1
|
McArthur E, Murthy K, Zaniletti I, Sharma M, Lagatta J, Ball M, Porta N, Grover T, Levy P, Padula M, Hamrick S, Vyas-Read S. Neonatal Risk Factors for Pulmonary Vein Stenosis in Infants Born Preterm with Severe Bronchopulmonary Dysplasia. J Pediatr 2024; 275:114252. [PMID: 39181320 DOI: 10.1016/j.jpeds.2024.114252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVE To evaluate associations between neonatal risk factors and pulmonary vein stenosis (PVS) among infants born preterm with severe bronchopulmonary dysplasia (sBPD). STUDY DESIGN We performed a case-control study of infants born from 2010 to 2022 at <32 weeks' gestation with sBPD among 46 neonatal intensive care units in the Children's Hospitals Neonatal Consortium. Cases with PVS were matched to controls using epoch of diagnosis (2010-2016; 2017-2022) and hospital. Multivariable logistic regression analyses were utilized to evaluate PVS association with neonatal risk factors. RESULTS From 10 171 preterm infants with sBPD, we identified 109 cases with PVS and matched those to 327 controls. The prevalence of PVS (1.07%) rose between epochs (0.8% in 2010-2016 to 1.2% in 2017-2022). Relative to controls, infants with PVS were more likely to be <500 g at birth, to be small for gestational age <10th%ile, or have surgical necrotizing enterocolitis, atrial septal defects, or pulmonary hypertension. In multivariable models, these associations persisted, and small for gestational age, surgical necrotizing enterocolitis, atrial septal defects, and pulmonary hypertension were each independently associated with PVS. Among infants on respiratory support at 36 weeks' postmenstrual age, infants with PVS had 4.3-fold higher odds of receiving mechanical ventilation at 36 weeks' postmenstrual age. Infants with PVS also had 3.6-fold higher odds of in-hospital mortality relative to controls. CONCLUSIONS In a large cohort of preterm infants with sBPD, multiple independent, neonatal risk factors are associated with PVS. These results lay important groundwork for the development of targeted screening to guide the diagnosis and management of PVS in preterm infants with sBPD.
Collapse
Affiliation(s)
- Erica McArthur
- Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA.
| | - Karna Murthy
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | | | - Megha Sharma
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR
| | - Joanne Lagatta
- Department of Pediatrics, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, WI
| | - Molly Ball
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Nationwide Children's Hospital, Columbus, OH
| | - Nicolas Porta
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Theresa Grover
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| | - Philip Levy
- Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA
| | - Michael Padula
- Department of Pediatrics, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Shannon Hamrick
- Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA
| | - Shilpa Vyas-Read
- Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA
| |
Collapse
|
2
|
Portela Dias J, Guedes-Martins L. Fetal Pulmonary Venous Return: From Basic Research to the Clinical Value of Doppler Assessment. Pediatr Cardiol 2023; 44:1419-1437. [PMID: 37505268 PMCID: PMC10435640 DOI: 10.1007/s00246-023-03244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
The fetal pulmonary circulation represents less than 25% of the fetal cardiac output. In comparison with the pulmonary arteries, studies on pulmonary veins are few and limited, and many questions remain to be answered. The literature reports that pulmonary veins play an important role in regulating vascular flow, forming an active segment of the pulmonary circulation. The development of more sophisticated ultrasonography technology has allowed the investigation of the extraparenchymal pulmonary veins and their waveform. The recognition of the pulmonary vein anatomy in echocardiography is important for the diagnosis of anomalous pulmonary venous connections, with a significant impact on prognosis. On the other hand, the identification of the normal pulmonary vein waveform seems to be a reliable way to study left heart function, with potential applicability in fetal and maternal pathology. Thus, the goal of this narrative review was to provide a clinically oriented perspective of the available literature on this topic.
Collapse
Affiliation(s)
- J Portela Dias
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313, Porto, Portugal.
- Departamento da Mulher e da Medicina Reprodutiva, Centro Materno Infantil do Norte, Centro Hospitalar e Universitário de Santo António, Largo da Maternidade Júlio Dinis 45, 4050-651, Porto, Portugal.
- Unidade de Investigação e Formação - Centro Materno Infantil do Norte, 4050-651, Porto, Portugal.
| | - L Guedes-Martins
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313, Porto, Portugal
- Departamento da Mulher e da Medicina Reprodutiva, Centro Materno Infantil do Norte, Centro Hospitalar e Universitário de Santo António, Largo da Maternidade Júlio Dinis 45, 4050-651, Porto, Portugal
- Unidade de Investigação e Formação - Centro Materno Infantil do Norte, 4050-651, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| |
Collapse
|
3
|
Cao S, Feng H, Yi H, Pan M, Lin L, Zhang YS, Feng Z, Liang W, Cai B, Li Q, Xiong Z, Shen Q, Ke M, Zhao X, Chen H, He Q, Min M, Cai Q, Liu H, Wang J, Pei D, Chen J, Ma Y. Single-cell RNA sequencing reveals the developmental program underlying proximal-distal patterning of the human lung at the embryonic stage. Cell Res 2023:10.1038/s41422-023-00802-6. [PMID: 37085732 PMCID: PMC10119843 DOI: 10.1038/s41422-023-00802-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/21/2023] [Indexed: 04/23/2023] Open
Abstract
The lung is the primary respiratory organ in human, in which the proximal airway and the distal alveoli are responsible for air conduction and gas exchange, respectively. However, the regulation of proximal-distal patterning at the embryonic stage of human lung development is largely unknown. Here we investigated the early lung development of human embryos at weeks 4-8 post fertilization (Carnegie stages 12-21) using single-cell RNA sequencing, and obtained a transcriptomic atlas of 169,686 cells. We observed discernible gene expression patterns of proximal and distal epithelia at week 4, upon the initiation of lung organogenesis. Moreover, we identified novel transcriptional regulators of the patterning of proximal (e.g., THRB and EGR3) and distal (e.g., ETV1 and SOX6) epithelia. Further dissection revealed various stromal cell populations, including an early-embryonic BDNF+ population, providing a proximal-distal patterning niche with spatial specificity. In addition, we elucidated the cell fate bifurcation and maturation of airway and vascular smooth muscle progenitor cells at the early stage of lung development. Together, our study expands the scope of human lung developmental biology at early embryonic stages. The discovery of intrinsic transcriptional regulators and novel niche providers deepens the understanding of epithelial proximal-distal patterning in human lung development, opening up new avenues for regenerative medicine.
Collapse
Affiliation(s)
- Shangtao Cao
- Guangzhou Laboratory, Guangzhou, Guangdong, China.
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Huijian Feng
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hongyan Yi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Mengjie Pan
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Lihui Lin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yao Santo Zhang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Ziyu Feng
- Guangzhou Laboratory, Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weifang Liang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Baomei Cai
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Zhi Xiong
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qingmei Shen
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Minjing Ke
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xing Zhao
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Huilin Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qina He
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Mingwei Min
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Quanyou Cai
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - He Liu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jie Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| | - Jiekai Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- University of the Chinese Academy of Sciences, Beijing, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
4
|
Crnkovic S, Rittchen S, Jandl K, Gindlhuber J, Zabini D, Mutgan AC, Valzano F, Boehm PM, Hoetzenecker K, Toller W, Veith C, Heinemann A, Schermuly RT, Olschewski A, Marsh LM, Kwapiszewska G. Divergent Roles of Ephrin-B2/EphB4 Guidance System in Pulmonary Hypertension. Hypertension 2023; 80:e17-e28. [PMID: 36519465 DOI: 10.1161/hypertensionaha.122.19479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Smooth muscle cell (SMC) expansion is one key morphological hallmark of pathologically altered vasculature and a characteristic feature of pulmonary vascular remodeling in pulmonary hypertension. Normal embryonal vessel maturation requires successful coverage of endothelial tubes with SMC, which is dependent on ephrin-B2 and EphB4 ligand-receptor guidance system. In this study, we investigated the potential role of ephrin-B2 and EphB4 on neomuscularization in adult pulmonary vascular disease. METHODS AND RESULTS Ephrin-B2 and EphB4 expression is preserved in smooth muscle and endothelial cells of remodeled pulmonary arteries. Chronic hypoxia-induced pulmonary hypertension was not ameliorated in mice with SMC-specific conditional ephrin-B2 knockout. In mice with global inducible ephrin-B2 knockout, pulmonary vascular remodeling and right ventricular hypertrophy upon chronic hypoxia exposure were significantly diminished compared to hypoxic controls, while right ventricular systolic pressure was unaffected. In contrast, EphB4 receptor kinase activity inhibition reduced right ventricular systolic pressure in hypoxia-induced pulmonary hypertension without affecting pulmonary vascular remodeling. Genetic deletion of ephrin-B2 in murine pulmonary artery SMC, and pharmacological inhibition of EphB4 in human pulmonary artery smooth muscle cells, blunted mitogen-induced cell proliferation. Loss of EphB4 signaling additionally reduced RhoA expression and weakened the interaction between human pulmonary artery smooth muscle cells and endothelial cells in a three-dimensional coculture model. CONCLUSIONS In sum, pulmonary vascular remodeling was dependent on ephrin-B2-induced Eph receptor (erythropoietin-producing hepatocellular carcinoma receptor) forward signaling in SMC, while EphB4 receptor activity was necessary for RhoA expression in SMC, interaction with endothelial cells and vasoconstrictive components of pulmonary hypertension.
