1
|
Soto MR, Lewis MM, Leal J, Pan Y, Mohanty RP, Veyssi A, Maier EY, Heiser BJ, Ghosh D. Discovery of peptides for ligand-mediated delivery of mRNA lipid nanoparticles to cystic fibrosis lung epithelia. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102375. [PMID: 39640013 PMCID: PMC11617931 DOI: 10.1016/j.omtn.2024.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024]
Abstract
For cystic fibrosis patients, a lung-targeted gene therapy would significantly alleviate pulmonary complications associated with morbidity and mortality. However, mucus in the airways and cell entry pose huge delivery barriers for local gene therapy. Here, we used phage display technology to select for and identify mucus- and cell-penetrating peptides against primary human bronchial epithelial cells from cystic fibrosis patients cultured at the air-liquid interface. At the air-liquid interface, primary human bronchial epithelial cells produce mucus and reflect cystic fibrosis disease pathology, making it a clinically relevant model. Using this model, we discovered a lead candidate peptide and incorporated it into lipid nanoparticles to deliver mRNA to primary human bronchial epithelia in vitro and mouse lungs in vivo. Compared to lipid nanoparticles without our peptide, peptide-lipid nanoparticles demonstrated up to 7.8-fold and 3.4-fold higher reporter luciferase bioactivity in vitro and in vivo, respectively. Importantly, these peptides facilitated higher specific uptake of nanoparticles into lung epithelia relative to other cell types. Since gene delivery to primary human bronchial epithelia is a significant challenge, we are encouraged by these results and anticipate that our peptide could be used to successfully deliver cystic fibrosis gene therapies in future work.
Collapse
Affiliation(s)
- Melissa R. Soto
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Mae M. Lewis
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Austin, TX 78712, USA
| | - Jasmim Leal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Yuting Pan
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Rashmi P. Mohanty
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Arian Veyssi
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Austin, TX 78712, USA
| | - Esther Y. Maier
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Brittany J. Heiser
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Austin, TX 78712, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| |
Collapse
|
2
|
Wine JJ. Calibrating sweat chloride levels to CFTR activity via ETI effects on CF subjects with one or two F508DEL mutations. J Cyst Fibros 2024; 23:1180-1184. [PMID: 39406575 DOI: 10.1016/j.jcf.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/11/2024] [Accepted: 09/04/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND It is difficult to determine CFTR activity following highly effective CFTR modulator therapies (HEMT). The sweat gland provides two biomarkers of CFTR activity: a linear readout via the β-sweat rate and a logarithmic readout via sweat chloride concentration (SCC). In prior work, different logarithmic functions were generated to calibrate SCC with the percent of healthy control CFTR activity (HCCFTR). Two functions, A and B, were fit to SCC means from healthy controls set = 100 % and CF carriers measured as 50 % HCCFTR. A and B differ in the % HCCFTR activity assigned to SCC for minimal function mutations = 0.01 % for A and 1 % for B. METHODS Here, the functions are evaluated based on retrospective analysis of three multi-center studies of CF subjects with one or two F508del mutations treated with Elexacaftor/Tezacaftor/Ivacaftor (ETI). Predictions of the percent HCCFTR activity for one vs two mutations were compared for the two functions. The expectation is that after ETI treatment, subjects with two responsive mutations will have 2-fold higher HCCFTR activity than subjects with only one. The hypothesis is that the SCCHCCFTR function that most closely fits that expectation provides the more accurate prediction of CFTR activity. RESULTS In two separate comparisons, function B most accurately predicted a 2-fold (1.9, 2.3-fold) higher level of HCCFTR activity in subjects on ETI with two vs. one responsive mutation. Function A predicted a 4, 5.5-fold higher level. CONCLUSIONS Function B predicts that 60 mmol/L SCC, the cutoff for a CF diagnosis, is associated with 10 % HCCFTR activity. Comparing HEMT effects on subjects with one or two mutations provides an additional tool for calibrating SCC to CFTR activity.
Collapse
Affiliation(s)
- Jeffrey J Wine
- Cystic Fibrosis Research Laboratory, Department of Psychology, Human Biology and (by courtesy) Pediatrics, Stanford University, Room 210, Bldg. 420, Jane Stanford Way, Stanford, CA 94305-2130, USA.
| |
Collapse
|
3
|
Plasschaert LW, MacDonald KD, Moffit JS. Current landscape of cystic fibrosis gene therapy. Front Pharmacol 2024; 15:1476331. [PMID: 39439894 PMCID: PMC11493704 DOI: 10.3389/fphar.2024.1476331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Cystic fibrosis is a life-threatening disease that is caused by mutations in CFTR, a gene which encodes an ion channel that supports proper function of several epithelial tissues, most critically the lung. Without CFTR, airway barrier mechanisms are impaired, allowing for chronic, recurrent infections that result in airway remodeling and deterioration of lung structure and function. Small molecule modulators can rescue existing, defective CFTR protein; however, they still leave a subset of people with CF with no current disease modifying treatments, aside from lung transplantation. Gene therapy directed to the lung is a promising strategy to modify CF disease in the organ most associated with morbidity and mortality. It is accomplished through delivery of a CFTR transgene with an airway permissive vector. Despite more than three decades of research in this area, a lung directed gene therapy has yet to be realized. There is hope that with improved delivery vectors, sufficient transduction of airway cells can achieve therapeutic levels of functional CFTR. In order to do this, preclinical programs need to meet a certain level of CFTR protein expression in vitro and in vivo through improved transduction, particularly in relevant airway cell types. Furthermore, clinical programs must be designed with sensitive methods to detect CFTR expression and function as well as methods to measure meaningful endpoints for lung structure, function and disease. Here, we discuss the current understanding of how much and where CFTR needs to be expressed, the most advanced vectors for CFTR delivery and clinical considerations for detecting CFTR protein and function in different patient subsets.
Collapse
Affiliation(s)
| | - Kelvin D. MacDonald
- Carbon Biosciences, Waltham, MA, United States
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | | |
Collapse
|
4
|
Toledano I, Supek F, Lehner B. Genome-scale quantification and prediction of pathogenic stop codon readthrough by small molecules. Nat Genet 2024; 56:1914-1924. [PMID: 39174735 PMCID: PMC11387191 DOI: 10.1038/s41588-024-01878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Premature termination codons (PTCs) cause ~10-20% of inherited diseases and are a major mechanism of tumor suppressor gene inactivation in cancer. A general strategy to alleviate the effects of PTCs would be to promote translational readthrough. Nonsense suppression by small molecules has proven effective in diverse disease models, but translation into the clinic is hampered by ineffective readthrough of many PTCs. Here we directly tackle the challenge of defining drug efficacy by quantifying the readthrough of ~5,800 human pathogenic stop codons by eight drugs. We find that different drugs promote the readthrough of complementary subsets of PTCs defined by local sequence context. This allows us to build interpretable models that accurately predict drug-induced readthrough genome-wide, and we validate these models by quantifying endogenous stop codon readthrough. Accurate readthrough quantification and prediction will empower clinical trial design and the development of personalized nonsense suppression therapies.
Collapse
Affiliation(s)
- Ignasi Toledano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- University Pompeu Fabra (UPF), Barcelona, Spain.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
5
|
Tang Y, Ebadi M, Lei J, Feng Z, Fakhari S, Wu P, Smith MD, Limberis MP, Kolbeck R, Excoffon KJ, Yan Z, Engelhardt JF. Durable transgene expression and efficient re-administration after rAAV2.5T-mediated fCFTRΔR gene delivery to adult ferret lungs. Mol Ther Methods Clin Dev 2024; 32:101244. [PMID: 38638546 PMCID: PMC11024656 DOI: 10.1016/j.omtm.2024.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
The dosing interval for effective recombinant adeno-associated virus (rAAV)-mediated gene therapy of cystic fibrosis lung disease remains unknown. Here, we assessed the durability of rAAV2.5T-fCFTRΔR-mediated transgene expression and neutralizing antibody (NAb) responses in lungs of adult wild-type ferrets. Within the first 3 months following rAAV2.5T-fCFTRΔR delivery to the lung, CFTRΔR transgene expression declined ∼5.6-fold and then remained stable to 5 months at ∼26% the level of endogenous CFTR. rAAV NAbs in the plasma and bronchoalveolar lavage fluid (BALF) peaked at 21 days, coinciding with peak ELISpot T cell responses to AAV capsid peptides, after which both responses declined and remained stable at 4-5 months post dosing. Administration of reporter vector rAAV2.5T-gLuc (gaussia luciferase) at 5 months following rAAV2.5T-fCFTRΔR dosing gave rise to similar levels of gLuc expression in the BALF as observed in age-matched reporter-only controls, demonstrating that residual BALF NAbs were functionally insignificant. Notably, the second vector administration led to a 2.6-fold greater ELISpot T cell response and ∼2.3-fold decline in fCFTRΔR mRNA and vector genomes derived from the initial rAAV2.5T-fCFTRΔR administration, suggesting selective destruction of transduced cells from the first vector dose. These findings provide insights into humoral and cellular immune response to rAAV that may be useful for optimizing gene therapy to the cystic fibrosis lung.
Collapse
Affiliation(s)
- Yinghua Tang
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Mehrnoosh Ebadi
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Junying Lei
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zehua Feng
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Shahab Fakhari
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Peipei Wu
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | - Ziying Yan
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - John F. Engelhardt
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Ramananda Y, Naren AP, Arora K. Functional Consequences of CFTR Interactions in Cystic Fibrosis. Int J Mol Sci 2024; 25:3384. [PMID: 38542363 PMCID: PMC10970640 DOI: 10.3390/ijms25063384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 09/01/2024] Open
Abstract
Cystic fibrosis (CF) is a fatal autosomal recessive disorder caused by the loss of function mutations within a single gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a chloride channel that regulates ion and fluid transport across various epithelia. The discovery of CFTR as the CF gene and its cloning in 1989, coupled with extensive research that went into the understanding of the underlying biological mechanisms of CF, have led to the development of revolutionary therapies in CF that we see today. The highly effective modulator therapies have increased the survival rates of CF patients and shifted the epidemiological landscape and disease prognosis. However, the differential effect of modulators among CF patients and the presence of non-responders and ineligible patients underscore the need to develop specialized and customized therapies for a significant number of patients. Recent advances in the understanding of the CFTR structure, its expression, and defined cellular compositions will aid in developing more precise therapies. As the lifespan of CF patients continues to increase, it is becoming critical to clinically address the extra-pulmonary manifestations of CF disease to improve the quality of life of the patients. In-depth analysis of the molecular signature of different CF organs at the transcriptional and post-transcriptional levels is rapidly advancing and will help address the etiological causes and variability of CF among patients and develop precision medicine in CF. In this review, we will provide an overview of CF disease, leading to the discovery and characterization of CFTR and the development of CFTR modulators. The later sections of the review will delve into the key findings derived from single-molecule and single-cell-level analyses of CFTR, followed by an exploration of disease-relevant protein complexes of CFTR that may ultimately define the etiological course of CF disease.
Collapse
Affiliation(s)
- Yashaswini Ramananda
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anjaparavanda P. Naren
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kavisha Arora
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
7
|
Rano S, Bhaduri A, Singh M. Nanoparticle-based platforms for targeted drug delivery to the pulmonary system as therapeutics to curb cystic fibrosis: A review. J Microbiol Methods 2024; 217-218:106876. [PMID: 38135160 DOI: 10.1016/j.mimet.2023.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Cystic fibrosis (CF) is a genetic disorder of the respiratory system caused by mutation of the Cystic Fibrosis Trans-Membrane Conductance Regulator (CFTR) gene that affects a huge number of people worldwide. It results in difficulty breathing due to a large accumulation of mucus in the respiratory tract, resulting in serious bacterial infections, and subsequent death. Traditional drug-based treatments face hindered penetration at the site of action due to the thick mucus layer. Nanotechnology offers possibilities for developing advanced and effective treatment platforms by focusing on drugs that can penetrate the dense mucus layer, fighting against the underlying bacterial infections, and targeting the genetic cause of the disease. In this review, current nanoparticle-mediated drug delivery platforms for CF, challenges in therapeutics, and future prospects have been highlighted. The effectiveness of the different types of nano-based systems conjugated with various drugs to combat the symptoms and the challenges of treating CF are brought into focus. The toxic effects of these nano-medicines and the various factors that are responsible for their effectiveness are also highlighted.
