1
|
Ishii T, Miyasato Y, Ichijo M, Uchimura K, Furuya F. Membrane protease prostasin promotes insulin secretion by regulating the epidermal growth factor receptor pathway. Sci Rep 2023; 13:9086. [PMID: 37277555 DOI: 10.1038/s41598-023-36326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/01/2023] [Indexed: 06/07/2023] Open
Abstract
Prostasin (PRSS8) is a serine protease that metabolizes and moderates the effect of specific substrates. Epidermal growth factor receptor (EGFR), which modulates insulin secretion and pancreatic β-cell proliferation, is regulated via proteolytic shedding by PRSS8. We first detected PRSS8 expression in β-cells of pancreatic islets of mice. To better understand the molecular processes involved in PRSS8-associated insulin secretion, pancreatic β-cell-specific PRSS8 knockout (βKO) and PRSS8-overexpressing (βTG) male mice were generated. We found that glucose intolerance and reduction in glucose-stimulated insulin secretion developed in βKO mice compared with the control subjects. A higher response to glucose was noted in islets retrieved from βTG mice. Erlotinib, a specific blocker of EGFR, blocks EGF- and glucose-stimulated secretion of insulin among MIN6 cells, and glucose improves EGF release from β-cells. After silencing PRSS8 in MIN6 cells, glucose-stimulated insulin secretion decreased, and EGFR signaling was impaired. Conversely, overexpression of PRSS8 in MIN6 cells induced higher concentrations of both basal and glucose-stimulated insulin secretion and increased phospho-EGFR concentrations. Furthermore, short-term exposure to glucose improved the concentration of endogenous PRSS8 in MIN6 cells through inhibition of intracellular degradation. These findings suggest that PRSS8 is involved in glucose-dependent physiological regulation of insulin secretion via the EGF-EGFR signaling pathway in pancreatic β-cells.
Collapse
Grants
- 17K16145 Japan Society for the Promotion of Science, KAKENHI
- 19K17958 Japan Society for the Promotion of Science, KAKENHI
- 21K16367 Japan Society for the Promotion of Science, KAKENHI
- 17K16145 Japan Society for the Promotion of Science, KAKENHI
- 19K17958 Japan Society for the Promotion of Science, KAKENHI
- 21K16367 Japan Society for the Promotion of Science, KAKENHI
- 17K16145 Japan Society for the Promotion of Science, KAKENHI
- 19K17958 Japan Society for the Promotion of Science, KAKENHI
- 21K16367 Japan Society for the Promotion of Science, KAKENHI
- 17K16145 Japan Society for the Promotion of Science, KAKENHI
- 19K17958 Japan Society for the Promotion of Science, KAKENHI
- 21K16367 Japan Society for the Promotion of Science, KAKENHI
- 17K16145 Japan Society for the Promotion of Science, KAKENHI
- 19K17958 Japan Society for the Promotion of Science, KAKENHI
- 21K16367 Japan Society for the Promotion of Science, KAKENHI
Collapse
Affiliation(s)
- Toshihisa Ishii
- Division of Nephrology, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Yoshikazu Miyasato
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, 860-8556, Japan
| | - Masashi Ichijo
- Department of Diabetes and Endocrinology, Matsumoto National Hospital, Matsumoto, Japan
| | - Kohei Uchimura
- Division of Nephrology, University of Yamanashi, Yamanashi, 409-3898, Japan.
| | - Fumihiko Furuya
- Division of Nephrology, University of Yamanashi, Yamanashi, 409-3898, Japan
- Department of Thyroid and Endocrinology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
2
|
Fujihara Y, Ikawa M. GPI-AP release in cellular, developmental, and reproductive biology. J Lipid Res 2015; 57:538-45. [PMID: 26593072 DOI: 10.1194/jlr.r063032] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 12/13/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) contain a covalently linked GPI anchor located on outer cell membranes. GPI-APs are ubiquitously conserved from protozoa to vertebrates and are critical for physiological events such as development, immunity, and neurogenesis in vertebrates. Both membrane-anchored and soluble GPI-APs play a role in regulating their protein conformation and functional properties. Several pathways mediate the release of GPI-APs from the plasma membrane by vesiculation or cleavage. Phospholipases and putative substrate-specific GPI-AP-releasing enzymes, such as NOTUM, glycerophosphodiesterase 2, and angiotensin-converting enzyme, have been characterized in mammals. Here, the protein modifications resulting from the cleavage of the GPI anchor are discussed in the context of its physiological functions.
