1
|
Hao Y, Wang T, Hou Y, Wang X, Yin Y, Liu Y, Han N, Ma Y, Li Z, Wei Y, Feng W, Jia Z, Qi H. Therapeutic potential of Lianhua Qingke in airway mucus hypersecretion of acute exacerbation of chronic obstructive pulmonary disease. Chin Med 2023; 18:145. [PMID: 37924136 PMCID: PMC10623880 DOI: 10.1186/s13020-023-00851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Lianhua Qingke (LHQK) is an effective traditional Chinese medicine used for treating acute tracheobronchitis. In this study, we evaluated the effectiveness of LHQK in managing airway mucus hypersecretion in the acute exacerbation of chronic obstructive pulmonary disease (AECOPD). METHODS The AECOPD model was established by subjecting male Wistar rats to 12 weeks of cigarette smoke (CS) exposure (80 cigarettes/day, 5 days/week for 12 weeks) and intratracheal lipopolysaccharide (LPS) exposure (200 μg, on days 1, 14, and 84). The rats were divided into six groups: control (room air exposure), model (CS + LPS exposure), LHQK (LHQK-L, LHQK-M, and LHQK-H), and a positive control group (Ambroxol). H&E staining, and AB-PAS staining were used to evaluate lung tissue pathology, inflammatory responses, and goblet cell hyperplasia. RT-qPCR, immunohistochemistry, immunofluorescence and ELISA were utilized to analyze the transcription, expression and secretion of proteins related to mucus production in vivo and in the human airway epithelial cell line NCI-H292 in vitro. To predict and screen the active ingredients of LHQK, network pharmacology analysis and NF-κB reporter system analysis were employed. RESULTS LHQK treatment could ameliorate AECOPD-triggered pulmonary structure damage, inflammatory cell infiltration, and pro-inflammatory cytokine production. AB-PAS and immunofluorescence staining with CCSP and Muc5ac antibodies showed that LHQK reduced goblet cell hyperplasia, probably by inhibiting the transdifferentiation of Club cells into goblet cells. RT-qPCR and immunohistochemistry of Muc5ac and APQ5 showed that LHQK modulated mucus homeostasis by suppressing Muc5ac transcription and hypersecretion in vivo and in vitro, and maintaining the balance between Muc5ac and AQP5 expression. Network pharmacology analysis and NF-κB luciferase reporter system analysis provided insights into the active ingredients of LHQK that may help control airway mucus hypersecretion and regulate inflammation. CONCLUSION LHQK demonstrated therapeutic effects in AECOPD by reducing inflammation, suppressing goblet cell hyperplasia, preventing Club cell transdifferentiation, reducing Muc5ac hypersecretion, and modulating airway mucus homeostasis. These findings support the clinical use of LHQK as a potential treatment for AECOPD.
Collapse
Affiliation(s)
- Yuanjie Hao
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Tongxing Wang
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050035, Hebei, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Yunlong Hou
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050035, Hebei, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Xiaoqi Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuan, 050090, Hebei, China
| | - Yujie Yin
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050035, Hebei, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Yi Liu
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Ningxin Han
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yan Ma
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuan, 050090, Hebei, China
| | - Zhen Li
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yaru Wei
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuan, 050090, Hebei, China
| | - Wei Feng
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050035, Hebei, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Zhenhua Jia
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
- Affiliated Yiling Hospital of Hebei Medical University, Shijiazhuang, 050091, Hebei, China.
| | - Hui Qi
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050035, Hebei, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China.
| |
Collapse
|
2
|
Znalesniak EB, Laskou A, Salm F, Haupenthal K, Harder S, Schlüter H, Hoffmann W. The Forms of the Lectin Tff2 Differ in the Murine Stomach and Pancreas: Indications for Different Molecular Functions. Int J Mol Sci 2023; 24:ijms24087059. [PMID: 37108221 PMCID: PMC10138697 DOI: 10.3390/ijms24087059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The lectin TFF2 belongs to the trefoil factor family (TFF). This polypeptide is typically co-secreted with the mucin MUC6 from gastric mucous neck cells, antral gland cells, and duodenal Brunner glands. Here, TFF2 fulfills a protective function by forming a high-molecular-mass complex with the MUC6, physically stabilizing the mucus barrier. In pigs and mice, and slightly in humans, TFF2 is also synthesized in the pancreas. Here, we investigated the murine stomach, pancreas, and duodenum by fast protein liquid chromatography (FPLC) and proteomics and identified different forms of Tff2. In both the stomach and duodenum, the predominant form is a high-molecular-mass complex with Muc6, whereas, in the pancreas, only low-molecular-mass monomeric Tff2 was detectable. We also investigated the expression of Tff2 and other selected genes in the stomach, pancreas, and the proximal, medial, and distal duodenum (RT-PCR analysis). The absence of the Tff2/Muc6 complex in the pancreas is due to a lack of Muc6. Based on its known motogenic, anti-apoptotic, and anti-inflammatory effects, we propose a protective receptor-mediated function of monomeric Tff2 for the pancreatic ductal epithelium. This view is supported by a report that a loss of Tff2 promotes the formation of pancreatic intraductal mucinous neoplasms.