Collapse
Affiliation(s)
- Slaven Crnkovic
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Austria (S.C., D.Z., A.C.M., L.M.M., G.K.).,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.)
| | - Sonja Rittchen
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria (S.R., K.J., A.H.).,Otto Loewi Research Center, Division of Immunology, Medical University of Graz, Austria (S.R.).,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.)
| | - Katharina Jandl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria (S.R., K.J., A.H.).,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.)
| | - Juergen Gindlhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.).,Department of Pathology, Medical University of Graz, Austria (J.G.)
| | - Diana Zabini
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Austria (S.C., D.Z., A.C.M., L.M.M., G.K.).,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.)
| | - Ayse Ceren Mutgan
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Austria (S.C., D.Z., A.C.M., L.M.M., G.K.).,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.)
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.)
| | - Panja M Boehm
- Department of Thoracic Surgery, Medical University of Vienna, Austria (P.M.B., K.H.)
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Austria (P.M.B., K.H.)
| | - Wolfgang Toller
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Austria (W.T., A.O.)
| | - Christine Veith
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Germany (C.V.).,Faculty of Medicine, Justus Liebig University Giessen, Member of the German Lung Center (DZL), Germany (C.V., R.T.S.)
| | - Akos Heinemann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria (S.R., K.J., A.H.)
| | - Ralph T Schermuly
- Faculty of Medicine, Justus Liebig University Giessen, Member of the German Lung Center (DZL), Germany (C.V., R.T.S.)
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.).,Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Austria (W.T., A.O.)
| | - Leigh M Marsh
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Austria (S.C., D.Z., A.C.M., L.M.M., G.K.).,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.)
| | - Grazyna Kwapiszewska
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Austria (S.C., D.Z., A.C.M., L.M.M., G.K.).,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.).,Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany (G.K.)
| |
Collapse
|
5
|
Tura-Ceide O. Blood Flow Disturbances in Congenital Heart Disease: Is Neuroblastoma Suppressor of Tumorigenicity 1 a Target for Preventing Pulmonary Vascular Remodeling? Am J Respir Cell Mol Biol 2022; 67:615-616. [PMID: 36191266 PMCID: PMC9743185 DOI: 10.1165/rcmb.2022-0368ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Olga Tura-Ceide
- Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI)Girona, Spain,Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i SunyerUniversity of BarcelonaBarcelona, Spain,Centro de Investigación Biomèdica en Red de Enfermedades RespiratoriasMadrid, Spain
| |
Collapse
|
6
|
Prematurity and Pulmonary Vein Stenosis: The Role of Parenchymal Lung Disease and Pulmonary Vascular Disease. CHILDREN 2022; 9:children9050713. [PMID: 35626890 PMCID: PMC9139735 DOI: 10.3390/children9050713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
Abstract
Pulmonary vein stenosis (PVS) has emerged as a critical problem in premature infants with persistent respiratory diseases, particularly bronchopulmonary dysplasia (BPD). As a parenchymal lung disease, BPD also influences vascular development with associated pulmonary hypertension recognized as an important comorbidity of both BPD and PVS. PVS is commonly detected later in infancy, suggesting additional postnatal factors that contribute to disease development, progression, and severity. The same processes that result in BPD, some of which are inflammatory-mediated, may also contribute to the postnatal development of PVS. Although both PVS and BPD are recognized as diseases of inflammation, the link between them is less well-described. In this review, we explore the relationship between parenchymal lung diseases, BPD, and PVS, with a specific focus on the epidemiology, clinical presentation, risk factors, and plausible biological mechanisms in premature infants. We offer an algorithm for early detection and prevention and provide suggestions for research priorities.
Collapse
|
7
|
Gao C, Xu WZ, Li ZH, Chen L. Analysis of bronchial and vascular patterns in left upper lobes to explore the genesis of mediastinal lingular artery and its influence on pulmonary anatomical variation. J Cardiothorac Surg 2021; 16:306. [PMID: 34663402 PMCID: PMC8522199 DOI: 10.1186/s13019-021-01682-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND For thoracic surgeons, three-dimensional computed tomography bronchography and angiography (3-DCTBA) is a convenient way to analyze pulmonary variations before segmentectomy. Mediastinal lingular artery (MLA) is one of the representative variations. METHODS The 3-DCTBA data of left upper lobe (LUL) were collected from patients who underwent pulmonary surgery from January 2018 to December 2019. We reviewed the patterns of bronchi and pulmonary vessels and grouped them according to different classifications. RESULTS Among all the 404 cases of 3-DCTBA, mediastinal lingular artery (MLA) was found in 107 cases (26.49%). The patterns of B3 and the vein in left upper division (LUD) are distinct between mediastinal (M-type) group and interlobar (IL-type) group. The patterns of bronchi and veins in lingular division, as well as the pattern of pulmonary artery in LUD, have no differences between M-type and IL-type groups. CONCLUSIONS Mediastinal lingular artery is speculated to originate from the variation of B3, and the MLA independently influences the venous pattern in LUD in turn.
Collapse
Affiliation(s)
- Chuan Gao
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing, Jiangsu, China
| | - Wen-Zheng Xu
- Department of Thoracic Surgery, Jiangsu Province People's Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhi-Hua Li
- Department of Thoracic Surgery, Jiangsu Province People's Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Liang Chen
- Department of Thoracic Surgery, Jiangsu Province People's Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
8
|
Tsuji-Tamura K, Morino-Koga S, Suzuki S, Ogawa M. The canonical smooth muscle cell marker TAGLN is present in endothelial cells and is involved in angiogenesis. J Cell Sci 2021; 134:jcs254920. [PMID: 34338296 DOI: 10.1242/jcs.254920] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Elongation of vascular endothelial cells (ECs) is an important process in angiogenesis; however, the molecular mechanisms remain unknown. The actin-crosslinking protein TAGLN (transgelin, also known as SM22 or SM22α) is abundantly expressed in smooth muscle cells (SMCs) and is widely used as a canonical marker for this cell type. In the course of studies using mouse embryonic stem cells (ESCs) carrying an Tagln promoter-driven fluorescence marker, we noticed activation of the Tagln promoter during EC elongation. Tagln promoter activation co-occurred with EC elongation in response to vascular endothelial growth factor A (VEGF-A). Inhibition of phosphoinositide 3-kinase (PI3K)-Akt signaling and mTORC1 also induced EC elongation and Tagln promoter activation. Human umbilical vein endothelial cells (HUVECs) elongated, activated the TAGLN promoter and increased TAGLN transcripts in an angiogenesis model. Genetic disruption of TAGLN augmented angiogenic behaviors of HUVECs, as did the disruption of TAGLN2 and TAGLN3 genes. Tagln expression was found in ECs in mouse embryos. Our results identify TAGLN as a putative regulator of angiogenesis whose expression is activated in elongating ECs. This finding provides insight into the cytoskeletal regulation of EC elongation and an improved understanding of the molecular mechanisms underlying the regulation of angiogenesis.
Collapse
Affiliation(s)
- Kiyomi Tsuji-Tamura
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Saori Morino-Koga
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Shingo Suzuki
- Support Section for Education and Research, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan
| | - Minetaro Ogawa
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| |
Collapse
|
9
|
Rubin L, Stabler CT, Schumacher-Klinger A, Marcinkiewicz C, Lelkes PI, Lazarovici P. Neurotrophic factors and their receptors in lung development and implications in lung diseases. Cytokine Growth Factor Rev 2021; 59:84-94. [PMID: 33589358 DOI: 10.1016/j.cytogfr.2021.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
Although lung innervation has been described by many studies in humans and rodents, the regulation of the respiratory system induced by neurotrophins is not fully understood. Here, we review current knowledge on the role of neurotrophins and the expression and function of their receptors in neurogenesis, vasculogenesis and during the embryonic development of the respiratory tree and highlight key implications relevant to respiratory diseases.
Collapse
Affiliation(s)
- Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Collin T Stabler
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA.
| | - Adi Schumacher-Klinger
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| | - Cezary Marcinkiewicz
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA.