Collapse
Affiliation(s)
- Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Nimishakavi S, Raymond WW, Gruenert DC, Caughey GH. Divergent Inhibitor Susceptibility among Airway Lumen-Accessible Tryptic Proteases. PLoS One 2015; 10:e0141169. [PMID: 26485396 PMCID: PMC4612780 DOI: 10.1371/journal.pone.0141169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/04/2015] [Indexed: 12/21/2022] Open
Abstract
Tryptic serine proteases of bronchial epithelium regulate ion flux, barrier integrity, and allergic inflammation. Inhibition of some of these proteases is a strategy to improve mucociliary function in cystic fibrosis and asthmatic inflammation. Several inhibitors have been tested in pre-clinical animal models and humans. We hypothesized that these inhibitors inactivate a variety of airway protease targets, potentially with bystander effects. To establish relative potencies and modes of action, we compared inactivation of human prostasin, matriptase, airway trypsin-like protease (HAT), and β-tryptase by nafamostat, camostat, bis(5-amidino-2-benzimidazolyl)methane (BABIM), aprotinin, and benzamidine. Nafamostat achieved complete, nearly stoichiometric and very slowly reversible inhibition of matriptase and tryptase, but inhibited prostasin less potently and was weakest versus HAT. The IC50 of nafamostat’s leaving group, 6-amidino-2-naphthol, was >104-fold higher than that of nafamostat itself, consistent with suicide rather than product inhibition as mechanisms of prolonged inactivation. Stoichiometric release of 6-amidino-2-naphthol allowed highly sensitive fluorometric estimation of active-site concentration in preparations of matriptase and tryptase. Camostat inactivated all enzymes but was less potent overall and weakest towards matriptase, which, however was strongly inhibited by BABIM. Aprotinin exhibited nearly stoichiometric inhibition of prostasin and matriptase, but was much weaker towards HAT and was completely ineffective versus tryptase. Benzamidine was universally weak. Thus, each inhibitor profile was distinct. Nafamostat, camostat and aprotinin markedly reduced tryptic activity on the apical surface of cystic fibrosis airway epithelial monolayers, suggesting prostasin as the major source of such activity and supporting strategies targeting prostasin for inactivation.
Collapse
Affiliation(s)
- Shilpa Nimishakavi
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Wilfred W. Raymond
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Dieter C. Gruenert
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - George H. Caughey
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Veterans Affairs Medical Center, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Crisante G, Battista L, Iwaszkiewicz J, Nesca V, Mérillat AM, Sergi C, Zoete V, Frateschi S, Hummler E. The CAP1/Prss8 catalytic triad is not involved in PAR2 activation and protease nexin-1 (PN-1) inhibition. FASEB J 2014; 28:4792-805. [PMID: 25138159 DOI: 10.1096/fj.14-253781] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Serine proteases, serine protease inhibitors, and protease-activated receptors (PARs) are responsible for several human skin disorders characterized by impaired epidermal permeability barrier function, desquamation, and inflammation. In this study, we addressed the consequences of a catalytically dead serine protease on epidermal homeostasis, the activation of PAR2 and the inhibition by the serine protease inhibitor nexin-1. The catalytically inactive serine protease CAP1/Prss8, when ectopically expressed in the mouse, retained the ability to induce skin disorders as well as its catalytically active counterpart (75%, n=81). Moreover, this phenotype was completely normalized in a PAR2-null background, indicating that the effects mediated by the catalytically inactive CAP1/Prss8 depend on PAR2 (95%, n=131). Finally, nexin-1 displayed analogous inhibitory capacity on both wild-type and inactive mutant CAP1/Prss8 in vitro and in vivo (64% n=151 vs. 89% n=109, respectively), indicating that the catalytic site of CAP1/Prss8 is dispensable for nexin-1 inhibition. Our results demonstrate a novel inhibitory interaction between CAP1/Prss8 and nexin-1, opening the search for specific CAP1/Prss8 antagonists that are independent of its catalytic activity.
Collapse
Affiliation(s)
| | | | - Justyna Iwaszkiewicz
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | | | | | - Chloé Sergi
- Department of Pharmacology and Toxicology and
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
5
|
Raman K, Trivedi NN, Raymond WW, Ganesan R, Kirchhofer D, Verghese GM, Craik CS, Schneider EL, Nimishakavi S, Caughey GH. Mutational tail loss is an evolutionary mechanism for liberating marapsins and other type I serine proteases from transmembrane anchors. J Biol Chem 2013; 288:10588-98. [PMID: 23447538 DOI: 10.1074/jbc.m112.449033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human and mouse marapsins (Prss27) are serine proteases preferentially expressed by stratified squamous epithelia. However, mouse marapsin contains a transmembrane anchor absent from the human enzyme. To gain insights into physical forms, activities, inhibition, and roles in epithelial differentiation, we traced tail loss in human marapsin to a nonsense mutation in an ancestral ape, compared substrate preferences of mouse and human marapsins with those of the epithelial peptidase prostasin, designed a selective substrate and inhibitor, and generated Prss27-null mice. Phylogenetic analysis predicts that most marapsins are transmembrane proteins. However, nonsense mutations caused membrane anchor loss in three clades: human/bonobo/chimpanzee, guinea pig/degu/tuco-tuco/mole rat, and cattle/yak. Most marapsin-related proteases, including prostasins, are type I transmembrane proteins, but the closest relatives (prosemins) are not. Soluble mouse and human marapsins are tryptic with subsite preferences distinct from those of prostasin, lack general proteinase activity, and unlike prostasins resist antiproteases, including leupeptin, aprotinin, serpins, and α2-macroglobulin, suggesting the presence of non-canonical active sites. Prss27-null mice develop normally in barrier conditions and are fertile without overt epithelial defects, indicating that marapsin does not play critical, non-redundant roles in development, reproduction, or epithelial differentiation. In conclusion, marapsins are conserved, inhibitor-resistant, tryptic peptidases. Although marapsins are type I transmembrane proteins in their typical form, they mutated independently into anchorless forms in several mammalian clades, including one involving humans. Similar pathways appear to have been traversed by prosemins and tryptases, suggesting that mutational tail loss is an important means of evolving new functions of tryptic serine proteases from transmembrane ancestors.
