, blocked PDGF-induced CREB loss. Finally, chimeric proteins containing enhanced cyan fluorescent protein linked to wild-type CREB or CREB molecules with mutations in several recognized phosphorylation sites were introduced into SMCs. PDGF treatment reduced the levels of each of these chimeric proteins except for one containing mutations in adjacent serine residues (serines 103 and 107), suggesting that CREB loss was dependent on CREB phosphorylation at these sites. We conclude that PDGF stimulates nuclear export and proteasomal degradation of CREB in SMCs via PI3-kinase/Akt signaling. These results indicate that in addition to direct phosphorylation, proteolysis and intracellular localization are key mechanisms regulating CREB content and activity in SMCs.
Collapse
Affiliation(s)
- Chrystelle V Garat
- Cardiovascular Pulmonary Research, University of Colorado Health Sciences Center, 4200 East Ninth Ave., Campus Box B-133, Denver, CO 80262, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Woodmansee WW, Kerr JM, Tucker EA, Mitchell JR, Haakinson DJ, Gordon DF, Ridgway EC, Wood WM. The proliferative status of thyrotropes is dependent on modulation of specific cell cycle regulators by thyroid hormone. Endocrinology 2006; 147:272-82. [PMID: 16223861 DOI: 10.1210/en.2005-1013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this report we have examined changes in cell growth parameters, cell cycle effectors, and signaling pathways that accompany thyrotrope growth arrest by thyroid hormone (TH) and growth resumption after its withdrawal. Flow cytometry and immunohistochemistry of proliferation markers demonstrated that TH treatment of thyrotrope tumors resulted in a reduction in the fraction of cells in S-phase that is restored upon TH withdrawal. This is accompanied by dephosphorylation and rephosphorylation of retinoblastoma (Rb) protein. The expression levels of cyclin-dependent kinase 2 and cyclin A, as well as cyclin-dependent kinase 1 and cyclin B, were decreased by TH, and after withdrawal not only did these regulators of Rb phosphorylation and mitosis increase in their expression but so too did the D1 and D3 cyclins. We also noted a rapid induction and subsequent disappearance of the type 5 receptor for the growth inhibitor somatostatin with TH treatment and withdrawal, respectively. Because somatostatin can arrest growth by activating MAPK pathways, we examined these pathways in TtT-97 tumors and found that the ERK pathway and several of its upstream and downstream effectors, including cAMP response element binding protein, were activated with TH treatment and deactivated after its withdrawal. This led to the hypothesis that TH, acting through increased type 5 somatostatin receptor, could activate the ERK pathway leading to cAMP response element binding protein-dependent decreased expression of critical cell cycle proteins, specifically cyclin A, resulting in hypophosphorylation of Rb and its subsequent arrest of S-phase progression. These processes are reversed when TH is withdrawn, resulting in an increase in the fraction of S-phase cells.
Collapse
Affiliation(s)
- Whitney W Woodmansee
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Guo Y, Harwalkar J, Stacey DW, Hitomi M. Destabilization of cyclin D1 message plays a critical role in cell cycle exit upon mitogen withdrawal. Oncogene 2005; 24:1032-42. [PMID: 15592507 DOI: 10.1038/sj.onc.1208299] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cyclin D1 is critical for entry into, continuation of, and exit from the cell division cycle. Mitogen stimulation of quiescent cells induces cyclin D1 expression in a transcription-dependent manner. In actively cycling cells, on the other hand, fluctuation of cyclin D1 protein levels through the cell cycle is post-transcriptionally regulated. Cyclin D1 is expressed at low levels during S phase to allow efficient DNA synthesis, and induced to high levels in G2 phase through Ras activity to commit the cells to continuing cell cycle progression. Once induced in G2 phase, cyclin D1 expression becomes Ras independent through the next G1 phase, where it promotes G1/S transition. When mitogenic signaling is abrogated, however, cyclin D1 fails to increase during G2 phase and the cell becomes arrested in the next G1 phase. In this way, the expression levels of cyclin D1 in G2 phase determine the fate of the next cell cycle. Despite its importance of the mechanism of cyclin D1 suppression upon mitogen withdrawal is unknown. Using both quantitative fluorescence microscopy and biochemical analyses, we have found that, upon serum deprivation, cyclin D1 mRNA is downmodulated without any decline in its rate of transcription. Furthermore, cyclin D1 mRNA half-life becomes shorter when serum is removed. These results demonstrate that cyclin D1 message destabilization plays a critical role in cyclin D1 suppression during G2 phase of serum-deprived cultures, and therefore in the withdrawal from the cell cycle.