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA.
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
10
|
Varma R, Soleas JP, Waddell TK, Karoubi G, McGuigan AP. Current strategies and opportunities to manufacture cells for modeling human lungs. Adv Drug Deliv Rev 2020; 161-162:90-109. [PMID: 32835746 PMCID: PMC7442933 DOI: 10.1016/j.addr.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases remain major healthcare burdens, for which the only curative treatment is lung transplantation. In vitro human models are promising platforms for identifying and testing novel compounds to potentially decrease this burden. Directed differentiation of pluripotent stem cells is an important strategy to generate lung cells to create such models. Current lung directed differentiation protocols are limited as they do not 1) recapitulate the diversity of respiratory epithelium, 2) generate consistent or sufficient cell numbers for drug discovery platforms, and 3) establish the histologic tissue-level organization critical for modeling lung function. In this review, we describe how lung development has formed the basis for directed differentiation protocols, and discuss the utility of available protocols for lung epithelial cell generation and drug development. We further highlight tissue engineering strategies for manipulating biophysical signals during directed differentiation such that future protocols can recapitulate both chemical and physical cues present during lung development.
Collapse
Affiliation(s)
- Ratna Varma
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - John P Soleas
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Thomas K Waddell
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Alison P McGuigan
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| |
Collapse
|
11
|
Nasr VG, Callahan R, Wichner Z, Odegard KC, DiNardo JA. Intraluminal Pulmonary Vein Stenosis in Children. Anesth Analg 2019; 129:27-40. [DOI: 10.1213/ane.0000000000003924] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Abstract
Epidemiological studies have demonstrated an association between maternal vitamin D deficiency and an increased risk of chronic lung disease in offspring. While vitamin D and UV induced non-vitamin D pathways have the capacity to modulate immune function, this relationship may also be explained by an effect on lung development which is an independent predictor of lung function and the risk of lung disease later in life. To date there are not sufficient data to support the role of non-vitamin D pathways in this association, while in vivo and in vitro data suggest that there is a causal relationship between vitamin D and lung development. However, equivocal results in recent high profile clinical trials have dampened enthusiasm for vitamin D as an important public health intervention for improving lung development. In this narrative review we summarise our current understanding of the link between UV exposure, vitamin D and lung development.
Collapse
Affiliation(s)
- Ling Chen
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania 7000, Australia.
| | - Graeme R Zosky
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania 7000, Australia.
| |
Collapse
|
13
|
Stenmark KR, Krafsur GM, Tuder RM. Pulmonary Veno-occlusive Disease and Pulmonary Hypertension in Dogs: Striking Similarities to the Human Condition. Vet Pathol 2018; 53:707-10. [PMID: 27298303 DOI: 10.1177/0300985816647454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- K R Stenmark
- School of Medicine, Section of Pediatric Critical Care and Cardiovascular Pulmonary Research, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - G M Krafsur
- Veterinary Medicine, Colorado State University, Ft Collins, CO, USA
| | - R M Tuder
- School of Medicine, Section of Pulmonary Sciences and Critical Care, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
14
|
Abstract
Scimitar syndrome represents a rare variant of partial anomalous pulmonary venous connection with right lung hypoplasia, dextrocardia, and concomitant airway-vessel abnormalities. Surgical correction is preferred in symptomatic patients or in patients with increased left-to-right shunt. In this report, the first case of scimitar syndrome with dual arterial supply and venous drainage to be treated with thoracoscopic approach is presented.
Collapse
|
15
|
Mahgoub L, Kaddoura T, Kameny AR, Lopez Ortego P, Vanderlaan RD, Kakadekar A, Dicke F, Rebeyka I, Calderone CA, Redington A, Del Cerro MJ, Fineman J, Adatia I. Pulmonary vein stenosis of ex-premature infants with pulmonary hypertension and bronchopulmonary dysplasia, epidemiology, and survival from a multicenter cohort. Pediatr Pulmonol 2017; 52:1063-1070. [PMID: 28152279 DOI: 10.1002/ppul.23679] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/16/2016] [Accepted: 01/13/2017] [Indexed: 11/12/2022]
Abstract
BACKGROUND Pulmonary vein stenosis is emerging as an important clinical problem in ex-premature infants. METHODS We sought to describe the epidemiology of pulmonary vein stenosis affecting ex-premature infants by a multicenter retrospective cohort study of patients from seven children's hospitals diagnosed between 2000-2014. RESULTS We identified 39 ex-premature patients (26 males, median gestational age 28 weeks range 22-36 weeks, birth weight 1.1 kg range 433-2645-g) with pulmonary vein stenosis. Median age at diagnosis was 6.5 months (1 month-6 years). Presentation with pulmonary hypertension occurred in 26/39 (67%) and 29/39 (74%) had bronchopulmonary dysplasia, 15 (39%) were born of twin pregnancies with unaffected twin siblings. A median of 5 (range 1-25) echocardiograms was performed prior to diagnosis. The diagnosis was made using echocardiography in 22/39 (56%), by multi-detector contrast computed tomography scan (CT) in 8/39 (21%), cardiac catheterization in 6/39 (15%) patients, magnetic resonance imaging in 3/39 (8%). Freedom from death or re-stenosis was 73% at 1-year, 55% at 2, 5, and 10 years. Factors associated with shorter survival or re-stenosis were stenosis of ≥3 pulmonary veins (P < 0.01), bilateral pulmonary vein stenosis (P < 0.01) small for gestational age (P = 0.05), aged <6 months at diagnosis (P < 0.01). CONCLUSION Pulmonary vein stenosis of ex-premature infants is a complex problem with poor survival, delayed diagnosis, and unsatisfactory treatment. The lack of concordance in twins suggests epigenetic or environmental factors may play a role in the development of pulmonary vein stenosis. In ex-premature infants with pulmonary hypertension and bronchopulmonary dysplasia a focused echocardiographic assessment of the pulmonary veins is required with further imaging if the echocardiogram is inconclusive.
Collapse
Affiliation(s)
- Linda Mahgoub
- Stollery Children's Hospital, University of Alberta, Edmonton, Canada
| | - Tarek Kaddoura
- Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - A Rebecca Kameny
- Benioff Children's Hospital, University of California San Francisco, San Francisco, California
| | | | | | | | - Frank Dicke
- Alberta Children's Hospital, Calgary, Canada
| | - Ivan Rebeyka
- Stollery Children's Hospital, University of Alberta, Edmonton, Canada
| | | | | | - Maria Jesus Del Cerro
- Benioff Children's Hospital, University of California San Francisco, San Francisco, California
| | - Jeff Fineman
- Benioff Children's Hospital, University of California San Francisco, San Francisco, California
| | - Ian Adatia
- Stollery Children's Hospital, University of Alberta, Edmonton, Canada
| |
Collapse
|
16
|
Fujimoto Y, Urashima T, Kawachi F, Akaike T, Kusakari Y, Ida H, Minamisawa S. Pulmonary hypertension due to left heart disease causes intrapulmonary venous arterialization in rats. J Thorac Cardiovasc Surg 2017; 154:1742-1753.e8. [PMID: 28755882 DOI: 10.1016/j.jtcvs.2017.06.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/14/2017] [Accepted: 06/26/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE A rat model of left atrial stenosis-associated pulmonary hypertension due to left heart diseases was prepared to elucidate its mechanism. METHODS Five-week-old Sprague-Dawley rats were randomly divided into 2 groups: left atrial stenosis and sham-operated control. Echocardiography was performed 2, 4, 6, and 10 weeks after surgery, and cardiac catheterization and organ excision were subsequently performed at 10 weeks after surgery. RESULTS Left ventricular inflow velocity, measured by echocardiography, significantly increased in the left atrial stenosis group compared with that in the sham-operated control group (2.2 m/s, interquartile range [IQR], 1.9-2.2 and 1.1 m/s, IQR, 1.1-1.2, P < .01), and the right ventricular pressure-to-left ventricular systolic pressure ratio significantly increased in the left atrial stenosis group compared with the sham-operated control group (0.52, IQR, 0.54-0.60 and 0.22, IQR, 0.15-0.27, P < .01). The right ventricular weight divided by body weight was significantly greater in the left atrial stenosis group than in the sham-operated control group (0.54 mg/g, IQR, 0.50-0.59 and 0.39 mg/g, IQR, 0.38-0.43, P < .01). Histologic examination revealed medial hypertrophy of the pulmonary vein was thickened by 1.6 times in the left atrial stenosis group compared with the sham-operated control group. DNA microarray analysis and real-time polymerase chain reaction revealed that transforming growth factor-β mRNA was significantly elevated in the left atrial stenosis group. The protein levels of transforming growth factor-β and endothelin-1 were increased in the lung of the left atrial stenosis group by Western blot analyses. CONCLUSIONS We successfully established a novel, feasible rat model of pulmonary hypertension due to left heart diseases by generating left atrial stenosis. Although pulmonary hypertension was moderate, the pulmonary hypertension due to left heart diseases model rats demonstrated characteristic intrapulmonary venous arterialization and should be used to further investigate the mechanism of pulmonary hypertension due to left heart diseases.