Collapse
Affiliation(s)
- Eva B Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Aikaterini Laskou
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Franz Salm
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Katharina Haupenthal
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sönke Harder
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
3
|
Seyhan S, Bicer YO, Koybasi Sanal S, Astarci HM. Investigation of the Relationship Between Trefoil Factor Family Peptides and Sinonasal Inflammation. Indian J Otolaryngol Head Neck Surg 2023; 75:1033-1040. [PMID: 37206788 PMCID: PMC10188685 DOI: 10.1007/s12070-023-03589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/16/2023] [Indexed: 05/21/2023] Open
Abstract
The trefoil factor family (TFF) is a relatively new family of peptides. In some studies, an association between trefoil factors and inflammatory diseases of the nasal and paranasal sinuses has been suggested. However, it is still not clear whether there is a relationship between trefoil peptides and inflammation of the respiratory tract. The aims of this study are to determine the presence of TFF1, TFF2, and TFF3 in the nasal mucosa and investigate their relationships with inflammation by using rat models of various sinonasal inflammations. Nasal tampon, lipopolysaccharide, and ovalbumin were used to generate rat models of sinonasal inflammation, i.e., rhinosinusitis and allergic rhinitis. The study was conducted on seventy rats in seven groups, each with ten rats: four groups with rhinosinusitis, two groups with allergic rhinitis, and a control group. Histological evaluation of sinonasal mucosa from all rats was performed, and Trefoil factors were investigated using immunohistochemical methods. All three TFF peptides were detected in rat nasal mucosa by histological evaluation. No significant differences in the trefoil factor scores were observed among the study groups. A significant correlation between the TFF1 and TFF3 scores and loss of cilia was identified (p < 0.05). In conclusion, no direct relationship between sinonasal inflammation and TFF scores was observed. However, a possible association between the TFF and epithelial damage or regeneration in sinonasal inflammation can be suggested based on the correlation observed between the TFF1 and TFF3 scores and scores of cilia loss.
Collapse
Affiliation(s)
- Sinan Seyhan
- Department of Otorhinolaryngology and Head and Neck Surgery, Sabuncuoglu Serefeddin Training and Research Hospital, Faculty of Medicine, Amasya University, Kirazlıdere Neighborhood Terminal Street No: 37, 05200 Amasya, Turkey
| | - Yusuf Ozgur Bicer
- Department of Otorhinolaryngology and Head and Neck Surgery, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Serap Koybasi Sanal
- Department of Otorhinolaryngology and Head and Neck Surgery, Medicana International Izmir Hospital, Izmir, Turkey
| | | |
Collapse
|
4
|
Weste J, Houben T, Harder S, Schlüter H, Lücke E, Schreiber J, Hoffmann W. Different Molecular Forms of TFF3 in the Human Respiratory Tract: Heterodimerization with IgG Fc Binding Protein (FCGBP) and Proteolytic Cleavage in Bronchial Secretions. Int J Mol Sci 2022; 23:ijms232315359. [PMID: 36499686 PMCID: PMC9737082 DOI: 10.3390/ijms232315359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
The polypeptide TFF3 belongs to the trefoil factor family (TFF) of lectins. TFF3 is typically secreted from mucous epithelia together with mucins. Both intestinal and salivary TFF3 mainly exist as disulfide-linked heterodimers with IgG Fc binding protein (FCGBP). Here, we investigated bronchial tissue specimens, bronchial secretions, and bronchoalveolar lavage (BAL) fluid from patients with a chronic obstructive pulmonary disease (COPD) background by fast protein liquid chromatography and proteomics. For the first time, we identified different molecular forms of TFF3 in the lung. The high-molecular mass form represents TFF3-FCGBP oligomers, whereas the low-molecular mass forms are homodimeric and monomeric TFF3 with possibly anti-apoptotic activities. In addition, disulfide-linked TFF3 heterodimers with an Mr of about 60k and 30k were detected in both bronchial secretions and BAL fluid. In these liquids, TFF3 is partly N-terminally truncated probably by neutrophil elastase cleavage. TFF3-FCGBP is likely involved in the mucosal innate immune defense against microbial infections. We discuss a hypothetical model how TFF3 might control FCGBP oligomerization. Furthermore, we did not find indications for interactions of TFF3-FCGBP with DMBT1gp340 or the mucin MUC5AC, glycoproteins involved in mucosal innate immunity. Surprisingly, bronchial MUC5AC appeared to be degraded when compared with gastric MUC5AC.
Collapse
Affiliation(s)
- Jens Weste
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Till Houben
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Sönke Harder
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eva Lücke
- Department of Pneumology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Jens Schreiber
- Department of Pneumology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
5
|
Rossi HL, Ortiz-Carpena JF, Tucker D, Vaughan AE, Mangalmurti NS, Cohen NA, Herbert DR. Trefoil Factor Family: A Troika for Lung Repair and Regeneration. Am J Respir Cell Mol Biol 2022; 66:252-259. [PMID: 34784491 PMCID: PMC8937240 DOI: 10.1165/rcmb.2021-0373tr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022] Open
Abstract
Tissue damage in the upper and lower airways caused by mechanical abrasion, noxious chemicals, or pathogenic organisms must be followed by rapid restorative processes; otherwise, persistent immunopathology and disease may ensue. This review will discuss evidence for the important role served by trefoil factor (TFF) family members in healthy and diseased airways of humans and rodents. Collectively, these peptides serve to both maintain and restore homeostasis through their regulation of the mucous layer and their control of cell motility, cell differentiation, and immune function in the upper and lower airways. We will also discuss important differences in which trefoil member tracks with homeostasis and disease between humans and mice, which poses a challenge for research in this area. Moreover, we discuss new evidence supporting newly identified receptor binding partners in the leucine-rich repeat and immunoglobulin-like domain-containing NoGo (LINGO) family in mediating the biological effects of TFF proteins in mouse models of epithelial repair and infection. Recent advances in our knowledge regarding TFF peptides suggest that they may be reasonable therapeutic targets in the treatment of upper and lower airway diseases of diverse etiologies. Further work understanding their role in airway homeostasis, repair, and inflammation will benefit from these newly uncovered receptor-ligand interactions.