Collapse
Affiliation(s)
- Kavita Raman
- Cardiovascular Research Institute, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Frateschi S, Keppner A, Malsure S, Iwaszkiewicz J, Sergi C, Merillat AM, Fowler-Jaeger N, Randrianarison N, Planès C, Hummler E. Mutations of the serine protease CAP1/Prss8 lead to reduced embryonic viability, skin defects, and decreased ENaC activity. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:605-15. [PMID: 22705055 DOI: 10.1016/j.ajpath.2012.05.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/23/2012] [Accepted: 05/02/2012] [Indexed: 11/17/2022]
Abstract
CAP1/Prss8 is a membrane-bound serine protease involved in the regulation of several different effectors, such as the epithelial sodium channel ENaC, the protease-activated receptor PAR2, the tight junction proteins, and the profilaggrin polypeptide. Recently, the V170D and the G54-P57 deletion mutations within the CAP1/Prss8 gene, identified in mouse frizzy (fr) and rat hairless (fr(CR)) animals, respectively, have been proposed to be responsible for their skin phenotypes. In the present study, we analyzed those mutations, revealing a change in the protein structure, a modification of the glycosylation state, and an overall reduction in the activation of ENaC of the two mutant proteins. In vivo analyses demonstrated that both fr and fr(CR) mutant animals present analogous reduction of embryonic viability, similar histologic aberrations at the level of the skin, and a significant decrease in the activity of ENaC in the distal colon compared with their control littermates. Hairless rats additionally had dehydration defects in skin and intestine and significant reduction in the body weight. In conclusion, we provided molecular and functional evidence that CAP1/Prss8 mutations are accountable for the defects in fr and fr(CR) animals, and we furthermore demonstrate a decreased function of the CAP1/Prss8 mutant proteins. Therefore, fr and fr(CR) animals are suitable models to investigate the consequences of CAP1/Prss8 action on its target proteins in the whole organism.
Collapse
Affiliation(s)
- Simona Frateschi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nimishakavi S, Besprozvannaya M, Raymond WW, Craik CS, Gruenert DC, Caughey GH. Activity and inhibition of prostasin and matriptase on apical and basolateral surfaces of human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2012; 303:L97-106. [PMID: 22582115 DOI: 10.1152/ajplung.00303.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Prostasin is a membrane-anchored protease expressed in airway epithelium, where it stimulates salt and water uptake by cleaving the epithelial Na(+) channel (ENaC). Prostasin is activated by another transmembrane tryptic protease, matriptase. Because ENaC-mediated dehydration contributes to cystic fibrosis (CF), prostasin and matriptase are potential therapeutic targets, but their catalytic competence on airway epithelial surfaces has been unclear. Seeking tools for exploring sites and modulation of activity, we used recombinant prostasin and matriptase to identify substrate t-butyloxycarbonyl-l-Gln-Ala-Arg-4-nitroanilide (QAR-4NA), which allowed direct assay of proteases in living cells. Comparisons of bronchial epithelial cells (CFBE41o-) with and without functioning cystic fibrosis transmembrane conductance regulator (CFTR) revealed similar levels of apical and basolateral aprotinin-inhibitable activity. Although recombinant matriptase was more active than prostasin in hydrolyzing QAR-4NA, cell surface activity resisted matriptase-selective inhibition, suggesting that prostasin dominates. Surface biotinylation revealed similar expression of matriptase and prostasin in epithelial cells expressing wild-type vs. ΔF508-mutated CFTR. However, the ratio of mature to inactive proprostasin suggested surface enrichment of active enzyme. Although small amounts of matriptase and prostasin were shed spontaneously, prostasin anchored to the cell surface by glycosylphosphatidylinositol was the major contributor to observed QAR-4NA-hydrolyzing activity. For example, the apical surface of wild-type CFBE41o- epithelial cells express 22% of total, extractable, aprotinin-inhibitable, QAR-4NA-hydrolyzing activity and 16% of prostasin immunoreactivity. In conclusion, prostasin is present, mature and active on the apical surface of wild-type and CF bronchial epithelial cells, where it can be targeted for inhibition via the airway lumen.
Collapse
|
8
|
Prulière-Escabasse V, Clerici C, Vuagniaux G, Coste A, Escudier E, Planès C. Effect of neutrophil elastase and its inhibitor EPI-hNE4 on transepithelial sodium transport across normal and cystic fibrosis human nasal epithelial cells. Respir Res 2010; 11:141. [PMID: 20932306 PMCID: PMC2959028 DOI: 10.1186/1465-9921-11-141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 10/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hyperactivity of the epithelial sodium (Na+) channel (ENaC) and increased Na+ absorption by airway epithelial cells leading to airway surface liquid dehydration and impaired mucociliary clearance are thought to play an important role in the pathogenesis of cystic fibrosis (CF) pulmonary disease. In airway epithelial cells, ENaC is constitutively activated by endogenous trypsin-like serine proteases such as Channel-Activating Proteases (CAPs). It was recently reported that ENaC activity could also be stimulated by apical treatment with human neutrophil elastase (hNE) in a human airway epithelial cell line, suggesting that hNE inhibition could represent a novel therapeutic approach for CF lung disease. However, whether hNE can also activate Na+ reabsorption in primary human nasal epithelial cells (HNEC) from control or CF patients is currently unknown. METHODS We evaluated by short-circuit current (Isc) measurements the effects of hNE and EPI-hNE4, a specific hNE inhibitor, on ENaC activity in primary cultures of HNEC obtained from control (9) and CF (4) patients. RESULTS Neither hNE nor EPI-hNE4 treatments did modify Isc in control and CF HNEC. Incubation with aprotinin, a Kunitz-type serine protease inhibitor that blocks the activity of endogenous CAPs, decreased Isc by 27.6% and 54% in control and CF HNEC, respectively. In control and CF HNEC pretreated with aprotinin, hNE did significantly stimulate Isc, an effect which was blocked by EPI-hNE4. CONCLUSIONS These results indicate that hNE does activate ENaC and transepithelial Na+ transport in both normal and CF HNEC, on condition that the activity of endogenous CAPs is first inhibited. The potent inhibitory effect of EPI-hNE4 on hNE-mediated ENaC activation observed in our experiments highlights that the use of EPI-hNE4 could be of interest to reduce ENaC hyperactivity in CF airways.
