1
|
Singh G, García-Bernalt Diego J, Warang P, Park SC, Chang LA, Noureddine M, Laghlali G, Bykov Y, Prellberg M, Yan V, Singh S, Pache L, Cuadrado-Castano S, Webb B, García-Sastre A, Schotsaert M. Outcome of SARS-CoV-2 reinfection depends on genetic background in female mice. Nat Commun 2024; 15:10178. [PMID: 39580470 PMCID: PMC11585546 DOI: 10.1038/s41467-024-54334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/06/2024] [Indexed: 11/25/2024] Open
Abstract
Antigenically distinct SARS-CoV-2 variants increase the reinfection risk for vaccinated and previously exposed population due to antibody neutralization escape. COVID-19 severity depends on many variables, including host immune responses, which differ depending on genetic predisposition. To address this, we perform immune profiling of female mice with different genetic backgrounds -transgenic K18-hACE2 and wild-type 129S1- infected with the severe B.1.351, 30 days after exposure to the milder BA.1 or severe H1N1. Prior BA.1 infection protects against B.1.351-induced morbidity in K18-hACE2 but aggravates disease in 129S1. H1N1 protects against B.1.351-induced morbidity only in 129S1. Enhanced severity in B.1.351 re-infected 129S1 is characterized by an increase of IL-10, IL-1β, IL-18 and IFN-γ, while in K18-hACE2 the cytokine profile resembles naïve mice undergoing their first viral infection. Enhanced pathology during 129S1 reinfection cannot be attributed to weaker adaptive immune responses to BA.1. Infection with BA.1 causes long-term differential remodeling and transcriptional changes in the bronchioalveolar CD11c+ compartment. K18-hACE2 CD11c+ cells show a strong antiviral defense expression profile whereas 129S1 CD11c+ cells present a more pro-inflammatory response upon restimulation. In conclusion, BA.1 induces cross-reactive adaptive immune responses in K18-hACE2 and 129S1, but reinfection outcome correlates with differential CD11c+ cells responses in the alveolar space.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Juan García-Bernalt Diego
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Seok-Chan Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Lauren A Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Moataz Noureddine
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel Laghlali
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Yonina Bykov
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Prellberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vivian Yan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarabjot Singh
- RT-PCR COVID-19 Laboratory, Civil Hospital, Moga, Punjab, India
| | - Lars Pache
- NCI Designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Sara Cuadrado-Castano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Lipschultz Precision Immunology Institute (PrIISM), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brett Webb
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA.
- Lipschultz Precision Immunology Institute (PrIISM), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Singh G, Warang P, García-Bernalt Diego J, Chang L, Bykov Y, Singh S, Pache L, Cuadrado-Castano S, Webb B, Garcia-Sastre A, Schotsaert M. Host immune responses associated with SARS-CoV-2 Omicron infection result in protection or pathology during reinfection depending on mouse genetic background. RESEARCH SQUARE 2023:rs.3.rs-3637405. [PMID: 38077015 PMCID: PMC10705603 DOI: 10.21203/rs.3.rs-3637405/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Rapid emergence of antigenic distinct SARS-CoV-2 variants implies a greater risk of reinfection as viruses can escape neutralizing antibodies induced by vaccination or previous viral exposure. Disease severity during COVID-19 depends on many variables such as age-related comorbidities, host immune status and genetic variation. The host immune response during infection with SARS-CoV-2 may contribute to disease severity, which can range from asymptomatic to severe with fatal outcome. Furthermore, the extent of host immune response activation may rely on underlying genetic predisposition for disease or protection. To address these questions, we performed immune profiling studies in mice with different genetic backgrounds - transgenic K18-hACE2 and wild-type 129S1 mice - subjected to reinfection with the severe disease-causing SARS-CoV-2 B.1.351 variant, 30 days after experimental milder BA.1 infection. BA.1 preinfection conferred protection against B.1.351-induced morbidity in K18-hACE2 mice but aggravated disease in 129S1 mice. We found that he cytokine/chemokine profile in B.1.351 re-infected 129S1mice is similar to that during severe SARS-CoV-2 infection in humans and is characterized by a much higher level of IL-10, IL-1β, IL-18 and IFN-γ, whereas in B.1.351 re-infected K18-hACE2 mice, the cytokine profile echoes the signature of naïve mice undergoing viral infection for the first time. Interestingly, the enhanced pathology observed in 129S1 mice upon reinfection cannot be attributed to a less efficient induction of adaptive immune responses to the initial BA.1 infection, as both K18-hACE2 and 129S1 mice exhibited similar B and T cell responses at 30 DPI against BA.1, with similar anti-BA.1 or B.1.351 spike-specific ELISA binding titers, levels of germinal center B-cells, and SARS-CoV-2-Spike specific tissue-resident T-cells. Long-term effects of BA.1 infection are associated with differential transcriptional changes in bronchoalveolar lavage-derived CD11c + immune cells from K18-hACE2 and 129S1, with K18-hACE2 CD11c + cells showing a strong antiviral defense gene expression profile whereas 129S1 CD11c + cells showed a more pro-inflammatory response. In conclusion, initial infection with BA.1 induces cross-reactive adaptive immune responses in both K18-hACE2 and 129S1 mice, however the different disease outcome of reinfection seems to be driven by differential responses of CD11c + cells in the alveolar space.
Collapse
Affiliation(s)
| | | | | | | | | | - Sarabjot Singh
- RT-PCR COVID-19 Laboratory, Civil Hospital, Moga, Punjab, India
| | - Lars Pache
- Sanford Burnham Prebys Medical Discovery Institute
| | | | - Brett Webb
- Department of Veterinary Sciences, University of Wyoming
| | | | | |
Collapse
|
3
|
Gredic M, Karnati S, Ruppert C, Guenther A, Avdeev SN, Kosanovic D. Combined Pulmonary Fibrosis and Emphysema: When Scylla and Charybdis Ally. Cells 2023; 12:1278. [PMID: 37174678 PMCID: PMC10177208 DOI: 10.3390/cells12091278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Combined pulmonary fibrosis and emphysema (CPFE) is a recently recognized syndrome that, as its name indicates, involves the existence of both interstitial lung fibrosis and emphysema in one individual, and is often accompanied by pulmonary hypertension. This debilitating, progressive condition is most often encountered in males with an extensive smoking history, and is presented by dyspnea, preserved lung volumes, and contrastingly impaired gas exchange capacity. The diagnosis of the disease is based on computed tomography imaging, demonstrating the coexistence of emphysema and interstitial fibrosis in the lungs, which might be of various types and extents, in different areas of the lung and several relative positions to each other. CPFE bears high mortality and to date, specific and efficient treatment options do not exist. In this review, we will summarize current knowledge about the clinical attributes and manifestations of CPFE. Moreover, we will focus on pathophysiological and pathohistological lung phenomena and suspected etiological factors of this disease. Finally, since there is a paucity of preclinical research performed for this particular lung pathology, we will review existing animal studies and provide suggestions for the development of additional in vivo models of CPFE syndrome.
Collapse
Affiliation(s)
- Marija Gredic
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392 Giessen, Germany
| | - Srikanth Karnati
- Institute for Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
| | - Clemens Ruppert
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392 Giessen, Germany
- UGMLC Giessen Biobank & European IPF Registry/Biobank, 35392 Giessen, Germany
| | - Andreas Guenther
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392 Giessen, Germany
- UGMLC Giessen Biobank & European IPF Registry/Biobank, 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Lung Clinic, Evangelisches Krankenhaus Mittelhessen, 35398 Giessen, Germany
| | - Sergey N. Avdeev
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
4
|
Esnault S, Jarjour NN. Development of Adaptive Immunity and Its Role in Lung Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:287-351. [PMID: 37464127 DOI: 10.1007/978-3-031-32259-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is characterized by airflow limitations resulting from bronchial closure, which can be either reversible or fixed due to changes in airway tissue composition and structure, also known as remodeling. Airway remodeling is defined as increased presence of mucins-producing epithelial cells, increased thickness of airway smooth muscle cells, angiogenesis, increased number and activation state of fibroblasts, and extracellular matrix (ECM) deposition. Airway inflammation is believed to be the main cause of the development of airway remodeling in asthma. In this chapter, we will review the development of the adaptive immune response and the impact of its mediators and cells on the elements defining airway remodeling in asthma.
Collapse
|
5
|
Emerging Effects of IL-33 on COVID-19. Int J Mol Sci 2022; 23:ijms232113656. [PMID: 36362440 PMCID: PMC9658128 DOI: 10.3390/ijms232113656] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Since the start of COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more than 6 million people have lost their lives worldwide directly or indirectly. Despite intensified efforts to clarify the immunopathology of COVID-19, the key factors and processes that trigger an inflammatory storm and lead to severe clinical outcomes in patients remain unclear. As an inflammatory storm factor, IL-33 is an alarmin cytokine, which plays an important role in cell damage or infection. Recent studies have shown that serum IL-33 is upregulated in COVID-19 patients and is strongly associated with poor outcomes. Increased IL-33 levels in severe infections may result from an inflammatory storm caused by strong interactions between activated immune cells. However, the effects of IL-33 in COVID-19 and the underlying mechanisms remain to be fully elucidated. In this review, we systematically discuss the biological properties of IL-33 under pathophysiological conditions and its regulation of immune cells, including neutrophils, innate lymphocytes (ILCs), dendritic cells, macrophages, CD4+ T cells, Th17/Treg cells, and CD8+ T cells, in COVID-19 phagocytosis. The aim of this review is to explore the potential value of the IL-33/immune cell pathway as a new target for early diagnosis, monitoring of severe cases, and clinical treatment of COVID-19.
Collapse
|
6
|
Chen S, Piao Y, Song Y, Wang Z, Jiang J, Piao Y, Li L, Xu C, Li L, Chi Y, Jin G, Yan G. Protective effects of glaucocalyxin A on the airway of asthmatic mice. Open Med (Wars) 2022; 17:1158-1171. [PMID: 35859797 PMCID: PMC9263894 DOI: 10.1515/med-2022-0513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/15/2022] Open
Abstract
The aim of this study is to investigate the protective effects of glaucocalyxin A (GLA) on airways in mouse models of asthma, concerning the inflammatory mediators, Th1/Th2 subgroup imbalance, and Toll-like receptor 4 (TLR4)/NF-κB signaling pathway. Hematoxylin and eosin/periodic acid-Schiff staining was used to observe the pathological changes in lung tissues. Inflammatory cytokine contents in the bronchoalveolar lavage fluid were detected by enzyme-linked immunosorbent assay. Protein expression levels were detected with Western blot, immunohistochemistry, and immunofluorescence. In vivo studies showed that, in ovalbumin (OVA)-induced asthmatic mouse models, the GLA treatments reduced the airway hyperresponsiveness and the secretion of inflammatory cells, declined the proliferation of goblet cells, decreased the levels of IL-4, IL-5, and IL-13, and increased the contents of interferon-γ and IL-12. Moreover, GLA inhibited the protein expression levels of TLR4, MyD88, TRAF6, and NF-κB in OVA-induced asthmatic mouse models. Further in vitro studies showed that GLA inhibited the expression of NF-κB, p-IκBα, tumor necrosis factor-α, IL-6, and IL-1β and blocked the nuclear transfer of NF-κB in lipopolysaccharide-stimulated RAW264.7 macrophages. Conclusively, GLA can inhibit the inflammatory responses in OVA-induced asthmatic mice and inhibit the release of inflammatory factors in LPS-induced RAW264.7 macrophages, which may be related to the inhibition of TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Si Chen
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji 133099, Jilin, P. R. China
- Department of Neonatology, Children’s Hospital of Changchun, Changchun 130061, Jilin, P. R. China
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
| | - Ying Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Emergency, Yanbian University Hospital, Yanji 133000, Jilin, P. R. China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, Jilin, P. R. China
| | - Zhiguang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji 133000, Jilin, P. R. China
| | - Jingzhi Jiang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, Jilin, P. R. China
| | - Yihua Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Intensive Care Unit, Affiliated Hospital of Yanbian University, Yanji 133000, Jilin, P. R. China
| | - Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Intensive Care Unit, Affiliated Hospital of Yanbian University, Yanji 133000, Jilin, P. R. China
| | - Chang Xu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, Jilin, P. R. China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, Jilin, P. R. China
| | - Yongxue Chi
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Pediatrics, Affiliated Hospital of Yanbian University, No. 1327, Juzi Street, Yanji 133099, Jilin, P. R. China
| | - Guihua Jin
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, No. 977, Gongyuan Road, Yanji 133002, Jilin, P. R. China
| | - Guanghai Yan
- Department of Neonatology, Children’s Hospital of Changchun, Changchun 130061, Jilin, P. R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, No. 977, Gongyuan Road, Yanji 133002, Jilin, P. R. China
| |
Collapse
|
7
|
Han M, Ma J, Ouyang S, Wang Y, Zheng T, Lu P, Zheng Z, Zhao W, Li H, Wu Y, Zhang B, Hu R, Otsu K, Liu X, Wan Y, Li H, Huang G. The kinase p38α functions in dendritic cells to regulate Th2-cell differentiation and allergic inflammation. Cell Mol Immunol 2022; 19:805-819. [PMID: 35551270 PMCID: PMC9243149 DOI: 10.1038/s41423-022-00873-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) play a critical role in controlling T helper 2 (Th2) cell-dependent diseases, but the signaling mechanism that triggers this function is not fully understood. We showed that p38α activity in DCs was decreased upon HDM stimulation and dynamically regulated by both extrinsic signals and Th2-instructive cytokines. p38α-specific deletion in cDC1s but not in cDC2s or macrophages promoted Th2 responses under HDM stimulation. Further study showed that p38α in cDC1s regulated Th2-cell differentiation by modulating the MK2−c-FOS−IL-12 axis. Importantly, crosstalk between p38α-dependent DCs and Th2 cells occurred during the sensitization phase, not the effector phase, and was conserved between mice and humans. Our results identify p38α signaling as a central pathway in DCs that integrates allergic and parasitic instructive signals with Th2-instructive cytokines from the microenvironment to regulate Th2-cell differentiation and function, and this finding may offer a novel strategy for the treatment of allergic diseases and parasitic infection.