Collapse
Affiliation(s)
| | | | | | - Andrew E. Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania; and
| | | | - Noam A. Cohen
- Department of Otorhinolaryngology: Head and Neck Surgery, Hospital of the University of Philadelphia, Philadelphia, Pennsylvania
| | | |
Collapse
|
6
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Links to Inflammation: A Re-evaluation and New Medical Perspectives. Int J Mol Sci 2021; 22:ijms22094909. [PMID: 34066339 PMCID: PMC8125380 DOI: 10.3390/ijms22094909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3), together with mucins, are typical exocrine products of mucous epithelia. Here, they act as a gastric tumor suppressor (TFF1) or they play different roles in mucosal innate immune defense (TFF2, TFF3). Minute amounts are also secreted as endocrine, e.g., by the immune and central nervous systems. As a hallmark, TFF peptides have different lectin activities, best characterized for TFF2, but also TFF1. Pathologically, ectopic expression occurs during inflammation and in various tumors. In this review, the role of TFF peptides during inflammation is discussed on two levels. On the one hand, the expression of TFF1-3 is regulated by inflammatory signals in different ways (upstream links). On the other hand, TFF peptides influence inflammatory processes (downstream links). The latter are recognized best in various Tff-deficient mice, which have completely different phenotypes. In particular, TFF2 is secreted by myeloid cells (e.g., macrophages) and lymphocytes (e.g., memory T cells), where it modulates immune reactions triggering inflammation. As a new concept, in addition to lectin-triggered activation, a hypothetical lectin-triggered inhibition of glycosylated transmembrane receptors by TFF peptides is discussed. Thus, TFFs are promising players in the field of glycoimmunology, such as galectins and C-type lectins.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
7
|
Zinter MS, Lindemans CA, Versluys BA, Mayday MY, Sunshine S, Reyes G, Sirota M, Sapru A, Matthay MA, Kharbanda S, Dvorak CC, Boelens JJ, DeRisi JL. The pulmonary metatranscriptome prior to pediatric HCT identifies post-HCT lung injury. Blood 2021; 137:1679-1689. [PMID: 33512420 PMCID: PMC7995292 DOI: 10.1182/blood.2020009246] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Lung injury after pediatric allogeneic hematopoietic cell transplantation (HCT) is a common and disastrous complication that threatens long-term survival. To develop strategies to prevent lung injury, novel tools are needed to comprehensively assess lung health in HCT candidates. Therefore, this study analyzed biospecimens from 181 pediatric HCT candidates who underwent routine pre-HCT bronchoalveolar lavage (BAL) at the University Medical Center Utrecht between 2005 and 2016. BAL fluid underwent metatranscriptomic sequencing of microbial and human RNA, and unsupervised clustering and generalized linear models were used to associate microbiome gene expression data with the development of post-HCT lung injury. Microbe-gene correlations were validated using a geographically distinct cohort of 18 pediatric HCT candidates. The cumulative incidence of post-HCT lung injury varied significantly according to 4 pre-HCT pulmonary metatranscriptome clusters, with the highest incidence observed in children with pre-HCT viral enrichment and innate immune activation, as well as in children with profound microbial depletion and concomitant natural killer/T-cell activation (P < .001). In contrast, children with pre-HCT pulmonary metatranscriptomes containing diverse oropharyngeal taxa and lacking inflammation rarely developed post-HCT lung injury. In addition, activation of epithelial-epidermal differentiation, mucus production, and cellular adhesion were associated with fatal post-HCT lung injury. In a separate validation cohort, associations among pulmonary respiratory viral load, oropharyngeal taxa, and pulmonary gene expression were recapitulated; the association with post-HCT lung injury needs to be validated in an independent cohort. This analysis suggests that assessment of the pre-HCT BAL fluid may identify high-risk pediatric HCT candidates who may benefit from pathobiology-targeted interventions.
Collapse
Affiliation(s)
- Matt S Zinter
- Division of Critical Care Medicine and
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Pediatrics, School of Medicine, University of California, San Francisco, CA
| | - Caroline A Lindemans
- Department of Pediatric Stem Cell Transplantation, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Hematopoietic Cell Transplantation, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Birgitta A Versluys
- Department of Pediatric Stem Cell Transplantation, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Hematopoietic Cell Transplantation, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Madeline Y Mayday
- Graduate Program in Experimental Pathology, and Yale Stem Cell Center, Department of Pathology, Yale University, New Haven, CT
| | - Sara Sunshine
- Department of Biochemistry and Biophysics, School of Medicine
| | | | - Marina Sirota
- Bakar Computational Health Sciences Institute, and
- Department of Pediatrics, School of Medicine, University of California, San Francisco, CA
| | - Anil Sapru
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of California, Los Angeles, CA
| | - Michael A Matthay
- Department of Medicine and
- Department of Anesthesiology, Cardiovascular Research Institute, School of Medicine, University of California, San Francisco, CA
| | - Sandhya Kharbanda
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Pediatrics, School of Medicine, University of California, San Francisco, CA
| | - Christopher C Dvorak
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Pediatrics, School of Medicine, University of California, San Francisco, CA
| | - Jaap J Boelens
- Department of Pediatric Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, School of Medicine
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
8
|
Chen R, Zhang Y. EPDR1 correlates with immune cell infiltration in hepatocellular carcinoma and can be used as a prognostic biomarker. J Cell Mol Med 2020; 24:12107-12118. [PMID: 32935479 PMCID: PMC7579695 DOI: 10.1111/jcmm.15852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has high mortality rate and is a serious disease burden globally. EPDR1 (ependymin related 1) is a member of piscine brain glycoproteins and is involved in cell adhesion. The gene expression, prognostic, and clinicopathological related data for EPDR1 were obtained from multiple transcriptome databases. Protein level of EPDR1 in HCC was verified using human protein atlas and CPTAC databases. EPDR1 co‐expressed genes were identified using LinkedOmics. Functional analysis of the co‐expressed genes was performed using gene set enrichment analysis, Gene Ontology, and KEGG. Statistical analysis was conducted in R. The relationship between EPDR1 expression and immune cell infiltration was analyzed using TIMER and CIBERSORT. The expression of EPDR1 was found to be significantly higher in HCC than in normal tissues. Further, EPDR1 level was correlated with advanced stage of HCC. EPDR1 was associated with multiple signaling, as well as cancer and apoptotic pathways. Further, EPDR1 expression was significantly correlated with purity and infiltration levels of various immune cells as well as immune signatures. This is the first study to report the role of EPDR1 in HCC. EPDR1 can be used as a novel prognostic biomarker as well as an effective target for diagnosis and treatment in HCC.