Collapse
Affiliation(s)
- Sujoy Rano
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; In-vitro Biology, Aragen Life Sciences, Hyderabad 500076, Telangana, India
| | - Ahana Bhaduri
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India
| | - Mukesh Singh
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; Department of Botany, Kabi Nazrul College, Murarai, Birbhum 731219 (West Bengal), India.
| |
Collapse
|
8
|
Orenti A, Pranke I, Faucon C, Varilh J, Hatton A, Golec A, Dehillotte C, Durieu I, Reix P, Burgel PR, Grenet D, Tasset C, Gachelin E, Perisson C, Lepissier A, Dreano E, Tondelier D, Chevalier B, Weiss L, Kiefer S, Laurans M, Chiron R, Lemonnier L, Marguet C, Jung A, Edelman A, Kerem BS, Girodon E, Taulan-Cadars M, Hinzpeter A, Kerem E, Naehrlich L, Sermet-Gaudelus I. Nonsense mutations accelerate lung disease and decrease survival of cystic fibrosis children. J Cyst Fibros 2023; 22:1070-1079. [PMID: 37422433 DOI: 10.1016/j.jcf.2023.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/10/2023]
Abstract
RATIONALE Limited information is available on the clinical status of people with Cystic Fibrosis (pwCF) carrying 2 nonsense mutations (PTC/PTC). The main objective of this study was to compare disease severity between pwCF PTC/PTC, compound heterozygous for F508del and PTC (F508del/PTC) and homozygous for F508del (F508del+/+). METHODS Based on the European CF Society Patient Registry clinical data of pwCF living in high and middle income European and neighboring countries, PTC/PTC (n = 657) were compared with F508del+/+ (n = 21,317) and F508del/PTC(n = 4254).CFTR mRNA and protein activity levels were assessed in primary human nasal epithelial (HNE) cells sampled from 22 PTC/PTC pwCF. MAIN RESULTS As compared to F508del+/+ pwCF; both PTC/PTC and F508del/PTC pwCF exhibited a significantly faster rate of decline in Forced Expiratory Volume in 1 s (FEV1) from 7 years (-1.33 for F508del +/+, -1.59 for F508del/PTC; -1.65 for PTC/PTC, p < 0.001) until respectively 30 years (-1.05 for F508del +/+, -1.23 for PTC/PTC, p = 0.048) and 27 years (-1.12 for F508del +/+, -1.26 for F508del/PTC, p = 0.034). This resulted in lower FEV1 values in adulthood. Mortality of pediatric pwCF with one or two PTC alleles was significantly higher than their F508del homozygous pairs. Infection with Pseudomonas aeruginosa was more frequent in PTC/PTC versus F508del+/+ and F508del/PTC pwCF. CFTR activity in PTC/PTC pwCF's HNE cells ranged between 0% to 3% of the wild-type level. CONCLUSIONS Nonsense mutations decrease the survival and accelerate the course of respiratory disease in children and adolescents with Cystic Fibrosis.
Collapse
Affiliation(s)
- Annalisa Orenti
- Department of Clinical Sciences and Community Health, Laboratory of Medical Statistics, Biometry and Epidemiology "G. A. Maccacaro", University of Milan, Milan, Italy
| | - Iwona Pranke
- Université de Paris, CNRS, INSERM U-1151, Institut Necker-Enfants Malades, Paris, France; Centre de Référence Maladies Rares, Mucoviscidose et affections liées à CFTR, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Caroline Faucon
- Centre de Ressources et de Compétences de la Mucoviscidose, Centre Hospitalier Universitaire de Caen Normandie, Caen, France
| | - Jessica Varilh
- PhyMedExp, INSERM, CNRS UMR, Montpellier, France; Université de Montpellier, Montpellier, France
| | - Aurelie Hatton
- Université de Paris, CNRS, INSERM U-1151, Institut Necker-Enfants Malades, Paris, France; Centre de Référence Maladies Rares, Mucoviscidose et affections liées à CFTR, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anita Golec
- Université de Paris, CNRS, INSERM U-1151, Institut Necker-Enfants Malades, Paris, France; Centre de Référence Maladies Rares, Mucoviscidose et affections liées à CFTR, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Isabelle Durieu
- Centre de Référence Maladies Rares Mucoviscidose et affections liées à CFTR, Hospices Civils de Lyon, Pierre-Bénite, France; EA HESPER -Université Claude Bernard Lyon 1, Université de Lyon, France
| | - Philippe Reix
- Centre de Référence Maladies Rares Mucoviscidose et affections liées à CFTR, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Pierre-Régis Burgel
- Department of Respiratory Medicine and National Reference Center for Cystic Fibrosis, Assistance Publique-Hôpitaux de Paris, Paris, France; Institut Cochin, Université Paris Cité and Inserm U1016, Paris, France; ERN-Lung CF network, France
| | - Dominique Grenet
- Centre de Ressources et de Compétences de la Mucoviscidose, Hôpital Foch, Suresnes, France
| | - Céline Tasset
- Centre de Ressources et de Compétences de la Mucoviscidose, Centre Hospitalier Universitaire Sud Reunion, Saint-Pierre, France
| | - Elsa Gachelin
- Centre de Ressources et de Compétences de la Mucoviscidose, Centre Hospitalier Universitaire Felix Guyon, Saint-Denis, France
| | - Caroline Perisson
- Centre de Ressources et de Compétences de la Mucoviscidose, Centre Hospitalier Universitaire Sud Reunion, Saint-Pierre, France
| | - Agathe Lepissier
- Université de Paris, CNRS, INSERM U-1151, Institut Necker-Enfants Malades, Paris, France; Centre de Référence Maladies Rares, Mucoviscidose et affections liées à CFTR, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Elise Dreano
- Université de Paris, CNRS, INSERM U-1151, Institut Necker-Enfants Malades, Paris, France; Centre de Référence Maladies Rares, Mucoviscidose et affections liées à CFTR, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Danielle Tondelier
- Université de Paris, CNRS, INSERM U-1151, Institut Necker-Enfants Malades, Paris, France; Centre de Référence Maladies Rares, Mucoviscidose et affections liées à CFTR, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Benoit Chevalier
- Université de Paris, CNRS, INSERM U-1151, Institut Necker-Enfants Malades, Paris, France; Centre de Référence Maladies Rares, Mucoviscidose et affections liées à CFTR, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laurence Weiss
- Centre de Ressources et de Compétences de la Mucoviscidose, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sébastien Kiefer
- Centre de Ressources et de Compétences de la Mucoviscidose, Centre Hospitalier Universitaire de Nancy, Nancy, France
| | - Muriel Laurans
- Centre de Ressources et de Compétences de la Mucoviscidose, Centre Hospitalier Universitaire de Caen Normandie, Caen, France
| | - Raphael Chiron
- Centre de Ressources et de Compétences de la Mucoviscidose, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | - Christophe Marguet
- Centre de Ressources et de Compétences de la Mucoviscidose, Centre Hospitalier Universitaire Charles Nicolle, Rouen, France
| | - Andreas Jung
- Pediatric Respiratory Medicine, Kinderspital, Zurich, Switzerland; European Cystic Fibrosis Society Patients Registry, France
| | - Aleksander Edelman
- Université de Paris, CNRS, INSERM U-1151, Institut Necker-Enfants Malades, Paris, France; Centre de Référence Maladies Rares, Mucoviscidose et affections liées à CFTR, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bat-Sheva Kerem
- Department of Genetics, The Life Science Institute, The Hebrew University, Jerusalem Israel
| | - Emmanuelle Girodon
- Molecular Genetics Laboratory, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Magali Taulan-Cadars
- PhyMedExp, INSERM, CNRS UMR, Montpellier, France; Université de Montpellier, Montpellier, France
| | - Alexandre Hinzpeter
- Université de Paris, CNRS, INSERM U-1151, Institut Necker-Enfants Malades, Paris, France; Centre de Référence Maladies Rares, Mucoviscidose et affections liées à CFTR, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eitan Kerem
- Division of Pediatrics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Lutz Naehrlich
- European Cystic Fibrosis Society Patients Registry, France; Y Justus-Liebig-University Giessen, Department of Pediatrics, Giessen, Germany
| | - Isabelle Sermet-Gaudelus
- Université de Paris, CNRS, INSERM U-1151, Institut Necker-Enfants Malades, Paris, France; Centre de Référence Maladies Rares, Mucoviscidose et affections liées à CFTR, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; ERN-Lung CF network, France.
| |
Collapse
|
9
|
Woodall M, Tarran R, Lee R, Anfishi H, Prins S, Counsell J, Vergani P, Hart S, Baines D. Expression of gain-of-function CFTR in cystic fibrosis airway cells restores epithelial function better than wild-type or codon-optimized CFTR. Mol Ther Methods Clin Dev 2023; 30:593-605. [PMID: 37701179 PMCID: PMC10494266 DOI: 10.1016/j.omtm.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023]
Abstract
Class Ia/b cystic fibrosis transmembrane regulator (CFTR) variants cause severe lung disease in 10% of cystic fibrosis (CF) patients and are untreatable with small-molecule pharmaceuticals. Genetic replacement of CFTR offers a cure, but its effectiveness is limited in vivo. We hypothesized that enhancing protein levels (using codon optimization) and/or activity (using gain-of-function variants) of CFTR would more effectively restore function to CF bronchial epithelial cells. Three different variants of the CFTR protein were tested: codon optimized (high codon adaptation index [hCAI]), a gain-of-function (GOF) variant (K978C), and a combination of both (hˆK978C). In human embryonic kidney (HEK293T) cells, initial results showed that hCAI and hˆK978C produced greater than 10-fold more CFTR protein and displayed ∼4-fold greater activity than wild-type (WT) CFTR. However, functionality was profoundly different in CF bronchial epithelial cells. Here, K978C CFTR more potently restored essential epithelial functions (anion transport, airway surface liquid height, and pH) than WT CFTR. hCAI and hˆK978C CFTRs had limited impact because of mislocalization in the cell. These data provide a proof of principle showing that GOF variants may be more effective than codon-optimized forms of CFTR for CF gene therapy. Video abstract
Collapse
Affiliation(s)
- Maximillian Woodall
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA
| | - Rhianna Lee
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA
| | - Hafssa Anfishi
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Stella Prins
- Neuroscience, Physiology, & Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - John Counsell
- Genetics & Genomic Medicine Department, Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Paola Vergani
- Neuroscience, Physiology, & Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Stephen Hart
- Genetics & Genomic Medicine Department, Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Deborah Baines
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| |
Collapse
|
10
|
Loan Young T, Chang Wang K, James Varley A, Li B. Clinical Delivery of Circular RNA: Lessons Learned from RNA Drug Development. Adv Drug Deliv Rev 2023; 197:114826. [PMID: 37088404 DOI: 10.1016/j.addr.2023.114826] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Circular RNAs (circRNA) represent a distinct class of covalently closed-loop RNA molecules, which play diverse roles in regulating biological processes and disease states. The enhanced stability of synthetic circRNAs compared to their linear counterparts has recently garnered considerable research interest, paving the way for new therapeutic applications. While clinical circRNA technology is still in its early stages, significant advancements in mRNA technology offer valuable insights into its potential future applications. Two primary obstacles that must be addressed are the development of efficient production methods and the optimization of delivery systems. To expedite progress in this area, this review aims to provide an overview of the current state of knowledge on circRNA structure and function, outline recent techniques for synthesizing circRNAs, highlight key delivery strategies and applications, and discuss the current challenges and future prospects in the field of circRNA-based therapeutics.