Collapse
Affiliation(s)
- Miaomiao Han
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China
| | - Jingyu Ma
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Suidong Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Yanyan Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Tingting Zheng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Peishan Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Zihan Zheng
- Biomedical Analysis Center, Army Medical University, 400038, Chongqing, China
| | - Weiheng Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Hongjin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China
| | - Yun Wu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Baohua Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| | - Ran Hu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Basic Department of Cancer Center, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| | - Kinya Otsu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.,School of Cardiovascular Medicine and Sciences, King's College London, London, SE59NU, UK
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, 400038, Chongqing, China.
| | - Huabin Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China.
| | - Gonghua Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China. .,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China.
| |
Collapse
|
8
|
Smith AP, Williams EP, Plunkett TR, Selvaraj M, Lane LC, Zalduondo L, Xue Y, Vogel P, Channappanavar R, Jonsson CB, Smith AM. Time-Dependent Increase in Susceptibility and Severity of Secondary Bacterial Infections During SARS-CoV-2. Front Immunol 2022; 13:894534. [PMID: 35634338 PMCID: PMC9134015 DOI: 10.3389/fimmu.2022.894534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Secondary bacterial infections can exacerbate SARS-CoV-2 infection, but their prevalence and impact remain poorly understood. Here, we established that a mild to moderate infection with the SARS-CoV-2 USA-WA1/2020 strain increased the risk of pneumococcal (type 2 strain D39) coinfection in a time-dependent, but sex-independent, manner in the transgenic K18-hACE2 mouse model of COVID-19. Bacterial coinfection increased lethality when the bacteria was initiated at 5 or 7 d post-virus infection (pvi) but not at 3 d pvi. Bacterial outgrowth was accompanied by neutrophilia in the groups coinfected at 7 d pvi and reductions in B cells, T cells, IL-6, IL-15, IL-18, and LIF were present in groups coinfected at 5 d pvi. However, viral burden, lung pathology, cytokines, chemokines, and immune cell activation were largely unchanged after bacterial coinfection. Examining surviving animals more than a week after infection resolution suggested that immune cell activation remained high and was exacerbated in the lungs of coinfected animals compared with SARS-CoV-2 infection alone. These data suggest that SARS-CoV-2 increases susceptibility and pathogenicity to bacterial coinfection, and further studies are needed to understand and combat disease associated with bacterial pneumonia in COVID-19 patients.
Collapse
Affiliation(s)
- Amanda P. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Taylor R. Plunkett
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Muneeswaran Selvaraj
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lindey C. Lane
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lillian Zalduondo
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yi Xue
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Rudragouda Channappanavar
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, United States
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
9
|
Janbazacyabar H, van Bergenhenegouwen J, Garssen J, Leusink-Muis T, van Ark I, van Daal MT, Folkerts G, Braber S. Prenatal and Postnatal Cigarette Smoke Exposure Is Associated With Increased Risk of Exacerbated Allergic Airway Immune Responses: A Preclinical Mouse Model. Front Immunol 2022; 12:797376. [PMID: 35003121 PMCID: PMC8732376 DOI: 10.3389/fimmu.2021.797376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/07/2021] [Indexed: 01/29/2023] Open
Abstract
Increased exposure to household air pollution and ambient air pollution has become one of the world’s major environmental health threats. In developing and developed countries, environmental cigarette smoke (CS) exposure is one of the main sources of household air pollution (HAP). Moreover, results from different epidemiological and experimental studies indicate that there is a strong association between HAP, specifically CS exposure, and the development of allergic diseases that often persists into later life. Here, we investigated the impact of prenatal and postnatal CS exposure on offspring susceptibility to the development of allergic airway responses by using a preclinical mouse model. Pregnant BALB/c mice were exposed to either CS or air during pregnancy and lactation and in order to induce allergic asthma the offspring were sensitized and challenged with house dust mite (HDM). Decreased lung function parameters, like dynamic compliance and pleural pressure, were observed in PBS-treated offspring born to CS-exposed mothers compared to offspring from air-exposed mothers. Maternal CS exposure significantly increased the HDM-induced airway eosinophilia and neutrophilia in the offspring. Prenatal and postnatal CS exposure increased the frequency of Th2 cells in the lungs of HDM-treated offspring compared to offspring born to air-exposed mothers. Offspring born to CS-exposed mothers showed increased levels of IL-4, IL-5 and IL-13 in bronchoalveolar lavage fluid compared to offspring from air-exposed mothers. Ex-vivo restimulation of lung cells isolated from HDM-treated offspring born to CS-exposed mothers also resulted in increased IL-4 production. Finally, serum immunoglobulins levels of HDM-specific IgE and HDM-specific IgG1 were significantly increased upon a HDM challenge in offspring born to CS-exposed mothers compared to offspring from air-exposed mothers. In summary, our results reveal a biological plausibility for the epidemiological studies indicating that prenatal and postnatal CS exposure increases the susceptibility of offspring to allergic immune responses.
Collapse
Affiliation(s)
- Hamed Janbazacyabar
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jeroen van Bergenhenegouwen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Global Center of Excellence Immunology, Danone Nutricia Research, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Global Center of Excellence Immunology, Danone Nutricia Research, Utrecht, Netherlands
| | - Thea Leusink-Muis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Ingrid van Ark
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Marthe T van Daal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Felton JM, Bouffi C, Schwartz JT, Schollaert KL, Malik A, Vallabh S, Wronowski B, Magier AZ, Merlin L, Barski A, Weirauch MT, Fulkerson PC, Rothenberg ME. Aiolos regulates eosinophil migration into tissues. Mucosal Immunol 2021; 14:1271-1281. [PMID: 34341502 PMCID: PMC8542574 DOI: 10.1038/s41385-021-00416-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023]
Abstract
Expression of Ikaros family transcription factor IKZF3 (Aiolos) increases during murine eosinophil lineage commitment and maturation. Herein, we investigated Aiolos expression and function in mature human and murine eosinophils. Murine eosinophils deficient in Aiolos demonstrated gene expression changes in pathways associated with granulocyte-mediated immunity, chemotaxis, degranulation, ERK/MAPK signaling, and extracellular matrix organization; these genes had ATAC peaks within 1 kB of the TSS that were enriched for Aiolos-binding motifs. Global Aiolos deficiency reduced eosinophil frequency within peripheral tissues during homeostasis; a chimeric mouse model demonstrated dependence on intrinsic Aiolos expression by eosinophils. Aiolos deficiency reduced eosinophil CCR3 surface expression, intracellular ERK1/2 signaling, and CCL11-induced actin polymerization, emphasizing an impaired functional response. Aiolos-deficient eosinophils had reduced tissue accumulation in chemokine-, antigen-, and IL-13-driven inflammatory experimental models, all of which at least partially depend on CCR3 signaling. Human Aiolos expression was associated with active chromatin marks enriched for IKZF3, PU.1, and GATA-1-binding motifs within eosinophil-specific histone ChIP-seq peaks. Furthermore, treating the EOL-1 human eosinophilic cell line with lenalidomide yielded a dose-dependent decrease in Aiolos. These collective data indicate that eosinophil homing during homeostatic and inflammatory allergic states is Aiolos-dependent, identifying Aiolos as a potential therapeutic target for eosinophilic disease.
Collapse
Affiliation(s)
- Jennifer M Felton
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Carine Bouffi
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Justin T Schwartz
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kaila L Schollaert
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Astha Malik
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sushmitha Vallabh
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Benjamin Wronowski
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Adam Z Magier
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Li Merlin
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Artem Barski
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics and Division of Developmental Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Patricia C Fulkerson
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Hage R, Gautschi F, Steinack C, Schuurmans MM. Combined Pulmonary Fibrosis and Emphysema (CPFE) Clinical Features and Management. Int J Chron Obstruct Pulmon Dis 2021; 16:167-177. [PMID: 33536752 PMCID: PMC7850450 DOI: 10.2147/copd.s286360] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/30/2020] [Indexed: 01/14/2023] Open
Abstract
Background Combined pulmonary fibrosis and emphysema (CPFE) is an underrecognized syndrome characterized by chronic, progressive disease with a dismal prognosis. Frequent co-morbidities with a higher incidence than in idiopathic pulmonary fibrosis or emphysema alone are pulmonary hypertension (WHO group 3) in 47–90% of the patients and lung cancer in 46.8% of the patients. Objective Review current evidence and knowledge concerning diagnosis, risk factors, disease evolution and treatment options of CPFE. Methods We searched studies reporting CPFE in original papers, observational studies, case reports, and meta-analyses published between 1990 and August 2020, in the PubMed, Embase, Cochrane Library, Wiley Online Library databases and Google Scholar using the search terms [CPFE], [pulmonary fibrosis] OR [IPF] AND [emphysema]. Bibliographies of retrieved articles were searched as well. Further inclusion criteria were publications in English, French, German and Italian, with reference to humans. In vitro data and animal data were not considered unless they were mentioned in studies reporting predominantly human data. Results Between May 1, 1990, and September 1, 2020, we found 16 studies on CPFE from the online sources and bibliographies. A total of 890 patients are described in the literature. Although male/female ratio was not reported in all studies, the large majority of patients were male (at least 78%), most of them were current or former heavy smokers. Conclusion CPFE is a syndrome presenting with dyspnea on exertion followed by disruptive cough and recurrent exacerbations. The disease may progress rapidly, be aggravated by pulmonary hypertension WHO group 3 and is associated with an increased risk of lung cancer. Smoking and male sex are important risk factors. There is a need for more research on CPFE especially relating to etiology, influence of genetics, treatment and prevention options. Antifibrotic therapy might be an interesting treatment option for these patients.
Collapse
Affiliation(s)
- René Hage
- University Hospital Zurich, Division of Pulmonology, Zurich, Switzerland.,University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | - Fiorenza Gautschi
- University Hospital Zurich, Division of Pulmonology, Zurich, Switzerland.,University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | - Carolin Steinack
- University Hospital Zurich, Division of Pulmonology, Zurich, Switzerland.,University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | - Macé M Schuurmans
- University Hospital Zurich, Division of Pulmonology, Zurich, Switzerland.,University of Zurich, Faculty of Medicine, Zurich, Switzerland
| |
Collapse
|
12
|
Interleukin-13 as a target to alleviate severe coronavirus disease 2019 and restore lung homeostasis. J Clin Transl Res 2021; 7:116-120. [PMID: 34027204 PMCID: PMC8132187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 11/09/2022] Open
Abstract
The ongoing coronavirus disease (COVID-19) pandemic urgently requires the availability of interventions that improve outcomes for those with severe disease. Since severe acute respiratory syndrome coronavirus 2 infection is characterized by dysregulated lung mucosae, and that mucosal homeostasis is heavily influenced by interleukin (IL)-13 activity, we explore recent findings indicating that IL-13 production is proportional to disease severity. We propose that excessive IL-13 contributes to the progression of severe/fatal COVID-19 by (1) promoting the recruitment of immune cells that express inflammatory cytokines, causing a cytokine storm that results in widespread destruction of lung tissue, (2) directly facilitating tissue-remodeling that causes airway hyperinflammation and obstruction, and (3) diverting the immune system away from developing high-quality cytotoxic T cells that confer effective anti-viral immunity. These factors may cumulatively result in significant lung distress, multi-organ failure, and death. Here, we suggest repurposing existing IL-13-inhibiting interventions, including antibody therapies routinely used for allergic lung hyperinflammation, as well as viral vector-based approaches, to alleviate disease. Since many of these strategies have previously been shown to be both safe and effective, this could prove to be a highly cost-effective solution. Relevance for Patients There remains a desperate need to establish medical interventions that reliably improves outcomes for patients suffering from COVID-19. We explore the role of IL-13 in maintaining homeostasis at the lung mucosae and propose that its dysregulation during viral infection may propagate the hallmarks of severe disease - further exploration may provide a platform for invaluable therapeutics.