Collapse
Affiliation(s)
- Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiya Zhang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
McBride K, Banos-Lara MDR, Cheemarla NR, Guerrero-Plata A. Human Metapneumovirus Induces Mucin 19 Which Contributes to Viral Pathogenesis. Pathogens 2020; 9:pathogens9090726. [PMID: 32899224 PMCID: PMC7559929 DOI: 10.3390/pathogens9090726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 11/26/2022] Open
Abstract
Human Metapneumovirus (HMPV) remains one of the most common viral infections causing acute respiratory tract infections, especially in young children, elderly, and immunocompromised populations. Clinical symptoms can range from mild respiratory symptoms to severe bronchiolitis and pneumonia. The production of mucus is a common feature during HMPV infection, but its contribution to HMPV-induced pathogenesis and immune response is largely unknown. Mucins are a major component of mucus and they could have an impact on how the host responds to infections. Using an in vitro system and a mouse model of infection, we identified that Mucin 19 is predominantly expressed in the respiratory tract upon HMPV infection. Moreover, the lack of Muc19 led to an improved disease, lower lung viral titers and a decrease in the number of CD4+ T cells. These data indicate that mucin 19 contributes to the activation of the immune response to HMPV and to HMPV-induced pathogenesis.
Collapse
|
10
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Diverse Molecular Functions in Mucus Barrier Protection and More: Changing the Paradigm. Int J Mol Sci 2020; 21:ijms21124535. [PMID: 32630599 PMCID: PMC7350206 DOI: 10.3390/ijms21124535] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3) are typically co-secreted together with mucins. Tff1 represents a gastric tumor suppressor gene in mice. TFFs are also synthesized in minute amounts in the immune and central nervous systems. In mucous epithelia, they support rapid repair by enhancing cell migration ("restitution") via their weak chemotactic and anti-apoptotic effects. For a long time, as a paradigm, this was considered as their major biological function. Within recent years, the formation of disulfide-linked heterodimers was documented for TFF1 and TFF3, e.g., with gastrokine-2 and IgG Fc binding protein (FCGBP). Furthermore, lectin activities were recognized as enabling binding to a lipopolysaccharide of Helicobacter pylori (TFF1, TFF3) or to a carbohydrate moiety of the mucin MUC6 (TFF2). Only recently, gastric TFF1 was demonstrated to occur predominantly in monomeric forms with an unusual free thiol group. Thus, a new picture emerged, pointing to diverse molecular functions for TFFs. Monomeric TFF1 might protect the gastric mucosa as a scavenger for extracellular reactive oxygen/nitrogen species. Whereas, the TFF2/MUC6 complex stabilizes the inner layer of the gastric mucus. In contrast, the TFF3-FCGBP heterodimer (and also TFF1-FCGBP) are likely part of the innate immune defense of mucous epithelia, preventing the infiltration of microorganisms.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
11
|
Heuer J, Heuer F, Stürmer R, Harder S, Schlüter H, Braga Emidio N, Muttenthaler M, Jechorek D, Meyer F, Hoffmann W. The Tumor Suppressor TFF1 Occurs in Different Forms and Interacts with Multiple Partners in the Human Gastric Mucus Barrier: Indications for Diverse Protective Functions. Int J Mol Sci 2020; 21:ijms21072508. [PMID: 32260357 PMCID: PMC7177788 DOI: 10.3390/ijms21072508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
TFF1 is a protective peptide of the Trefoil Factor Family (TFF), which is co-secreted with the mucin MUC5AC, gastrokine 2 (GKN2), and IgG Fc binding protein (FCGBP) from gastric surface mucous cells. Tff1-deficient mice obligatorily develop antropyloric adenoma and about 30% progress to carcinomas, indicating that Tff1 is a tumor suppressor. As a hallmark, TFF1 contains seven cysteine residues with three disulfide bonds stabilizing the conserved TFF domain. Here, we systematically investigated the molecular forms of TFF1 in the human gastric mucosa. TFF1 mainly occurs in an unusual monomeric form, but also as a homodimer. Furthermore, minor amounts of TFF1 form heterodimers with GKN2, FCGBP, and an unknown partner protein, respectively. TFF1 also binds to the mucin MUC6 in vitro, as shown by overlay assays with synthetic 125I-labeled TFF1 homodimer. The dominant presence of a monomeric form with a free thiol group at Cys-58 is in agreement with previous studies in Xenopus laevis and mouse. Cys-58 is likely highly reactive due to flanking acid residues (PPEEEC58EF) and might act as a scavenger for extracellular reactive oxygen/nitrogen species protecting the gastric mucosa from damage by oxidative stress, e.g., H2O2 generated by dual oxidase (DUOX).