Collapse
|
9
|
Planès C, Randrianarison NH, Charles RP, Frateschi S, Cluzeaud F, Vuagniaux G, Soler P, Clerici C, Rossier BC, Hummler E. ENaC-mediated alveolar fluid clearance and lung fluid balance depend on the channel-activating protease 1. EMBO Mol Med 2010; 2:26-37. [PMID: 20043279 PMCID: PMC3377187 DOI: 10.1002/emmm.200900050] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Sodium transport via epithelial sodium channels (ENaC) expressed in alveolar epithelial cells (AEC) provides the driving force for removal of fluid from the alveolar space. The membrane-bound channel-activating protease 1 (CAP1/Prss8) activates ENaC in vitro in various expression systems. To study the role of CAP1/Prss8 in alveolar sodium transport and lung fluid balance in vivo, we generated mice lacking CAP1/Prss8 in the alveolar epithelium using conditional Cre-loxP-mediated recombination. Deficiency of CAP1/Prss8 in AEC induced in vitro a 40% decrease in ENaC-mediated sodium currents. Sodium-driven alveolar fluid clearance (AFC) was reduced in CAP1/Prss8-deficient mice, due to a 48% decrease in amiloride-sensitive clearance, and was less sensitive to β2-agonist treatment. Intra-alveolar treatment with neutrophil elastase, a soluble serine protease activating ENaC at the cell surface, fully restored basal AFC and the stimulation by β2-agonists. Finally, acute volume-overload increased alveolar lining fluid volume in CAP1/Prss8-deficient mice. This study reveals that CAP1 plays a crucial role in the regulation of ENaC-mediated alveolar sodium and water transport and in mouse lung fluid balance.
Collapse
Affiliation(s)
- Carole Planès
- Département de Pharmacologie et de Toxicologie, Université de Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Trivedi NN, Caughey GH. Mast cell peptidases: chameleons of innate immunity and host defense. Am J Respir Cell Mol Biol 2009; 42:257-67. [PMID: 19933375 DOI: 10.1165/rcmb.2009-0324rt] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mast cells make and secrete an abundance of peptidases, which are stored in such large amounts in granules that they comprise a high fraction of all cellular protein. Perhaps no other immune cell is so generously endowed with peptidases. For many years after the main peptidases were first described, they were best known as markers of degranulation, for they are released locally in response to mast cell stimulation and can be distributed systemically and detected in blood. The principal peptidases are tryptases, chymases, carboxypeptidase A3, and dipeptidylpeptidase I (cathepsin C). Numerous studies suggest that these enzymes are important and even critical for host defense and homeostasis. Endogenous and allergen or pathogen-associated targets have been identified. Belying the narrow notion of peptidases as proinflammatory, several of the peptidases limit inflammation and toxicity of endogenous peptides and venoms. The peptidases are interdependent, so that absence or inactivity of one enzyme can alter levels and activity of others. Mammalian mast cell peptidases--chymases and tryptases especially--vary remarkably in number, expression, biophysical properties, and specificity, perhaps because they hyper-evolved under pressure from the very pathogens they help to repel. Tryptase and chymase involvement in some pathologies stimulated development of therapeutic inhibitors for use in asthma, lung fibrosis, pulmonary hypertension, ulcerative colitis, and cardiovascular diseases. While animal studies support the potential for mast cell peptidase inhibitors to mitigate certain diseases, other studies, as in mice lacking selected peptidases, predict roles in defense against bacteria and parasites and that systemic inactivation may impair host defense.