Collapse
|
13
|
Wang Z, Li L, Wang C, Piao Y, Jiang J, Li L, Yan G, Piao H. Recombinant Pyrin Domain Protein Attenuates Airway Inflammation and Alleviates Epithelial-Mesenchymal Transition by Inhibiting Crosstalk Between TGFβ1 and Notch1 Signaling in Chronic Asthmatic Mice. Front Physiol 2020; 11:559470. [PMID: 33192556 PMCID: PMC7645102 DOI: 10.3389/fphys.2020.559470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/15/2020] [Indexed: 01/10/2023] Open
Abstract
This article aims to investigate the effects of recombinant pyrin domain (RPYD) on airway inflammation and remodeling in mice with chronic asthma. The chronic asthma BALB/c mouse model was first sensitized by ovalbumin (OVA) and then challenged by OVA nebulization. RPYD or dexamethasone was given before OVA challenge. Our results showed that RPYD significantly inhibited the increase of total cell number, eosinophils, neutrophils and lymphocytes in bronchoalveolar lavage fluid (BALF) induced by OVA, and reduced the infiltration of inflammatory cells, the proliferation of goblet cells and collagen deposition. In addition, RPYD inhibited the mRNA and protein levels of α-smooth muscle actin (α-SMA), transforming growth factor (TGF)-β1, Jagged1, Notch1, Hes1 and Smad3, as well as Smad3 phosphorylation. TGFβ1 down-regulated the level of E-cadherin and promoted the expression of α-SMA, thus inducing epithelial-mesenchymal transition (EMT) in bronchial epithelial cells. We found that RPYD reduced EMT by inhibiting TGFβ1/smad3 and Jagged1/Notch1 signaling pathways. Further overexpression of NICD showed that under the stimulation of TGFβ1, NICD enhanced the phosphorylated Smad3 and nuclear Smad3, accompanied by the increased expression of Notch1 target gene Hes1. In contrast, after treatment with smad3 siRNA, the expression of Hes1 was down regulated as the decrease of Smad3, which indicates that there is crosstalk between smad3 and NICD on Hes1 expression. In conclusion, RPYD reduces airway inflammation, improves airway remodeling and reduces EMT in chronic asthmatic mice by inhibiting the crosstalk between TGFβ1/smad3 and Jagged1/Notch1 signaling pathways.
Collapse
Affiliation(s)
- Zhiguang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Chongyang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Yihua Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Intensive Care Unit, Affiliated Hospital of Yanbian University, Yanji, China
| | - Jingzhi Jiang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Hongmei Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| |
Collapse
|
14
|
Huang ZQ, Liu J, Ong HH, Yuan T, Zhou XM, Wang J, Tan KS, Chow VT, Yang QT, Shi L, Ye J, Wang DY. Interleukin-13 Alters Tight Junction Proteins Expression Thereby Compromising Barrier Function and Dampens Rhinovirus Induced Immune Responses in Nasal Epithelium. Front Cell Dev Biol 2020; 8:572749. [PMID: 33102478 PMCID: PMC7546404 DOI: 10.3389/fcell.2020.572749] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Tight junctions (TJs) are intercellular structures which are essential for epithelial barrier function and play an important role in antimicrobial defense. Epithelium dysfunction and type-2-skewed inflammation are two main pathological phenomena of chronic rhinosinusitis with nasal polyps (CRSwNP). However, the effect of pro-inflammatory type-2 cytokine IL-13 on TJs in CRSwNP is poorly understood. Nasal biopsies of CRSwNP patients and in vitro IL-13-matured human nasal epithelial cells (hNECs) were used to analyze epithelial markers and TJ proteins. Epithelium permeability, transepithelial electrical resistance (TEER), expression of TJs were quantified for IL-13-matured hNECs and that with RV infection. The expression of occludin, claudin-3, and ZO-1 were significantly decreased in CRSwNP biopsies and in hNECs after IL-13 treatment. IL-13 treatment increased epithelium permeability, decreased TEER and altered hNECs composition resulting in lesser ciliated cells and mucus over-secretion. Interestingly, claudin-3 is selectively expressed on ciliated cells. While RV infection induced minimal changes to TJs, the IL-13-matured hNECs has reduced capacity for upregulation of IFN-λ1 and CXCL10 but further increased the expression of TSLP upon RV infection. These findings suggested that IL-13-mediated dysfunction of TJs and compromised epithelial barrier. IL-13-induced cilia loss conferred lowered viral replication and impaired antiviral responses of nasal epithelium against RV infection.
Collapse
Affiliation(s)
- Zhi-Qun Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Jiangxi, China.,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore.,Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiujiang University, Jiangxi, China
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Hsiao Hui Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Tian Yuan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore.,Department of Otorhinolaryngology-Head and Neck Surgery, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang-Min Zhou
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore.,Department of Otolaryngology, Second Hospital of Shandong University, Jinan, China
| | - Jun Wang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Vincent T Chow
- NUHS Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qin-Tai Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Shi
- Department of Otolaryngology, Second Hospital of Shandong University, Jinan, China
| | - Jing Ye
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| |
Collapse
|
15
|
Ku TJY, Ribeiro RVP, Ferreira VH, Galasso M, Keshavjee S, Kumar D, Cypel M, Humar A. Ex-vivo delivery of monoclonal antibody (Rituximab) to treat human donor lungs prior to transplantation. EBioMedicine 2020; 60:102994. [PMID: 32950000 PMCID: PMC7501077 DOI: 10.1016/j.ebiom.2020.102994] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 01/14/2023] Open
Abstract
Background Ex-vivo lung perfusion (EVLP) is an innovative platform for assessing donor lungs in the pre-transplant window. In this study, we demonstrate an extension of its utility by administering the anti-CD20 monoclonal antibody, Rituximab, during EVLP. We hypothesized that this would lead to targeted depletion of allograft B-cells which may provide significant clinical benefit, including the potential to reduce latent Epstein-Barr virus (EBV) and decrease the incidence of post-transplant lymphoproliferative malignancies. Methods Twenty human donor lungs rejected for transplantation were placed on EVLP with (n = 10) or without (n = 10) 500 mg of Rituximab. Safety parameters such as lung physiology and inflammatory cytokines were evaluated. We measured the delivery efficacy through flow cytometry, immunohistochemistry and ELISA. An in-vitro culture assay, in the presence of complement, was further conducted to monitor whether B-cell depletion would occur in Rituximab-perfused samples. Findings Rituximab was successfully delivered to human lungs during EVLP as evidenced by flow cytometric binding assays where lung tissue and lymph node biopsies demonstrated occupied CD20 epitopes after perfusion with the antibody. Lymph nodes from Rituximab perfusions demonstrated a 10.9 fold-reduction in CD20+ staining compared to controls (p = 0.0003). In lung tissue, Rituximab resulted in an 8.75 fold-reduction in CD20+ staining relative to controls (p = 0.0002). This decrease in CD20+ binding illustrates the successful delivery and occupation of epitopes after perfusion with the Rituximab. No apparent safety concerns were seen as exhibited by markers associated with acute cell injury (e.g., proinflammatory cytokines), cell death (e.g., TUNEL staining), or pulmonary physiology. In a post-perfusion tissue culture model, the addition of complement (human serum) resulted in evidence of B-cell depletion consistent with what would be expected with posttransplant activation of bound Rituximab. Interpretation Our experiments illustrate the potential of EVLP as a platform to deliver monoclonal antibody therapies to treat donor lungs pretransplant with the goal of eliminating a latent virus responsible for considerable morbidity after lung transplantation. Funding Supported by the University Health Network Transplant Center.
Collapse
Affiliation(s)
- Terrance J Y Ku
- Ajmera Transplant Center, University Health Network, PMB 11-175, 585 University Avenue, Toronto, Ontario M5G 2N2, Canada
| | - Rafaela V P Ribeiro
- Latner Thoracic Surgery Research Laboratories, University Health Network, Canada
| | - Victor H Ferreira
- Ajmera Transplant Center, University Health Network, PMB 11-175, 585 University Avenue, Toronto, Ontario M5G 2N2, Canada
| | - Marcos Galasso
- Latner Thoracic Surgery Research Laboratories, University Health Network, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, University Health Network, Canada
| | - Deepali Kumar
- Ajmera Transplant Center, University Health Network, PMB 11-175, 585 University Avenue, Toronto, Ontario M5G 2N2, Canada
| | - Marcelo Cypel
- Ajmera Transplant Center, University Health Network, PMB 11-175, 585 University Avenue, Toronto, Ontario M5G 2N2, Canada; Latner Thoracic Surgery Research Laboratories, University Health Network, Canada
| | - Atul Humar
- Ajmera Transplant Center, University Health Network, PMB 11-175, 585 University Avenue, Toronto, Ontario M5G 2N2, Canada.
| |
Collapse
|
16
|
An anti-IL-13 antibody reverses epithelial-mesenchymal transition biomarkers in eosinophilic esophagitis: Phase 2 trial results. J Allergy Clin Immunol 2020; 146:367-376.e3. [PMID: 32407835 DOI: 10.1016/j.jaci.2020.03.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Fibrostenosis, the most serious eosinophilic esophagitis (EoE) complication, is mediated by epithelial-mesenchymal transition (EMT). Transitioned cells contribute to pathogenesis by overproducing extracellular matrix. OBJECTIVE Our aim was to determine whether RPC4046 (anti‒IL-13 mAb) modulates EMT biomarkers in biopsy samples from adults with active EoE in a substudy of a double-blind, placebo-controlled phase 2 trial. METHODS Baseline and week 16 esophageal biopsy samples were taken from 69 patients who were randomized to weekly treatment with subcutaneous RPC4046, 180 mg (n = 19), 360 mg (n = 26), or placebo (n = 24). Duplex immunofluorescence slides stained for E-cadherin and vimentin were digitally analyzed by mapping each epithelial cell and recording fluorescence intensities. End points included change from baseline to week 16 in percentage of vimentin-positive epithelial cells (primary), total E-cadherin expression, and vimentin-to-E-cadherin ratio per cell (an average of 47,000 cells per biopsy sample analyzed). RESULTS The mean percentage of vimentin-positive cells decreased by 0.94%, 2.75%, and 4.24% in the placebo, low-dose, and high-dose groups, respectively (P =.032 for the high-dose vs placebo group). Mean E-cadherin expression per cell increased 5.6-fold in both dose groups versus in the placebo group (high-dose group P = .047). The increases in E-cadherin expression per cell from baseline to week 16 were correlated with improvements in histology, eosinophil counts, endoscopic findings, and symptoms. CONCLUSION RPC4046 significantly reduced EMT markers in adults with active EoE, with greater effects at 360 mg. Together with results for eosinophil density and clinical end points from the main trial, these data support the hypothesis that pharmacologic IL-13 inhibition ameliorates both inflammatory and remodeling pathways and could potentially reduce the risk of fibrostenotic complications.
Collapse
|
17
|
Davies ER, Perotin JM, Kelly JFC, Djukanovic R, Davies DE, Haitchi HM. Involvement of the epidermal growth factor receptor in IL-13-mediated corticosteroid-resistant airway inflammation. Clin Exp Allergy 2020; 50:672-686. [PMID: 32096290 PMCID: PMC7317751 DOI: 10.1111/cea.13591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Effective treatment for severe asthma is a significant unmet need. While eosinophilic inflammation caused by type 2 cytokines is responsive to corticosteroid and biologic therapies, many severe asthmatics exhibit corticosteroid-unresponsive mixed granulocytic inflammation. OBJECTIVE Here, we tested the hypothesis that the pro-allergic cytokine, IL-13, can drive both corticosteroid-sensitive and corticosteroid-resistant responses. RESULTS By integration of in vivo and in vitro models of IL-13-driven inflammation, we identify a role for the epidermal growth factor receptor (EGFR/ERBB1) as a mediator of corticosteroid-unresponsive inflammation and bronchial hyperresponsiveness driven by IL-13. Topological data analysis using human epithelial transcriptomic data from the U-BIOPRED cohort identified severe asthma groups with features consistent with the presence of IL-13 and EGFR/ERBB activation, with involvement of distinct EGFR ligands. Our data suggest that IL-13 may play a dual role in severe asthma: on the one hand driving pathologic corticosteroid-refractory mixed granulocytic inflammation, but on the other hand underpinning beneficial epithelial repair responses, which may confound responses in clinical trials. CONCLUSION AND CLINICAL RELEVANCE Detailed dissection of those molecular pathways that are downstream of IL-13 and utilize the ERBB receptor and ligand family to drive corticosteroid-refractory inflammation should enhance the development of new treatments that target this sub-phenotype(s) of severe asthma, where there is an unmet need.