Collapse
Affiliation(s)
- Jörn Heuer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Franziska Heuer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - René Stürmer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sönke Harder
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Nayara Braga Emidio
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Markus Muttenthaler
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Dörthe Jechorek
- Institute of Pathology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Frank Meyer
- Department of Surgery, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
12
|
EPDR1 up-regulation in human colorectal cancer is related to staging and favours cell proliferation and invasiveness. Sci Rep 2020; 10:3723. [PMID: 32111877 PMCID: PMC7048834 DOI: 10.1038/s41598-020-60476-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/03/2020] [Indexed: 12/15/2022] Open
Abstract
The finding of novel molecular markers for prediction or prognosis of invasiveness in colorectal cancer (CRC) constitutes an appealing challenge. Here we show the up-regulation of EPDR1 in a prospective cohort of 101 CRC patients, in a cDNA array of 43 patients and in in silico analyses. EPDR1 encodes a protein related to ependymins, a family of glycoproteins involved in intercellular contacts. A thorough statistical model allowed us to conclude that the gene is significantly up-regulated in tumour tissues when compared with normal mucosa. These results agree with those obtained by the analysis of three publicly available databases. EPDR1 up-regulation correlates with the TNM staging parameters, especially T and M. Studies with CRC cell lines revealed that the methylation of a CpG island controls EPDR1 expression. siRNA knocking-down and overexpression of the gene following transient plasmid transfection, showed that EPDR1 favours cell proliferation, migration, invasiveness and adhesion to type I collagen fibres, suggesting a role in epithelial to mesenchymal transition. Both statistical and functional analysis correlated EPDR1 overexpression with invasiveness and dissemination of tumour cells, supporting the inclusion of EPDR1 in panels of genes used to improve molecular subtyping of CRC. Eventually, EPDR1 may be an actionable target.
Collapse
|
13
|
Znalesniak EB, Salm F, Hoffmann W. Molecular Alterations in the Stomach of Tff1-Deficient Mice: Early Steps in Antral Carcinogenesis. Int J Mol Sci 2020; 21:ijms21020644. [PMID: 31963721 PMCID: PMC7014203 DOI: 10.3390/ijms21020644] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
TFF1 is a peptide of the gastric mucosa co-secreted with the mucin MUC5AC. It plays a key role in gastric mucosal protection and repair. Tff1-deficient (Tff1KO) mice obligatorily develop antropyloric adenoma and about 30% progress to carcinomas. Thus, these mice represent a model for gastric tumorigenesis. Here, we compared the expression of selected genes in Tff1KO mice and the corresponding wild-type animals (RT-PCR analyses). Furthermore, we systematically investigated the different molecular forms of Tff1 and its heterodimer partner gastrokine-2 (Gkn2) in the stomach (Western blot analyses). As a hallmark, a large portion of murine Tff1 occurs in a monomeric form. This is unexpected because of its odd number of seven cysteine residues. Probably the three conserved acid amino acid residues (EEE) flanking the 7th cysteine residue allow monomeric secretion. As a consequence, the free thiol of monomeric Tff1 could have a protective scavenger function, e.g., for reactive oxygen/nitrogen species. Furthermore, a minor subset of Tff1 forms a disulfide-linked heterodimer with IgG Fc binding protein (Fcgbp). Of special note, in Tff1KO animals a homodimeric form of Gkn2 was observed. In addition, Tff1KO animals showed strongly reduced Tff2 transcript and protein levels, which might explain their increased sensitivity to Helicobacter pylori infection.
Collapse
|
14
|
The TFF Peptides xP1 and xP4 Appear in Distinctive Forms in the Xenopus laevis Gastric Mucosa: Indications for Different Protective Functions. Int J Mol Sci 2019; 20:ijms20236052. [PMID: 31801293 PMCID: PMC6929139 DOI: 10.3390/ijms20236052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 12/23/2022] Open
Abstract
The gastric secretory trefoil factor family (TFF) peptides xP1 and xP4 are the Xenopus laevis orthologs of mammalian TFF1 and TFF2, respectively. The aim of this study was to analyze the molecular forms of xP1 and xP4 in the X. laevis gastric mucosa by FPLC. xP1 mainly occurred in a monomeric low-molecular-mass form and only a minor subset is associated with the mucus fraction. The occurrence of monomeric xP1 is unexpected because of its odd number of cysteine residues. Probably a conserved acidic residue flanking Cys55 allows monomeric secretion. Furthermore, Cys55 is probably post-translationally modified. For the first time, we hypothesize that the free thiol of monomeric xP1-and probably also its mammalian ortholog TFF1-could have a protective scavenger function, e.g., for reactive oxygen/nitrogen species. In contrast, xP4 mainly occurs in a high-molecular-mass form and is non-covalently bound to a mucin similarly as TFF2. In vitro binding studies with radioactively labeled porcine TFF2 even showed binding to X. laevis gastric mucin. Thus, xP4 is expected to bind as a lectin to an evolutionary conserved sugar epitope of the X. laevis ortholog of mucin MUC6 creating a tight mucus barrier. Taken together, xP1 and xP4 appear to have different gastric protective functions.
Collapse
|
15
|
Méndez A, Rojas DA, Ponce CA, Bustamante R, Beltrán CJ, Toledo J, García-Angulo VA, Henriquez M, Vargas SL. Primary infection by Pneumocystis induces Notch-independent Clara cell mucin production in rat distal airways. PLoS One 2019; 14:e0217684. [PMID: 31170201 PMCID: PMC6553854 DOI: 10.1371/journal.pone.0217684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/17/2019] [Indexed: 11/27/2022] Open
Abstract
Clara cells are the main airway secretory cells able to regenerate epithelium in the distal airways through transdifferentiating into goblet cells, a process under negative regulation of the Notch pathway. Pneumocystis is a highly prevalent fungus in humans occurring between 2 and 5 months of age, a period when airways are still developing and respiratory morbidity typically increases. Pneumocystis induces mucus hyperproduction in immunocompetent host airways and whether it can stimulate Clara cells is unknown. Markers of Clara cell secretion and Notch1 activation were investigated in lungs of immunocompetent rats at 40, 60, and 80 days of age during Pneumocystis primary infection with and without Valproic acid (VPA), a Notch inducer. The proportion of rats expressing mucin increased in Pneumocystis-infected rats respect to controls at 60 and 80 days of age. Frequency of distal airways Clara cells was maintained while mRNA levels for the mucin-encoding genes Muc5B and Muc5ac in lung homogenates increased 1.9 and 3.9 times at 60 days of infection (P. = 0.1609 and P. = 0.0001, respectively) and protein levels of the Clara cell marker CC10 decreased in the Pneumocystis-infected rats at 60 and 80 days of age (P. = 0.0118 & P. = 0.0388). CC10 and Muc5b co-localized in distal airway epithelium of Pneumocystis-infected rats at day 60. Co-localization of Muc5b and Ki67 as marker of mitosis in distal airways was not observed suggesting that Muc5b production by Clara cells was independent of mitosis. Notch levels remained similar and no transnucleation of activated Notch associated to Pneumocystis infection was detected. Unexpectedly, mucus was greatly increased at day 80 in Pneumocystis-infected rats receiving VPA suggesting that a Notch-independent mechanism was triggered. Overall, data suggests a Clara to goblet cell transdifferentiation mechanism induced by Pneumocystis and independent of Notch.