Collapse
Affiliation(s)
- Yoshitaka Fujimoto
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Urashima
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Fumie Kawachi
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Toru Akaike
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoichiro Kusakari
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyuki Ida
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Susumu Minamisawa
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
17
|
Faight EM, Verdelis K, Zourelias L, Chong R, Benza RL, Shields KJ. MicroCT analysis of vascular morphometry: a comparison of right lung lobes in the SUGEN/hypoxic rat model of pulmonary arterial hypertension. Pulm Circ 2017; 7:522-530. [PMID: 28597764 PMCID: PMC5467946 DOI: 10.1177/2045893217709001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease characterized by significant vascular remodeling within the lung. Clinical computed tomography (CT) scans are routinely used to aid in PAH diagnosis. Animal models, including the Sugen-hypoxic rat model (SU/hyp), of PAH closely mimic human PAH development. We have previously used micro-computed tomography (microCT) to find extensive right lung vascular remodeling in the SU/hyp. We hypothesized that the individual right lung lobes may not contribute equally to overall lung vascular remodeling. Sprague-Dawley rats were subjected to a subcutaneous injection of vascular endothelial growth factor receptor blocker (Sugen 5416) and subsequently exposed to chronic hypoxic conditions (10% O2) for three weeks. Following perfusion of the lung vasculature with an opaque resin (Microfil), the right lung lobes were microCT-imaged with a 10-µm voxel resolution and 3D morphometry analysis was performed separately on each lobe. As expected, we found a significantly lower ratio of vascular volume to total lobe volume in the SU/hyp compared with the control, but only in the distal lobes (inferior: 0.23 [0.21–0.30] versus 0.35 [0.27–0.43], P = 0.02; accessory: 0.27 [0.25–0.33] versus 0.37 [0.29–0.43], P = 0.06). Overall, we observed significantly fewer continuous blood vessels and reduced vascular density while having greater vascular lumen diameters in the distal lobes of both groups (P < 0.05). In addition, the vascular separation within the SU/hyp lobes and the vascular surface area to volume ratio were significantly greater in the SU/hyp lobes compared with controls (P < 0.03). Results for the examined parameters support the overall extensive vascular remodeling in the SU/hyp model and suggest this may be lobe-dependent.
Collapse
Affiliation(s)
- Erin M Faight
- 1 Lupus Center of Excellence - Autoimmunity Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA, USA
| | - Kostas Verdelis
- 2 Division of Endodontics at the Department of Restorative Dentistry and Comprehensive Care and the Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lee Zourelias
- 3 Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA, USA
| | - Rong Chong
- 2 Division of Endodontics at the Department of Restorative Dentistry and Comprehensive Care and the Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Raymond L Benza
- 3 Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA, USA
| | - Kelly J Shields
- 1 Lupus Center of Excellence - Autoimmunity Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Gao Y, Cornfield DN, Stenmark KR, Thébaud B, Abman SH, Raj JU. Unique aspects of the developing lung circulation: structural development and regulation of vasomotor tone. Pulm Circ 2017; 6:407-425. [PMID: 27942377 DOI: 10.1086/688890] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This review summarizes our current knowledge on lung vasculogenesis and angiogenesis during normal lung development and the regulation of fetal and postnatal pulmonary vascular tone. In comparison to that of the adult, the pulmonary circulation of the fetus and newborn displays many unique characteristics. Moreover, altered development of pulmonary vasculature plays a more prominent role in compromised pulmonary vasoreactivity than in the adult. Clinically, a better understanding of the developmental changes in pulmonary vasculature and vasomotor tone and the mechanisms that are disrupted in disease states can lead to the development of new therapies for lung diseases characterized by impaired alveolar structure and pulmonary hypertension.
Collapse
Affiliation(s)
- Yuangsheng Gao
- Department of Pediatrics, University of Illinois College of Medicine at Chicago, Chicago, Illinois, USA
| | - David N Cornfield
- Section of Pulmonary and Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Kurt R Stenmark
- Section of Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute; and Children's Hospital of Eastern Ontario Research Institute; University of Ottawa, Ottawa, Ontario, Canada
| | - Steven H Abman
- Section of Pulmonary Medicine, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - J Usha Raj
- Department of Pediatrics, University of Illinois College of Medicine at Chicago, Chicago, Illinois, USA
| |
Collapse
|
19
|
Thébaud B. Impaired Lung Development and Neonatal Lung Diseases: A Never-Ending (Vascular) Story. J Pediatr 2017; 180:11-13. [PMID: 27793337 DOI: 10.1016/j.jpeds.2016.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Bernard Thébaud
- Department of Pediatrics Children's Hospital of Eastern Ontario and Children's Hospital of Ontario Research Institute (CHEORI); Sinclair Centre for Regenerative Medicine Ottawa Hospital Research Institute (OHRI); Department of Cellular and Molecular Biology University of Ottawa Ottawa, Ontario, Canada.
| |
Collapse
|
20
|
PATOLOGÍA PULMONAR CONGÉNITA: EVALUACIÓN Y MANEJO PERINATAL. REVISTA MÉDICA CLÍNICA LAS CONDES 2016. [DOI: 10.1016/j.rmclc.2016.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Abstract
The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Latrunculin B modulates electrophysiological characteristics and arrhythmogenesis in pulmonary vein cardiomyocytes. Clin Sci (Lond) 2016; 130:721-32. [PMID: 26839418 DOI: 10.1042/cs20150593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/02/2016] [Indexed: 01/28/2023]
Abstract
AF (atrial fibrillation) is the most common sustained arrhythmia, and the PVs (pulmonary veins) play a critical role in triggering AF. Stretch causes structural remodelling, including cytoskeleton rearrangement, which may play a role in the genesis of AF. Lat-B (latrunculin B), an inhibitor of actin polymerization, is involved in Ca(2+) regulation. However, it is unclear whether Lat-B directly modulates the electrophysiological characteristics and Ca(2+) homoeostasis of the PVs. Conventional microelectrodes, whole-cell patch-clamp, and the fluo-3 fluorimetric ratio technique were used to record ionic currents and intracellular Ca(2+) within isolated rabbit PV preparations, or within isolated single PV cardiomyocytes, before and after administration of Lat-B (100 nM). Langendorff-perfused rabbit hearts were exposed to acute and continuous atrial stretch, and we studied PV electrical activity. Lat-B (100 nM) decreased the spontaneous electrical activity by 16±4% in PV preparations. Lat-B (100 nM) decreased the late Na(+) current, L-type Ca(2+) current, Na(+)/Ca(2+) exchanger current, and stretch-activated BKCa current, but did not affect the Na(+) current in PV cardiomyocytes. Lat-B reduced the transient outward K(+) current and ultra-rapid delayed rectifier K(+) current, but increased the delayed rectifier K(+) current in isolated PV cardiomyocytes. In addition, Lat-B (100 nM) decreased intracellular Ca(2+) transient and sarcoplasmic reticulum Ca(2+) content in PV cardiomyocytes. Moreover, Lat-B attenuated stretch-induced increased spontaneous electrical activity and trigger activity. The effects of Lat-B on the PV spontaneous electrical activity were attenuated in the presence of Y-27632 [10 μM, a ROCK (Rho-associated kinase) inhibitor] and cytochalasin D (10 μM, an actin polymerization inhibitor). In conclusion, Lat-B regulates PV electrophysiological characteristics and attenuates stretch-induced arrhythmogenesis.
Collapse
|
23
|
Abstract
Truncus arteriosus communis is a rare CHD, accounting for only 1% of all congenital cardiac abnormalities. It has been associated with other malformations of the heart, mainly truncal valve (bicuspid/quadricuspid) and aortic arch abnormalities such as right, interrupted, and hypoplastic aortic arch. Cor tratriatrum sinistrum is another rare CHD, and it has been associated with other cardiac defects such as anomalous pulmonary venous drainage, ventricular septal defect, coarctation of the aorta, and tetralogy of Fallot. The combination of truncus arteriosus communis and cor tratriatrum sinistrum has not been reported so far. This case study describes the diagnosis of a unique case, including these two very rare cardiac defects and the successful surgical treatment thereafter.