Collapse
Affiliation(s)
- Tiana Loan Young
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Kevin Chang Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Andrew James Varley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Bowen Li
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3M2, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada.
| |
Collapse
|
11
|
Kasture AS, Fischer FP, Kunert L, Burger ML, Burgstaller AC, El-Kasaby A, Hummel T, Sucic S. Drosophila melanogaster as a model for unraveling unique molecular features of epilepsy elicited by human GABA transporter 1 variants. Front Neurosci 2023; 16:1074427. [PMID: 36741049 PMCID: PMC9893286 DOI: 10.3389/fnins.2022.1074427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
Mutations in the human γ-aminobutyric acid (GABA) transporter 1 (hGAT-1) can instigate myoclonic-atonic and other generalized epilepsies in the afflicted individuals. We systematically examined fifteen hGAT-1 disease variants, all of which dramatically reduced or completely abolished GABA uptake activity. Many of these loss-of-function variants were absent from their regular site of action at the cell surface, due to protein misfolding and/or impaired trafficking machinery (as verified by confocal microscopy and de-glycosylation experiments). A modest fraction of the mutants displayed correct targeting to the plasma membrane, but nonetheless rendered the mutated proteins devoid of GABA transport, possibly due to structural alterations in the GABA binding site/translocation pathway. We here focused on a folding-deficient A288V variant. In flies, A288V reiterated its impeded expression pattern, closely mimicking the ER-retention demonstrated in transfected HEK293 cells. Functionally, A288V presented a temperature-sensitive seizure phenotype in fruit flies. We employed diverse small molecules to restore the expression and activity of folding-deficient hGAT-1 epilepsy variants, in vitro (in HEK293 cells) and in vivo (in flies). We identified three compounds (chemical and pharmacological chaperones) conferring moderate rescue capacity for several variants. Our data grant crucial new insights into: (i) the molecular basis of epilepsy in patients harboring hGAT-1 mutations, and (ii) a proof-of-principle that protein folding deficits in disease-associated hGAT-1 variants can be corrected using the pharmacochaperoning approach. Such innovative pharmaco-therapeutic prospects inspire the rational design of novel drugs for alleviating the clinical symptoms triggered by the numerous emerging pathogenic mutations in hGAT-1.
Collapse
Affiliation(s)
- Ameya S. Kasture
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Florian P. Fischer
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Epileptology and Neurology, University of Aachen, Aachen, Germany
| | - Lisa Kunert
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Melanie L. Burger
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Ali El-Kasaby
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Hummel
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Vavilis T, Stamoula E, Ainatzoglou A, Sachinidis A, Lamprinou M, Dardalas I, Vizirianakis IS. mRNA in the Context of Protein Replacement Therapy. Pharmaceutics 2023; 15:pharmaceutics15010166. [PMID: 36678793 PMCID: PMC9866414 DOI: 10.3390/pharmaceutics15010166] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Protein replacement therapy is an umbrella term used for medical treatments that aim to substitute or replenish specific protein deficiencies that result either from the protein being absent or non-functional due to mutations in affected patients. Traditionally, such an approach requires a well characterized but arduous and expensive protein production procedure that employs in vitro expression and translation of the pharmaceutical protein in host cells, followed by extensive purification steps. In the wake of the SARS-CoV-2 pandemic, mRNA-based pharmaceuticals were recruited to achieve rapid in vivo production of antigens, proving that the in vivo translation of exogenously administered mRNA is nowadays a viable therapeutic option. In addition, the urgency of the situation and worldwide demand for mRNA-based medicine has led to an evolution in relevant technologies, such as in vitro transcription and nanolipid carriers. In this review, we present preclinical and clinical applications of mRNA as a tool for protein replacement therapy, alongside with information pertaining to the manufacture of modified mRNA through in vitro transcription, carriers employed for its intracellular delivery and critical quality attributes pertaining to the finished product.
Collapse
Affiliation(s)
- Theofanis Vavilis
- Laboratory of Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Dentistry, European University Cyprus, Nicosia 2404, Cyprus
- Correspondence:
| | - Eleni Stamoula
- Centre of Systems Biology, Department of Biotechnology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Alexandra Ainatzoglou
- Centre of Systems Biology, Department of Biotechnology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Malamatenia Lamprinou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Dardalas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Life & Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia 1700, Cyprus
| |
Collapse
|
13
|
Sermet-Gaudelus I, Girodon E, Vermeulen F, Solomon G, Melotti P, Graeber S, Bronsveld I, Rowe S, Wilschanski M, Tümmler B, Cutting G, Gonska T. ECFS standards of care on CFTR-related disorders: Diagnostic criteria of CFTR dysfunction. J Cyst Fibros 2022; 21:922-936. [DOI: 10.1016/j.jcf.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
|
14
|
Fajac I, Sermet-Gaudelus I. Emerging medicines to improve the basic defect in cystic fibrosis. Expert Opin Emerg Drugs 2022; 27:229-239. [PMID: 35731915 DOI: 10.1080/14728214.2022.2092612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a severe autosomal recessive disorder featuring exocrine pancreatic insufficiency and bronchiectasis. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) encoding the CFTR protein, which is an anion channel. CF treatment has long been based only on intensive symptomatic treatment. During the last 10 years, new drugs called CFTR modulators aiming at restoring the CFTR protein function have become available, and they will benefit around 80% of patients with CF. However, more than 10% of CFTR mutations do not produce any CFTR protein for CFTR modulators to act upon. AREAS COVERED The development of CFTR modulators and their effectiveness in patients with CF will be reviewed. Then, the different strategies to treat patients bearing mutations non-responsive to CFTR modulators will be covered. They comprise DNA- and RNA-based therapies, readthrough agents for nonsense mutations, and cell-based therapies. EXPERT OPINION CF disease has changed tremendously since the advent of CFTR modulators. For mutations that are not amenable to CFTR modulators, new approaches that are being developed benefit from advances in molecular therapy, but many challenges will have to be solved before they can be safely translated to patients.
Collapse
Affiliation(s)
- Isabelle Fajac
- AP-HP. Centre - Université Paris Cité; Hôpital Cochin, Centre de Référence Maladie Rare- Mucoviscidose, Paris, France.,Faculté de Médecine, Université de Paris, Paris, France
| | - Isabelle Sermet-Gaudelus
- Faculté de Médecine, Université de Paris, Paris, France.,Institut Necker Enfants Malades, INSERM U 1151, Paris, France.,AP-HP. Centre - Université Paris Cité; Hôpital Necker Enfants Malades, Centre de Référence Maladie Rare - Mucoviscidose, Paris, France
| |
Collapse
|
15
|
Molecular mechanisms of Cystic Fibrosis - how mutations lead to misfunction and guide therapy. Biosci Rep 2022; 42:231430. [PMID: 35707985 PMCID: PMC9251585 DOI: 10.1042/bsr20212006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis, the most common autosomal recessive disorder in Caucasians, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a cAMP-activated chloride and bicarbonate channel that regulates ion and water transport in secretory epithelia. Although all mutations lead to the lack or reduction in channel function, the mechanisms through which this occurs are diverse – ranging from lack of full-length mRNA, reduced mRNA levels, impaired folding and trafficking, targeting to degradation, decreased gating or conductance, and reduced protein levels to decreased half-life at the plasma membrane. Here, we review the different molecular mechanisms that cause cystic fibrosis and detail how these differences identify theratypes that can inform the use of directed therapies aiming at correcting the basic defect. In summary, we travel through CFTR life cycle from the gene to function, identifying what can go wrong and what can be targeted in terms of the different types of therapeutic approaches.
Collapse
|
16
|
Splicing mutations in the CFTR gene as therapeutic targets. Gene Ther 2022; 29:399-406. [PMID: 35650428 PMCID: PMC9385490 DOI: 10.1038/s41434-022-00347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
The marketing approval, about ten years ago, of the first disease modulator for patients with cystic fibrosis harboring specific CFTR genotypes (~5% of all patients) brought new hope for their treatment. To date, several therapeutic strategies have been approved and the number of CFTR mutations targeted by therapeutic agents is increasing. Although these drugs do not reverse the existing disease, they help to increase the median life expectancy. However, on the basis of their CFTR genotype, ~10% of patients presently do not qualify for any of the currently available CFTR modulator therapies, particularly patients with splicing mutations (~12% of the reported CFTR mutations). Efforts are currently made to develop therapeutic agents that target disease-causing CFTR variants that affect splicing. This highlights the need to fully identify them by scanning non-coding regions and systematically determine their functional consequences. In this review, we present some examples of CFTR alterations that affect splicing events and the different therapeutic options that are currently developed and tested for splice switching.
Collapse
|
17
|
Wine JJ. How the sweat gland reveals levels of CFTR activity. J Cyst Fibros 2022; 21:396-406. [DOI: 10.1016/j.jcf.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/05/2022] [Accepted: 02/05/2022] [Indexed: 10/19/2022]
|
18
|
Rare Trafficking CFTR Mutations Involve Distinct Cellular Retention Machineries and Require Different Rescuing Strategies. Int J Mol Sci 2021; 23:ijms23010024. [PMID: 35008443 PMCID: PMC8744605 DOI: 10.3390/ijms23010024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022] Open
Abstract
Most of the ~2100 CFTR variants so far reported are very rare and still uncharacterized regarding their cystic fibrosis (CF) disease liability. Since some may respond to currently approved modulators, characterizing their defect and response to these drugs is essential. Here we aimed characterizing the defect associated with four rare missense (likely Class II) CFTR variants and assess their rescue by corrector drugs. We produced CFBE cell lines stably expressing CFTR with W57G, R560S, H1079P and Q1100P, assessed their effect upon CFTR expression and maturation and their rescue by VX-661/VX-445 correctors. Results were validated by forskolin-induced swelling assay (FIS) using intestinal organoids from individuals bearing these variants. Finally, knock-down (KD) of genes previously shown to rescue F508del-CFTR was assessed on these mutants. Results show that all the variants preclude the production of mature CFTR, confirming them as Class II mutations. None of the variants responded to VX-661 but the combination rescued H1079P- and Q1100P-CFTR. The KD of factors that correct F508del-CFTR retention only marginally rescued R560S- and H1079P-CFTR. Overall, data evidence that Class II mutations induce distinct molecular defects that are neither rescued by the same corrector compounds nor recognized by the same cellular machinery, thus requiring personalized drug discovery initiatives.
Collapse
|
19
|
Integrity and Stability of PTC Bearing CFTR mRNA and Relevance to Future Modulator Therapies in Cystic Fibrosis. Genes (Basel) 2021; 12:genes12111810. [PMID: 34828417 PMCID: PMC8621375 DOI: 10.3390/genes12111810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Major advances have recently been made in the development and application of CFTR (cystic fibrosis transmembrane conductance regulator) mutation class-specific modulator therapies, but to date, there are no approved modulators for Class I mutations, i.e., those introducing a premature termination codon (PTC) into the CFTR mRNA. Such mutations induce nonsense-mediated decay (NMD), a cellular quality control mechanism that reduces the quantity of PTC bearing mRNAs, presumably to avoid translation of potentially deleterious truncated CFTR proteins. The NMD-mediated reduction of PTC-CFTR mRNA molecules reduces the efficacy of one of the most promising approaches to treatment of such mutations, namely, PTC readthrough therapy, using molecules that induce the incorporation of near-cognate amino acids at the PTC codon, thereby enabling translation of a full-length protein. In this study, we measure the effect of three different PTC mutations on the abundance, integrity, and stability of respective CFTR mRNAs, using CFTR specific RT-qPCR-based assays. Altogether, our data suggest that optimized rescue of PTC mutations has to take into account (1) the different steady-state levels of the CFTR mRNA associated with each specific PTC mutation; (2) differences in abundance between the 3' and 5' regions of CFTR mRNA, even following PTC readthrough or NMD inhibition; and (3) variable effects on CFTR mRNA stability for each specific PTC mutation.