Collapse
Affiliation(s)
- Andrea Méndez
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Diego A. Rojas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Carolina A. Ponce
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Rebeca Bustamante
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Caroll J. Beltrán
- Servicio de Gastroenterología, Hospital Clínico Universidad de Chile y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jorge Toledo
- Laboratorio de Análisis Imágenes Científicas, SCIAN-lab, Instituto de Neurociencias Biomédicas (BNI), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Victor A. García-Angulo
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Mauricio Henriquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Sergio L. Vargas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
16
|
Wang Y, Wang ZF, Zhang Z, Su Y. Expression of Clara cell 10-kDa protein and trefoil factor family 1 in patients with chronic rhinosinusitis and nasal polyps. Exp Ther Med 2018; 15:2541-2546. [PMID: 29456658 DOI: 10.3892/etm.2018.5725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
The current study measured the expression of Clara cell 10-kDa protein (CC10) and trefoil factor family 1 (TFF1) in the sinus mucosa of patients exhibiting chronic rhinosinusitis (CRS) and nasal polyps (NP). CC10 and TFF1 expression in the sinus mucosa of the control group and patients with CRS and NP was determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting and immunohistochemistry. The correlation between CC10 and TFF1 expression was further analyzed using Spearman's correlation analysis. The expression of TFF1 was significantly increased in the sinus mucosa of patients with CRS and NP, whereas CC10 expression was significantly decreased compared with controls. Spearman's correlation analysis identified a negative correlation between CC10 and TFF1 expression in the sinus mucosa of patients with CRS and NP. The results of immunohistochemistry and RT-qPCR were consistent with each other. Hematoxylin and eosin staining revealed notable lesions in the mucous membranes, goblet cells and cilia of sinus mucosa samples from patients with CRS and NP. The negative correlation between CC10 and TFF1 expression during the progression of CRS and NP suggest that CC10 and TFF1 may serve important roles in its pathogenesis.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Otolaryngology, Head and Neck Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Zong-Feng Wang
- Department of Otolaryngology, Head and Neck Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Zhili Zhang
- Department of Orthodontics, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Yi Su
- Department of Otolaryngology, Head and Neck Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| |
Collapse
|
17
|
Znalesniak EB, Fu T, Salm F, Händel U, Hoffmann W. Transcriptional Responses in the Murine Spleen after Toxoplasma gondii Infection: Inflammasome and Mucus-Associated Genes. Int J Mol Sci 2017; 18:ijms18061245. [PMID: 28604600 PMCID: PMC5486068 DOI: 10.3390/ijms18061245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/24/2017] [Accepted: 06/03/2017] [Indexed: 12/12/2022] Open
Abstract
The spleen plays an important role in coordinating both adaptive and innate immune responses. Here, the transcriptional response to T. gondii infection in the murine spleen was characterized concerning inflammasome sensors (two different models: seven days after oral or four weeks after intraperitoneal infection). Additionally, Tff1KO and Tff3KO mice were investigated because TFF genes are often upregulated during inflammation. The expression of the pattern-recognition receptors Nlrp3, Nlrp12, and Nlrp1a was significantly increased after infection. This increase was diminished in Tff1KO and Tff3KO mice pointing towards a positive regulation of the inflammatory response by Tff1 and Tff3. Furthermore, the transcription of Tff1 (encoding a motogenic lectin) and other secretory genes was analyzed, i.e., gastrokines (Gkn), IgG Fc binding protein (Fcgbp), and the mucin Muc2. The corresponding gene products belong to an interactome protecting mucous epithelia. Tff1 was significantly induced after infection, which might increase the motility of immune cells. In contrast, Gkn3, Fcgbp, and Muc2 were downregulated seven days after oral infection; whereas four weeks after i.p. infection only Gkn3 remained downregulated. This might be an indication that Gkn3, Fcgbp, and Muc2 are involved in the transient disruption of the splenic architecture and its reorganization, which is characteristic after T. gondii infection.
Collapse
Affiliation(s)
- Eva B Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Ting Fu
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Franz Salm
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Ulrike Händel
- Institute of Medical Microbiology and Hygiene, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
18
|
Abstract
Respiratory immunity is accomplished using multiple mechanisms including structure/anatomy of the respiratory tract, mucosal defense in the form of the mucociliary apparatus, innate immunity using cells and molecules and acquired immunity. There are species differences of the respiratory immune system that influence the response to environmental challenges and pharmaceutical, industrial and agricultural compounds assessed in nonclinical safety testing and hazard identification. These differences influence the interpretation of respiratory system changes after exposure to these challenges and compounds in nonclinical safety assessment and hazard identification and their relevance to humans.