Collapse
Affiliation(s)
- Elizabeth R Davies
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jeanne-Marie Perotin
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Joanne F C Kelly
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ratko Djukanovic
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Donna E Davies
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Hans Michael Haitchi
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | | |
Collapse
|
18
|
Schmidt H, Braubach P, Schilpp C, Lochbaum R, Neuland K, Thompson K, Jonigk D, Frick M, Dietl P, Wittekindt OH. IL-13 Impairs Tight Junctions in Airway Epithelia. Int J Mol Sci 2019; 20:ijms20133222. [PMID: 31262043 PMCID: PMC6651493 DOI: 10.3390/ijms20133222] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
Interleukin-13 (IL-13) drives symptoms in asthma with high levels of T-helper type 2 cells (Th2-cells). Since tight junctions (TJ) constitute the epithelial diffusion barrier, we investigated the effect of IL-13 on TJ in human tracheal epithelial cells. We observed that IL-13 increases paracellular permeability, changes claudin expression pattern and induces intracellular aggregation of the TJ proteins zonlua occludens protein 1, as well as claudins. Furthermore, IL-13 treatment increases expression of ubiquitin conjugating E2 enzyme UBE2Z. Co-localization and proximity ligation assays further showed that ubiquitin and the proteasomal marker PSMA5 co-localize with TJ proteins in IL-13 treated cells, showing that TJ proteins are ubiquitinated following IL-13 exposure. UBE2Z upregulation occurs within the first day after IL-13 exposure. Proteasomal aggregation of ubiquitinated TJ proteins starts three days after IL-13 exposure and transepithelial electrical resistance (TEER) decrease follows the time course of TJ-protein aggregation. Inhibition of JAK/STAT signaling abolishes IL-13 induced effects. Our data suggest that that IL-13 induces ubiquitination and proteasomal aggregation of TJ proteins via JAK/STAT dependent expression of UBE2Z, resulting in opening of TJs. This may contribute to barrier disturbances in pulmonary epithelia and lung damage of patients with inflammatory lung diseases.
Collapse
Affiliation(s)
- Hanna Schmidt
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Peter Braubach
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 130625 Hannover, Germany
- German Center of Lung Research (DZL), Partnersite BREATH, 306245 Hannover, Germany
| | - Carolin Schilpp
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Robin Lochbaum
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Kathrin Neuland
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Kristin Thompson
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 130625 Hannover, Germany
- German Center of Lung Research (DZL), Partnersite BREATH, 306245 Hannover, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Paul Dietl
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Oliver H Wittekindt
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
19
|
Karo-Atar D, Bitton A, Benhar I, Munitz A. Therapeutic Targeting of the Interleukin-4/Interleukin-13 Signaling Pathway: In Allergy and Beyond. BioDrugs 2019; 32:201-220. [PMID: 29736903 DOI: 10.1007/s40259-018-0280-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation triggered by interleukin-4 (IL-4)/IL-13 is mediated by IL-4 and IL-13 receptors that are present on multiple cell types, including epithelial cells, smooth muscle, fibroblasts endothelial cells and immune cells. IL-4 exerts its activities by interacting with two specific cell surface receptors: one designated the type 1 IL-4 receptor (IL-4R); the other designated the type 2 IL-4R, a receptor complex that is also the functional receptor for IL-13. "Traditionally," IL-4 and IL-13 have been studied in the context of T helper 2-associated immune responses (i.e., type 2 immunity). In these settings, IL-4, IL-13 and their cognate receptor chains display pivotal roles where IL-4 is considered an instigator of type 2 immune responses and IL-13 an effector molecule. Thus, therapeutic targeting of the IL-4/IL-13 pathway is under extensive research, mainly for the treatment of allergic diseases. Nonetheless, in addition to IL-4's and IL-13's roles in type 2 immune responses, recent data highlight key activities for IL-4 and IL-13 in additional settings including metabolism, bone resorption, and even cognitive learning. This review summarizes the established knowledge that has accumulated regarding the roles of IL-4, IL-13, and their receptors in allergic diseases, with an emphasis on asthma, atopic dermatitis and eosinophilic esophagitis. Further, we provide an overview of the pharmacological entities targeting these cytokines and/or their receptors, which have been developed and clinically examined over the years. Finally, we will briefly highlight emerging evidence of potential new roles for IL-4 and IL-13 in other pathologies.
Collapse
Affiliation(s)
- Danielle Karo-Atar
- Biotherapeutics Cluster, Augmanity Nano LTD, Rehovot, Israel. .,Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel.
| | - Almog Bitton
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel
| | - Itai Benhar
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel.
| |
Collapse
|
20
|
Laskin DL, Malaviya R, Laskin JD. Role of Macrophages in Acute Lung Injury and Chronic Fibrosis Induced by Pulmonary Toxicants. Toxicol Sci 2019; 168:287-301. [PMID: 30590802 PMCID: PMC6432864 DOI: 10.1093/toxsci/kfy309] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A diverse group of toxicants has been identified that cause injury to the lung including gases (eg, ozone, chlorine), particulates/aerosols (eg, diesel exhaust, fly ash, other combustion products, mustards, nanomaterials, silica, asbestos), chemotherapeutics (eg, bleomycin), and radiation. The pathologic response to these toxicants depends on the dose and duration of exposure and their physical/chemical properties. A common response to pulmonary toxicant exposure is an accumulation of proinflammatory/cytotoxic M1 macrophages at sites of tissue injury, followed by the appearance of anti-inflammatory/wound repair M2 macrophages. It is thought that the outcome of the pathogenic responses to toxicants depends on the balance in the activity of these macrophage subpopulations. Overactivation of either M1 or M2 macrophages leads to injury and disease pathogenesis. Thus, the very same macrophage-derived mediators, released in controlled amounts to destroy injurious materials and pathogens (eg, reactive oxygen species, reactive nitrogen species, proteases, tumor necrosis factor α) and initiate wound repair (eg, transforming growth factor β, connective tissue growth factor, vascular endothelial growth factor), can exacerbate acute lung injury and/or induce chronic disease such as fibrosis, chronic obstructive pulmonary disease, and asthma, when released in excess. This review focuses on the role of macrophage subsets in acute lung injury and chronic fibrosis. Understanding how these pathologies develop following exposure to toxicants, and the contribution of resident and inflammatory macrophages to disease pathogenesis may lead to the development of novel approaches for treating lung diseases.
Collapse
Affiliation(s)
- Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy
| | - Rama Malaviya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
21
|
Ramani K, Biswas PS. Interleukin-17: Friend or foe in organ fibrosis. Cytokine 2019; 120:282-288. [PMID: 30772195 DOI: 10.1016/j.cyto.2018.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023]
Abstract
Fibrosis affects all vital organs accounting for a staggering 45% of deaths worldwide and no effective therapies are currently available. Unresolved inflammation triggers downstream signaling events that lead to organ fibrosis. In recent years, proinflammatory cytokine Interleukin-17 (IL-17) has been implicated in several chronic inflammatory diseases that often culminate in organ damage followed by impaired wound healing and fibrosis. In this review, we outline the contribution of the IL-17 in mediating fibrotic diseases in various organs. A comprehensive understanding of the inflammatory events, and particularly the details of IL-17 signaling in vivo, could be beneficial in designing new therapeutic or preventive approaches to treat fibrosis. Additionally, understanding organ-specific differences in IL-17 activity could lead to targeted therapies and help spare other organs from unwanted side effects.
Collapse
Affiliation(s)
- Kritika Ramani
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
22
|
Procaspase activating compound 1 controls tetracycline repressor-regulated gene expression system. Biosci Rep 2019; 39:BSR20180793. [PMID: 30538170 PMCID: PMC6328932 DOI: 10.1042/bsr20180793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/29/2018] [Accepted: 12/07/2018] [Indexed: 11/17/2022] Open
Abstract
The tetracycline repressor (TetR)-regulated system is a widely used tool to study gene functions through control of its expression. Various effectors such as tetracycline (Tc) and doxycycline (Dox) quickly induce or shut down gene expression, but reversing gene expression has not been eligible due to long half-lives of such effectors. Here, we found that procaspase activating compound 1 (PAC-1) rapidly reduces transient expression of TetR-regulated green fluorescent protein (GFP) in mammalian cells. Next, we applied PAC-1 to control of expression of transient receptor potential melastatin 7 (TRPM7) protein, whose downstream cellular events can be monitored by cell morphological changes. We observed that PAC-1 quickly reduces TRPM7 expression, consequently affecting cell morphology regulated by TRPM7. The present study demonstrates the first small molecule that efficiently turns off the TetR-regulated gene expression in mammalian cells, thereby precisely regulating the expression level of target gene.
Collapse
|
23
|
Han M, Hu R, Ma J, Zhang B, Chen C, Li H, Yang J, Huang G. Fas Signaling in Dendritic Cells Mediates Th2 Polarization in HDM-Induced Allergic Pulmonary Inflammation. Front Immunol 2018; 9:3045. [PMID: 30619373 PMCID: PMC6308134 DOI: 10.3389/fimmu.2018.03045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/10/2018] [Indexed: 01/17/2023] Open
Abstract
Fas-Fas ligand (FasL) signaling plays an important role in the development of allergic inflammation, but the cellular and molecular mechanisms are still not well known. By using the bone marrow-derived dendritic cell (BMDC) transfer-induced pulmonary inflammation model, we found that house dust mite (HDM)-stimulated FAS-deficient BMDCs induced higher Th2-mediated allergic inflammation, associated with increased mucus production and eosinophilic inflammation. Moreover, FAS-deficient BMDCs promoted Th2 cell differentiation upon HDM stimulation in vitro. Compared to wild-type BMDCs, the Fas-deficient BMDCs had increased ERK activity and decreased IL-12 production upon HDM stimulation. Inhibition of ERK activity could largely increase IL-12 production, consequently restored the increased Th2 cytokine expression of OT-II CD4+ T cells activated by Fas-deficient BMDCs. Thus, our results uncover an important role of DC-specific Fas signaling in Th2 differentiation and allergic inflammation, and modulation of Fas signaling in DCs may offer a useful strategy for the treatment of allergic inflammatory diseases.
Collapse
Affiliation(s)
- Miaomiao Han
- Department of Otolaryngology-Head and Neck Surgery, Center for Allergic and Inflammatory Diseases, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Hu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyu Ma
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baohua Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ce Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Huabin Li
- Department of Otolaryngology-Head and Neck Surgery, Center for Allergic and Inflammatory Diseases, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Jun Yang
- Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gonghua Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| |
Collapse
|
24
|
Cornwell WD, Kim C, Lastra AC, Dass C, Bolla S, Wang H, Zhao H, Ramsey FV, Marchetti N, Rogers TJ, Criner GJ. Inflammatory signature in lung tissues in patients with combined pulmonary fibrosis and emphysema. Biomarkers 2018; 24:232-239. [PMID: 30411980 DOI: 10.1080/1354750x.2018.1542458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: The aetiology and inflammatory profile of combined pulmonary fibrosis and emphysema (CPFE) remain uncertain currently. Objective: We aimed to examine the levels of inflammatory proteins in lung tissue in a cohort of patients with emphysema, interstitial pulmonary fibrosis (IPF), and CPFE. Materials and methods: Explanted lungs were obtained from subjects with emphysema, IPF, CPFE, (or normal subjects), and tissue extracts were prepared. Thirty-four inflammatory proteins were measured in each tissue section. Results: The levels of all 34 proteins were virtually indistinguishable in IPF compared with CPFE tissues, and collectively, the inflammatory profile in the emphysematous tissues were distinct from IPF and CPFE. Moreover, inflammatory protein levels were independent of the severity of the level of diseased tissue. Conclusions: We find that emphysematous lung tissues have a distinct inflammatory profile compared with either IPF or CPFE. However, the inflammatory profile in CPFE lungs is essentially identical to lungs from patients with IPF. These data suggest that distinct inflammatory processes collectively contribute to the disease processes in patients with emphysema, when compared to IPF and CPFE.