Collapse
|
20
|
Noel S, Servel N, Hatton A, Golec A, Rodrat M, Ng DRS, Li H, Pranke I, Hinzpeter A, Edelman A, Sheppard DN, Sermet-Gaudelus I. Correlating genotype with phenotype using CFTR-mediated whole-cell Cl - currents in human nasal epithelial cells. J Physiol 2021; 600:1515-1531. [PMID: 34761808 DOI: 10.1113/jp282143] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Dysfunction of the epithelial anion channel cystic fibrosis transmembrane conductance regulator (CFTR) causes a wide spectrum of disease, including cystic fibrosis (CF) and CFTR-related diseases (CFTR-RDs). Here, we investigate genotype-phenotype-CFTR function relationships using human nasal epithelial (hNE) cells from a small cohort of non-CF subjects and individuals with CF and CFTR-RDs and genotypes associated with either residual or minimal CFTR function using electrophysiological techniques. Collected hNE cells were either studied directly with the whole-cell patch-clamp technique or grown as primary cultures at an air-liquid interface after conditional reprogramming. The properties of cAMP-activated whole-cell Cl- currents in freshly isolated hNE cells identified them as CFTR-mediated. Their magnitude varied between hNE cells from individuals within the same genotype and decreased in the rank order: non-CF > CFTR residual function > CFTR minimal function. CFTR-mediated whole-cell Cl- currents in hNE cells isolated from fully differentiated primary cultures were identical to those in freshly isolated hNE cells in both magnitude and behaviour, demonstrating that conditional reprogramming culture is without effect on CFTR expression and function. For the cohort of subjects studied, CFTR-mediated whole-cell Cl- currents in hNE cells correlated well with CFTR-mediated transepithelial Cl- currents measured in vitro with the Ussing chamber technique, but not with those determined in vivo with the nasal potential difference assay. Nevertheless, they did correlate with the sweat Cl- concentration of study subjects. Thus, this study highlights the complexity of genotype-phenotype-CFTR function relationships, but emphasises the value of conditionally reprogrammed hNE cells in CFTR research and therapeutic testing. KEY POINTS: The genetic disease cystic fibrosis is caused by pathogenic variants in the cystic fibrosis transmembrane conductance regulator (CFTR), an ion channel, which controls anion flow across epithelia lining ducts and tubes in the body. This study investigated CFTR function in nasal epithelial cells from people with cystic fibrosis and CFTR variants with a range of disease severity. CFTR function varied widely in nasal epithelial cells depending on the identity of CFTR variants, but was unaffected by conditional reprogramming culture, a cell culture technique used to grow large numbers of patient-derived cells. Assessment of CFTR function in vitro in nasal epithelial cells and epithelia, and in vivo in the nasal epithelium and sweat gland highlights the complexity of genotype-phenotype-CFTR function relationships.
Collapse
Affiliation(s)
- Sabrina Noel
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Nathalie Servel
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Aurélie Hatton
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Anita Golec
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Mayuree Rodrat
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.,Center of Research and Development for Biomedical Instrumentation, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Demi R S Ng
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Hongyu Li
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Iwona Pranke
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Alexandre Hinzpeter
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Aleksander Edelman
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Isabelle Sermet-Gaudelus
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France.,Centre de Référence Maladies Rares, Mucoviscidose et Maladies Apparentées, Hôpital Necker-Enfants Malades, Paris, France.,European Reference Network on rare respiratory diseases, Frankfurt, Germany
| |
Collapse
|
21
|
Therapeutic Approaches for Patients with Cystic Fibrosis Not Eligible for Current CFTR Modulators. Cells 2021; 10:cells10102793. [PMID: 34685773 PMCID: PMC8534516 DOI: 10.3390/cells10102793] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/26/2022] Open
Abstract
Cystic fibrosis is a severe autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding the CFTR protein, a chloride channel expressed in many epithelial cells. New drugs called CFTR modulators aim at restoring the CFTR protein function, and they will benefit many patients with cystic fibrosis in the near future. However, some patients bear rare mutations that are not yet eligible for CFTR modulators, although they might be amenable to these new disease-modifying drugs. Moreover, more than 10% of CFTR mutations do not produce any CFTR protein for CFTR modulators to act upon. The purpose of this review is to provide an overview of different approaches pursued to treat patients bearing mutations ineligible for CFTR modulators. One approach is to broaden the numbers of mutations eligible for CFTR modulators. This requires developing strategies to evaluate drugs in populations bearing very rare genotypes. Other approaches aiming at correcting the CFTR defect develop new mutation-specific or mutation-agnostic therapies for mutations that do not produce a CFTR protein: readthrough agents for nonsense mutations, nucleic acid-based therapies, RNA- or DNA-based, and cell-based therapies. Most of these approaches are in pre-clinical development or, for some of them, early clinical phases. Many hurdles and challenges will have to be solved before they can be safely translated to patients.
Collapse
|
22
|
Lin JH, Wu H, Zou WB, Masson E, Fichou Y, Le Gac G, Cooper DN, Férec C, Liao Z, Chen JM. Splicing Outcomes of 5' Splice Site GT>GC Variants That Generate Wild-Type Transcripts Differ Significantly Between Full-Length and Minigene Splicing Assays. Front Genet 2021; 12:701652. [PMID: 34422003 PMCID: PMC8375439 DOI: 10.3389/fgene.2021.701652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
Combining data derived from a meta-analysis of human disease-associated 5' splice site GT>GC (i.e., +2T>C) variants and a cell culture-based full-length gene splicing assay (FLGSA) of forward engineered +2T>C substitutions, we recently estimated that ∼15-18% of +2T>C variants can generate up to 84% wild-type transcripts relative to their wild-type counterparts. Herein, we analyzed the splicing outcomes of 20 +2T>C variants that generate some wild-type transcripts in two minigene assays. We found a high discordance rate in terms of the generation of wild-type transcripts, not only between FLGSA and the minigene assays but also between the different minigene assays. In the pET01 context, all 20 wild-type minigene constructs generated the expected wild-type transcripts; of the 20 corresponding variant minigene constructs, 14 (70%) generated wild-type transcripts. In the pSPL3 context, only 18 of the 20 wild-type minigene constructs generated the expected wild-type transcripts whereas 8 of the 18 (44%) corresponding variant minigene constructs generated wild-type transcripts. Thus, in the context of a particular type of variant, we raise awareness of the limitations of minigene splicing assays and emphasize the importance of sequence context in regulating splicing. Whether or not our findings apply to other types of splice-altering variant remains to be investigated.
Collapse
Affiliation(s)
- Jin-Huan Lin
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Hao Wu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France
| | - Yann Fichou
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Gerald Le Gac
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| |
Collapse
|
23
|
Potential of helper-dependent Adenoviral vectors in CRISPR-cas9-mediated lung gene therapy. Cell Biosci 2021; 11:145. [PMID: 34301308 PMCID: PMC8305863 DOI: 10.1186/s13578-021-00662-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Since CRISPR/Cas9 was harnessed to edit DNA, the field of gene therapy has witnessed great advances in gene editing. New avenues were created for the treatment of diseases such as Cystic Fibrosis (CF). CF is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Despite the success of gene editing with the CRISPR/Cas9 in vitro, challenges still exist when using CRISPR/Cas9 in vivo to cure CF lung disease. The delivery of CRISPR/Cas9 into lungs, as well as the difficulty to achieve the efficiency required for clinical efficacy, has brought forth new challenges. Viral and non-viral vectors have been shown to deliver DNA successfully in vivo, but the sustained expression of CFTR was not adequate. Before the introduction of Helper-Dependent Adenoviral vectors (HD-Ad), clinical trials of treating pulmonary genetic diseases with first-generation viral vectors have shown limited efficacy. With the advantages of larger capacity and lower immunogenicity of HD-Ad, together with the versatility of the CRISPR/Cas9 system, delivering CRISPR/Cas9 to the airway with HD-Ad for lung gene therapy shows great potential. In this review, we discuss the status of the application of CRISPR/Cas9 in CF gene therapy, the existing challenges in the field, as well as new hurdles introduced by the presence of CRISPR/Cas9 in the lungs. Through the analysis of these challenges, we present the potential of CRISPR/Cas9-mediated lung gene therapy using HD-Ad vectors with Cystic Fibrosis lung disease as a model of therapy.
Collapse
|
24
|
Nykamp K, Truty R, Riethmaier D, Wilkinson J, Bristow SL, Aguilar S, Neitzel D, Faulkner N, Aradhya S. Elucidating clinical phenotypic variability associated with the polyT tract and TG repeats in CFTR. Hum Mutat 2021; 42:1165-1172. [PMID: 34196078 PMCID: PMC9292755 DOI: 10.1002/humu.24250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 02/05/2023]
Abstract
Biallelic pathogenic variants in CFTR manifest as cystic fibrosis (CF) or other CFTR-related disorders (CFTR-RDs). The 5T allele, causing alternative splicing and reduced protein activity, is modulated by the adjacent TG repeat element, though previous data have been limited to small, selective cohorts. Here, the risk and spectrum of phenotypes associated with the CFTR TG-T5 haplotype variants (TG11T5, TG12T5, and TG13T5) in the absence of the p.Arg117His variant are evaluated. Individuals who received physician-ordered next-generation sequencing of CFTR were included. TG[11-13]T5 variant frequencies (biallelic or with another CF-causing variant [CFvar]) were calculated. Clinical information reported by the ordering provider or the individual was examined. Among 548,300 individuals, the T5 minor allele frequency (MAF) was 4.2% (TG repeat distribution: TG11 = 68.1%, TG12 = 29.5%, TG13 = 2.4%). When present with a CFvar, each TG[11-13]T5 variant was significantly enriched in individuals with a high suspicion of CF or CFTR-RD (personal/family history of CF/CFTR-RD) compared to those with a low suspicion for CF or CFTR-RD (hereditary cancer screening, CFTR not requisitioned). Compared to CFvar/CFvar individuals, those with TG[11-13]T5/CFvar generally had single-organ involvement, milder symptoms, variable expressivity, and reduced penetrance. These data improve our understanding of disease risks associated with TG[11-13]T5 variants and have important implications for reproductive genetic counseling.
Collapse
|
25
|
Antisense oligonucleotide-based drug development for Cystic Fibrosis patients carrying the 3849+10 kb C-to-T splicing mutation. J Cyst Fibros 2021; 20:865-875. [PMID: 34226157 PMCID: PMC8464507 DOI: 10.1016/j.jcf.2021.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/24/2023]
Abstract
Background: Antisense oligonucleotide (ASO)-based drugs for splicing modulation were recently approved for various genetic diseases with unmet need. Here we aimed to develop an ASO-based splicing modulation therapy for Cystic Fibrosis (CF) patients carrying the 3849 + 10 kb C-to-T splicing mutation in the CFTR gene. Methods: We have screened, in FRT cells expressing the 3849 + 10 kb C-to-T splicing mutation, ~30 2ʹ-O-Methyl-modified phosphorothioate ASOs, targeted to prevent the recognition and inclusion of a cryptic exon generated due to the mutation. The effect of highly potent ASO candidates on the splicing pattern, protein maturation and CFTR function was further analyzed in well differentiated primary human nasal and bronchial epithelial cells, derived from patients carrying at least one 3849 + 10 kb C-to-T allele. Results: A highly potent lead ASO, efficiently delivered by free uptake, was able to significantly increase the level of correctly spliced mRNA and completely restore the CFTR function to wild type levels in cells from a homozygote patient. This ASO led to CFTR function with an average of 43% of wild type levels in cells from various heterozygote patients. Optimized efficiency of the lead ASO was further obtained with 2ʹ-Methoxy Ethyl modification (2ʹMOE). Conclusion: The highly efficient splicing modulation and functional correction, achieved by free uptake of the selected lead ASO in various patients, demonstrate the ASO therapeutic potential benefit for CF patients carrying splicing mutations and is aimed to serve as the basis for our current clinical development.
Collapse
|
26
|
Santos L, Mention K, Cavusoglu-Doran K, Sanz DJ, Bacalhau M, Lopes-Pacheco M, Harrison PT, Farinha CM. Comparison of Cas9 and Cas12a CRISPR editing methods to correct the W1282X-CFTR mutation. J Cyst Fibros 2021; 21:181-187. [PMID: 34103250 DOI: 10.1016/j.jcf.2021.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND W1282X-CFTR variant (c.3846G>A) is the second most common nonsense cystic fibrosis (CF)-causing mutation in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Even though remarkable breakthroughs have been done towards CF treatment with the approval of four CFTR protein modulators, none of these are approved for patients with nonsense mutations. CRISPR gene editing tools can be of great value to permanently correct the genetic defects caused by these mutations. METHODS We compared the capacity of homology-directed repair (HDR) mediated by Cas9 or Cas12a to correct W1282X CFTR mutation in the CFF-16HBEge W1282X CFTR cell line (obtained from CFF), using Cas9/gRNA and Cas12a/gRNA ribonucleoproteins (RNPs) and single strand DNA (ssODN) oligonucleotide donors. RESULTS Cas9 shows higher levels of correction than Cas12a as, by electroporating cells with Cas9 RNPs and ssODN donor, nearly 18% of precise editing was achieved compared to just 8% for Cas12a. Such levels of correction increase the abundance of CFTR mRNA and protein, and partially restore CFTR function in the pool of edited cells to 18% of WT CFTR function. Moreover, homozygous corrected clones produced levels of mRNA, protein, and function comparable to those of cells expressing WT CFTR. CONCLUSION Altogether, this work demonstrates the potential of gene editing as a therapeutic strategy for CF directly correcting the root cause of the disease.