Collapse
|
19
|
Fu T, Znalesniak EB, Kalinski T, Möhle L, Biswas A, Salm F, Dunay IR, Hoffmann W. TFF Peptides Play a Role in the Immune Response Following Oral Infection of Mice with Toxoplasma Gondii. Eur J Microbiol Immunol (Bp) 2015; 5:221-31. [PMID: 26495133 PMCID: PMC4598890 DOI: 10.1556/1886.2015.00028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/27/2015] [Indexed: 01/22/2023] Open
Abstract
The peptide trefoil factor family 3 (TFF3) is a major constituent of the intestinal mucus, playing an important role in the repair of epithelial surfaces. To further understand the role of TFF3 in the protection of intestinal epithelium, we tested the influence of TFF3 in a murine Toxoplasma gondii-induced ileitis model. Surprisingly, TFF3KO mice showed a reduced immune response in the ileum when compared to wild-type animals. Interleukin-12 and interferon-γ expression levels as well as the number of CD4+ lymphocytes were reduced in the infected TFF3KO mice. These effects were in line with the trend of elevated parasite levels in the ileum. Moreover, TFF1 expression was upregulated in the spleen of infected mice. These initial results indicate that TFF3 is involved in the immune pathology of T. gondii infection-induced intestinal inflammation. Thus far, the mechanisms of how TFF3 influences the immune response are not fully understood. Further studies should identify if TFF3 affects mucus sensing of dendritic cells and how TFF3 is involved in regulating the immune response as an intrinsic secretory peptide of immune cells.
Collapse
Affiliation(s)
- Ting Fu
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg , Germany
| | - Eva B Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg , Germany
| | - Thomas Kalinski
- Institute of Pathology, Otto-von-Guericke University Magdeburg , Germany
| | - Luisa Möhle
- Institute of Medical Microbiology and Hygiene, Otto-von-Guericke University Magdeburg , Germany
| | - Aindrila Biswas
- Institute of Medical Microbiology and Hygiene, Otto-von-Guericke University Magdeburg , Germany
| | - Franz Salm
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg , Germany
| | - Ildiko Rita Dunay
- Institute of Medical Microbiology and Hygiene, Otto-von-Guericke University Magdeburg , Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg , Germany
| |
Collapse
|
20
|
Viby NE, Nexø E, Kissow H, Andreassen H, Clementsen P, Thim L, Poulsen SS. Trefoil factors (TFFs) are increased in bronchioalveolar lavage fluid from patients with chronic obstructive lung disease (COPD). Peptides 2015; 63:90-5. [PMID: 25445610 DOI: 10.1016/j.peptides.2014.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022]
Abstract
Trefoil factors (TFFs) 1, 2 and 3 are small polypeptides that are co-secreted with mucin throughout the body. They are up-regulated in cancer and inflammatory processes in the gastrointestinal system, where they are proposed to be involved in tissue regeneration, proliferation and protection. Our aim was to explore their presence in pulmonary secretions and to investigate whether they are up-regulated in pulmonary diseases characterized by mucin hypersecretion. Bronchioalveolar lavage fluid was obtained from 92 individuals referred to bronchoscopy. The patients were grouped according to diagnosis and pulmonary function. The concentrations of TFF1, TFF2 and TFF3 were measured by ELISA. All three peptides were detected in bronchioalveolar lavage fluid. Patients with chronic obstructive pulmonary disease had concentrations two to three times above the levels in the healthy reference group, and patients with pulmonary malignancies had concentrations of TFF1 and TFF2 three times that of the reference group. The results suggest that TFFs are involved in tissue regeneration, proliferation and protection in lung diseases.
Collapse
Affiliation(s)
- Niels-Erik Viby
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Cardiothoracic Surgery, Copenhagen University Hospital, Denmark.
| | - Ebba Nexø
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle Andreassen
- Department of Pulmonology, Gentofte University Hospital, Hellerup, Denmark
| | - Paul Clementsen
- Department of Pulmonology, Gentofte University Hospital, Hellerup, Denmark
| | - Lars Thim
- Department of Protein Engineering, Novo Nordisk A/S, Maalov, Denmark
| | - Steen Seier Poulsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Viby NE, Pedersen L, Lund TK, Kissow H, Backer V, Nexø E, Thim L, Poulsen SS. Trefoil factor peptides in serum and sputum from subjects with asthma and COPD. CLINICAL RESPIRATORY JOURNAL 2014; 9:322-9. [PMID: 24720774 DOI: 10.1111/crj.12146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 02/23/2014] [Accepted: 04/04/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Trefoil factor peptides (TFF) are secreted onto mucosal surfaces together with mucins and occur in high concentrations in pulmonary secretions from patients with chronic obstructive pulmonary disease (COPD). In the present study, we aimed to explore the concentrations of the peptides in serum and sputum in patients with COPD. MATERIALS AND METHODS Thirty-five individuals were included in the study, including 11 healthy individuals, 13 indivials with asthma and 11 individuals with COPD. TFF1, TFF2 and TFF3 were measured by enzyme-linked immunosorbent assay (ELISA) in sputum induced by hypertonic saline inhalation and in serum. Total protein content in sputum was also determined. RESULTS In the sputum samples from COPD patients, we observed an eightfold higher concentration of TFF1 and a fivefold higher concentration of TFF3 compared with controls. In the serum samples from COPD patients, we observed three-, three- and twofold higher concentrations of TFF1, TFF2 and TFF3 respectively compared with controls. CONCLUSIONS There is increased secretion of TFF peptides in the lungs of patients with COPD, as well as significant increases in serum levels. This suggests a role for TFF peptides in the pathogenesis of pulmonary diseases with mucus hypersecretion.