Collapse
|
24
|
|
25
|
Persistent primitive hepatic venous plexus with Scimitar syndrome: description of a case and review of the literature. Cardiol Young 2015; 25:1009-11. [PMID: 25249237 DOI: 10.1017/s1047951114001498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Persistent primitive hepatic venous plexus is an anomaly of the systemic venous return characterised by postnatal persistence of the foetal intrahepatic venous drainage. Scimitar syndrome is a condition that consists of partial anomalous pulmonary venous return of the right pulmonary venous drainage into the systemic veins, associated with pulmonary artery hypoplasia with the underdeveloped right lung, pulmonary sequestration, and cardiac malposition. Both conditions are rare and together have been rarely described in the literature. We report the first case of this combination of lesions imaged by cardiac magnetic resonance imaging with a three-dimensional reconstruction and reviewed the literature to characterise this uncommon combination.
Collapse
|
26
|
Evans WN, Acherman RJ, Winn BJ, Yumiaco NS, Galindo A, Rothman A, Restrepo H. Fontan hepatic fibrosis and pulmonary vascular development. Pediatr Cardiol 2015; 36:657-61. [PMID: 25381625 DOI: 10.1007/s00246-014-1061-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/31/2014] [Indexed: 11/25/2022]
Abstract
Fontan patients are at risk for hepatic fibrosis; however, risk factors are unclear. We performed a multivariate analysis in a small cohort of 14 patients (7-24 years old, mean 15) with Fontan circulation, undergoing cardiac catheterization and transvenous liver biopsies, all demonstrating fibrosis. We found by stepwise regression analysis that the history of pulmonary atresia was a predictor of higher total hepatic fibrosis scores than a history of unobstructed pulmonary blood flow (p = 0.002). Other variables including age, time from Fontan, hemodynamic measurements, and laboratory values were not predictive of total fibrosis scores at p values <0.05. Hepatic fibrosis scores between those born with pulmonary atresia versus unrestricted pulmonary blood flow may reflect differences in pulmonary circulatory physiology, resulting from differences in pulmonary vascular development.
Collapse
Affiliation(s)
- William N Evans
- Children's Heart Center - Nevada, 3006 S. Maryland Pkwy Ste. 690, Las Vegas, NV, 89109, USA,
| | | | | | | | | | | | | |
Collapse
|
27
|
Kool H, Mous D, Tibboel D, de Klein A, Rottier RJ. Pulmonary vascular development goes awry in congenital lung abnormalities. ACTA ACUST UNITED AC 2014; 102:343-58. [PMID: 25424472 DOI: 10.1002/bdrc.21085] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/29/2014] [Indexed: 01/04/2023]
Abstract
Pulmonary vascular diseases of the newborn comprise a wide range of pathological conditions with developmental abnormalities in the pulmonary vasculature. Clinically, pulmonary arterial hypertension (PH) is characterized by persistent increased resistance of the vasculature and abnormal vascular response. The classification of PH is primarily based on clinical parameters instead of morphology and distinguishes five groups of PH. Congenital lung anomalies, such as alveolar capillary dysplasia (ACD) and PH associated with congenital diaphragmatic hernia (CDH), but also bronchopulmonary dysplasia (BPD), are classified in group three. Clearly, tight and correct regulation of pulmonary vascular development is crucial for normal lung development. Human and animal model systems have increased our knowledge and make it possible to identify and characterize affected pathways and study pivotal genes. Understanding of the normal development of the pulmonary vasculature will give new insights in the origin of the spectrum of rare diseases, such as CDH, ACD, and BPD, which render a significant clinical problem in neonatal intensive care units around the world. In this review, we describe normal pulmonary vascular development, and focus on four diseases of the newborn in which abnormal pulmonary vascular development play a critical role in morbidity and mortality. In the future perspective, we indicate the lines of research that seem to be very promising for elucidating the molecular pathways involved in the origin of congenital pulmonary vascular disease.
Collapse
Affiliation(s)
- Heleen Kool
- Department of Pediatric Surgery of the Erasmus MC, Sophia Children's Hospital, Rotterdam, the Netherlands
| | | | | | | | | |
Collapse
|
28
|
Heching HJ, Turner M, Farkouh-Karoleski C, Krishnan U. Pulmonary vein stenosis and necrotising enterocolitis: is there a possible link with necrotising enterocolitis? Arch Dis Child Fetal Neonatal Ed 2014; 99:F282-5. [PMID: 24646617 DOI: 10.1136/archdischild-2013-304740] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES While acquired pulmonary vein stenosis (PVS) is an often lethal anomaly with poor long-term prognosis and high mortality, little is known about the causes of this disease process. The purpose of this study was to describe the possible association between acquired PVS and necrotising enterocolitis (NEC) in premature infants. STUDY DESIGN We performed a retrospective review of all premature infants (<37 weeks' gestation) diagnosed with acquired PVS in our institution. Babies with congenital heart disease with known association with PVS were excluded. The hospital records were reviewed for prior history of NEC, as defined by Bell's staging criteria. We also reviewed serial echocardiograms performed during their hospitalisation. Outcomes assessed were worsening or resolution of the PVS and death. RESULTS Twenty patients met inclusion criteria and were diagnosed with acquired PVS. The median gestational age was 27 weeks. 50% (10/20) of the infants had NEC during their hospital course. The NEC group had significantly lower birth weights in comparison to the non-NEC group. There was no difference between groups with regards to the age at diagnosis of PVS. The mean gradient across the pulmonary veins was higher in the NEC group, as was mortality. CONCLUSIONS There appears to be a high incidence of NEC in premature infants who are diagnosed with acquired PVS. Future large controlled studies are needed to further analyse this association and to evaluate the possible role of abdominal inflammation in the development of PVS in premature infants.
Collapse
|
29
|
Papamatheakis DG, Blood AB, Kim JH, Wilson SM. Antenatal hypoxia and pulmonary vascular function and remodeling. Curr Vasc Pharmacol 2014; 11:616-40. [PMID: 24063380 DOI: 10.2174/1570161111311050006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/25/2012] [Accepted: 07/12/2012] [Indexed: 01/02/2023]
Abstract
This review provides evidence that antenatal hypoxia, which represents a significant and worldwide problem, causes prenatal programming of the lung. A general overview of lung development is provided along with some background regarding transcriptional and signaling systems of the lung. The review illustrates that antenatal hypoxic stress can induce a continuum of responses depending on the species examined. Fetuses and newborns of certain species and specific human populations are well acclimated to antenatal hypoxia. However, antenatal hypoxia causes pulmonary vascular disease in fetuses and newborns of most mammalian species and humans. Disease can range from mild pulmonary hypertension, to severe vascular remodeling and dangerous elevations in pressure. The timing, length, and magnitude of the intrauterine hypoxic stress are important to disease development, however there is also a genetic-environmental relationship that is not yet completely understood. Determining the origins of pulmonary vascular remodeling and pulmonary hypertension and their associated effects is a challenging task, but is necessary in order to develop targeted therapies for pulmonary hypertension in the newborn due to antenatal hypoxia that can both treat the symptoms and curtail or reverse disease progression.
Collapse
Affiliation(s)
- Demosthenes G Papamatheakis
- Center for Perinatal Biology, Loma Linda University School of Medicine, 11234 Anderson Street, Loma Linda, 92350 CA, USA.
| | | | | | | |
Collapse
|
30
|
Suzuki T, Suzuki S, Fujino N, Ota C, Yamada M, Suzuki T, Yamaya M, Kondo T, Kubo H. c-Kit immunoexpression delineates a putative endothelial progenitor cell population in developing human lungs. Am J Physiol Lung Cell Mol Physiol 2014; 306:L855-65. [PMID: 24583878 DOI: 10.1152/ajplung.00211.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Expression of c-Kit and its ligand, stem cell factor (SCF), in developing human lung tissue was investigated by immunohistochemistry. Twenty-eight human fetal lungs [age range 13 to 38 gestational wk (GW)] and 12 postnatal lungs (age range 1-79 yr) were evaluated. We identified c-Kit(+) cells in the lung mesenchyme as early as 13 GW. These mesenchymal c-Kit(+) cells in the lung did not express mast cell tryptase or α-smooth muscle actin. However, these cells did express CD34, VEGFR2, and Tie-2, indicating their endothelial lineage. Three-dimensional reconstructions of confocal laser scanning images revealed that c-Kit(+) cells displayed a closed-end tube formation that did not contain hematopoietic cells. From the pseudoglandular phase to the canalicular phase, c-Kit(+) cells appeared to continuously proliferate, to connect with central pulmonary vessels, and finally, to develop the lung capillary plexus. The spatial distribution of c-Kit- and SCF-positive cells was also demonstrated, and these cells were shown to be in close association. Our results suggest that c-Kit expression in early fetal lungs marks a progenitor population that is restricted to endothelial lineage. This study also suggests the potential involvement of c-Kit signaling in lung vascular development.