Collapse
Affiliation(s)
- Neil N Trivedi
- Section of Pulmonary and Critical Care Medicine, Medicine Service, Veterans Affairs Medical Center, Mailstop 111-D, 4150 Clement Street, San Francisco, CA 94121, USA
| | | |
Collapse
|
11
|
List K, Hobson JP, Molinolo A, Bugge TH. Co-localization of the channel activating protease prostasin/(CAP1/PRSS8) with its candidate activator, matriptase. J Cell Physiol 2007; 213:237-45. [PMID: 17471493 DOI: 10.1002/jcp.21115] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Prostasin (CAP1/PRSS8) is a glycosylphosphatidylinositol-anchored membrane serine protease believed to be critical for the regulation of epithelial sodium channel (ENaC) activity. Prostasin is synthesized as an inactive zymogen that requires a site-specific endoproteolytic cleavage to be converted to an active protease. We have recently reported that the tumor-associated type II transmembrane serine protease, matriptase is necessary and sufficient for prostasin activation in the epidermis. In this study, the interrelationship between the two membrane serine proteases was investigated further by using enzymatic gene trapping combined with immunohistochemistry to delineate the spatial expression of matriptase and prostasin in mouse tissues. We utilized a knock-in mouse with a promoterless beta-galactosidase marker gene inserted into the matriptase locus, as a unique tool for precise assessment of endogenous matriptase expression. The spatial expression of matriptase and prostasin in mouse tissues was delineated by combining in situ beta-galactosidase matriptase staining with immunohistochemical detection of prostasin. We report that prostasin displays a near-ubiquitous co-localization with its candidate activator matriptase in a variety of normal epithelial tissues. These include simple, stratified, and pseudo-stratified epithelium of the integumentary system, digestive tract, respiratory tract, and urogenital tract. However, matriptase and prostasin expression segregates during epithelial multi-stage carcinogenesis to eventually become localized in separate compartments of the tumor. These data suggest that a matriptase-prostasin zymogen activation cascade may be functionally operative in multiple epithelial tissues, but matriptase promotes epithelial carcinogenesis independent of prostasin.
Collapse
Affiliation(s)
- Karin List
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
12
|
Dobbs LG, Johnson MD. Alveolar epithelial transport in the adult lung. Respir Physiol Neurobiol 2007; 159:283-300. [PMID: 17689299 DOI: 10.1016/j.resp.2007.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 05/31/2007] [Accepted: 06/18/2007] [Indexed: 01/11/2023]
Abstract
The alveolar surface comprises >99% of the internal surface area of the lungs. At birth, the fetal lung rapidly converts from a state of net fluid secretion, which is necessary for normal fetal lung development, to a state in which there is a minimal amount of alveolar liquid. The alveolar surface epithelium facing the air compartment is composed of TI and TII cells. The morphometric characteristics of both cell types are fairly constant over a range of mammalian species varying in body weight by a factor of approximately 50,000. From the conservation of size and shape across species, one may infer that both TI and TII cells also have important conserved functions. The regulation of alveolar ion and liquid transport has been extensively investigated using a variety of experimental models, including whole animal, isolated lung, isolated cell, and cultured cell model systems, each with their inherent strengths and weaknesses. The results obtained with different model systems and a variety of different species point to both interesting parallels and some surprising differences. Sometimes it has been difficult to reconcile results obtained with different model systems. In this section, the primary focus will be on aspects of alveolar ion and liquid transport under normal physiologic conditions, emphasizing newer data and describing evolving paradigms of lung ion and fluid transport. We will highlight some of the unanswered questions, outline the similarities and differences in results obtained with different model systems, and describe some of the complex and interweaving regulatory networks.
Collapse
Affiliation(s)
- Leland G Dobbs
- Department of Medicine, University of California San Francisco, San Francisco, CA 94118, USA.
| | | |
Collapse
|
13
|
Abstract
Recent investigations point to an important role for peptidases in regulating transcellular ion transport by the epithelial Na(+) channel, ENaC. Several peptidases, including furins and proteasomal hydrolases, modulate ENaC maturation and disposal. More idiosyncratically, apical Na(+) transport by ENaC in polarized epithelia of kidney, airway, and gut is stimulated constitutively by one or more trypsin-family serine peptidases, as revealed by inhibition of amiloride-sensitive Na(+) transport by broad-spectrum antipeptidases, including aprotinin and bikunin/SPINT2. In vitro, the transporting activity of aprotinin-suppressed ENaC can be restored by exposure to trypsin. The prototypical channel-activating peptidase (CAP) is a type 1 membrane-anchored tryptic peptidase first identified in Xenopus kidney cells. Frog CAP1 strongly upregulates Na(+) transport when coexpressed with ENaC in oocytes. The amphibian enzyme's apparent mammalian orthologue is prostasin, otherwise known as CAP1, which is coexpressed with ENaC in a variety of epithelia. In airway cells, prostasin is the major basal regulator of ENaC activity, as suggested by inhibition and knockdown experiments. Other candidate regulators of mature ENaC include CAP2/TMPRSS4 and CAP3/matriptase (also known as membrane-type serine protease 1/ST14). Mammalian CAPs are potential targets for treatment of ENaC-mediated Na(+) hyperabsorption by the airway in cystic fibrosis (CF) and by the kidney in hypertension. CAPs can be important for mammalian development, as indicated by embryonic lethality in mice with null mutations of CAP1/prostasin. Mice with selectively knocked out expression of CAP1/prostasin in the epidermis and mice with globally knocked out expression of CAP3/matriptase exhibit phenotypically similar defects in skin barrier function and neonatal death from dehydration. In rats, transgenic overexpression of human prostasin disturbs salt balance and causes hypertension. Thus, several converging lines of evidence indicate that ENaC function is regulated by peptidases, and that such regulation is critical for embryonic development and adult function of organs such as skin, kidney, and lung.