Collapse
Affiliation(s)
- Yang Guo
- The Department of Molecular Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
15
|
Shimotake TK, Izhar FM, Rumilla K, Li J, Tan A, Page K, Brasier AR, Schreiber MD, Hershenson MB. Interleukin (IL)-1 beta in tracheal aspirates from premature infants induces airway epithelial cell IL-8 expression via an NF-kappa B dependent pathway. Pediatr Res 2004; 56:907-13. [PMID: 15496610 DOI: 10.1203/01.pdr.0000145274.47221.10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tracheal aspirate IL-8 concentration and airway epithelial cell IL-8 expression are each increased in premature infants undergoing mechanical ventilation. We sought to determine the cytokines responsible for IL-8 expression in this context. Tracheal aspirates were collected from 18 mechanically ventilated premature infants. IL-8 protein abundance was high in tracheal aspirates from ventilated premature infants (mean, 5806 +/- 4923 pg/mL). IL-1 alpha (mean, 20 +/- 6 pg/mL), IL-1 beta (mean 67 +/- 46 pg/mL), and tumor necrosis factor (TNF)-alpha (mean, 8 +/- 2 pg/mL) were also found. Incubation of tracheal aspirates with 16HBE14o- human bronchial epithelial cells increased IL-8 protein in both cell lysates and supernatants, as well as transcription from the IL-8 promoter. Aspirates also induced nuclear factor (NF)-kappa B activation. Mutation of the IL-8 promoter NF-kappa B site abolished aspirate-induced IL-8 transcription. Endotoxin concentrations in the tracheal aspirates were negligible and incapable of inducing IL-8 promoter activity. Finally, incubation of tracheal aspirates with a neutralizing antibody against IL-1 beta reduced epithelial cell IL-8 production, whereas neutralizing antibodies against IL-1 alpha and TNF-alpha had no effect. We conclude that airway fluid from mechanically ventilated premature infants contains soluble factors capable of inducing airway epithelial cell IL-8 expression via a NF-kappa B-dependent pathway, and that IL-1 beta plays a specific role in this process.
Collapse
|
16
|
Abstract
Increased airway smooth muscle mass has been demonstrated in patients with asthma, bronchopulmonary dysplasia and most recently, cystic fibrosis. These observations emphasize the need for further knowledge of the events involved in airway smooth muscle mitogenesis and hypertrophy. Workers in the field have developed cell culture systems involving tracheal and bronchial myocytes from different species. An emergent body of literature indicates that mutual signal transduction pathways control airway smooth muscle cell cycle entry across species lines. This article reviews what is known about mitogen-activated signal transduction in airway myocytes. The extracellular signal regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI 3-kinase) pathways appear to be key positive regulators of airway smooth muscle mitogenesis; recent studies have also demonstrated specific roles for reactive oxygen and the JAK/STAT pathway. It is also possible that growth factor stimulation of airway smooth muscle concurrently elicits signaling through negative regulatory intermediates such as p38 mitogen-activated protein (MAP) kinase and protein kinase C (PKC) delta, conceivably as a defense against extreme growth.
Collapse
Affiliation(s)
- Limei Zhou
- Department of Pediatrics, University of Chicago, Chicago, IL 48109-0688, USA
| | | |
Collapse
|
17
|
Panettieri RA. Airway smooth muscle: immunomodulatory cells that modulate airway remodeling? Respir Physiol Neurobiol 2003; 137:277-93. [PMID: 14516732 DOI: 10.1016/s1569-9048(03)00153-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although the pathogenesis of asthma remains unclear, substantial progress has been made over the past decades in the characterization of airway inflammation as a pathogenetic mechanism in asthma. New evidence suggests that airway smooth muscle (ASM), the most important cell modulating bronchomotor tone, plays an important immunomodulatory role in the orchestration and perpetuation of airway inflammation. Evidence now suggests that the signaling pathways that modulate leukocyte function may be disparate from those found in resident effector cells such as ASM, fibroblasts and epithelial cells. Further investigation and understanding of the critical signaling pathways that modulate ASM cell release, secretion of chemokines/cytokines and expression of cell adhesion molecules (CAMs) may offer new therapeutic approaches in the treatment of asthma.