Collapse
Affiliation(s)
- Takaya Suzuki
- Dept. of Advanced Preventive Medicine for Infectious Disease, Tohoku Univ. School of Medicine, 2-1 Seiryoumachi, Aobaku, Sendai 980-8575, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
L C P, R P, D'Souza AS, Bhat KMR. Variations in the pulmonary venous ostium in the left atrium and its clinical importance. J Clin Diagn Res 2014; 8:10-1. [PMID: 24701467 DOI: 10.7860/jcdr/2014/7649.3992] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/20/2013] [Indexed: 11/24/2022]
Abstract
INTRODUCTION During early embryonic development, absorption of pulmonary venous network by the left primitive atrial chamber results in opening of four pulmonary veins which drain independently into its chamber. The extent of absorption and hence, the number of pulmonary veins which open into the left atrium, may vary. As only few studies have been done, which have shown such variations, the present study was done to evaluate the possible variations in the pulmonary veins which opened into the left atrium. MATERIALS AND METHODS Fifty formalin fixed adult cadaveric hearts were studied for variations in the opening of the pulmonary veins into left atrium. RESULTS Our results showed that 68% of the hearts which were studied, showed usual pattern of 2 pulmonary veins on either side, while remaining 32 % hearts showed variations in the number of pulmonary veins which opened. Twelve percent of the hearts showed 2 left and 3 right pulmonary veins, 14% of hearts showed 2 left and 1 right veins, 4% hearts showed 1 left and 2 right veins and 2% hearts showed 1 left and 4 right pulmonary veins opening into the left atrium. CONCLUSION Knowledge on such variations gains significance in isolation for radiofrequency ablation as a treatment for atrial fibrillation.
Collapse
Affiliation(s)
- Prasanna L C
- Associate Professor, Department of Anatomy, Kasturba Medical Collage , Manipal University, Manipal, India
| | - Praveena R
- Post-Graduate student, Department of Anatomy, Kasturba Medical Collage , Manipal University, Manipal, India
| | - A S D'Souza
- Professor and Head, Department of Anatomy, Kasturba Medical Collage , Manipal University, Manipal, India
| | - Kumar M R Bhat
- Additional Professor, Department of Anatomy, Kasturba Medical Collage , Manipal University, Manipal, India
| |
Collapse
|
32
|
Mlczoch E, Schmidt L, Schmid M, Kasprian G, Frantal S, Berger-Kulemann V, Prayer D, Michel-Behnke I, Salzer-Muhar U. Fetal cardiac disease and fetal lung volume: an in utero
MRI investigation. Prenat Diagn 2014; 34:273-8. [DOI: 10.1002/pd.4308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/10/2013] [Accepted: 12/16/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Elisabeth Mlczoch
- Division of Pediatric Cardiology, Pediatric Heart Center Vienna, Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Austria
| | - Lisa Schmidt
- Division of Pediatric Cardiology, Pediatric Heart Center Vienna, Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Austria
| | - Maximilian Schmid
- Division of Obstetrics and Fetomaternal Medicine, Department of Obstetrics and Gynecology; Medical University of Vienna; Austria
| | - Gregor Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Radiology; Medical University Vienna; Austria
| | - Sophie Frantal
- Department for Medical Statistics; Medical University of Vienna; Austria
| | - Vanessa Berger-Kulemann
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Radiology; Medical University Vienna; Austria
| | - Daniela Prayer
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Radiology; Medical University Vienna; Austria
| | - Ina Michel-Behnke
- Division of Pediatric Cardiology, Pediatric Heart Center Vienna, Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Austria
| | - Ulrike Salzer-Muhar
- Division of Pediatric Cardiology, Pediatric Heart Center Vienna, Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Austria
| |
Collapse
|
33
|
Hunt JM, Bethea B, Liu X, Gandjeva A, Mammen PPA, Stacher E, Gandjeva MR, Parish E, Perez M, Smith L, Graham BB, Kuebler WM, Tuder RM. Pulmonary veins in the normal lung and pulmonary hypertension due to left heart disease. Am J Physiol Lung Cell Mol Physiol 2013; 305:L725-36. [PMID: 24039255 DOI: 10.1152/ajplung.00186.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite the importance of pulmonary veins in normal lung physiology and the pathobiology of pulmonary hypertension with left heart disease (PH-LHD), pulmonary veins remain largely understudied. Difficult to identify histologically, lung venous endothelium or smooth muscle cells display no unique characteristic functional and structural markers that distinguish them from pulmonary arteries. To address these challenges, we undertook a search for unique molecular markers in pulmonary veins. In addition, we addressed the expression pattern of a candidate molecular marker and analyzed the structural pattern of vascular remodeling of pulmonary veins in a rodent model of PH-LHD and in lung tissue of patients with PH-LHD obtained at time of placement on a left ventricular assist device. We detected urokinase plasminogen activator receptor (uPAR) expression preferentially in normal pulmonary veins of mice, rats, and human lungs. Expression of uPAR remained elevated in pulmonary veins of rats with PH-LHD; however, we also detected induction of uPAR expression in remodeled pulmonary arteries. These findings were validated in lungs of patients with PH-LHD. In selected patients with sequential lung biopsy at the time of removal of the left ventricular assist device, we present early data suggesting improvement in pulmonary hemodynamics and venous remodeling, indicating potential regression of venous remodeling in response to assist device treatment. Our data indicate that remodeling of pulmonary veins is an integral part of PH-LHD and that pulmonary veins share some key features present in remodeled yet not normotensive pulmonary arteries.
Collapse
Affiliation(s)
- James M Hunt
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Univ. of Colorado Denver, Anschutz Medical Campus, Research 2 - 9th floor, Rm. 9001; Mail stop C-272, 12700 East 19th Ave., Aurora, CO 80045.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Aihara N, Horiuchi N, Hikichi N, Ochiai M, Ishikawa Y, Oishi K. Total anomalous pulmonary venous connection in a chicken. Avian Dis 2013; 57:140-2. [PMID: 23678743 DOI: 10.1637/10210-041712-case.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This report describes a case of total anomalous pulmonary venous connection (TAPVC) in a 5-wk-old male white leghorn chicken that presented with growth retardation. This chicken was a specific-pathogen-free chicken bred in an isolator. At 5 wk of age, the chicken was euthanatized and autopsied. Macroscopically, the right ventricle and right atrium were significantly enlarged whereas the left atrium was small and blind-ending with no connection to the pulmonary veins. The pulmonary veins were connected directly to the right atrium. The above abnormality was accompanied by an ostium secundum-type atrial septal defect. No other malformations were observed. TAPVC is a very rare congenital cardiac abnormality that has not been reported in avian species to date.
Collapse
Affiliation(s)
- Naoyuki Aihara
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The pulmonary circulation is a highly specialized vascular bed that physically and functionally connects the heart and the lungs. The interdependence of these two organs is illustrated in embryonic development, when the lung endoderm protrudes into the surrounding mesoderm as the heart tube elongates and folds into structurally distinct chambers. The pulmonary vascular precursors then undergo highly stereotyped cellular maturation and patterning to form a multilayered vascular network that parallels the airways and links the arterial and venous poles of the heart. Upon the first breath, the mature pulmonary circulation is poised to receive the entire cardiac output for efficient gas exchange, and deliver oxygenated blood to the systemic circulation. Disruption of this developmental process can result in congenital defects such as the syndrome tetralogy of Fallot, or differentiation defects leading to persistent pulmonary hypertension of the newborn. Prior studies into the role of angiogenesis and vasculogenesis in pulmonary vascular development have not clearly yielded the identity of pulmonary vascular precursors, or the signals coordinating vascular maturation. We outline key questions on pulmonary vascular development that consider the role of heart-lung interaction in promoting the differentiation and patterning of the pulmonary vasculature.