Collapse
Affiliation(s)
- Carole Planès
- INSERM U773, Centre de Recherche Biomédicale Bichat-Beaujon (CRB3), Université Paris 7, 75018 Paris, France
| | | |
Collapse
|
14
|
Verghese GM, Gutknecht MF, Caughey GH. Prostasin regulates epithelial monolayer function: cell-specific Gpld1-mediated secretion and functional role for GPI anchor. Am J Physiol Cell Physiol 2006; 291:C1258-70. [PMID: 16822939 PMCID: PMC2271112 DOI: 10.1152/ajpcell.00637.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prostasin, a trypsinlike serine peptidase, is highly expressed in prostate, kidney, and lung epithelia, where it is bound to the cell surface, secreted, or both. Prostasin activates the epithelial sodium channel (ENaC) and suppresses invasion of prostate and breast cancer cells. The studies reported here establish mechanisms of membrane anchoring and secretion in kidney and lung epithelial cells and demonstrate a critical role for prostasin in regulating epithelial monolayer function. We report that endogenous mouse prostasin is glycosylphosphatidylinositol (GPI) anchored to the cell surface and is constitutively secreted from the apical surface of kidney cortical collecting duct cells. Using site-directed mutagenesis, detergent phase separation, and RNA interference approaches, we show that prostasin secretion depends on GPI anchor cleavage by endogenous GPI-specific phospholipase D1 (Gpld1). Secretion of prostasin by kidney and lung epithelial cells, in contrast to prostate epithelium, does not depend on COOH-terminal processing at conserved Arg(322). Using stably transfected M-1 cells expressing wild-type, catalytically inactive, or chimeric transmembrane (not GPI)-anchored prostasins we establish that prostasin regulates transepithelial resistance, current, and paracellular permeability by GPI anchor- and protease activity-dependent mechanisms. These studies demonstrate a novel role for prostasin in regulating epithelial monolayer resistance and permeability in kidney epithelial cells and, furthermore, show specifically that prostasin is a critical regulator of transepithelial ion transport in M-1 cells. These functions depend on the GPI anchor as well as the peptidase activity of prostasin. These studies suggest that cell-specific Gpld1- or peptidase-dependent pathways for prostasin secretion may control prostasin functions in a tissue-specific manner.
Collapse
Affiliation(s)
- George M Verghese
- Department of Medicine, University of Virginia, Charlottesville, Virginia 22908-0546, USA.
| | | | | |
Collapse
|
15
|
Chen M, Chen LM, Chai KX. Androgen regulation of prostasin gene expression is mediated by sterol-regulatory element-binding proteins and SLUG. Prostate 2006; 66:911-20. [PMID: 16541421 DOI: 10.1002/pros.20325] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Prostasin is downregulated in hormone-refractory prostate cancers (HRPC). The mechanisms by which androgens regulate prostasin expression are unclear. METHODS LNCaP cells were treated with dihydrotestosterone (DHT), and mRNA expression of prostasin, SREBPs, SNAIL, and SLUG was examined by real-time PCR following reverse transcription. A human prostasin promoter was evaluated in HEK-293 cells co-transfected with transcription factor cDNAs. Regulation of endogenous prostasin expression by transfected SREBP-2 or SLUG was evaluated. Expression of SNAIL and SLUG mRNA in DU-145 cells treated with epidermal growth factor (EGF) was examined. RESULTS Prostasin mRNA expression in LNCaP cells was not responsive to DHT treatment. DHT marginally upregulated mRNA expression of SREBP-1c, SREBP-2, and SNAIL, but not SREBP-1a, while dramatically increased SLUG mRNA expression, in a dose-dependent manner. Co-transfection of prostasin promoter and SREBP cDNA in HEK-293 cells resulted in stimulation of promoter activity at approximately twofold by SREBP-1c, and up to sixfold by SREBP-2; while co-transfection with SNAIL or SLUG cDNA resulted in repression of promoter activity to 43% or 59%, respectively. Co-transfection of the SLUG cDNA negated SREBP-2's stimulation of prostasin promoter in a dose-dependent manner. Transfection of an SREBP-2 cDNA in HEK-293 and DU-145 resulted in upregulation of prostasin while transfection of a SLUG cDNA in LNCaP repressed prostasin expression. EGF upregulated SNAIL and SLUG mRNA in DU-145. CONCLUSIONS DHT regulates prostasin expression in prostate cells via SREBP stimulation and SLUG repression of prostasin promoter. SLUG is upregulated by DHT and EGF, providing a molecular mechanism by which epithelial cell-specific genes are silenced during prostate cancer development and progression.
Collapse
Affiliation(s)
- Mengqian Chen
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, Florida 32816-2364, USA
| | | | | |
Collapse
|
16
|
Chen LM, Wang C, Chen M, Marcello MR, Chao J, Chao L, Chai KX. Prostasin attenuates inducible nitric oxide synthase expression in lipopolysaccharide-induced urinary bladder inflammation. Am J Physiol Renal Physiol 2006; 291:F567-77. [PMID: 16638913 DOI: 10.1152/ajprenal.00047.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostasin is a glycosylphosphatidylinositol-anchored serine protease, with epithelial sodium channel activation and tumor invasion suppression activities. We identified the bladder as an expression site of prostasin. In the mouse, prostasin mRNA expression was detected by reverse transcription and real-time polymerase chain reaction in the bladder, and the prostasin protein was localized by immunohistochemistry in the urothelial cells. In mice injected intraperitoneally with bacterial lipopolysaccharide (LPS), bladder prostasin mRNA expression was downregulated, whereas the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interferon-gamma (IFN-gamma), TNF-alpha, IL-1beta, and IL-6 was upregulated. Viral promoter-driven expression of the human prostasin homolog in the bladder of transgenic mice attenuated the LPS induction of iNOS but did not abolish the induction. LPS induction of COX-2, TNF-alpha, IL-1beta, and IL-6 expression, however, was not reduced by prostasin transgene expression. Liposome-mediated delivery of prostasin-expressing plasmid into mouse bladder produced similar attenuation effects on LPS-induced iNOS expression, while not affecting COX-2 or cytokine induction. Mice receiving plasmid expressing a catalytic mutant prostasin did not manifest the iNOS induction attenuation phenotype. We propose a proteolytic mechanism for prostasin to intercept cytokine signaling during LPS-induced bladder inflammation.