Collapse
Affiliation(s)
- Lúcia Santos
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal; Department of Physiology, University College Cork, Cork T12 K8AF, Ireland
| | - Karen Mention
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland
| | | | - David J Sanz
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland
| | - Mafalda Bacalhau
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal
| | - Miquéias Lopes-Pacheco
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal
| | - Patrick T Harrison
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland
| | - Carlos M Farinha
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal.
| |
Collapse
|
27
|
Identification of Potential Leukocyte Biomarkers Related to Drug Recovery of CFTR: Clinical Applications in Cystic Fibrosis. Int J Mol Sci 2021; 22:ijms22083928. [PMID: 33920274 PMCID: PMC8068931 DOI: 10.3390/ijms22083928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was the identification of specific proteomic profiles, related to a restored cystic fibrosis transmembrane conductance regulator (CFTR) activity in cystic fibrosis (CF) leukocytes before and after ex vivo treatment with the potentiator VX770. We used leukocytes, isolated from CF patients carrying residual function mutations and eligible for Ivacaftor therapy, and performed CFTR activity together with proteomic analyses through micro-LC–MS. Bioinformatic analyses of the results obtained revealed the downregulation of proteins belonging to the leukocyte transendothelial migration and regulation of actin cytoskeleton pathways when CFTR activity was rescued by VX770 treatment. In particular, we focused our attention on matrix metalloproteinase 9 (MMP9), because the high expression of this protease potentially contributes to parenchyma lung destruction and dysfunction in CF. Thus, the downregulation of MMP9 could represent one of the possible positive effects of VX770 in decreasing the disease progression, and a potential biomarker for the prediction of the efficacy of therapies targeting the defect of Cl− transport in CF.
Collapse
|
28
|
Allan KM, Farrow N, Donnelley M, Jaffe A, Waters SA. Treatment of Cystic Fibrosis: From Gene- to Cell-Based Therapies. Front Pharmacol 2021; 12:639475. [PMID: 33796025 PMCID: PMC8007963 DOI: 10.3389/fphar.2021.639475] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Prognosis of patients with cystic fibrosis (CF) varies extensively despite recent advances in targeted therapies that improve CF transmembrane conductance regulator (CFTR) function. Despite being a multi-organ disease, extensive lung tissue destruction remains the major cause of morbidity and mortality. Progress towards a curative treatment strategy that implements a CFTR gene addition-technology to the patients’ lungs has been slow and not yet developed beyond clinical trials. Improved delivery vectors are needed to overcome the body’s defense system and ensure an efficient and consistent clinical response before gene therapy is suitable for clinical care. Cell-based therapy–which relies on functional modification of allogenic or autologous cells ex vivo, prior to transplantation into the patient–is now a therapeutic reality for various diseases. For CF, pioneering research has demonstrated proof-of-principle for allogenic transplantation of cultured human airway stem cells into mouse airways. However, applying a cell-based therapy to the human airways has distinct challenges. We review CF gene therapies using viral and non-viral delivery strategies and discuss current advances towards autologous cell-based therapies. Progress towards identification, correction, and expansion of a suitable regenerative cell, as well as refinement of pre-cell transplant lung conditioning protocols is discussed.
Collapse
Affiliation(s)
- Katelin M Allan
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, Australia
| | - Nigel Farrow
- Respiratory and Sleep Medicine, Women's and Children's Health Network, Adelaide, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Martin Donnelley
- Respiratory and Sleep Medicine, Women's and Children's Health Network, Adelaide, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Adam Jaffe
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, Australia.,Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, Australia
| | - Shafagh A Waters
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, Australia.,Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, Australia
| |
Collapse
|
29
|
The Effect of Synonymous Single-Nucleotide Polymorphisms on an Atypical Cystic Fibrosis Clinical Presentation. Life (Basel) 2020; 11:life11010014. [PMID: 33375403 PMCID: PMC7824434 DOI: 10.3390/life11010014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Synonymous single nucleotide polymorphisms (sSNPs), which change a nucleotide, but not the encoded amino acid, are perceived as neutral to protein function and thus, classified as benign. We report a patient who was diagnosed with cystic fibrosis (CF) at an advanced age and presented very mild CF symptoms. The sequencing of the whole cystic fibrosis transmembrane conductance regulator (CFTR) gene locus revealed that the patient lacks known CF-causing mutations. We found a homozygous sSNP (c.1584G>A) at the end of exon 11 in the CFTR gene. Using sensitive molecular methods, we report that the c.1584G>A sSNP causes cognate exon skipping and retention of a sequence from the downstream intron, both of which, however, occur at a relatively low frequency. In addition, we found two other sSNPs (c.2562T>G (p.Thr854=) and c.4389G>A (p.Gln1463=)), for which the patient is also homozygous. These two sSNPs stabilize the CFTR protein expression, compensating, at least in part, for the c.1584G>A-triggered inefficient splicing. Our data highlight the importance of considering sSNPs when assessing the effect(s) of complex CFTR alleles. sSNPs may epistatically modulate mRNA and protein expression levels and consequently influence disease phenotype and progression.
Collapse
|
30
|
Auslander N, Ramos DM, Zelaya I, Karathia H, Crawford TO, Schäffer AA, Sumner CJ, Ruppin E. The GENDULF algorithm: mining transcriptomics to uncover modifier genes for monogenic diseases. Mol Syst Biol 2020; 16:e9701. [PMID: 33438800 PMCID: PMC7754056 DOI: 10.15252/msb.20209701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Modifier genes are believed to account for the clinical variability observed in many Mendelian disorders, but their identification remains challenging due to the limited availability of genomics data from large patient cohorts. Here, we present GENDULF (GENetic moDULators identiFication), one of the first methods to facilitate prediction of disease modifiers using healthy and diseased tissue gene expression data. GENDULF is designed for monogenic diseases in which the mechanism is loss of function leading to reduced expression of the mutated gene. When applied to cystic fibrosis, GENDULF successfully identifies multiple, previously established disease modifiers, including EHF, SLC6A14, and CLCA1. It is then utilized in spinal muscular atrophy (SMA) and predicts U2AF1 as a modifier whose low expression correlates with higher SMN2 pre-mRNA exon 7 retention. Indeed, knockdown of U2AF1 in SMA patient-derived cells leads to increased full-length SMN2 transcript and SMN protein expression. Taking advantage of the increasing availability of transcriptomic data, GENDULF is a novel addition to existing strategies for prediction of genetic disease modifiers, providing insights into disease pathogenesis and uncovering novel therapeutic targets.
Collapse
Affiliation(s)
- Noam Auslander
- Cancer Data Science Laboratory (CDSL)National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
- National Center for Biotechnology InformationNational Library of MedicineNational Institutes of HealthBethesdaMDUSA
| | - Daniel M Ramos
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Ivette Zelaya
- Interdepartmental Program in BioinformaticsUniversity of California Los AngelesLos AngelesCAUSA
| | - Hiren Karathia
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer InstituteNational Institutes of HealthMDUSA
| | - Thomas O. Crawford
- Department of PediatricsJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory (CDSL)National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Charlotte J Sumner
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL)National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
31
|
Kolonko AK, Efing J, González-Espinosa Y, Bangel-Ruland N, van Driessche W, Goycoolea FM, Weber WM. Capsaicin-Loaded Chitosan Nanocapsules for wtCFTR-mRNA Delivery to a Cystic Fibrosis Cell Line. Biomedicines 2020; 8:E364. [PMID: 32962254 PMCID: PMC7554911 DOI: 10.3390/biomedicines8090364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF), a lethal hereditary disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene coding for an epithelial chloride channel, is characterized by an imbalanced homeostasis of ion and water transports in secretory epithelia. As the disease is single-gene based, transcript therapy using therapeutic mRNA is a promising concept of treatment in order to correct many aspects of the fatal pathology on a cellular level. Hence, we developed chitosan nanocapsules surface-loaded with wtCFTR-mRNA to restore CFTR function. Furthermore, we loaded the nanocapsules with capsaicin, aiming to enhance the overall efficiency of transcript therapy by reducing sodium hyperabsorption by the epithelial sodium channel (ENaC). Dynamic light scattering with non-invasive back scattering (DLS-NIBS) revealed nanocapsules with an average hydrodynamic diameter of ~200 nm and a Zeta potential of ~+60 mV. The results of DLS-NIBS measurements were confirmed by asymmetric flow field-flow fractionation (AF4) with multidetection, while transmission electron microscopy (TEM) images confirmed the spherical morphology and size range. After stability measurements showed that the nanocapsules were highly stable in cell culture transfection medium, and cytotoxicity was ruled out, transfection experiments were performed with the CF cell line CFBE41o-. Finally, transepithelial measurements with a new state-of-the-art Ussing chamber confirmed successfully restored CFTR function in transfected cells. This study demonstrates that CS nanocapsules as a natural and non-toxic delivery system for mRNA to target cells could effectively replace risky vectors for gene delivery. The nanocapsules are not only suitable as a transcript therapy for treatment of CF, but open aspiring possibilities for safe gene delivery in general.
Collapse
Affiliation(s)
- A. Katharina Kolonko
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (J.E.); (N.B.-R.); (W.-M.W.)
| | - Janes Efing
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (J.E.); (N.B.-R.); (W.-M.W.)
| | - Yadira González-Espinosa
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (Y.G.-E.); (F.M.G.)
| | - Nadine Bangel-Ruland
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (J.E.); (N.B.-R.); (W.-M.W.)
| | | | - Francisco M. Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (Y.G.-E.); (F.M.G.)
| | - Wolf-Michael Weber
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (J.E.); (N.B.-R.); (W.-M.W.)
| |
Collapse
|
32
|
King NE, Suzuki S, Barillà C, Hawkins FJ, Randell SH, Reynolds SD, Stripp BR, Davis BR. Correction of Airway Stem Cells: Genome Editing Approaches for the Treatment of Cystic Fibrosis. Hum Gene Ther 2020; 31:956-972. [PMID: 32741223 PMCID: PMC7495916 DOI: 10.1089/hum.2020.160] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although CF affects multiple organs, the primary cause of mortality is respiratory failure resulting from poor clearance of hyperviscous secretions and subsequent airway infection. Recently developed CFTR modulators provide significant therapeutic benefit to the majority of CF individuals. However, treatments directed at the underlying cause are needed for the ∼7% of CF patients who are not expected to be responsive to these modulators. Genome editing can restore the native CFTR genetic sequence and function to mutant cells, representing an approach to establish durable physiologic CFTR correction. Although editing the CFTR gene in various airway cell types may transiently restore CFTR activity, effort is focused on editing airway basal stem/progenitor cells, since their correction would allow appropriate and durable expression of CFTR in stem cell-derived epithelial cell types. Substantial progress has been made to directly correct airway basal cells in vitro, theoretically enabling transplantation of autologous corrected cells to regenerate an airway with CFTR functional cells. Another approach to create autologous, gene-edited airway basal cells is derivation of CF donor-specific induced pluripotent stem cells, correction of the CFTR gene, and subsequent directed differentiation to airway basal cells. Further work is needed to translate these advances by developing effective transplantation methods. Alternatively, gene editing in vivo may enable CFTR correction. However, this approach will require robust delivery methods ensuring that basal cells are efficiently targeted and corrected. Recent advances in gene editing-based therapies provide hope that the genetic underpinning of CF can be durably corrected in airway epithelial stem cells, thereby preventing or treating lung disease in all people with CF.
Collapse
Affiliation(s)
- Nicholas E. King
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shingo Suzuki
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Cristina Barillà
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Finn J. Hawkins
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Scott H. Randell
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Susan D. Reynolds
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Barry R. Stripp
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Brian R. Davis
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
33
|
Da Silva Sanchez A, Paunovska K, Cristian A, Dahlman JE. Treating Cystic Fibrosis with mRNA and CRISPR. Hum Gene Ther 2020; 31:940-955. [PMID: 32799680 PMCID: PMC7495921 DOI: 10.1089/hum.2020.137] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Less than 20% of the protein coding genome is thought to be targetable using small molecules. mRNA therapies are not limited in the same way since in theory, they can silence or edit any gene by encoding CRISPR nucleases, or alternatively, produce any missing protein. Yet not all mRNA therapies are equally likely to succeed. Over the past several years, an increasing number of clinical trials with siRNA- and antisense oligonucleotide-based drugs have revealed three key concepts that will likely extend to mRNA therapies delivered by nonviral systems. First, scientists have come to understand that some genes make better targets for RNA therapies than others. Second, scientists have learned that the type and position of chemical modifications made to an RNA drug can alter its therapeutic window, toxicity, and bioavailability. Third, scientists have found that safe and targeted drug delivery vehicles are required to ferry mRNA therapies into diseased cells. In this study, we apply these learnings to cystic fibrosis (CF). We also describe lessons learned from a subset of CF gene therapies that have already been tested in patients. Finally, we highlight the scientific advances that are still required for nonviral mRNA- or CRISPR-based drugs to treat CF successfully in patients.