Collapse
Affiliation(s)
- William D Cornwell
- a Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA.,b Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Cynthia Kim
- b Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Alejandra C Lastra
- b Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Chandra Dass
- c Department of Radiology, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Sudhir Bolla
- b Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - He Wang
- d Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Huaqing Zhao
- e Department of Clinical Sciences, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Frederick V Ramsey
- e Department of Clinical Sciences, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Nathaniel Marchetti
- a Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA.,b Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Thomas J Rogers
- a Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA.,b Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Gerard J Criner
- a Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA.,b Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| |
Collapse
|
25
|
Venkateshaiah SU, Zhu X, Rajavelu P, Niranjan R, Manohar M, Verma AK, Lasky JA, Mishra A. Regulatory effects of IL-15 on allergen-induced airway obstruction. J Allergy Clin Immunol 2018; 141:906-917.e6. [PMID: 28606589 PMCID: PMC5723242 DOI: 10.1016/j.jaci.2017.05.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/21/2017] [Accepted: 05/04/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Airway obstruction is a physiologic feature of asthma, and IL-15 might have an important role in asthma pathogenesis. OBJECTIVE We tested the hypothesis that regulation of IL-15 is critical for preservation of allergen-induced airway hyperresponsiveness (AHR), airway resistance, and compliance in response to methacholine. METHODS Airway inflammation, AHR, resistance, and compliance were assessed in Il15 gene-deficient mice and IL-15-overexpressing mice in an allergen-induced murine model of asthma. We assessed eosinophil numbers by using anti-major basic protein immunostaining, goblet cell hyperplasia by using periodic acid-Schiff staining, and cytokine and chemokine levels by performing quantitative PCR and ELISA. RESULTS We made a novel observation that IL-15 deficiency promotes baseline airway resistance in naive mice. Moreover, rIL-15 delivery to the lung downregulates expression of proinflammatory cytokines and improves allergen-induced AHR, airway resistance, and compliance. These observations were further validated in doxycycline-inducible CC10-IL-15 bitransgenic mice. Doxycycline-exposed, Aspergillus species extract-challenged CC10-IL-15 bitransgenic mice exhibited significantly reduced levels of proinflammatory cytokines (IL-4, IL-5, and IL-13) and decreased goblet cell hyperplasia. Airway obstruction, including AHR and airway resistance, was diminished in allergen-challenged doxycycline-exposed compared with non-doxycycline-exposed CC10-IL-15 bitransgenic mice. Mechanistically, we observed that IL-15-mediated protection of airway obstruction is associated with induced IFN-γ- and IL-10-producing regulatory CD4+CD25+ forkhead box p3 (Foxp3)+ T cells. Additionally, we found that a human IL-15 agonist (ALT-803) improved airway resistance and compliance in an experimental asthma model. CONCLUSION We report our novel finding that IL-15 has a potent inhibitory effect on the airway obstruction that occurs in response to environmental allergens.
Collapse
Affiliation(s)
- Sathisha Upparahalli Venkateshaiah
- Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, La
| | - Xiang Zhu
- Section of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Priya Rajavelu
- Section of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rituraj Niranjan
- Section of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Murli Manohar
- Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, La
| | - Alok K Verma
- Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, La
| | - Joseph A Lasky
- Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, La
| | - Anil Mishra
- Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, La.
| |
Collapse
|
26
|
Abstract
Animal models of disease help accelerate the translation of basic science discoveries to the bedside, because they permit experimental interrogation of mechanisms at relatively high throughput, while accounting for the complexity of an intact organism. From the groundbreaking observation of emphysema-like alveolar destruction after direct instillation of elastase in the lungs to the more clinically relevant model of airspace enlargement induced by chronic exposure to cigarette smoke, animal models have advanced our understanding of alpha-1 antitrypsin (AAT) function. Experimental in vivo models that, at least in part, replicate clinical human phenotypes facilitate the translation of mechanistic findings into individuals with chronic obstructive pulmonary disease and with AAT deficiency. In addition, unexpected findings of alveolar enlargement in various transgenic mice have led to novel hypotheses of emphysema development. Previous challenges in manipulating the AAT genes in mice can now be overcome with new transgenic approaches that will likely advance our understanding of functions of this essential, lung-protective serine protease inhibitor (serpin).
Collapse
|
27
|
Zhao J, Minami Y, Etling E, Coleman JM, Lauder SN, Tyrrell V, Aldrovandi M, O'Donnell V, Claesson HE, Kagan V, Wenzel S. Preferential Generation of 15-HETE-PE Induced by IL-13 Regulates Goblet Cell Differentiation in Human Airway Epithelial Cells. Am J Respir Cell Mol Biol 2017; 57:692-701. [PMID: 28723225 DOI: 10.1165/rcmb.2017-0031oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Type 2-associated goblet cell hyperplasia and mucus hypersecretion are well known features of asthma. 15-Lipoxygenase-1 (15LO1) is induced by the type 2 cytokine IL-13 in human airway epithelial cells (HAECs) in vitro and is increased in fresh asthmatic HAECs ex vivo. 15LO1 generates a variety of products, including 15-hydroxyeicosatetraenoic acid (15-HETE), 15-HETE-phosphatidylethanolamine (15-HETE-PE), and 13-hydroxyoctadecadienoic acid (13-HODE). In this study, we investigated the 15LO1 metabolite profile at baseline and after IL-13 treatment, as well as its influence on goblet cell differentiation in HAECs. Primary HAECs obtained from bronchial brushings of asthmatic and healthy subjects were cultured under air-liquid interface culture supplemented with arachidonic acid and linoleic acid (10 μM each) and exposed to IL-13 for 7 days. Short interfering RNA transfection and 15LO1 inhibition were applied to suppress 15LO1 expression and activity. IL-13 stimulation induced expression of 15LO1 and preferentially generated 15-HETE-PE in vitro, both of which persisted after removal of IL-13. 15LO1 inhibition (by short interfering RNA and chemical inhibitor) decreased IL-13-induced forkhead box protein A3 (FOXA3) expression and enhanced FOXA2 expression. These changes were associated with reductions in both mucin 5AC and periostin. Exogenous 15-HETE-PE stimulation (alone) recapitulated IL-13-induced FOXA3, mucin 5AC, and periostin expression. The results of this study confirm the central importance of 15LO1 and its primary product, 15-HETE-PE, for epithelial cell remodeling in HAECs.
Collapse
Affiliation(s)
- Jinming Zhao
- 1 University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yoshinori Minami
- 1 University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Emily Etling
- 1 University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John M Coleman
- 2 Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sarah N Lauder
- 3 Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Victoria Tyrrell
- 3 Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Maceler Aldrovandi
- 3 Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Valerie O'Donnell
- 3 Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | | | - Valerian Kagan
- 5 Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sally Wenzel
- 1 University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
28
|
Halwani R, Vazquez-Tello A, Kenana R, Al-Otaibi M, Alhasan KA, Shakoor Z, Al-Muhsen S. Association of IL-13 rs20541 and rs1295686 variants with symptomatic asthma in a Saudi Arabian population. J Asthma 2017; 55:1157-1165. [PMID: 29211635 DOI: 10.1080/02770903.2017.1400047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Interleukin 13 (IL-13) plays a critical pro-inflammatory role in asthma. Several single nucleotide polymorphisms (SNPs) are associated with asthma susceptibility in specific populations; however, further replicative studies in other ethnic groups are mandatory. METHODS The association between IL-13 SNPs rs762534, rs20541, rs1295686, and rs1800925 (risk alleles A, A, T, and A, respectively) and asthma predisposition in a Saudi Arabian cohort was examined via a case-control cross-sectional study. RESULTS The frequencies of alleles between asthmatics and control populations were significantly different for rs20541 and rs1295686 SNPs (p < 0.001), whereas the frequencies of genotypes between asthmatics and controls were significantly different only for rs20541. The association of the risk (minor) alleles with asthma was examined using the dominant genetic model. Individuals with at least one copy of the risk alleles A (for rs20541) and T (for rs1295686) had significantly greater odds of being asthmatic (OR = 2.13, 95% CI = 1.39-3.26, p < 0.0001; OR = 1.69, 95% CI = 1.12-2.54, p = 0.008) relative to their most common homozygous genotypes. On the other hand, the minor A alleles for rs762534 and rs1800925 were not significantly associated with asthma risk. Regarding haplotype association analysis, individuals with at least one copy of the minor "risk" allele for both rs20541 and rs1295686 (CATG and CATA, respectively) had greater odds of being asthmatic relative to CGCG haplotype; however, this trend was not statistically significant (p > 0.3). CONCLUSIONS IL-13 minor T and A alleles for rs1295686 and rs20541, respectively, were associated with significantly higher risk of asthma in the Saudi Arabian population.
Collapse
Affiliation(s)
- Rabih Halwani
- a Immunology Research Laboratory and Asthma Research Chair, College of Medicine , King Saud University , Riyadh , Saudi Arabia.,b Department of Pediatrics , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Alejandro Vazquez-Tello
- a Immunology Research Laboratory and Asthma Research Chair, College of Medicine , King Saud University , Riyadh , Saudi Arabia
| | - Rosan Kenana
- a Immunology Research Laboratory and Asthma Research Chair, College of Medicine , King Saud University , Riyadh , Saudi Arabia
| | - Maram Al-Otaibi
- c Department of Pathology , King Khalid University Hospital, College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Khalid A Alhasan
- b Department of Pediatrics , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Zahid Shakoor
- c Department of Pathology , King Khalid University Hospital, College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Saleh Al-Muhsen
- a Immunology Research Laboratory and Asthma Research Chair, College of Medicine , King Saud University , Riyadh , Saudi Arabia.,b Department of Pediatrics , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
29
|
Sargent JL, Li Z, Aliprantis AO, Greenblatt M, Lemaire R, Wu MH, Wei J, Taroni J, Harris A, Long KB, Burgwin C, Artlett CM, Blankenhorn EP, Lafyatis R, Varga J, Clark SH, Whitfield ML. Identification of Optimal Mouse Models of Systemic Sclerosis by Interspecies Comparative Genomics. Arthritis Rheumatol 2017; 68:2003-15. [PMID: 26945694 DOI: 10.1002/art.39658] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/18/2016] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Understanding the pathogenesis of systemic sclerosis (SSc) is confounded by considerable disease heterogeneity. Animal models of SSc that recapitulate distinct subsets of disease at the molecular level have not been delineated. We applied interspecies comparative analysis of genomic data from multiple mouse models of SSc and patients with SSc to determine which animal models best reflect the SSc intrinsic molecular subsets. METHODS Gene expression measured in skin from mice with sclerodermatous graft-versus-host disease (GVHD), bleomycin-induced fibrosis, Tsk1/+ or Tsk2/+ mice was mapped to human orthologs and compared to SSc skin biopsy-derived gene expression. Transforming growth factor β (TGFβ) activation was assessed using a responsive signature in mice, and tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression was measured in SSc patient and mouse skin. RESULTS Gene expression in skin from mice with sclerodermatous GVHD and bleomycin-induced fibrosis corresponded to that in SSc patients in the inflammatory molecular subset. In contrast, Tsk2/+ mice showed gene expression corresponding to the fibroproliferative SSc subset. Enrichment of a TGFβ-responsive signature was observed in both Tsk2/+ mice and mice with bleomycin-induced skin fibrosis. Expression of TNFRSF12A (the TWEAK receptor/fibroblast growth factor-inducible 14) was elevated in skin from patients with fibroproliferative SSc and the skin of Tsk2/+ mice. CONCLUSION This study reveals similarities in cutaneous gene expression between distinct mouse models of SSc and specific molecular subsets of the disease. Different pathways underlie the intrinsic subsets including TGFβ, interleukin-13 (IL-13), and IL-4. We identify a novel target, Tnfrsf12a, with elevated expression in skin from patients with fibroproliferative SSc and Tsk2/+ mice. These findings will inform mechanistic and translational preclinical studies in SSc.
Collapse
Affiliation(s)
| | - Zhenghui Li
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | | | | | | | - Ming-Hua Wu
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jun Wei
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jaclyn Taroni
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Adam Harris
- University of Connecticut Health Center, Farmington
| | - Kristen B Long
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Chelsea Burgwin
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Carol M Artlett
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | | | - John Varga
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | | |
Collapse
|
30
|
Fei X, Zhang X, Zhang GQ, Bao WP, Zhang YY, Zhang M, Zhou X. Cordycepin inhibits airway remodeling in a rat model of chronic asthma. Biomed Pharmacother 2017; 88:335-341. [PMID: 28119235 DOI: 10.1016/j.biopha.2017.01.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 12/14/2022] Open
Abstract
The potential suppression role of cordycepin (Cor) on airway remodeling in a rat model of chronic asthma was investigated in this paper. We evaluated the anti-remodeling of Cor (50mg/kg) combined with or without budesonide (BUD) and investigated the possible underlying molecular mechanisms. We found that Cor attenuated immunoglobulin (Ig) E, alleviated the airway wall thickness, and decreased eosinophils and neutrophils in the bronchoalveolar lavage fluid (BALF). Notably, Cor reduced the up-regulation of IL-5, IL-13 and TNF-α in the BALF. Cor also regulated the increase of A2AARmRNA and the decrease of TGF-β1 expression. Furthermore, Cor markedly blocked p38MAPK signaling pathway activation in the OVA-driven asthmatic mice. The combination treatment of Cor and BUD showed profound efficacy in regulating the levels of inflammatory cells and the expression of IL-13, TGF-β1 and A2AARmRNA. Collectively, this study demonstrated that Cor combined with glucocorticoids treatment shows synergistically profound efficacy in inhibiting airway remodeling, and some benefits of Cor may result from the increased A2AARmRNA expression, the reduced TGF-β1 levels and the inhibition of Th2-cytokines through the suppression of the p38MAPK signaling pathways.