Collapse
Affiliation(s)
- Li-Mei Chen
- Department of Molecular Biology and Microbiology, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2364, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Tuyen DG, Kitamura K, Adachi M, Miyoshi T, Wakida N, Nagano J, Nonoguchi H, Tomita K. Inhibition of prostasin expression by TGF-beta1 in renal epithelial cells. Kidney Int 2005; 67:193-200. [PMID: 15610243 DOI: 10.1111/j.1523-1755.2005.00070.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prostasin has been shown to be involved in the regulation of sodium handling in the kidney. TGF-beta1 has been demonstrated to suppress alphaENaC expression and sodium uptake. Therefore, we hypothesized that TGF-beta1 may regulate prostasin expression to modulate sodium reabsorption in the kidney. METHODS To determine if TGF-beta1 has an effect on prostasin expression, we isolated 2.9 kb of the rat prostasin promoter, and measured its transcriptional activity with a luciferase assay in mouse cortical collecting duct cell line (M-1). The effect of TGF-beta1 on the mRNA and protein abundance of prostasin, and amiloride-sensitive (22)Na uptake was determined. RESULTS Treatment of M-1 cells with 20 ng/mL of TGF-beta1 for 24 hours significantly decreased the promoter activity by 50 +/- 1%, and the inhibitory effect was dose dependent over the range of 0.1 to 20 ng/mL. We identified a 50 bp region (-410 to -360) containing c-Rel-like sequence in prostasin promoter that is responsible for the TGF-beta1-mediated inhibition, and found that TGF-beta1 increases IkappaBalpha expression in M-1 cells. TGF-beta1 reduced endogenous prostasin mRNA and protein expression in M-1 cells by 50 +/- 12% and 44 +/- 12%, respectively, and the amiloride-sensitive (22)Na uptake by 35.9 +/- 4.8%. CONCLUSION Our findings indicate the possibility that TGF-beta1 transcriptionally inhibits prostasin expression by the induction of IkappaBalpha and the subsequent inhibition of NF-kappaB/Rel activity in M-1 cells, and also suggest the possibility that TGF-beta1 might inhibit sodium reabsorption through a reduction in prostasin expression and subsequent inhibition of ENaC activity.
Collapse
Affiliation(s)
- Do Gia Tuyen
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Raymond WW, Sommerhoff CP, Caughey GH. Mastin is a gelatinolytic mast cell peptidase resembling a mini-proteasome. Arch Biochem Biophys 2005; 435:311-22. [PMID: 15708374 DOI: 10.1016/j.abb.2004.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 12/23/2004] [Indexed: 11/28/2022]
Abstract
Mastin is a tryptic peptidase secreted by canine mast cells. This work reveals that mastin is composed of catalytic domain singlets and disulfide-linked dimers. Monomers unite non-covalently to form tryptase-like tetramers, whereas dimers aggregate with monomers into larger clusters stabilized by hydrophobic contacts. Unlike tryptases, mastin resists inactivation by leech-derived tryptase inhibitor, indicating a smaller central cavity, as confirmed by structural models. Nonetheless, mastin is strongly gelatinolytic while not cleaving native collagen or casein, suggesting a preference for denatured proteins threaded into its central cavity. Phylogenetic analysis suggests that mammalian mastins shared more recent ancestors with soluble alpha/beta/delta tryptases than with membrane-anchored gamma-tryptases, and diverged more rapidly. We hypothesize that gelatinase activity and formation of inhibitor-resistant oligomers are ancestral characteristics shared by soluble tryptases and mastins, and that secreted mastin is a mini-proteasome-like complex that breaks down partially degraded proteins without causing bystander damage to intact, native proteins.