Collapse
Affiliation(s)
- Alejandro Da Silva Sanchez
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ana Cristian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - James E. Dahlman
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
34
|
Sainz-Ramos M, Villate-Beitia I, Gallego I, A L Qtaish N, Lopez-Mendez TB, Eritja R, Grijalvo S, Puras G, Pedraz JL. Non-viral mediated gene therapy in human cystic fibrosis airway epithelial cells recovers chloride channel functionality. Int J Pharm 2020; 588:119757. [PMID: 32791297 DOI: 10.1016/j.ijpharm.2020.119757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
Gene therapy strategies based on non-viral vectors are currently considered as a promising therapeutic option for the treatment of cystic fibrosis (CF), being liposomes the most commonly used gene carriers. Niosomes offer a powerful alternative to liposomes due to their higher stability and lower cytotoxicity, provided by their non-ionic surfactant and helper components. In this work, a three-formulation screening is performed, in terms of physicochemical and biological behavior, in CF patient derived airway epithelial cells. The most efficient niosome formulation reaches 28% of EGFP expressing live cells and follows caveolae-mediated endocytosis. Transfection with therapeutic cystic fibrosis transmembrane conductance regulator (CFTR) gene results in 5-fold increase of CFTR protein expression in transfected versus non-transfected cells, which leads to 1.5-fold increment of the chloride channel functionality. These findings highlight the relevance of niosome-based systems as an encouraging non-viral gene therapy platform with potential therapeutic benefits for CF.
Collapse
Affiliation(s)
- Myriam Sainz-Ramos
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Ilia Villate-Beitia
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Idoia Gallego
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Nuseibah A L Qtaish
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Tania B Lopez-Mendez
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Ramón Eritja
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Santiago Grijalvo
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Gustavo Puras
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| | - José Luis Pedraz
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
35
|
Suzuki S, Crane AM, Anirudhan V, Barillà C, Matthias N, Randell SH, Rab A, Sorscher EJ, Kerschner JL, Yin S, Harris A, Mendel M, Kim K, Zhang L, Conway A, Davis BR. Highly Efficient Gene Editing of Cystic Fibrosis Patient-Derived Airway Basal Cells Results in Functional CFTR Correction. Mol Ther 2020; 28:1684-1695. [PMID: 32402246 PMCID: PMC7335734 DOI: 10.1016/j.ymthe.2020.04.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/01/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022] Open
Abstract
There is a strong rationale to consider future cell therapeutic approaches for cystic fibrosis (CF) in which autologous proximal airway basal stem cells, corrected for CFTR mutations, are transplanted into the patient's lungs. We assessed the possibility of editing the CFTR locus in these cells using zinc-finger nucleases and have pursued two approaches. The first, mutation-specific correction, is a footprint-free method replacing the CFTR mutation with corrected sequences. We have applied this approach for correction of ΔF508, demonstrating restoration of mature CFTR protein and function in air-liquid interface cultures established from bulk edited basal cells. The second is targeting integration of a partial CFTR cDNA within an intron of the endogenous CFTR gene, providing correction for all CFTR mutations downstream of the integration and exploiting the native CFTR promoter and chromatin architecture for physiologically relevant expression. Without selection, we observed highly efficient, site-specific targeted integration in basal cells carrying various CFTR mutations and demonstrated restored CFTR function at therapeutically relevant levels. Significantly, Omni-ATAC-seq analysis revealed minimal impact on the positions of open chromatin within the native CFTR locus. These results demonstrate efficient functional correction of CFTR and provide a platform for further ex vivo and in vivo editing.
Collapse
Affiliation(s)
- Shingo Suzuki
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ana M Crane
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Varada Anirudhan
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Cristina Barillà
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nadine Matthias
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andras Rab
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jenny L Kerschner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shiyi Yin
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Kenneth Kim
- Sangamo Therapeutics, Richmond, CA 94804, USA
| | - Lei Zhang
- Sangamo Therapeutics, Richmond, CA 94804, USA
| | | | - Brian R Davis
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Almughem FA, Aldossary AM, Tawfik EA, Alomary MN, Alharbi WS, Alshahrani MY, Alshehri AA. Cystic Fibrosis: Overview of the Current Development Trends and Innovative Therapeutic Strategies. Pharmaceutics 2020; 12:E616. [PMID: 32630625 PMCID: PMC7407299 DOI: 10.3390/pharmaceutics12070616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic Fibrosis (CF), an autosomal recessive genetic disease, is caused by a mutation in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). This mutation reduces the release of chloride ions (Cl-) in epithelial tissues, and hyperactivates the epithelial sodium channels (ENaC) which aid in the absorption of sodium ions (Na+). Consequently, the mucus becomes dehydrated and thickened, making it a suitable medium for microbial growth. CF causes several chronic lung complications like thickened mucus, bacterial infection and inflammation, progressive loss of lung function, and ultimately, death. Until recently, the standard of clinical care in CF treatment had focused on preventing and treating the disease complications. In this review, we have summarized the current knowledge on CF pathogenesis and provided an outlook on the current therapeutic approaches relevant to CF (i.e., CFTR modulators and ENaC inhibitors). The enormous potential in targeting bacterial biofilms using antibiofilm peptides, and the innovative therapeutic strategies in using the CRISPR/Cas approach as a gene-editing tool to repair the CFTR mutation have been reviewed. Finally, we have discussed the wide range of drug delivery systems available, particularly non-viral vectors, and the optimal properties of nanocarriers which are essential for successful drug delivery to the lungs.
Collapse
Affiliation(s)
- Fahad A. Almughem
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Ahmad M. Aldossary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Essam A. Tawfik
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia;
| | - Abdullah A. Alshehri
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| |
Collapse
|
37
|
Filipczak N, Pan J, Yalamarty SSK, Torchilin VP. Recent advancements in liposome technology. Adv Drug Deliv Rev 2020; 156:4-22. [PMID: 32593642 DOI: 10.1016/j.addr.2020.06.022] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/22/2022]
Abstract
The liposomes have continued to be well-recognized as an important nano-sized drug delivery system with attractive properties, such a characteristic bilayer structure assembling the cellular membrane, easy-to-prepare and high bio-compatibility. Extensive effort has been devoted to the development of liposome-based drug delivery systems during the past few decades. Many drug candidates have been encapsulated in liposomes and investigated for reduced toxicity and extended duration of therapeutic effect. The liposomal encapsulation of hydrophilic and hydrophobic small molecule therapeutics as well as other large molecule biologics have been established among different academic and industrial research groups. To date, there has been an increasing number of FDA-approved liposomal-based therapeutics together with more and more undergoing clinical trials, which involve a wide range of applications in anticancer, antibacterial, and antiviral therapies. In order to meet the continuing demand for new drugs in clinics, more recent advancements have been investigated for optimizing liposomal-based drug delivery system with more reproducible preparation technique and a broadened application to novel modalities, including nucleic acid therapies, CRISPR/Cas9 therapies and immunotherapies. This review focuses on the recent liposome' preparation techniques, the excipients of liposomal formulations used in various novel studies and the routes of administration used to deliver liposomes to targeted areas of disease. It aims to update the research in liposomal delivery and highlights future nanotechnological approaches.
Collapse
|
38
|
The CFTR Mutation c.3453G > C (D1152H) Confers an Anion Selectivity Defect in Primary Airway Tissue that Can Be Rescued by Ivacaftor. J Pers Med 2020; 10:jpm10020040. [PMID: 32414100 PMCID: PMC7354675 DOI: 10.3390/jpm10020040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene variant, c.3453G > C (D1152H), is associated with mild Cystic Fibrosis (CF) disease, though there is considerable clinical variability ranging from no detectable symptoms to lung disease with early acquisition of Pseudomonas aeruginosa. The approval extension of ivacaftor, the first CFTR modulator drug approved, to include D1152H was based on a positive drug response of defective CFTR-D1152H chloride channel function when expressed in FRT cells. Functional analyses of primary human nasal epithelial cells (HNE) from an individual homozygous for D1152H now revealed that while CFTR-D1152H demonstrated normal, wild-type level chloride conductance, its bicarbonate-selective conductance was impaired. Treatment with ivacaftor increased this bicarbonate-selective conductance. Extensive genetic, protein and functional analysis of the nasal cells of this D1152H/D1152H patient revealed a 90% reduction of CFTR transcripts due to the homozygous presence of the 5T polymorphism in the poly-T tract forming a complex allele with D1152H. Thus, we confirm previous observation in patient-derived tissue that 10% normal CFTR transcripts confer normal, wild-type level chloride channel activity. Together, this study highlights the benefit of patient-derived tissues to study the functional expression and pharmacological modulation of CF-causing mutations, in order to understand pathogenesis and therapeutic responses.
Collapse
|
39
|
Chen JM, Lin JH, Masson E, Liao Z, Férec C, Cooper DN, Hayden M. The Experimentally Obtained Functional Impact Assessments of 5' Splice Site GT'GC Variants Differ Markedly from Those Predicted. Curr Genomics 2020; 21:56-66. [PMID: 32655299 PMCID: PMC7324893 DOI: 10.2174/1389202921666200210141701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 01/26/2023] Open
Abstract
Introduction: 5' splice site GT>GC or +2T>C variants have been frequently reported to cause human genetic disease and are routinely scored as pathogenic splicing mutations. However, we have recently demonstrated that such variants in human disease genes may not invariably be pathogenic. Moreover, we found that no splicing prediction tools appear to be capable of reliably distinguishing those +2T>C variants that generate wild-type transcripts from those that do not. Methodology Herein, we evaluated the performance of a novel deep learning-based tool, SpliceAI, in the context of three datasets of +2T>C variants, all of which had been characterized functionally in terms of their impact on pre-mRNA splicing. The first two datasets refer to our recently described “in vivo” dataset of 45 known disease-causing +2T>C variants and the “in vitro” dataset of 103 +2T>C substitutions subjected to full-length gene splicing assay. The third dataset comprised 12 BRCA1 +2T>C variants that were recently analyzed by saturation genome editing. Results Comparison of the SpliceAI-predicted and experimentally obtained functional impact assessments of these variants (and smaller datasets of +2T>A and +2T>G variants) revealed that although SpliceAI performed rather better than other prediction tools, it was still far from perfect. A key issue was that the impact of those +2T>C (and +2T>A) variants that generated wild-type transcripts represents a quantitative change that can vary from barely detectable to an almost full expression of wild-type transcripts, with wild-type transcripts often co-existing with aberrantly spliced transcripts. Conclusion Our findings highlight the challenges that we still face in attempting to accurately identify splice-altering variants.