Collapse
Affiliation(s)
- Xia Fei
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, 200080, China
| | - Xue Zhang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, 200080, China
| | - Guo-Qing Zhang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, 200080, China
| | - Wu-Ping Bao
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, 200080, China
| | - Ying-Ying Zhang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, 200080, China
| | - Min Zhang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, 200080, China.
| | - Xin Zhou
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, 200080, China.
| |
Collapse
|
31
|
Ackermann JA, Hofheinz K, Zaiss MM, Krönke G. The double-edged role of 12/15-lipoxygenase during inflammation and immunity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:371-381. [PMID: 27480217 DOI: 10.1016/j.bbalip.2016.07.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/01/2016] [Accepted: 07/28/2016] [Indexed: 01/18/2023]
Abstract
12/15-Lipoxygenase (12/15-LOX) mediates the enzymatic oxidation of polyunsaturated fatty acids, thereby contributing to the generation of various bioactive lipid mediators. Although 12/15-LOX has been implicated in the pathogenesis of multiple chronic inflammatory diseases, its physiologic functions seem to include potent immune modulatory properties that physiologically contribute to the resolution of inflammation and the clearance of inflammation-associated tissue damage. This review aims to give a comprehensive overview about our current knowledge on the role of this enzyme during the regulation of inflammation and immunity. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.
Collapse
Affiliation(s)
- Jochen A Ackermann
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katharina Hofheinz
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
32
|
Ben Baruch-Morgenstern N, Mingler MK, Stucke E, Besse JA, Wen T, Reichman H, Munitz A, Rothenberg ME. Paired Ig-like Receptor B Inhibits IL-13-Driven Eosinophil Accumulation and Activation in the Esophagus. THE JOURNAL OF IMMUNOLOGY 2016; 197:707-14. [PMID: 27324131 DOI: 10.4049/jimmunol.1501873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 05/23/2016] [Indexed: 12/14/2022]
Abstract
Eosinophilic esophagitis (EoE) is a Th2 cytokine-associated disease characterized by eosinophil infiltration, epithelial cell hyperplasia, and tissue remodeling. Recent studies highlighted a major contribution for IL-13 in EoE pathogenesis. Paired Ig-like receptor B is a cell surface immune-inhibitory receptor that is expressed by eosinophils and postulated to regulate eosinophil development and migration. We report that Pirb is upregulated in the esophagus after inducible overexpression of IL-13 (CC10-Il13(Tg) mice) and is overexpressed by esophageal eosinophils. CC10-Il13(Tg)/Pirb(-/-) mice displayed increased esophageal eosinophilia and EoE pathology, including epithelial cell thickening, fibrosis, and angiogenesis, compared with CC10-Il13(Tg)/Pirb(+/+) mice. Transcriptome analysis of primary Pirb(+/+) and Pirb(-/-) esophageal eosinophils revealed increased expression of transcripts associated with promoting tissue remodeling in Pirb(-/-) eosinophils, including profibrotic genes, genes promoting epithelial-to-mesenchymal transition, and genes associated with epithelial growth. These data identify paired Ig-like receptor B as a molecular checkpoint in IL-13-induced eosinophil accumulation and activation, which may serve as a novel target for future therapy in EoE.
Collapse
Affiliation(s)
- Netali Ben Baruch-Morgenstern
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel; and
| | - Melissa K Mingler
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Emily Stucke
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - John A Besse
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Hadar Reichman
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel; and
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel; and
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| |
Collapse
|
33
|
Zhang C, Zhang LH, Wu YF, Lai TW, Wang HS, Xiao H, Che LQ, Ying SM, Li W, Chen ZH, Shen HH. Suhuang antitussive capsule at lower doses attenuates airway hyperresponsiveness, inflammation, and remodeling in a murine model of chronic asthma. Sci Rep 2016; 6:21515. [PMID: 26861679 PMCID: PMC4748281 DOI: 10.1038/srep21515] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 01/25/2016] [Indexed: 11/09/2022] Open
Abstract
Suhuang antitussive capsule (Suhuang), a traditional Chinese medication, is found effective in treating chronic cough and cough variant asthma (CVA). This study aimed to determine the possible effects and underlying mechanisms of Suhuang on chronic ovalbumin (OVA)-induced airway hyperresponsiveness (AHR), inflammation, and remodeling in mice. Mice were randomly assigned to six experimental groups: control, OVA model with or without Suhuang (low dose: 3.5 g/kg, middle dose: 7.0 g/kg, high dose: 14.0 g/kg), or dexamethasone (2.5 mg/kg). AHR, inflammatory cells, cytokines in bronchoalveolar lavage fluid (BALF), lung pathology, mucus production, and airway remodeling were examined. We found Suhuang treated at lower doses effectively inhibited OVA-induced AHR, airway inflammation, mucus production and collagen deposition around the airway. High dose of Suhuang reduced most of the inflammatory hallmarks while exerted inconsiderable effects on the number of macrophages in BALF and AHR. At all doses, Suhuang significantly reduced the levels of interlukin (IL) -13 and transforming growth factor (TGF)-β1, but had little effects on IL-4, IL-5, IL-17A and interferon (IFN)-γ. Thus, Suhuang administration alleviates the pathological changes of chronic asthma likely through inhibition of IL-13 and TGF-β1. Suhuang might be a promising therapy for patients with allergic asthma in the future.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Lan-Hong Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin-Fang Wu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian-Wen Lai
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Sheng Wang
- Yangtze River Pharmaceutical Group Beijing Haiyan Pharmaceutical Co., Ltd, Beijing, China
| | - Hui Xiao
- Yangtze River Pharmaceutical Group Beijing Haiyan Pharmaceutical Co., Ltd, Beijing, China
| | - Luan-Qing Che
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Song-Min Ying
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Hua Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua-Hao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China.,State Key Lab of Respiratory Disease, Guangzhou, China
| |
Collapse
|
34
|
Adegunsoye A, Balachandran J. Inflammatory response mechanisms exacerbating hypoxemia in coexistent pulmonary fibrosis and sleep apnea. Mediators Inflamm 2015; 2015:510105. [PMID: 25944985 PMCID: PMC4402194 DOI: 10.1155/2015/510105] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/17/2015] [Indexed: 01/02/2023] Open
Abstract
Mediators of inflammation, oxidative stress, and chemoattractants drive the hypoxemic mechanisms that accompany pulmonary fibrosis. Patients with idiopathic pulmonary fibrosis commonly have obstructive sleep apnea, which potentiates the hypoxic stimuli for oxidative stress, culminating in systemic inflammation and generalized vascular endothelial damage. Comorbidities like pulmonary hypertension, obesity, gastroesophageal reflux disease, and hypoxic pulmonary vasoconstriction contribute to chronic hypoxemia leading to the release of proinflammatory cytokines that may propagate clinical deterioration and alter the pulmonary fibrotic pathway. Tissue inhibitor of metalloproteinase (TIMP-1), interleukin- (IL-) 1α, cytokine-induced neutrophil chemoattractant (CINC-1, CINC-2α/β), lipopolysaccharide induced CXC chemokine (LIX), monokine induced by gamma interferon (MIG-1), macrophage inflammatory protein- (MIP-) 1α, MIP-3α, and nuclear factor- (NF-) κB appear to mediate disease progression. Adipocytes may induce hypoxia inducible factor (HIF) 1α production; GERD is associated with increased levels of lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and tumor necrosis factor alpha (TNF-α); pulmonary artery myocytes often exhibit increased cytosolic free Ca2+. Protein kinase C (PKC) mediated upregulation of TNF-α and IL-1β also occurs in the pulmonary arteries. Increased understanding of the inflammatory mechanisms driving hypoxemia in pulmonary fibrosis and obstructive sleep apnea may potentiate the identification of appropriate therapeutic targets for developing effective therapies.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Section of Pulmonary & Critical Care, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jay Balachandran
- Section of Pulmonary & Critical Care, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
35
|
Jiang M, Ku WY, Zhou Z, Dellon ES, Falk GW, Nakagawa H, Wang ML, Liu K, Wang J, Katzka DA, Peters JH, Lan X, Que J. BMP-driven NRF2 activation in esophageal basal cell differentiation and eosinophilic esophagitis. J Clin Invest 2015; 125:1557-68. [PMID: 25774506 DOI: 10.1172/jci78850] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/29/2015] [Indexed: 12/17/2022] Open
Abstract
Tissue homeostasis requires balanced self-renewal and differentiation of stem/progenitor cells, especially in tissues that are constantly replenished like the esophagus. Disruption of this balance is associated with pathological conditions, including eosinophilic esophagitis (EoE), in which basal progenitor cells become hyperplastic upon proinflammatory stimulation. However, how basal cells respond to the inflammatory environment at the molecular level remains undetermined. We previously reported that the bone morphogenetic protein (BMP) signaling pathway is critical for epithelial morphogenesis in the embryonic esophagus. Here, we address how this pathway regulates tissue homeostasis and EoE development in the adult esophagus. BMP signaling was specifically activated in differentiated squamous epithelium, but not in basal progenitor cells, which express the BMP antagonist follistatin. Previous reports indicate that increased BMP activity promotes Barrett's intestinal differentiation; however, in mice, basal progenitor cell-specific expression of constitutively active BMP promoted squamous differentiation. Moreover, BMP activation increased intracellular ROS levels, initiating an NRF2-mediated oxidative response during basal progenitor cell differentiation. In both a mouse EoE model and human biopsies, reduced squamous differentiation was associated with high levels of follistatin and disrupted BMP/NRF2 pathways. We therefore propose a model in which normal squamous differentiation of basal progenitor cells is mediated by BMP-driven NRF2 activation and basal cell hyperplasia is promoted by disruption of BMP signaling in EoE.
Collapse
|
36
|
Dai S, Yin K, Yao X, Zhou L. Inhibition of interleukin-13 gene expression by triptolide in activated T lymphocytes. Respirology 2014; 18:1249-55. [PMID: 23796028 DOI: 10.1111/resp.12145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 04/01/2013] [Accepted: 04/28/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Triptolide, a type of diterpenoid, is the active compound of Tripterygium wilfordii; it plays roles in anti-inflammatory and immune response regulation. Our objective was to investigate the mechanism of the inhibitory effect of triptolide on interleukin-13 (IL-13) gene expression in activated T lymphocytes. Understanding the molecular mechanism by which triptolide exerts a therapeutic function may be useful in developing a pharmaceutical treatment for asthma. METHODS Peripheral blood mononuclear cells (PBMC) and Hut-78 cells were stimulated with anti-CD3/CD28 with or without co-incubation with triptolide. The alteration of IL-13 messenger RNA (mRNA), expression and protein level were analysed using real-time reverse transcription polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay, respectively. The intracellular distribution profile of transcription factor GATA3 and nuclear factor of activated T cells (NFAT1) were analysed by Western blotting. The binding rates of GATA3 and NFAT1 to the promoter sequence of IL-13 were analysed by chromatin immunoprecipitation (ChIP) PCR. RESULTS In PBMC, the release of IL-13 was dependent on anti-CD3/CD28 stimulation. Its release could be inhibited by triptolide at the concentration of 500 nmol. In Hut-78 cells, IL-13 mRNA and protein expression were increased with anti-CD3/CD28 stimulation and significantly inhibited by incubation with 28 nmol triptolide. This concentration of triptolide also significantly inhibited the nuclear translocation of GATA3 and NFAT1 reducing the binding rate to the IL-13 gene promoter. CONCLUSIONS Triptolide inhibits IL-13 gene transcription and protein expression by inhibiting GATA3 and NFAT1 nuclear translocation and their binding rates to the IL-13 gene promoter region.