Collapse
Affiliation(s)
- Wilfred W Raymond
- Department of Medicine, Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94143-0911, USA
| | | | | |
Collapse
|
19
|
Planès C, Leyvraz C, Uchida T, Angelova MA, Vuagniaux G, Hummler E, Matthay M, Clerici C, Rossier B. In vitro and in vivo regulation of transepithelial lung alveolar sodium transport by serine proteases. Am J Physiol Lung Cell Mol Physiol 2005; 288:L1099-109. [PMID: 15681398 DOI: 10.1152/ajplung.00332.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amiloride-sensitive epithelial sodium channel (ENaC) constitutes a rate-limiting step for sodium (Na+) and water absorption across lung alveolar epithelium. Recent reports suggested that ENaC is regulated by membrane-bound extracellular serine proteases, such as channel-activating proteases (CAPs). The objectives of this study were to examine the role of serine proteases in the regulation of transepithelial alveolar Na+ and water transport in vitro and in vivo and the expression of CAPs in rodent distal lung. In vitro experiments showed that inhibition of endogenous serine proteases by apical aprotinin 1) decreased ENaC-mediated currents in primary cultures of rat and mouse alveolar epithelial cells without affecting the abundance nor the electrophoretic migration pattern of biotinylated alpha- and beta-ENaC expressed at the cell surface and 2) suppressed the increase in amiloride-sensitive short-circuit current induced by the beta2-agonist terbutaline. RT-PCR experiments indicated that CAP1, CAP2, and CAP3 mRNAs were expressed in mouse alveolar epithelial cells, whereas CAP1 was also expressed in alveolar macrophages recovered by bronchoalveolar lavage. CAP1 protein was detected by Western blotting in rat and mouse alveolar epithelial cells, alveolar macrophages and bronchoalveolar lavage fluid. Finally, in vivo experiments revealed that intra-alveolar treatment with aprotinin abolished the increase in Na+-driven alveolar fluid clearance (AFC) induced by terbutaline in an in situ mouse lung model, whereas trypsin potentiated it. These results show that endogenous membrane-bound and/or secreted serine proteases such as CAPs regulate alveolar Na+ and fluid transport in vitro and in vivo in rodent lung.
Collapse
Affiliation(s)
- Carole Planès
- Department of Physiology, INSERM U426, Faculté de Medécine Xavier Bichat, Université Paris 7, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shipway A, Danahay H, Williams JA, Tully DC, Backes BJ, Harris JL. Biochemical characterization of prostasin, a channel activating protease. Biochem Biophys Res Commun 2004; 324:953-63. [PMID: 15474520 DOI: 10.1016/j.bbrc.2004.09.123] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Indexed: 11/21/2022]
Abstract
Human prostasin was recently identified as a potential regulator of epithelial sodium channel (ENaC) function. Through the use of positional scanning combinatorial substrate libraries, prostasin was shown to have a preference for poly-basic substrates: in position P4 preference was for arginine or lysine; in P3 preference was for histidine, lysine or arginine; in P2 preference was for basic or large hydrophobic amino acids; and in P1 preference was for arginine and lysine. P1', P2', and P3' displayed broad selectivity with the exception of a lack of activity for isoleucine, and P4' had a preference for small, unbranched, amino acids such as alanine and serine. A prostasin-preferred poly-basic cleavage site was found in the extracellular domains of the ENaC alpha- and beta-subunits, and may present a mechanism for prostasin activation. The absence of activity seen with substrates containing isoleucine in position P1' explains the inability of prostasin to autoactivate and suggests that prostasin proteolytic activity is regulated by an upstream protease. Prostasin activity was highly influenced by mono- and divalent metal ions which were potent inhibitors and substrate specific modulators of enzymatic activity. In the presence of sub-inhibitory concentrations of zinc, the activity of prostasin increased several-fold and its substrate specificity was significantly altered in favor of a strong preference for histidine in positions P3 or P4 of the substrate.
Collapse
Affiliation(s)
- Aaron Shipway
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
21
|
Tong Z, Illek B, Bhagwandin VJ, Verghese GM, Caughey GH. Prostasin, a membrane-anchored serine peptidase, regulates sodium currents in JME/CF15 cells, a cystic fibrosis airway epithelial cell line. Am J Physiol Lung Cell Mol Physiol 2004; 287:L928-35. [PMID: 15246975 DOI: 10.1152/ajplung.00160.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostasin is a tryptic peptidase expressed in prostate, kidney, lung, and airway. Mammalian prostasins are related to Xenopus channel-activating protease, which stimulates epithelial Na+channel (ENaC) activity in frogs. In human epithelia, prostasin is one of several membrane peptidases proposed to regulate ENaC. This study tests the hypothesis that prostasin can regulate ENaC in cystic fibrosis epithelia in which excessive Na+uptake contributes to salt and water imbalance. We show that prostasin mRNA and protein are strongly expressed by human airway epithelial cell lines, including immortalized JME/CF15 nasal epithelial cells homozygous for the ΔF508 cystic fibrosis mutation. Epithelial cells transfected with vectors encoding recombinant soluble prostasin secrete active, tryptic peptidase that is highly sensitive to inactivation by aprotinin. When studied as monolayers in Ussing chambers, JME/CF15 cells exhibit amiloride-sensitive, transepithelial Na+currents that are markedly diminished by aprotinin, suggesting regulation by serine-class peptidases. Overproduction of membrane-anchored prostasin in transfected JME/CF15 cells does not augment Na+currents, and trypsin-induced increases are small, suggesting that baseline serine peptidase-dependent ENaC activation is maximal in these cells. To probe prostasin’s involvement in basal ENaC activity, we silenced expression of prostasin using short interfering RNA targeting of prostasin mRNA’s 3′-untranslated region. This drops ENaC currents to 26 ± 9% of baseline. These data predict that prostasin is a major regulator of ENaC-mediated Na+current in ΔF508 cystic fibrosis epithelia and suggest that airway prostasin is a target for therapeutic inhibition to normalize ion current in cystic fibrosis airway.
Collapse
Affiliation(s)
- Zhenyue Tong
- Cardiovascular Research Institute, and Department of Medicine, University of California at San Francisco, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|