Collapse
Affiliation(s)
- Reynold A Panettieri
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania Medical Center, 421 Curie Boulevard, 805 BRB II/III, Philadelphia, Pennsylvania, PA 19104-6160, USA.
| |
Collapse
|
18
|
Ding WQ, Dong M, Ninova D, Holicky EL, Stegall MD, Miller LJ. Forskolin suppresses insulin gene transcription in islet beta-cells through a protein kinase A-independent pathway. Cell Signal 2003; 15:27-35. [PMID: 12401517 DOI: 10.1016/s0898-6568(02)00051-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This work was designed to evaluate the effect of cAMP on insulin gene regulation. We studied the effects of forskolin on insulin gene transcription in the INS-1 beta-cell line, confirming key results in primary cultures of human islet cells. Forskolin increased intracellular cAMP and cAMP-responsive element-binding activity. Insulin gene transcription was studied using a reporter construct in which the human insulin promoter was fused to luciferase. When cells were treated with forskolin for 12 h, insulin promoter activity was decreased 2- to 3-fold, whereas islet amyloid polypeptide promoter activity was significantly increased. This effect of forskolin on the insulin gene was time- and concentration-dependent, and was mimicked by 8-bromo-cAMP. Mutagenesis of the CRE-like elements in the insulin promoter had no effect on the forskolin-induced suppression, but dramatically decreased basal insulin promoter activity. Inhibition of PKA with H-89 also did not reverse the forskolin-induced suppression of insulin transcription. However, this effect was completely reversed by inhibition of cellular MAP kinase activity with PD98059 or U0126. These results demonstrate that forskolin suppresses insulin transcription in INS-1 cells through a PKA-independent mechanism that probably involves MAP kinase signalling.
Collapse
Affiliation(s)
- Wei-Qun Ding
- Department of Medicine, Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Guggenheim 17, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Asthma is characterized in part by reversible airflow obstruction, hyperresponsiveness, and inflammation. Chronic obstructive pulmonary disease, which includes chronic bronchitis, emphysema, and possibly bronchiectasis, is defined as predominantly irreversible airflow obstruction associated with abnormal airway inflammation. Traditional concepts concerning airway inflammation have focused on trafficking leukocytes and on the effects of inflammatory mediators, cytokines, and chemokines secreted by these cells. Airway smooth muscle, the major effector cell responsible for bronchomotor tone, has been viewed as a target tissue responding to neurohumoral control and inflammatory mediators. New evidence, however, suggests that airway smooth muscle may secrete cytokines and chemokines and express cellular adhesion molecules that are important in modulating submucosal airway inflammation. Other new evidence suggests that beta-adrenergic agents may inhibit some but not all of the inflammatory responses. In certain circumstances, increasing levels of cyclic adenosine monophosphate in the cytosol of airway smooth muscle promote the secretion of other cytokines or chemokines. The cellular and molecular mechanisms that regulate the immunomodulatory functions of airway smooth muscle may offer new and important therapeutic targets in treating these common lung diseases.