Collapse
Affiliation(s)
- Shanlin Dai
- Department of Respiratory Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | |
Collapse
|
37
|
Collison A, Li J, Pereira de Siqueira A, Zhang J, Toop HD, Morris JC, Foster PS, Mattes J. Tumor necrosis factor-related apoptosis-inducing ligand regulates hallmark features of airways remodeling in allergic airways disease. Am J Respir Cell Mol Biol 2014; 51:86-93. [PMID: 24484417 DOI: 10.1165/rcmb.2013-0490oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Allergic asthma is a complex disease characterized by acute inflammation of the airways that over time leads to the development of significant structural changes termed remodeling. TNF-related apoptosis-inducing ligand (TRAIL) has an important regulatory role in acute allergic airways inflammation through up-regulation of the E3 ubiquitin ligase Midline-1 (MID-1), which limits protein phosphatase 2A (PP2A) activity and downstream dephosphorylation of proinflammatory signaling molecules. The relevance of TRAIL in the development of airways remodeling has yet to be determined. In this study, the lungs of wild-type (WT) BALB/c and Tnfsf10 knockout (TRAIL-/-) mice were chronically exposed to ovalbumin (OVA) for 12 weeks to induce hallmark features of chronic allergic airways disease, including airways hyperreactivity (AHR), subepithelial collagen deposition, goblet cell hyperplasia, and smooth muscle hypertrophy. TRAIL-/- mice were largely protected from the development of AHR and peribronchial eosinophilia and had reduced levels of mast cells in the airways. This correlated with lower levels of cytokines, including IL-4, -5, -10, and -13, and with lower levels of proinflammatory chemokines from cultured cells isolated from the draining lymph nodes. TRAIL-/- mice were also protected from the characteristic features of airways remodeling, including peribronchial fibrosis, smooth muscle hypertrophy, and mucus hypersecretion, which correlated with reduced TGF-β1 levels in the lungs. MID-1 expression was reduced in TRAIL-/- mice and up-regulated in allergic WT mice. Raising PP2A activity using 2-amino-4-(4-heptyloyphenol)-2-methylbutan-1-ol in allergic WT mice reduced eosinophilia, TGF-β1, and peribronchial fibrosis. This study shows that TRAIL promotes airways remodeling in an OVA-induced model of chronic allergic airways disease. Targeting TRAIL and its downstream proinflammatory signaling pathway involving PP2A may be of therapeutic benefit in reducing the hallmark features of airways remodeling observed in chronic allergic airways inflammation.
Collapse
Affiliation(s)
- Adam Collison
- 1 Experimental and Translational Respiratory Medicine
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lu J, Liu L, Zhu Y, Zhang Y, Wu Y, Wang G, Zhang D, Xu J, Xie X, Ke R, Han D, Li S, Feng W, Xie M, Liu Y, Fang P, Shi H, He P, Liu Y, Sun X, Li M. PPAR-γ inhibits IL-13-induced collagen production in mouse airway fibroblasts. Eur J Pharmacol 2014; 737:133-9. [PMID: 24858619 DOI: 10.1016/j.ejphar.2014.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 01/15/2023]
Abstract
Interleukin-13 (IL-13) plays an important role in extracellular matrix production of airway remodeling in asthma. Activation of PPAR-γ has been shown to inhibit the occurrence of airway fibrosis in asthma, yet it remains unknown whether the effect of PPAR-γ on suppression of airway fibrosis is associated with the inhibition of IL-13 signaling. In the present study, primary cultured airway fibroblasts were stimulated with IL-13, and JAK inhibitor, PDGF receptor blocker and MEK inhibitor were applied to investigate the involvement of these pathways in IL-13-induced collagen production. Our results demonstrate that IL-13 dose- and time-dependently induced collagen production in primary cultured mouse airway fibroblasts; this effect was blocked by inhibition of JAK/STAT6 signal pathway. IL-13 also stimulated JAK/STAT6-dependent PDGF production, elevation of PDGF in turn activated ERK1/2 MAPK and caused collagen production. Activation of PPAR-γ by rosiglitazone reduced IL-13-induced collagen expression by suppression of STAT6-driven PDGF production. Our results indicate that activation of JAK/STAT6 signal and subsequent PDGF generation and ERK1/2 MAPK activation mediate IL-13-induced collagen production in airway fibroblasts. This study suggests that activation of PPAR-γ might be a novel strategy for the treatment of asthma partially by inhibition of airway fibrosis.
Collapse
Affiliation(s)
- Jiamei Lu
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Lu Liu
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Yanting Zhu
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Yonghong Zhang
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Yuanyuan Wu
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Guizuo Wang
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Dexin Zhang
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Jing Xu
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Xinming Xie
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Rui Ke
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Dong Han
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Shaojun Li
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Wei Feng
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Mei Xie
- Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Yun Liu
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Ping Fang
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Hongyang Shi
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Ping He
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Yuan Liu
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Xiuzhen Sun
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Manxiang Li
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China.
| |
Collapse
|
39
|
Schmidt S, Berens C, Klotzsche M. A novel TetR-regulating peptide turns off rtTA-mediated activation of gene expression. PLoS One 2014; 9:e96546. [PMID: 24810590 PMCID: PMC4014509 DOI: 10.1371/journal.pone.0096546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/09/2014] [Indexed: 11/18/2022] Open
Abstract
Conditional regulation of gene expression is a powerful and indispensable method for analyzing gene function. The “Tet-On” system is a tool widely used for that purpose. Here, the transregulator rtTA mediates expression of a gene of interest after addition of the small molecule effector doxycycline. Although very effective in rapidly turning on gene expression, the system is hampered by the long half-life of doxycycline which makes shutting down gene expression rapidly very difficult to achieve. We isolated an rtTA-binding peptide by in vivo selection that acts as a doxycycline antagonist and leads to rapid and efficient shut down of rtTA-mediated reporter gene expression in a human cell line. This peptide represents the basis for novel effector molecules which complement the “Tet-system” by enabling the investigator to rapidly turn gene expression not just on at will, but now also off.
Collapse
Affiliation(s)
- Sebastian Schmidt
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Berens
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marcus Klotzsche
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
40
|
What does global gene expression profiling tell us about the pathogenesis of systemic sclerosis? Curr Opin Rheumatol 2014; 25:686-91. [PMID: 24061076 DOI: 10.1097/01.bor.0000434672.77891.41] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The purpose of this study is to review recent hypothesis-driven studies that utilize global gene expression data for elucidating the molecular basis of systemic sclerosis (SSc) and its various clinical manifestations. RECENT FINDINGS The longitudinal skin gene expression studies indicate that the previously identified molecular subsets are stable over time and might identify inherent subgroups of SSc patients. Skin transcript follow-up studies indicate that the Wnt/β-catenin pathway plays an important role in promotion of fibrogenesis in fibroblasts and preadipocytes. Furthermore, the transcript profile of sclerodermatous graft-versus-host disease (sclGVHD) mice resembles the skin transcriptomes of a subgroup of SSc patientswith IL13/IL4-inducible skin signature wherein the profibrotic chemokine CCL2 plays a key role. The comparison of skin biopsies from SSc patients to skin lesions of patients with cutaneous lupus and dermatomyositis has provided valuable information about the interferon (IFN) signature in these autoimmune diseases. Furthermore, plasma IFN-inducible chemokines correlate with the IFN gene expression score in SSc patients, enabling researchers to examine this molecular signature in large SSc cohorts with serum or plasma collection. SUMMARY Global gene expression profiling in skin and peripheral blood can contribute to a better understanding of SSc pathogenesis and identify novel biomarkers and therapeutic targets.
Collapse
|
41
|
De Boever EH, Ashman C, Cahn AP, Locantore NW, Overend P, Pouliquen IJ, Serone AP, Wright TJ, Jenkins MM, Panesar IS, Thiagarajah SS, Wenzel SE. Efficacy and safety of an anti-IL-13 mAb in patients with severe asthma: a randomized trial. J Allergy Clin Immunol 2014; 133:989-96. [PMID: 24582316 DOI: 10.1016/j.jaci.2014.01.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 12/04/2013] [Accepted: 01/02/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Approximately 5% to 10% of asthmatic patients achieve incomplete symptom control on current therapies. The association of IL-13 with asthma pathology and reduced corticosteroid sensitivity suggests a potential benefit of anti-IL-13 therapy in refractory asthma. GSK679586, a humanized mAb, inhibits IL-13 binding to both IL-13 receptor α1 and α2. OBJECTIVES We sought to evaluate the efficacy and safety of GSK679586 in patients with severe asthma refractory to maximally indicated doses of inhaled corticosteroids. METHODS Patients who remained symptomatic (Asthma Control Questionnaire score ≥1.5) after uptitration to 1000 μg/d fluticasone propionate or greater were randomized to 3 once-monthly intravenous infusions of 10 mg/kg GSK679586 (n = 99) or placebo (n = 99). RESULTS Treatment differences in adjusted mean change from baseline over 12 weeks were nonsignificant for Asthma Control Questionnaire symptom scores (the primary end point; GSK679586 = -0.31, placebo = -0.17, P = .058) and FEV₁ (GSK679586 = -0.01, placebo = 0.03, P = .276). Similar analyses in patients with increased serum IgE levels, blood eosinophil counts, or both were also negative. Incidence of asthma exacerbations was similar between treatments. Most adverse events were nonserious and unrelated to treatment. Two GSK679586-treated patients had treatment-related serious adverse events (lethargy and supraventricular extrasystoles). CONCLUSIONS Although well tolerated, GSK679586 did not demonstrate clinically meaningful improvements in asthma control, pulmonary function, or exacerbations in patients with severe asthma. Further studies are needed to determine whether therapies targeting IL-13, the functionally related IL-4 cytokine, or both can provide clinical benefit in patients with severe refractory asthma or a subpopulation of these patients beyond that achievable with high-dose corticosteroids.
Collapse
Affiliation(s)
- Erika H De Boever
- Alternative Discovery and Development, GlaxoSmithKline, King of Prussia, Pa.
| | - Claire Ashman
- Biopharm Research, GlaxoSmithKline, Stevenage, United Kingdom
| | - Anthony P Cahn
- Respiratory Discovery Medicine, GlaxoSmithKline, Stevenage, United Kingdom
| | | | - Phil Overend
- II/Biopharm Clinical Statistics, GlaxoSmithKline, Stevenage, United Kingdom
| | - Isabelle J Pouliquen
- Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, Middlesex, United Kingdom
| | - Adrian P Serone
- Genentech, Research and Early Development, San Francisco, Calif
| | - Tracey J Wright
- Biopharm Research, GlaxoSmithKline, Stevenage, United Kingdom
| | - Mair M Jenkins
- Emerging Markets R&D, GlaxoSmithKline, Brentford, United Kingdom
| | | | | | - Sally E Wenzel
- Asthma Institute, University of Pittsburgh Medical Center, Pittsburgh, Pa
| |
Collapse
|
42
|
Linking GATA-3 and interleukin-13: implications in asthma. Inflamm Res 2013; 63:255-65. [PMID: 24363163 DOI: 10.1007/s00011-013-0700-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/02/2013] [Accepted: 12/12/2013] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Asthma is one of the serious global health problems and cause of huge mortality and morbidity. It is characterized by persistent airway inflammation, airway hyperresponsiveness, increased IgE levels and mucus hypersecretion. Asthma is mediated by dominant Th2 immune response, causing enhanced expression of Th2 cytokines. These cytokines are responsible for the various pathological changes associated with allergic asthma. MATERIALS AND METHODS The role of Th2 cells in the pathogenesis of the asthma is primarily mediated through the cytokine IL-13, also produced by type 2 innate lymphoid cells, that comes under the transcriptional regulation of GATA3. In this review we will try to explore the link between IL-13 and GATA3 in the progression and regulation of asthma and its possible role as a therapeutic target. CONCLUSION Inhibition of GATA3 activity or blockade of GATA3 expression may attenuate the interleukin-13 mediated asthma phenotypes. So, GATA3 might be a potential therapeutic target for the treatment of allergic asthma.