Collapse
Affiliation(s)
- Tien Peng
- Department of Medicine, Philadelphia, Pennsylvania, USA ; Division of Pulmonary and Critical Care, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
36
|
Pereda J, Sulz L, San Martin S, Godoy-Guzmán C. The human lung during the embryonic period: vasculogenesis and primitive erythroblasts circulation. J Anat 2013; 222:487-94. [PMID: 23520979 DOI: 10.1111/joa.12042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 12/11/2022] Open
Abstract
Vascularization and blood cell circulation are crucial steps during lung development. However, how blood vessels are generated and when lung circulation is initiated is still a matter of debate. A morpho-functional analysis of pulmonary vasculature was done using human lung samples between 31 and 56 days post-fertilization (pf). The immunolocalization and expression of CD31, CD34, FLT-1, KDR and the vascular growth factor (VEGF) were investigated. The results showed that at day 31 pf, a capillary plexus is already installed, and a few primitive erythroblasts were seen for the first time within the lumen of some blood vessels. Around day 45 pf, an increase in the amount of primitive erythroblasts was detected in the parenchyma surrounding the distal segment of the bronchial tree. The expression of FLT-1, KDR, CD31 and CD34 was observed in endothelial cells of the capillary plexus and the VEGF was detected in the endodermal epithelium. Our results support the hypothesis that the initial formation of the capillary plexus around the tip of the growing airway bud occurs by vasculogenesis, probably regulated by VEGF and KDR. We also showed a very early onset of blood circulation, starting from day 34 pf, concomitant with the generation of new lung buds. In addition, the increasing number of primitive erythroblasts from week 6 onward, associated with a change in the shape of the blood vessels, suggests a remodeling process and that the generation of new distal vessels at the tip of the lung bud occurs mainly by a process of angiogenesis.
Collapse
Affiliation(s)
- J Pereda
- Departamento de Embriología Humana, Escuela de Medicina, Universidad de Santiago de Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
37
|
Murillo H, Cutalo MJ, Jones RP, Lane MJ, Fleischmann D, Restrepo CS. Pulmonary Circulation Imaging: Embryology and Normal Anatomy. Semin Ultrasound CT MR 2012; 33:473-84. [DOI: 10.1053/j.sult.2012.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Maina JN. Comparative molecular developmental aspects of the mammalian- and the avian lungs, and the insectan tracheal system by branching morphogenesis: recent advances and future directions. Front Zool 2012; 9:16. [PMID: 22871018 PMCID: PMC3502106 DOI: 10.1186/1742-9994-9-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/18/2012] [Indexed: 02/07/2023] Open
Abstract
Gas exchangers fundamentally form by branching morphogenesis (BM), a mechanistically profoundly complex process which derives from coherent expression and regulation of multiple genes that direct cell-to-cell interactions, differentiation, and movements by signaling of various molecular morphogenetic cues at specific times and particular places in the developing organ. Coordinated expression of growth-instructing factors determines sizes and sites where bifurcation occurs, by how much a part elongates before it divides, and the angle at which branching occurs. BM is essentially induced by dualities of factors where through feedback- or feed forward loops agonists/antagonists are activated or repressed. The intricate transactions between the development orchestrating molecular factors determine the ultimate phenotype. From the primeval time when the transformation of unicellular organisms to multicellular ones occurred by systematic accretion of cells, BM has been perpetually conserved. Canonical signalling, transcriptional pathways, and other instructive molecular factors are commonly employed within and across species, tissues, and stages of development. While much still remain to be elucidated and some of what has been reported corroborated and reconciled with rest of existing data, notable progress has in recent times been made in understanding the mechanism of BM. By identifying and characterizing the morphogenetic drivers, and markers and their regulatory dynamics, the elemental underpinnings of BM have been more precisely explained. Broadening these insights will allow more effective diagnostic and therapeutic interventions of developmental abnormalities and pathologies in pre- and postnatal lungs. Conservation of the molecular factors which are involved in the development of the lung (and other branched organs) is a classic example of nature's astuteness in economically utilizing finite resources. Once purposefully formed, well-tested and tried ways and means are adopted, preserved, and widely used to engineer the most optimal phenotypes. The material and time costs of developing utterly new instruments and routines with every drastic biological change (e.g. adaptation and speciation) are circumvented. This should assure the best possible structures and therefore functions, ensuring survival and evolutionary success.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park 2006, P,O, Box 524, Johannesburg, South Africa.
| |
Collapse
|
39
|
Machado RD. The molecular genetics and cellular mechanisms underlying pulmonary arterial hypertension. SCIENTIFICA 2012; 2012:106576. [PMID: 24278664 PMCID: PMC3820608 DOI: 10.6064/2012/106576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/19/2012] [Indexed: 05/14/2023]
Abstract
Pulmonary arterial hypertension (PAH) is an incurable disorder clinically characterised by a sustained elevation of mean arterial pressure in the absence of systemic involvement. As the adult circulation is a low pressure, low resistance system, PAH represents a reversal to a foetal state. The small pulmonary arteries of patients exhibit luminal occlusion resultant from the uncontrolled growth of endothelial and smooth muscle cells. This vascular remodelling is comprised of hallmark defects, most notably the plexiform lesion. PAH may be familial in nature but the majority of patients present with spontaneous disease or PAH associated with other complications. In this paper, the molecular genetic basis of the disorder is discussed in detail ranging from the original identification of the major genetic contributant to PAH and moving on to current next-generation technologies that have led to the rapid identification of additional genetic risk factors. The impact of identified mutations on the cell is examined, particularly, the determination of pathways disrupted in disease and critical to pulmonary vascular maintenance. Finally, the application of research in this area to the design and development of novel treatment options for patients is addressed along with the future directions PAH research is progressing towards.
Collapse
Affiliation(s)
- Rajiv D. Machado
- School of Life Sciences, Faculty of Science, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
- *Rajiv D. Machado:
| |
Collapse
|
40
|
Yamamoto M, Abe SI, Rodríguez-Vázquez JF, Fujimiya M, Murakami G, Ide Y. Immunohistochemical distribution of desmin in the human fetal heart. J Anat 2011; 219:253-8. [PMID: 21496015 PMCID: PMC3162244 DOI: 10.1111/j.1469-7580.2011.01382.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2011] [Indexed: 11/29/2022] Open
Abstract
Desmin is a member of the intermediate filaments, which play crucial roles in the maturation, maintenance and recovery of muscle fibers. Its expression has been examined in human cardiac muscle, rat and chicken, but its spatial distribution in the human fetal heart has not been described. The present study investigated desmin expression in the human fetal heart and associated great vessels in 14 mid-term fetuses from 9 to 18 weeks of gestation. Immunoreactivity for myosin heavy chain (MHC) and alpha smooth muscle actin (α-SMA), as well as neuron-specific enolase (NSE), was also examined. Increased expression of desmin from 9 to 18 weeks was clearly localized in the atrial wall, the proximal portions of the pulmonary vein and vena cava, and around the atrioventricular node. Desmin-positive structures were also positive for MHC. Meanwhile, the great vessels were also positive for α-SMA. The distribution of desmin exhibited a pattern quite different from that described in previous studies of rat and chicken. Thus, desmin in the human fetal heart does not seem to play a general role in myocardial differentiation but rather a specific role closely related to the maturation of the α-isozyme of MHC. Desmin expression in the developing fetal heart also appeared to be induced by mechanical stress due to the involvement of venous walls against the atrium.
Collapse
|
41
|
Development of the pulmonary vein and the systemic venous sinus: an interactive 3D overview. PLoS One 2011; 6:e22055. [PMID: 21779373 PMCID: PMC3133620 DOI: 10.1371/journal.pone.0022055] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 06/16/2011] [Indexed: 11/19/2022] Open
Abstract
Knowledge of the normal formation of the heart is crucial for the understanding of cardiac pathologies and congenital malformations. The understanding of early cardiac development, however, is complicated because it is inseparably associated with other developmental processes such as embryonic folding, formation of the coelomic cavity, and vascular development. Because of this, it is necessary to integrate morphological and experimental analyses. Morphological insights, however, are limited by the difficulty in communication of complex 3D-processes. Most controversies, in consequence, result from differences in interpretation, rather than observation. An example of such a continuing debate is the development of the pulmonary vein and the systemic venous sinus, or “sinus venosus”. To facilitate understanding, we present a 3D study of the developing venous pole in the chicken embryo, showing our results in a novel interactive fashion, which permits the reader to form an independent opinion. We clarify how the pulmonary vein separates from a greater vascular plexus within the splanchnic mesoderm. The systemic venous sinus, in contrast, develops at the junction between the splanchnic and somatic mesoderm. We discuss our model with respect to normal formation of the heart, congenital cardiac malformations, and the phylogeny of the venous tributaries.
Collapse
|
42
|
Farkas L, Gauldie J, Voelkel NF, Kolb M. Pulmonary Hypertension and Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2011; 45:1-15. [DOI: 10.1165/rcmb.2010-0365tr] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
43
|
Abstract
During the development of the pulmonary vasculature in the fetus, many structural and functional changes occur to prepare the lung for the transition to air breathing. The development of the pulmonary circulation is genetically controlled by an array of mitogenic factors in a temporo-spatial order. With advancing gestation, pulmonary vessels acquire increased vasoreactivity. The fetal pulmonary vasculature is exposed to a low oxygen tension environment that promotes high intrinsic myogenic tone and high vasocontractility. At birth, a dramatic reduction in pulmonary arterial pressure and resistance occurs with an increase in oxygen tension and blood flow. The striking hemodynamic differences in the pulmonary circulation of the fetus and newborn are regulated by various factors and vasoactive agents. Among them, nitric oxide, endothelin-1, and prostaglandin I2 are mainly derived from endothelial cells and exert their effects via cGMP, cAMP, and Rho kinase signaling pathways. Alterations in these signaling pathways may lead to vascular remodeling, high vasocontractility, and persistent pulmonary hypertension of the newborn.