Collapse
Affiliation(s)
- Reynold A Panettieri
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Medical Center, PA 19104-6160, USA
| |
Collapse
|
20
|
Adams DG, Sachs NA, Vaillancourt RR. Phosphorylation of the stress-activated protein kinase, MEKK3, at serine 166. Arch Biochem Biophys 2002; 407:103-16. [PMID: 12392720 DOI: 10.1016/s0003-9861(02)00464-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Much effort has focused on the identification of MAPK cascades that are activated by the MEKK family of protein kinases. However, direct phosphorylation and regulation of the MEKK proteins has not been shown. To address this question, we have expressed recombinant (His)6FLAG.MEKK3 in Sf9 insect cells and tethered the purified protein to Ni-Sepharose so that we could precipitate interacting proteins and then identify such proteins by liquid chromatography and mass spectrometry (LC-MS). We identified 14-3-3 proteins as interacting with MEKK3, which suggested that (His)6FLAG.MEKK3 was phosphorylated on serine since 14-3-3 proteins are known to associate with phosphorylated proteins. We identified two phosphorylated amino acids at Ser166 and Ser337 of tryptic peptides derived from (His)6FLAG.MEKK3 by using LC-MS. Antibodies were developed that recognize the specific phosphorylated amino acid and with these antibodies, we demonstrate that various stimuli (tumor necrosis factor, arsenite, forskolin, and serum) promote phosphorylation of Ser166 and Ser337. However, neither of these phosphorylated amino acids is required for association with 14-3-3 protein or regulation of MEKK3-dependent ERK and JNK activity. Nonetheless, these results suggest that MEKK3 is a convergence point of multiple upstream signaling pathways.
Collapse
Affiliation(s)
- Deanna G Adams
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721-0207, USA
| | | | | |
Collapse
|
21
|
Abstract
Asthma, a chronic disease increasing in prevalence worldwide, is characterised by reversible airway obstruction, airway inflammation and airway smooth muscle (ASM) cell hyperplasia. The traditional view of ASM in asthma, as a regulator of bronchomotor tone, is rapidly changing. New evidence suggests that ASM cells also play an important role in the perpetuation of airway inflammation and airway remodelling. This review discusses the synthetic function of ASM cells, defined as the ability to secrete cytokines, chemokines and growth factors and express surface receptors that are important for cell adhesion and leukocyte activation. Finally, the efficacy of established asthma therapies in modifying the synthetic function of ASM cells are compared and novel targets for pharmacological intervention are discussed.
Collapse
Affiliation(s)
- Aili L Lazaar
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania Medical Center, 852 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA.
| |
Collapse
|
22
|
Eto I. Molecular cloning and sequence analysis of the promoter region of mouse cyclin D1 gene: implication in phorbol ester-induced tumour promotion. Cell Prolif 2002; 33:167-87. [PMID: 10959625 PMCID: PMC6496442 DOI: 10.1046/j.1365-2184.2000.00176.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin D1 is a cell cycle regulatory protein, which acts as a growth factor sensor to integrate extracellular signals with the cell cycle machinery, particularly during G1 phase of the cell cycle. Previous study using promotion-sensitive JB6 mouse epidermal cells, an in vitro model of the promotion stage of multistage carcinogenesis, showed that the expression of cyclin D1 is stimulated in the presence (but not in the absence) of 12-O-tetradecanoylphorbol-13-acetate (TPA) in these cells maintained under anchorage-independent culture conditions. In the present study, to explore the molecular basis of this observation, the promoter region of mouse cyclin D1 gene was cloned and sequenced (GenBank accession number AF212040). Dot matrix comparison of mouse, human and rat promoter sequences indicated that the mouse promoter is homologous to the human and more so to the rat promoters. The mouse promoter, like human and rat promoters, lacks canonical TATA-box or TATA-like sequence, but it has one or possibly two initiator (Inr) or Inr-like sequences. Energy dot plot analysis predicted that the mouse promoter consists of three domains: (1) the 3' domain contains NF-kappaB response element, cAMP-response element (CRE), Inr or Inr-like elements, Sp1 binding site and Oct 1 (2) the middle domain contains another Sp1 binding site, E-box and E2F binding site and (3) the 5' domain contains TPA-response element (TRE) and a tandem silencer element. The cyclin D1 promoter sequence of either promotion-sensitive or resistant JB6 mouse epidermal cells was, except for a few minor differences, essentially identical to the sequence determined for a mouse genomic clone. Since TPA is capable of stimulating the expression of cyclin D1 not only through TRE but also through CRE and NF-kappaB response element in the promoter, we tentatively propose a sequence of events that possibly leads to TPA-induced, anchorage-independent synthesis of cyclins D1 and A in the promotion-sensitive JB6 mouse epidermal cells.