Collapse
|
43
|
Hodsman P, Ashman C, Cahn A, De Boever E, Locantore N, Serone A, Pouliquen I. A phase 1, randomized, placebo-controlled, dose-escalation study of an anti-IL-13 monoclonal antibody in healthy subjects and mild asthmatics. Br J Clin Pharmacol 2013; 75:118-28. [PMID: 22616628 DOI: 10.1111/j.1365-2125.2012.04334.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS IL-13 is implicated as an important mediator of the pathology of asthma. This first clinical study with GSK679586, a novel humanized anti-IL-13 IgG1 monoclonal antibody, evaluated the safety, pharmacokinetics and pharmacodynamics of escalating single and repeat doses of GSK679586. METHODS In this randomized, double-blind study, healthy subjects received single intravenous infusions of GSK679586 (0.005, 0.05, 0.5, 2.5, 10 mg kg(-1)) or placebo and mild intermittent asthmatics received two once monthly intravenous infusions of GSK679586 (2.5, 10, 20 mg kg(-1)) or placebo. RESULTS GSK679586 displayed approximately linear pharmacokinetics (based on AUC and C(max)) with limited accumulation upon repeat administration. In mild intermittent asthmatics, treatment with GSK679586 produced an increase in serum total IL-13 concentrations, indicative of GSK679586-IL-13 complex formation. Additionally, mean levels of exhaled nitric oxide (FeNO), a marker of pulmonary inflammation, were reduced relative to baseline at 2.5, 10 and 20 mg kg(-1) doses of GSK679586 at both 2 weeks (19%, 44% and 52% decreases) and 8 weeks (29%, 55% and 42% decreases) after the second infusion. GSK679586 was well tolerated; the incidence of AEs was comparable across all presumed biologically active doses and there were no treatment-related SAEs. CONCLUSIONS GSK679586 demonstrated dose-dependent pharmacological activity in the lungs of mild intermittent asthmatics. These findings, together with the favourable safety profile and advantageous PK characteristics of a monoclonal antibody (e.g. a long half-life supporting less frequent dosing), warrant further investigation of GSK679586 in a broader asthma patient population.
Collapse
|
44
|
Papiris SA, Triantafillidou C, Manali ED, Kolilekas L, Baou K, Kagouridis K, Bouros D. Combined pulmonary fibrosis and emphysema. Expert Rev Respir Med 2013; 7:19-31; quiz 32. [PMID: 23362797 DOI: 10.1586/ers.12.80] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The advent of computed tomography permitted recognition of the coexistence of pulmonary fibrosis and emphysema (CPFE). Emphysema is usually encountered in the upper lobes preceding fibrosis of the lower lobes, and patients are smokers, predominantly male, with distinct physiologic profile characterized by preserved lung volumes and markedly reduced diffusion capacity. Actually, the term CPFE is reserved for the coexistence of any type and grade of radiological pulmonary emphysema and the idiopathic usual interstitial pneumonia computed tomography pattern as well as any pathologically confirmed case. CPFE is complicated by pulmonary hypertension, lung cancer and acute lung injury and may present different outcome than that of its components.
Collapse
Affiliation(s)
- Spyros A Papiris
- Second Pulmonary Medicine Department, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
45
|
Walford HH, Doherty TA. STAT6 and lung inflammation. JAKSTAT 2013; 2:e25301. [PMID: 24416647 PMCID: PMC3876430 DOI: 10.4161/jkst.25301] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 12/18/2022] Open
Abstract
Lung inflammation has many etiologies, including diseases of Th2-type immunity, such as asthma and anti-parasitic responses. Inflammatory diseases of the lung involve complex interactions among structural cells (airway epithelium, smooth muscle, and fibroblasts) and immune cells (B and T cells, macrophages, dendritic cells, and innate lymphoid cells). Signal transducer and activator of transcription 6 (STAT6) has been demonstrated to regulate many pathologic features of lung inflammatory responses in animal models including airway eosinophilia, epithelial mucus production, smooth muscle changes, Th2 cell differentiation, and IgE production from B cells. Cytokines IL-4 and IL-13 that are upstream of STAT6 are found elevated in human asthma and clinical trials are underway to therapeutically target the IL-4/IL-13/STAT6 pathway. Additionally, recent work suggests that STAT6 may also regulate lung anti-viral responses and contribute to pulmonary fibrosis. This review will focus on the role of STAT6 in lung diseases and mechanisms by which STAT6 controls immune and structural lung cell function.
Collapse
Affiliation(s)
- Hannah H Walford
- Department of Medicine; University of California, San Diego; La Jolla, CA USA ; Department of Pediatrics; University of California, San Diego; La Jolla, CA USA
| | - Taylor A Doherty
- Department of Medicine; University of California, San Diego; La Jolla, CA USA
| |
Collapse
|
46
|
Lu TX, Rothenberg ME. Diagnostic, functional, and therapeutic roles of microRNA in allergic diseases. J Allergy Clin Immunol 2013; 132:3-13; quiz 14. [PMID: 23735656 DOI: 10.1016/j.jaci.2013.04.039] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/07/2013] [Accepted: 04/23/2013] [Indexed: 12/19/2022]
Abstract
Allergic inflammation is accompanied by the coordinated expression of a myriad of genes and proteins that initiate, sustain, and propagate immune responses and tissue remodeling. MicroRNAs (miRNAs) are a class of short single-stranded RNA molecules that posttranscriptionally silence gene expression and have been shown to fine-tune gene transcriptional networks because single miRNAs can target hundreds of genes. Considerable attention has been focused on the key role of miRNAs in regulating homeostatic immune architecture and acquired immunity. Recent studies have identified miRNA profiles in multiple allergic inflammatory diseases, including asthma, eosinophilic esophagitis, allergic rhinitis, and atopic dermatitis. Specific miRNAs have been found to have critical roles in regulating key pathogenic mechanisms in allergic inflammation, including polarization of adaptive immune responses and activation of T cells (eg, miR-21 and miR-146), regulation of eosinophil development (eg, miR-21 and miR-223), and modulation of IL-13-driven epithelial responses (eg, miR-375). This review discusses recent advances in our understanding of the expression and function of miRNAs in patients with allergic inflammation, their role as disease biomarkers, and perspectives for future investigation and clinical utility.
Collapse
Affiliation(s)
- Thomas X Lu
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
47
|
Pathogenesis of allergen-induced eosinophilic esophagitis is independent of interleukin (IL)-13. Immunol Cell Biol 2013; 91:408-15. [PMID: 23689305 PMCID: PMC3947911 DOI: 10.1038/icb.2013.21] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 12/22/2022]
Abstract
Several studies have shown that IL-13 is induced in the esophageal biopsies of EoE patients and promotes esophageal eosinophilia in mice following an IL-13 challenge. However, the role of IL-13 has not been clearly investigated in allergen-induced EoE. Accordingly, we tested the hypothesis that IL-13 is required in allergen-induced EoE. Mice deficient in IL-13, STAT (signal transducer and activator of transcription)6 and both IL-4/IL-13 genes with their respective controls were challenged with aspergillus extract and IL-5 gene-deficient with their control were challenged with recombinant IL-13, intranasally The lung and esophageal eosinophils, mast cells and collagen accumulation were examined. Herein, we report that intranasal delivery of IL-13 promotes IL-5 dependent esophageal eosinophilia. However, allergen-induced EoE is not impaired in the IL-13 gene-deficient mice. In addition, wild type and IL-13 gene-deficient mice demonstrated a comparable level of mast cells and collagen accumulation in the esophagus following allergen-induced experimental EoE. Similarly, we found that esophageal eosinophilia in IL-4/IL-13 double gene-deficient and STAT6 gene-deficient mice were also not reduced following allergen-induced experimental EoE. In contrast, lung eosinophilia was significantly reduced in mice deficient in IL-13, both IL-4/IL-13 and STAT6 genes following allergen challenge. In conclusion, our data establish that allergen-induced EoE pathogenesis is independent of IL-13; whereas, IL-13 is required for allergen-induced lung eosinophilia.
Collapse
|
48
|
Firszt R, Francisco D, Church TD, Thomas JM, Ingram JL, Kraft M. Interleukin-13 induces collagen type-1 expression through matrix metalloproteinase-2 and transforming growth factor-β1 in airway fibroblasts in asthma. Eur Respir J 2013; 43:464-73. [PMID: 23682108 DOI: 10.1183/09031936.00068712] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Airway remodelling is a feature of asthma that contributes to loss of lung function. One of the central components of airway remodelling is subepithelial fibrosis. Interleukin (IL)-13 is a key T-helper 2 cytokine and is believed to be the central mediator of allergic asthma including remodelling, but the mechanism driving the latter has not been elucidated in human asthma. We hypothesised that IL-13 stimulates collagen type-1 production by the airway fibroblast in a matrix metalloproteinase (MMP)- and transforming growth factor (TGF)-β1-dependent manner in human asthma as compared to healthy controls. Fibroblasts were cultured from endobronchial biopsies in 14 subjects with mild asthma and 13 normal controls that underwent bronchoscopy. Airway fibroblasts were treated with various mediators including IL-13 and specific MMP-inhibitors. IL-13 significantly stimulated collagen type-1 production in asthma compared to normal controls. Inhibitors of MMP-2 significantly attenuated collagen production in asthma but had no effect in normal controls. IL-13 significantly increased total and active forms of TGF-β1, and this activation was blocked using an MMP-2 inhibitor. IL-13 activated endogenous MMP-2 in asthma patients as compared to normal controls. In an ex vivo model, IL-13 potentiates airway remodelling through a mechanism involving TGF-β1 and MMP-2. These effects provide insights into the mechanism involved in IL-13-directed airway remodelling in asthma.
Collapse
Affiliation(s)
- Rafael Firszt
- Division of Allergy, Immunology and Rheumatology, University of Utah, Salt Lake City, UT
| | | | | | | | | | | |
Collapse
|
49
|
Ma Y, Halayko AJ, Basu S, Guan Q, Weiss CR, Ma AG, HayGlass KT, Becker AB, Warrington RJ, Peng Z. Sustained Suppression of IL-13 by a Vaccine Attenuates Airway Inflammation and Remodeling in Mice. Am J Respir Cell Mol Biol 2013; 48:540-549. [DOI: 10.1165/rcmb.2012-0060oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Yanbing Ma
- Department of Pediatrics and Child Health
- Biology of Breathing Theme, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada; and
- Institute of Medical Biology, Chinese Academy of Medical Science, Kunming, Yunnan, People’s Republic of China
| | - Andrew J. Halayko
- Department of Pediatrics and Child Health
- Department of Physiology
- Biology of Breathing Theme, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada; and
| | - Sujata Basu
- Department of Physiology
- Biology of Breathing Theme, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada; and
| | - Qingdong Guan
- Department of Pediatrics and Child Health
- Department of Immunology, and
| | - Carolyn R. Weiss
- Department of Pediatrics and Child Health
- Department of Immunology, and
| | | | - Kent T. HayGlass
- Department of Pediatrics and Child Health
- Department of Immunology, and
- Biology of Breathing Theme, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada; and
| | - Allan B. Becker
- Department of Pediatrics and Child Health
- Department of Immunology, and
- Biology of Breathing Theme, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada; and
| | - Richard J. Warrington
- Department of Immunology, and
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zhikang Peng
- Department of Pediatrics and Child Health
- Department of Immunology, and
- Biology of Breathing Theme, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada; and
| |
Collapse
|
50
|
Kinyanjui MW, Shan J, Nakada EM, Qureshi ST, Fixman ED. Dose-dependent effects of IL-17 on IL-13-induced airway inflammatory responses and airway hyperresponsiveness. THE JOURNAL OF IMMUNOLOGY 2013; 190:3859-68. [PMID: 23509346 DOI: 10.4049/jimmunol.1200506] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Th2 cytokine IL-13 regulates several aspects of the asthmatic phenotype, including airway inflammation, airway hyperresponsiveness, and mucus production. The Th17 cytokine IL-17A is also implicated in asthma and has been shown to both positively and negatively regulate Th2-dependent responses in murine models of allergic airways disease. Our objective in this study was to better understand the role of IL-17 in airway inflammation by examining how IL-17 modifies IL-13-induced airway inflammatory responses. We treated BALB/c mice intranasally with IL-13 or IL-17 alone or in combination for 8 consecutive days, after which airway hyperresponsiveness, inflammatory cell influx into the lung, and lung chemokine/cytokine expression were assessed. As expected, IL-13 increased airway inflammation and airway hyperresponsiveness. IL-13 also increased numbers of IL-17-producing CD4(+) and γδ T cells. Treating mice with a combination of IL-13 and IL-17 reduced infiltration of IL-17(+) γδ T cells, but increased the number of infiltrating eosinophils. In contrast, coadministration of IL-13 with a higher dose of IL-17 decreased all IL-13-induced inflammatory responses, including infiltration of both IL-17(+)CD4(+) and γδ T cells. To examine the inhibitory activity of IL-17-expressing γδ T cells in this model, these cells were adoptively transferred into naive recipients. Consistent with an inhibitory role for γδ T cells, IL-13-induced infiltration of eosinophils, lymphocytes, and IL-17(+)CD4(+) T cells was diminished in recipients of the γδ T cells. Collectively, our data indicate that allergic airway inflammatory responses induced by IL-13 are modulated by both the quantity and the cellular source of IL-17.
Collapse
Affiliation(s)
- Margaret W Kinyanjui
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec H2X 2P2, Canada
| | | | | | | | | |
Collapse
|