Collapse
Affiliation(s)
- Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| | - J. Usha Raj
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| |
Collapse
|
44
|
Peng G, Wang J, Lu W, Ran P. Isolation and primary culture of rat distal pulmonary venous smooth muscle cells. Hypertens Res 2010; 33:308-13. [DOI: 10.1038/hr.2009.234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Abstract
Lung development is orchestrated by highly integrated morphogenic programs of interrelated patterns of gene and protein expression. Injury to the developing lung in the canalicular and saccular phases of lung development alters subsequent alveolar and vascular development resulting in simplified alveolar structures, dysmorphic capillary configuration, variable interstitial cellularity and fibroproliferation that are characteristic of the 'new' bronchopulmonary dysplasia (BPD). Fetal and neonatal infection, abnormal stretch of the developing airways and alveoli, altered expression of surfactant proteins (or genetically altered proteins), polymorphisms of genes encoding for vascular endothelial growth factors, and reactive oxygen species result in imparied gas exchange in the developing lung. However, the 'new' BPD represents only one form of neonatal chronic lung disease and the consistent use of both the physiologic definition and severity scale would provide greater accuracy in determining the impact of the disease currently defined by its treatment. Our present labelling of the clinical state of oxygen supplementation and/or ventilatory support at 36 weeks' postmenstrual age and the histopathologic severity of alveolar arrest and vascular 'simplification' may not always be predictive of the degree of altered lung development and thus longer-term pulmonary function evaluations are needed to determine the impact of this disorder in specific infants. The proposed role of novel molecular therapies, and the combined effects of currently established therapies, as well as exogenous surfactant and inhaled nitric oxide or repetitive surfactant dosing, on the severity and incidence of new BPD hold considerable promise for reducing the long-term pulmonary morbidity among infants delivered prematurely.
Collapse
|
46
|
Morrell NW, Adnot S, Archer SL, Dupuis J, Lloyd Jones P, MacLean MR, McMurtry IF, Stenmark KR, Thistlethwaite PA, Weissmann N, Yuan JXJ, Weir EK. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 2009; 54:S20-S31. [PMID: 19555855 PMCID: PMC2790324 DOI: 10.1016/j.jacc.2009.04.018] [Citation(s) in RCA: 624] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 04/15/2009] [Indexed: 11/15/2022]
Abstract
Pulmonary arterial hypertension (PAH) is caused by functional and structural changes in the pulmonary vasculature, leading to increased pulmonary vascular resistance. The process of pulmonary vascular remodeling is accompanied by endothelial dysfunction, activation of fibroblasts and smooth muscle cells, crosstalk between cells within the vascular wall, and recruitment of circulating progenitor cells. Recent findings have reestablished the role of chronic vasoconstriction in the remodeling process. Although the pathology of PAH in the lung is well known, this article is concerned with the cellular and molecular processes involved. In particular, we focus on the role of the Rho family guanosine triphosphatases in endothelial function and vasoconstriction. The crosstalk between endothelium and vascular smooth muscle is explored in the context of mutations in the bone morphogenetic protein type II receptor, alterations in angiopoietin-1/TIE2 signaling, and the serotonin pathway. We also review the role of voltage-gated K(+) channels and transient receptor potential channels in the regulation of cytosolic [Ca(2+)] and [K(+)], vasoconstriction, proliferation, and cell survival. We highlight the importance of the extracellular matrix as an active regulator of cell behavior and phenotype and evaluate the contribution of the glycoprotein tenascin-c as a key mediator of smooth muscle cell growth and survival. Finally, we discuss the origins of a cell type critical to the process of pulmonary vascular remodeling, the myofibroblast, and review the evidence supporting a contribution for the involvement of endothelial-mesenchymal transition and recruitment of circulating mesenchymal progenitor cells.
Collapse
Affiliation(s)
- Nicholas W Morrell
- Pulmonary Vascular Diseases Unit, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom.
| | - Serge Adnot
- Medical School of Créteil, Hôpital Henri Mondor, Créteil, France
| | | | - Jocelyn Dupuis
- Research Center of the Montreal Heart Institute, Department of Medicine, University of Montreal, Montreal, Québec, Canada
| | - Peter Lloyd Jones
- University of Pennsylvania, Penn/CMREF Center for Pulmonary Arterial Hypertension Research, Philadelphia, Pennsylvania
| | - Margaret R MacLean
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Ivan F McMurtry
- Departments of Pharmacology and Medicine and Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Kurt R Stenmark
- Developmental Lung Biology Laboratory and Pediatric Critical Care Medicine, University of Colorado at Denver and Health Sciences Center, Denver, Colorado
| | | | - Norbert Weissmann
- University of Giessen Lung Center, Department of Internal Medicine II/V, Justus-Liebig-University, Giessen, Germany
| | - Jason X-J Yuan
- Department of Medicine, University of California San Diego, La Jolla, California
| | - E Kenneth Weir
- University of Minnesota, Veterans Affairs Medical Center, Minneapolis, Minnesota
| |
Collapse
|
47
|
Douglas YL, Jongbloed MR, den Hartog WC, Bartelings MM, Bogers AJ, Ebels T, DeRuiter MC, Gittenberger-de Groot AC. Pulmonary vein and atrial wall pathology in human total anomalous pulmonary venous connection. Int J Cardiol 2009; 134:302-12. [DOI: 10.1016/j.ijcard.2008.11.098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Accepted: 11/15/2008] [Indexed: 10/21/2022]
|
48
|
Ribatti D, Nico B, Crivellato E. Morphological and molecular aspects of physiological vascular morphogenesis. Angiogenesis 2009; 12:101-11. [PMID: 19130273 DOI: 10.1007/s10456-008-9125-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 11/20/2008] [Indexed: 12/24/2022]
Abstract
The cardiovascular system plays a crucial role in vertebrate development and homeostasis. Several genetic and epigenetic mechanisms are involved in the early development of the vascular system. During embryonal life, blood vessels first appear as the result of vasculogenesis, whereas remodeling of the primary vascular plexus occurs by angiogenesis. Many tissue-derived factors are involved in blood vessel formation and evidence is emerging that endothelial cells themselves represent a source of instructive signals to non-vascular tissue cells during organ development. This review article summarizes our knowledge concerning the principal factors involved in the regulation of vascular morphogenesis.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Piazza G. Cesare, 11, Policlinico 70124, Bari, Italy.
| | | | | |
Collapse
|
49
|
Generating New Blood Flow: Integrating Developmental Biology and Tissue Engineering. Trends Cardiovasc Med 2008; 18:312-23. [DOI: 10.1016/j.tcm.2009.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 01/20/2009] [Accepted: 01/27/2009] [Indexed: 11/23/2022]
|
50
|
Schwarz MA, Caldwell L, Cafasso D, Zheng H. Emerging pulmonary vasculature lacks fate specification. Am J Physiol Lung Cell Mol Physiol 2008; 296:L71-81. [PMID: 18952755 DOI: 10.1152/ajplung.90452.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung morphogenesis requires precise coordination between branching morphogenesis and vascularization to generate distal airways capable of supporting respiration at the cell-cell interface. The specific origins and types of blood vessels that initially form in the lung, however, remain obscure. Herein, we definitively show that during the early phases of lung development [i.e., embryonic day (E) 11.5], functional vessels, replete with blood flow, are restricted to the mesenchyme, distal to the epithelium. However, by day E14.5, and in response to epithelial-derived VEGF signals, functional vessels extend from the mesenchyme to the epithelial interface. Moreover, these vessels reside adjacent to multipotent mesenchymal stromal cells that likely play a regulatory role in this process. As well as and distinct from the systemic vasculature, immunostaining for EphrinB2 and EphB4 revealed that arterial and venous identity is not distinguishable in emergent pulmonary vasculature. Collectively, this study provides evidence that lung vascularization initially originates in the mesenchyme, distal to the epithelium, and that arterial-venous specification does not exist in the early lung. At a mechanistic level, we show that basilar epithelial VEGF prompts endothelial cells to move toward the epithelium where they undergo morphogenesis during the proliferative, canalicular stage. Thus our findings challenge existing notions of vascular origin and identity during development.
Collapse
Affiliation(s)
- Margaret A Schwarz
- UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA.
| | | | | | | |
Collapse
|