Collapse
Affiliation(s)
- I Eto
- Department of Nutrition Sciences, University of Alabama at Birmingham, 35294, USA
| |
Collapse
|
23
|
Klemm DJ, Watson PA, Frid MG, Dempsey EC, Schaack J, Colton LA, Nesterova A, Stenmark KR, Reusch JE. cAMP response element-binding protein content is a molecular determinant of smooth muscle cell proliferation and migration. J Biol Chem 2001; 276:46132-41. [PMID: 11560924 DOI: 10.1074/jbc.m104769200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We hypothesized that cAMP response element-binding protein (CREB) could function as a molecular determinant of smooth muscle cell fate. In arterial sections from the systemic and pulmonary circulation, CREB content was high in proliferation-resistant medial subpopulations of smooth muscle cells and low in proliferation-prone regions. In vessels from neonatal calves exposed to chronic hypoxia, CREB content was depleted and smooth muscle cell (SMC) proliferation was accelerated. Induction of quiescence by serum deprivation in culture led to increased CREB content. Highly proliferative SMC in culture were observed to have low CREB content. Exposure to proliferative stimuli such as hypoxia or platelet-derived growth factor decreased SMC CREB content. Assessment of CREB gene transcription by nuclear run-on analysis and transcription from a CREB promoter-luciferase construct indicate that CREB levels in SMC are in part controlled at the level of transcription. Overexpression of wild type or constitutively active CREB in primary cultures of SMC arrested cell cycle progression. Additionally, expression of constitutively active CREB decreased both proliferation and chemokinesis. Consistent with these functional properties, active CREB decreased the expression of multiple cell cycle regulatory genes, as well as genes encoding growth factors, growth factor receptors, and cytokines. Our data suggest a unique mode of cellular phenotype determination at the level of the nuclear content of CREB.
Collapse
Affiliation(s)
- D J Klemm
- Denver Veterans Affairs Medical Center, University of Colorado Health Sciences Center, Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, Denver, Colorado 80220, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ammit AJ, Panettieri RA. Invited review: the circle of life: cell cycle regulation in airway smooth muscle. J Appl Physiol (1985) 2001; 91:1431-7. [PMID: 11509545 DOI: 10.1152/jappl.2001.91.3.1431] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Severe asthma is characterized by increased airway smooth muscle (ASM) mass, due predominantly to ASM hyperplasia. Diverse stimuli, which include growth factors, plasma- or inflammatory cell-derived mediators, contractile agonists, cytokines, and extracellular matrix proteins, induce ASM proliferation. Mitogens act via receptor tyrosine kinase, G protein-coupled receptors, or cytokine receptors, to activate p21ras and stimulate two parallel signaling pathways in ASM cells, namely, the extracellular signal-regulated kinase (ERK) or the phosphatidylinositol 3-kinase (PI3K) pathways. ERK and PI3K regulate cell cycle protein expression and thus modulate cell cycle traversal. ERK activation and downstream effectors of PI3K, such as Rac1 and Cdc42, stimulate expression of cyclin D1, a key regulator of G(1) progression in the mammalian cell cycle. In addition, PI3K activates 70-kDa ribosomal S6 kinase, an enzyme that also regulates the translation of many cell cycle proteins, including the elongation factor E2F. The present review examines the mitogens and critical signal transduction pathways that stimulate ASM cell proliferation. Further study in this area may reveal new therapeutic targets to abrogate ASM hyperplasia in diseases such as asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- A J Ammit
- Respiratory Research Group, Faculty of Pharmacy, University of Sydney, New South Wales 2006, Australia
| | | |
Collapse
|
25
|
Krymskaya VP, Orsini MJ, Eszterhas AJ, Brodbeck KC, Benovic JL, Panettieri RA, Penn RB. Mechanisms of proliferation synergy by receptor tyrosine kinase and G protein-coupled receptor activation in human airway smooth muscle. Am J Respir Cell Mol Biol 2000; 23:546-54. [PMID: 11017921 DOI: 10.1165/ajrcmb.23.4.4115] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Despite recent studies depicting the capacity of G protein-coupled receptors (GPCRs) to activate mitogenic signaling pathways more commonly associated with receptor tyrosine kinases (RTKs), little is known regarding the interactive effects of GPCR and RTK activation on cell growth and signal transduction. Such interactions likely mediate the physiologic growth in most cells in vivo as well as the aberrant, non-neoplastic growth that occurs in diseases such as asthma, where disruptions of the local hormonal or inflammatory state can contribute to significant GPCR activation. In this study, we show that numerous inflammatory or contractile agents, including thrombin, histamine, and carbachol, potentiate epidermal growth factor (EGF)-stimulated proliferation of human airway smooth muscle (ASM), thus demonstrating a clear synergy between RTK and GPCR activation. Alterations in promitogenic nuclear signaling were evidenced by additive or synergistic increases in Elk-1 and activator protein-1 activation, and by increases in cyclin D1 expression. Interestingly, GPCR activation did not cause EGF receptor tyrosine phosphorylation nor did it increase EGF-stimulated autophosphorylation. In the presence of EGF, histamine or carbachol did not alter the time-dependent phosphorylation of p42/p44, whereas thrombin was capable of increasing phospho-p42/p44 levels at selected time points in some, but not all, cultures. In contrast to their relative inability to alter EGF receptor-linked p42/p44 activation, thrombin, histamine, and carbachol consistently increased the late phase (> 1 h) activity of p70 S6 kinase. Collectively, these findings suggest that inflammatory and contractile agents that activate GPCRs can significantly modulate RTK-mediated ASM growth through a p70 S6 kinase-dependent, p42/p44-independent mechanism.