Collapse
Affiliation(s)
- Jian-Min Chen
- 1EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200Brest, France; 2Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China; 3Shanghai Institute of Pancreatic Diseases, Shanghai, China; 4CHRU Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Brest, France; 5Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Jin-Huan Lin
- 1EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200Brest, France; 2Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China; 3Shanghai Institute of Pancreatic Diseases, Shanghai, China; 4CHRU Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Brest, France; 5Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Emmanuelle Masson
- 1EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200Brest, France; 2Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China; 3Shanghai Institute of Pancreatic Diseases, Shanghai, China; 4CHRU Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Brest, France; 5Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Zhuan Liao
- 1EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200Brest, France; 2Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China; 3Shanghai Institute of Pancreatic Diseases, Shanghai, China; 4CHRU Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Brest, France; 5Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Claude Férec
- 1EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200Brest, France; 2Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China; 3Shanghai Institute of Pancreatic Diseases, Shanghai, China; 4CHRU Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Brest, France; 5Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - David N Cooper
- 1EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200Brest, France; 2Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China; 3Shanghai Institute of Pancreatic Diseases, Shanghai, China; 4CHRU Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Brest, France; 5Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Matthew Hayden
- 1EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200Brest, France; 2Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China; 3Shanghai Institute of Pancreatic Diseases, Shanghai, China; 4CHRU Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Brest, France; 5Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
40
|
McCague AF, Raraigh KS, Pellicore MJ, Davis-Marcisak EF, Evans TA, Han ST, Lu Z, Joynt AT, Sharma N, Castellani C, Collaco JM, Corey M, Lewis MH, Penland CM, Rommens JM, Stephenson AL, Sosnay PR, Cutting GR. Correlating Cystic Fibrosis Transmembrane Conductance Regulator Function with Clinical Features to Inform Precision Treatment of Cystic Fibrosis. Am J Respir Crit Care Med 2020; 199:1116-1126. [PMID: 30888834 DOI: 10.1164/rccm.201901-0145oc] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: The advent of precision treatment for cystic fibrosis using small-molecule therapeutics has created a need to estimate potential clinical improvements attributable to increases in cystic fibrosis transmembrane conductance regulator (CFTR) function. Objectives: To derive CFTR function of a variety of CFTR genotypes and correlate with key clinical features (sweat chloride concentration, pancreatic exocrine status, and lung function) to develop benchmarks for assessing response to CFTR modulators. Methods: CFTR function assigned to 226 unique CFTR genotypes was correlated with the clinical data of 54,671 individuals enrolled in the Clinical and Functional Translation of CFTR (CFTR2) project. Cross-sectional FEV1% predicted measurements were plotted by age at which measurement was obtained. Shifts in sweat chloride concentration and lung function reported in CFTR modulator trials were compared with function-phenotype correlations to assess potential efficacy of therapies. Measurements and Main Results: CFTR genotype function exhibited a logarithmic relationship with each clinical feature. Modest increases in CFTR function related to differing genotypes were associated with clinically relevant improvements in cross-sectional FEV1% predicted over a range of ages (6-82 yr). Therapeutic responses to modulators corresponded closely to predictions from the CFTR2-derived relationship between CFTR genotype function and phenotype. Conclusions: Increasing CFTR function in individuals with severe disease will have a proportionally greater effect on outcomes than similar increases in CFTR function in individuals with mild disease and should reverse a substantial fraction of the disease process. This study provides reference standards for clinical outcomes that may be achieved by increasing CFTR function.
Collapse
Affiliation(s)
- Allison F McCague
- 1 McKusick-Nathans Institute of Genetic Medicine, School of Medicine
| | - Karen S Raraigh
- 1 McKusick-Nathans Institute of Genetic Medicine, School of Medicine
| | | | | | - Taylor A Evans
- 1 McKusick-Nathans Institute of Genetic Medicine, School of Medicine
| | - Sangwoo T Han
- 1 McKusick-Nathans Institute of Genetic Medicine, School of Medicine
| | - Zhongzhou Lu
- 1 McKusick-Nathans Institute of Genetic Medicine, School of Medicine
| | - Anya T Joynt
- 1 McKusick-Nathans Institute of Genetic Medicine, School of Medicine
| | - Neeraj Sharma
- 1 McKusick-Nathans Institute of Genetic Medicine, School of Medicine
| | - Carlo Castellani
- 2 Cystic Fibrosis Center, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Joseph M Collaco
- 3 Eudowood Division of Pediatric Respiratory Sciences, School of Medicine
| | | | | | | | - Johanna M Rommens
- 7 Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anne L Stephenson
- 8 Department of Respirology, Adult Cystic Fibrosis Program, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Patrick R Sosnay
- 9 Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Garry R Cutting
- 1 McKusick-Nathans Institute of Genetic Medicine, School of Medicine
| |
Collapse
|
41
|
Amico G, Brandas C, Moran O, Baroni D. Unravelling the Regions of Mutant F508del-CFTR More Susceptible to the Action of Four Cystic Fibrosis Correctors. Int J Mol Sci 2019; 20:ijms20215463. [PMID: 31683989 PMCID: PMC6862496 DOI: 10.3390/ijms20215463] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease associated with the defective function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that causes obstructive disease and chronic bacterial infections in airway epithelia. The most prevalent CF-causing mutation, the deletion of phenylalanine at position 508 (F508del), leads to CFTR misfolding, trafficking defects and premature degradation. A number of correctors that are able to partially rescue F508del-CFTR processing defects have been identified. Clinical trials have demonstrated that, unfortunately, mono-therapy with the best correctors identified to date does not ameliorate lung function or sweat chloride concentration in homozygous F508del patients. Understanding the mechanisms exerted by currently available correctors to increase mutant F508del-CFTR expression is essential for the development of new CF-therapeutics. We investigated the activity of correctors on the mutant F508del and wild type (WT) CFTR to identify the protein domains whose expression is mostly affected by the action of correctors, and we investigated their mechanisms of action. We found that the four correctors under study, lumacaftor (VX809), the quinazoline derivative VX325, the bithiazole compound corr4a, and the new molecule tezacaftor (VX661), do not influence either the total expression or the maturation of the WT-CFTR transiently expressed in human embryonic kidney 293 (HEK293) cells. Contrarily, they significantly enhance the expression and the maturation of the full length F508del molecule. Three out of four correctors, VX809, VX661 and VX325, seem to specifically improve the expression and the maturation of the mutant CFTR N-half (M1N1, residues 1–633). By contrast, the CFTR C-half (M2N2, residues 837–1480) appears to be the region mainly affected by corr4a. VX809 was shown to stabilize both the WT- and F508del-CFTR N-half isoforms, while VX661 and VX325 demonstrated the ability to enhance the stability only of the mutant F508del polypeptide.
Collapse
Affiliation(s)
- Giulia Amico
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| | - Chiara Brandas
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| | - Debora Baroni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| |
Collapse
|
42
|
Lin JH, Tang XY, Boulling A, Zou WB, Masson E, Fichou Y, Raud L, Le Tertre M, Deng SJ, Berlivet I, Ka C, Mort M, Hayden M, Leman R, Houdayer C, Le Gac G, Cooper DN, Li ZS, Férec C, Liao Z, Chen JM. First estimate of the scale of canonical 5' splice site GT>GC variants capable of generating wild-type transcripts. Hum Mutat 2019; 40:1856-1873. [PMID: 31131953 DOI: 10.1002/humu.23821] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/10/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022]
Abstract
It has long been known that canonical 5' splice site (5'SS) GT>GC variants may be compatible with normal splicing. However, to date, the actual scale of canonical 5'SSs capable of generating wild-type transcripts in the case of GT>GC substitutions remains unknown. Herein, combining data derived from a meta-analysis of 45 human disease-causing 5'SS GT>GC variants and a cell culture-based full-length gene splicing assay of 103 5'SS GT>GC substitutions, we estimate that ~15-18% of canonical GT 5'SSs retain their capacity to generate between 1% and 84% normal transcripts when GT is substituted by GC. We further demonstrate that the canonical 5'SSs in which substitution of GT by GC-generated normal transcripts exhibit stronger complementarity to the 5' end of U1 snRNA than those sites whose substitutions of GT by GC did not lead to the generation of normal transcripts. We also observed a correlation between the generation of wild-type transcripts and a milder than expected clinical phenotype but found that none of the available splicing prediction tools were capable of reliably distinguishing 5'SS GT>GC variants that generated wild-type transcripts from those that did not. Our findings imply that 5'SS GT>GC variants in human disease genes may not invariably be pathogenic.
Collapse
Affiliation(s)
- Jin-Huan Lin
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Xin-Ying Tang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Arnaud Boulling
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Emmanuelle Masson
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,CHU Brest, Service de Génétique, Brest, France
| | - Yann Fichou
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Loann Raud
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France
| | | | - Shun-Jiang Deng
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | | | - Chandran Ka
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,CHU Brest, Service de Génétique, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthew Hayden
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Raphaël Leman
- Laboratoire de Biologie et Génétique du Cancer, Centre François Baclesse, Caen, France.,Department of Genetics, F76000 and Normandy University, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France
| | - Claude Houdayer
- Department of Genetics, F76000 and Normandy University, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France
| | - Gerald Le Gac
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,CHU Brest, Service de Génétique, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Claude Férec
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jian-Min Chen
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France
| |
Collapse
|
43
|
Guenthart BA, O'Neill JD, Kim J, Fung K, Vunjak-Novakovic G, Bacchetta M. Cell replacement in human lung bioengineering. J Heart Lung Transplant 2019; 38:215-224. [PMID: 30529200 PMCID: PMC6351169 DOI: 10.1016/j.healun.2018.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/30/2018] [Accepted: 11/14/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND As the number of patients with end-stage lung disease continues to rise, there is a growing need to increase the limited number of lungs available for transplantation. Unfortunately, attempts at engineering functional lung de novo have been unsuccessful, and artificial mechanical devices have limited utility as a bridge to transplant. This difficulty is largely due to the size and inherent complexity of the lung; however, recent advances in cell-based therapeutics offer a unique opportunity to enhance traditional tissue-engineering approaches with targeted site- and cell-specific strategies. METHODS Human lungs considered unsuitable for transplantation were procured and supported using novel cannulation techniques and modified ex-vivo lung perfusion. Targeted lung regions were treated using intratracheal delivery of decellularization solution. Labeled mesenchymal stem cells or airway epithelial cells were then delivered into the lung and incubated for up to 6 hours. RESULTS Tissue samples were collected at regular time intervals and detailed histologic and immunohistochemical analyses were performed to evaluate the effectiveness of native cell removal and exogenous cell replacement. Regional decellularization resulted in the removal of airway epithelium with preservation of vascular endothelium and extracellular matrix proteins. After incubation, delivered cells were retained in the lung and showed homogeneous topographic distribution and flattened cellular morphology. CONCLUSIONS Our findings suggest that targeted cell replacement in extracorporeal organs is feasible and may ultimately lead to chimeric organs suitable for transplantation or the development of in-situ interventions to treat or reverse disease, ultimately negating the need for transplantation.
Collapse
Affiliation(s)
- Brandon A Guenthart
- Department of Surgery, Columbia University Medical Center, Columbia University, New York, New York, USA; Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - John D O'Neill
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Jinho Kim
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, New York, USA; Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Kenmond Fung
- Department of Clinical Perfusion, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, New York, USA; Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Matthew Bacchetta
- Department of Surgery, Columbia University Medical Center, Columbia University, New York, New York, USA.
| |
Collapse
|
44
|
Clarke LA, Awatade NT, Felício VM, Silva IA, Calucho M, Pereira L, Azevedo P, Cavaco J, Barreto C, Bertuzzo C, Gartner S, Beekman J, Amaral MD. The effect of premature termination codon mutations on CFTR mRNA abundance in human nasal epithelium and intestinal organoids: a basis for read-through therapies in cystic fibrosis. Hum Mutat 2018; 40:326-334. [PMID: 30488522 DOI: 10.1002/humu.23692] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/08/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023]
Abstract
A major challenge in cystic fibrosis (CF) research is applying mutation-specific therapy to individual patients with diverse and rare CF transmembrane conductance regulator (CFTR) genotypes. Read-through agents are currently the most promising approach for Class I mutations that introduce premature termination codons (PTCs) into CFTR mRNA. However, variations in degradation of PTC containing transcripts by nonsense mediated decay (NMD) might lower read-through efficacy. Allele specific quantitative real time (qRT)-PCR was used to measure variations in CFTR mRNA abundance for several PTC mutations in respiratory cells and intestinal organoids. The majority of PTC mutations were associated with reduced levels of relative mRNA transcript abundance (∼33% and 26% of total CFTR mRNA in respiratory cells and intestinal organoids, respectively, compared to >50% for non-PTC causing mutations). These levels were generally not affected by PTC mutation type or position, but there could be twofold variations between individuals bearing the same genotype. Most PTC mutations in CFTR are subject to similar levels of NMD, which reduce but do not abolish PTC bearing mRNAs. Measurement of individual NMD levels in intestinal organoids and HNE cells might, therefore, be useful in predicting efficacy of PTC read-through in the context of personalized CFTR modulator therapy.