Collapse
Affiliation(s)
- V P Krymskaya
- Division of Pulmonary and Critical Care, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Sachinidis A, Seul C, Gouni-Berthold I, Seewald S, Ko Y, Vetter H, Fingerle J, Hoppe J. Cholera toxin treatment of vascular smooth muscle cells decreases smooth muscle alpha-actin content and abolishes the platelet-derived growth factor-BB-stimulated DNA synthesis. Br J Pharmacol 2000; 130:1561-70. [PMID: 10928958 PMCID: PMC1572234 DOI: 10.1038/sj.bjp.0703480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2000] [Revised: 04/11/2000] [Accepted: 05/12/2000] [Indexed: 11/08/2022] Open
Abstract
The second messenger cyclic AMP regulates diverse biological processes such as cell morphology and cell growth. We examined the role of the second messenger cyclic AMP on rat aortic vascular smooth muscle cell (VSMC) morphology and the intracellular transduction pathway mediated by platelet-derived growth factor beta-receptor (PDGF-Rbeta). The effect of PDGF-BB on VSMCs growth was assessed by [(3)H]-thymidine incorporation. Tyrosine phosphorylation of PDGF-Rbeta, PLC-gamma1, ERK1 and ERK2, p125(FAK) and paxillin as well as Sm alpha-actin was examined by the chemiluminescence Western blotting method. Actin mRNA level was quantitated by Northern blotting. Visualization of Sm alpha-actin filaments, paxillin and PDGF-Rbeta was performed by immunfluorescence microscopy. Cholera toxin (CTX; 10 nM) treatment lead to a large and sustained increase in the cyclic AMP concentration after 2 h which correlated with change of VSMC morphology including complete disruption of the Sm alpha-actin filament array and loss of focal adhesions. Treatment of VSMCs with CTX did not influence tyrosine phosphorylation of p125(FAK) and paxillin but decreased the content of a Sm alpha-actin protein. Maximal decrease of 70% was observed after 24 h of treatment. CTX also caused a 90% decrease of the actin mRNA level. CTX treatment completely abolished PDGF-BB stimulated DNA-synthesis although PDGF-Rbeta level and subcellular distribution and translocation was not altered. Furthermore CTX attenuated the PDGF-BB-induced tyrosine phosphorylation of the PDGF-Rbeta, PI 3'-K, PLC-gamma1 and ERK1/2 indicating an action of cyclic AMP on PDGF-beta receptor. We conclude that although cyclic AMP attenuates the PDGF-Rbeta mediated intracellular transduction pathway, an intact actin filament may be required for the PDGF-BB-induced DNA synthesis in VSMCs.
Collapse
Affiliation(s)
- A Sachinidis
- Medizinische Universitäts-Poliklinik, Weilhelmstr. 35-37, D-53111 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- A J Knox
- Department of Respiratory Medicine, Clinical Sciences Building, City Hospital, Nottingham, UK
| | | | | | | |
Collapse
|