Collapse
Affiliation(s)
- Luka A Clarke
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Portugal
| | - Nikhil T Awatade
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Portugal
| | - Veronica M Felício
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Portugal
| | - Iris A Silva
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Portugal
| | - Maite Calucho
- Pediatric Pulmonology & CF Unit. Hospital Universitari, Vall d'Hebron, Spain
| | - Luisa Pereira
- Department of Pediatrics, Hospital de Santa Maria, Lisboa, Portugal
| | - Pilar Azevedo
- Department of Pediatrics, Hospital de Santa Maria, Lisboa, Portugal
| | - José Cavaco
- Centro de Referência de Fibrose Quística, Hospital de Dona Estefânia, Centro Hospitalar de Lisboa Central, Lisboa, Portugal
| | - Celeste Barreto
- Department of Pediatrics, Hospital de Santa Maria, Lisboa, Portugal
| | - Carmen Bertuzzo
- Human Genetics Department, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Silvia Gartner
- Pediatric Pulmonology & CF Unit. Hospital Universitari, Vall d'Hebron, Spain
| | - Jeffrey Beekman
- Department of Pediatric Pulmonology, UMCU, Utrecht, Netherlands
| | - Margarida D Amaral
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Portugal
| |
Collapse
|
45
|
Sharma N, Evans TA, Pellicore MJ, Davis E, Aksit MA, McCague AF, Joynt AT, Lu Z, Han ST, Anzmann AF, Lam ATN, Thaxton A, West N, Merlo C, Gottschalk LB, Raraigh KS, Sosnay PR, Cotton CU, Cutting GR. Capitalizing on the heterogeneous effects of CFTR nonsense and frameshift variants to inform therapeutic strategy for cystic fibrosis. PLoS Genet 2018; 14:e1007723. [PMID: 30444886 PMCID: PMC6267994 DOI: 10.1371/journal.pgen.1007723] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/30/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022] Open
Abstract
CFTR modulators have revolutionized the treatment of individuals with cystic fibrosis (CF) by improving the function of existing protein. Unfortunately, almost half of the disease-causing variants in CFTR are predicted to introduce premature termination codons (PTC) thereby causing absence of full-length CFTR protein. We hypothesized that a subset of nonsense and frameshift variants in CFTR allow expression of truncated protein that might respond to FDA-approved CFTR modulators. To address this concept, we selected 26 PTC-generating variants from four regions of CFTR and determined their consequences on CFTR mRNA, protein and function using intron-containing minigenes expressed in 3 cell lines (HEK293, MDCK and CFBE41o-) and patient-derived conditionally reprogrammed primary nasal epithelial cells. The PTC-generating variants fell into five groups based on RNA and protein effects. Group A (reduced mRNA, immature (core glycosylated) protein, function <1% (n = 5)) and Group B (normal mRNA, immature protein, function <1% (n = 10)) variants were unresponsive to modulator treatment. However, Group C (normal mRNA, mature (fully glycosylated) protein, function >1% (n = 5)), Group D (reduced mRNA, mature protein, function >1% (n = 5)) and Group E (aberrant RNA splicing, mature protein, function > 1% (n = 1)) variants responded to modulators. Increasing mRNA level by inhibition of NMD led to a significant amplification of modulator effect upon a Group D variant while response of a Group A variant was unaltered. Our work shows that PTC-generating variants should not be generalized as genetic 'nulls' as some may allow generation of protein that can be targeted to achieve clinical benefit.
Collapse
Affiliation(s)
- Neeraj Sharma
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Taylor A. Evans
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew J. Pellicore
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Emily Davis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Melis A. Aksit
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Allison F. McCague
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Anya T. Joynt
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zhongzhu Lu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sangwoo T. Han
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Arianna F. Anzmann
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Anh-Thu N. Lam
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Abigail Thaxton
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Natalie West
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Christian Merlo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Laura B. Gottschalk
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Karen S. Raraigh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Patrick R. Sosnay
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Calvin U. Cotton
- Departments of Pediatrics, Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Garry R. Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
46
|
Robinson E, MacDonald KD, Slaughter K, McKinney M, Patel S, Sun C, Sahay G. Lipid Nanoparticle-Delivered Chemically Modified mRNA Restores Chloride Secretion in Cystic Fibrosis. Mol Ther 2018; 26:2034-2046. [PMID: 29910178 PMCID: PMC6094356 DOI: 10.1016/j.ymthe.2018.05.014] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/12/2018] [Accepted: 05/12/2018] [Indexed: 12/14/2022] Open
Abstract
The promise of gene therapy for the treatment of cystic fibrosis has yet to be fully clinically realized despite years of effort toward correcting the underlying genetic defect in the cystic fibrosis transmembrane conductance regulator (CFTR). mRNA therapy via nanoparticle delivery represents a powerful technology for the transfer of genetic material to cells with large, widespread populations, such as airway epithelia. We deployed a clinically relevant lipid-based nanoparticle (LNP) for packaging and delivery of large chemically modified CFTR mRNA (cmCFTR) to patient-derived bronchial epithelial cells, resulting in an increase in membrane-localized CFTR and rescue of its primary function as a chloride channel. Furthermore, nasal application of LNP-cmCFTR restored CFTR-mediated chloride secretion to conductive airway epithelia in CFTR knockout mice for at least 14 days. On day 3 post-transfection, CFTR activity peaked, recovering up to 55% of the net chloride efflux characteristic of healthy mice. This magnitude of response is superior to liposomal CFTR DNA delivery and is comparable with outcomes observed in the currently approved drug ivacaftor. LNP-cmRNA-based systems represent a powerful platform technology for correction of cystic fibrosis and other monogenic disorders.
Collapse
Affiliation(s)
- Ema Robinson
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Kelvin D MacDonald
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA; Department of Pediatrics, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Kai Slaughter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Madison McKinney
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA; Department of Radiation Medicine, School of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA; Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201, USA.
| |
Collapse
|
47
|
Han ST, Rab A, Pellicore MJ, Davis EF, McCague AF, Evans TA, Joynt AT, Lu Z, Cai Z, Raraigh KS, Hong JS, Sheppard DN, Sorscher EJ, Cutting GR. Residual function of cystic fibrosis mutants predicts response to small molecule CFTR modulators. JCI Insight 2018; 3:121159. [PMID: 30046002 DOI: 10.1172/jci.insight.121159] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/12/2018] [Indexed: 12/24/2022] Open
Abstract
Treatment of individuals with cystic fibrosis (CF) has been transformed by small molecule therapies that target select pathogenic variants in the CF transmembrane conductance regulator (CFTR). To expand treatment eligibility, we stably expressed 43 rare missense CFTR variants associated with moderate CF from a single site in the genome of human CF bronchial epithelial (CFBE41o-) cells. The magnitude of drug response was highly correlated with residual CFTR function for the potentiator ivacaftor, the corrector lumacaftor, and ivacaftor-lumacaftor combination therapy. Response of a second set of 16 variants expressed stably in Fischer rat thyroid (FRT) cells showed nearly identical correlations. Subsets of variants were identified that demonstrated statistically significantly higher responses to specific treatments. Furthermore, nearly all variants studied in CFBE cells (40 of 43) and FRT cells (13 of 16) demonstrated greater response to ivacaftor-lumacaftor combination therapy than either modulator alone. Together, these variants represent 87% of individuals in the CFTR2 database with at least 1 missense variant. Thus, our results indicate that most individuals with CF carrying missense variants are (a) likely to respond modestly to currently available modulator therapy, while a small fraction will have pronounced responses, and (b) likely to derive the greatest benefit from combination therapy.
Collapse
Affiliation(s)
- Sangwoo T Han
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andras Rab
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew J Pellicore
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily F Davis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Allison F McCague
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Taylor A Evans
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anya T Joynt
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhongzhou Lu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhiwei Cai
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Karen S Raraigh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeong S Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Eric J Sorscher
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Garry R Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018; 18:452-464. [PMID: 29643473 PMCID: PMC6622180 DOI: 10.1038/s41568-018-0005-8] [Citation(s) in RCA: 1263] [Impact Index Per Article: 180.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Most patients who die of cancer have disseminated disease that has become resistant to multiple therapeutic modalities. Ample evidence suggests that the expression of ATP-binding cassette (ABC) transporters, especially the multidrug resistance protein 1 (MDR1, also known as P-glycoprotein or P-gp), which is encoded by ABC subfamily B member 1 (ABCB1), can confer resistance to cytotoxic and targeted chemotherapy. However, the development of MDR1 as a therapeutic target has been unsuccessful. At the time of its discovery, appropriate tools for the characterization and clinical development of MDR1 as a therapeutic target were lacking. Thirty years after the initial cloning and characterization of MDR1 and the implication of two additional ABC transporters, the multidrug resistance-associated protein 1 (MRP1; encoded by ABCC1)), and ABCG2, in multidrug resistance, interest in investigating these transporters as therapeutic targets has waned. However, with the emergence of new data and advanced techniques, we propose to re-evaluate whether these transporters play a clinical role in multidrug resistance. With this Opinion article, we present recent evidence indicating that it is time to revisit the investigation into the role of ABC transporters in efficient drug delivery in various cancer types and at the blood-brain barrier.
Collapse
Affiliation(s)
- Robert W Robey
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristen M Pluchino
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Antonio T Fojo
- Division of Hematology/Oncology, Department of Medicine, Columbia University/New York Presbyterian Hospital, Manhattan, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Susan E Bates
- Division of Hematology/Oncology, Department of Medicine, Columbia University/New York Presbyterian Hospital, Manhattan, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
49
|
Alhazmi A. Spleen Tyrosine Kinase as a Target Therapy for Pseudomonas aeruginosa Infection. J Innate Immun 2018; 10:255-263. [PMID: 29925062 DOI: 10.1159/000489863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/29/2018] [Indexed: 12/11/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase which associates directly with extracellular receptors, and is critically involved in signal transduction pathways in a variety of cell types for the regulation of cellular responses. SYK is expressed ubiquitously in immune and nonimmune cells, and has a much wider biological role than previously recognized. Several studies have highlighted SYK as a key player in the pathogenesis of a multitude of diseases. Pseudomonas aeruginosa is an opportunistic gram-negative pathogen, which is responsible for systemic infections in immunocompromised individuals, accounting for a major cause of severe chronic lung infection in cystic fibrosis patients and subsequently resulting in a progressive deterioration of lung function. Inhibition of SYK activity has been explored as a therapeutic option in several allergic disorders, autoimmune diseases, and hematological malignancies. This review focuses on SYK as a therapeutic target, and describes the possibility of how current knowledge could be translated for therapeutic purposes to regulate the immune response to the opportunistic pathogen P. aeruginosa.
Collapse
Affiliation(s)
- Alaa Alhazmi
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada.,Department of Medical Laboratory Technology, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
50
|
Raraigh KS, Han ST, Davis E, Evans TA, Pellicore MJ, McCague AF, Joynt AT, Lu Z, Atalar M, Sharma N, Sheridan MB, Sosnay PR, Cutting GR. Functional Assays Are Essential for Interpretation of Missense Variants Associated with Variable Expressivity. Am J Hum Genet 2018; 102:1062-1077. [PMID: 29805046 DOI: 10.1016/j.ajhg.2018.04.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/30/2018] [Indexed: 12/22/2022] Open
Abstract
Missense DNA variants have variable effects upon protein function. Consequently, interpreting their pathogenicity is challenging, especially when they are associated with disease variability. To determine the degree to which functional assays inform interpretation, we analyzed 48 CFTR missense variants associated with variable expressivity of cystic fibrosis (CF). We assessed function in a native isogenic context by evaluating CFTR mutants that were stably expressed in the genome of a human airway cell line devoid of endogenous CFTR expression. 21 of 29 variants associated with full expressivity of the CF phenotype generated <10% wild-type CFTR (WT-CFTR) function, a conservative threshold for the development of life-limiting CF lung disease, and five variants had moderately decreased function (10% to ∼25% WT-CFTR). The remaining three variants in this group unexpectedly had >25% WT-CFTR function; two were higher than 75% WT-CFTR. As expected, 14 of 19 variants associated with partial expressivity of CF had >25% WT-CFTR function; however, four had minimal to no effect on CFTR function (>75% WT-CFTR). Thus, 6 of 48 (13%) missense variants believed to be disease causing did not alter CFTR function. Functional studies substantially refined pathogenicity assignment with expert annotation and criteria from the American College of Medical Genetics and Genomics and Association for Molecular Pathology. However, four algorithms (CADD, REVEL, SIFT, and PolyPhen-2) could not differentiate between variants that caused severe, moderate, or minimal reduction in function. In the setting of variable expressivity, these results indicate that functional assays are essential for accurate interpretation of missense variants and that current prediction tools should be used with caution.
Collapse
|