Collapse
Affiliation(s)
- Niels-Erik Viby
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiothoracic Surgery, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars Pedersen
- Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Thomas Kromann Lund
- Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke Backer
- Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Ebba Nexø
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Thim
- Department of Protein Engineering, Novo Nordisk A/S, Maalov, Denmark
| | - Steen Seier Poulsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Li P, Turner JH. Chronic rhinosinusitis without nasal polyps is associated with increased expression of trefoil factor family peptides. Int Forum Allergy Rhinol 2014; 4:571-6. [DOI: 10.1002/alr.21334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/08/2014] [Accepted: 03/15/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Ping Li
- Department of Otolaryngology-Head and Neck Surgery; Vanderbilt University School of Medicine; Nashville TN
| | - Justin H. Turner
- Department of Otolaryngology-Head and Neck Surgery; Vanderbilt University School of Medicine; Nashville TN
| |
Collapse
|
23
|
|
24
|
Lillehoj EP, Kato K, Lu W, Kim KC. Cellular and molecular biology of airway mucins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:139-202. [PMID: 23445810 PMCID: PMC5593132 DOI: 10.1016/b978-0-12-407697-6.00004-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Airway mucus constitutes a thin layer of airway surface liquid with component macromolecules that covers the luminal surface of the respiratory tract. The major function of mucus is to protect the lungs through mucociliary clearance of inhaled foreign particles and noxious chemicals. Mucus is comprised of water, ions, mucin glycoproteins, and a variety of other macromolecules, some of which possess anti-microbial, anti-protease, and anti-oxidant activities. Mucins comprise the major protein component of mucus and exist as secreted and cell-associated glycoproteins. Secreted, gel-forming mucins are mainly responsible for the viscoelastic property of mucus, which is crucial for effective mucociliary clearance. Cell-associated mucins shield the epithelial surface from pathogens through their extracellular domains and regulate intracellular signaling through their cytoplasmic regions. However, neither the exact structures of mucin glycoproteins, nor the manner through which their expression is regulated, are completely understood. This chapter reviews what is currently known about the cellular and molecular properties of airway mucins.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kosuke Kato
- Center for Inflammation, Translational and Clinical Lung Research and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Wenju Lu
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Kwang C. Kim
- Center for Inflammation, Translational and Clinical Lung Research and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
25
|
Roy MG, Rahmani M, Hernandez JR, Alexander SN, Ehre C, Ho SB, Evans CM. Mucin production during prenatal and postnatal murine lung development. Am J Respir Cell Mol Biol 2011; 44:755-60. [PMID: 21653907 DOI: 10.1165/rcmb.2010-0020oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mucus is a protective gel that lines respiratory tract surfaces. To identify potential roles for secreted gel--forming mucins in lung development, we isolated murine lungs on embryonic days (E) 12.5-18.5, and postnatal days (PN) days 5, 14, and 28. We measured the mucin gene expression by quantitative RT-PCR, and localization by histochemical and immunohistochemical labeling. Alcian blue/periodic acid--Schiff--positive cells are present from E15.5 through PN28. Muc5b transcripts were abundant at all time points from E14.5 to PN28. By contrast, transcript levels of Muc5ac and Muc2 were approximately 300 and 85,000 times lower, respectively. These data are supported by immunohistochemical studies demonstrating the production and localization of Muc5ac and Muc5b protein. This study indicates that mucin production is prominent in developing murine lungs and that Muc5b is an early, abundant, and persistent marker of bronchial airway secretory cells, thereby implicating it as an intrinsic component of homeostatic mucosal defense in the lungs.
Collapse
Affiliation(s)
- Michelle G Roy
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Tsao PN, Wei SC, Wu MF, Huang MT, Lin HY, Lee MC, Lin KMC, Wang IJ, Kaartinen V, Yang LT, Cardoso WV. Notch signaling prevents mucous metaplasia in mouse conducting airways during postnatal development. Development 2011; 138:3533-43. [PMID: 21791528 PMCID: PMC3148592 DOI: 10.1242/dev.063727] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2011] [Indexed: 01/03/2023]
Abstract
Goblet cell metaplasia and mucus overproduction contribute to the pathogenesis of chronic lung diseases, including asthma and chronic obstructive pulmonary disease (COPD). Notch signaling regulates cell fate decisions and is crucial in controlling goblet cell differentiation in the gut epithelium. Little is known, however, about how endogenous Notch signaling influences the goblet cell differentiation program that takes place in the postnatal lung. Using a combination of genetic and in vitro approaches here we provide evidence of a novel role for Notch in restricting goblet cell differentiation in the airway epithelium during the postnatal period. Conditional inactivation of the essential Notch pathway component Pofut1 (protein O-fucosyltransferase1) in Tgfb3-Cre-expressing mice resulted in an aberrant postnatal airway phenotype characterized by marked goblet cell metaplasia, decreased Clara cell number and increase in ciliated cells. The presence of the same phenotype in mice in which the Notch transcriptional effector Rbpjk was deleted indicated the involvement of the canonical Notch pathway. Lineage study in vivo suggested that goblet cells originated from a subpopulation of Clara cells largely present in proximal airways in which Notch was disrupted. The phenotype was confirmed by a panel of goblet cell markers, showed no changes in cell proliferation or altered expression of proinflammatory cytokines and was associated with significant downregulation of the bHLH transcriptional repressor Hes5. Luciferase reporter analysis suggested that Notch directly repressed MUC5AC transcription in lung epithelial cells. The data suggested that during postnatal life Notch is required to prevent Clara cells from differentiating into goblet cells.
Collapse
Affiliation(s)
- Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital, Taipei 100, Taiwan
- The Research Center of Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Ming-Fang Wu
- Animal Medical Center, College of Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Miao-Tzu Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Hsien-Yi Lin
- Institute of Cellular and Systems Medicine, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan
| | - Ming-Cheng Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Kurt Ming-Chao Lin
- Division of Medical Engineering, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Liang-Tung Yang
- Institute of Cellular and Systems Medicine, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan
| | | |
Collapse
|
27
|
Roy MG, Rahmani M, Hernandez JR, Alexander SN, Ehre C, Ho SB, Evans CM. Mucin Production during Prenatal and Postnatal Murine Lung Development. Am J Respir Cell Mol Biol 2011. [DOI: 10.1165/rcmb.2010-0020rc] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
28
|
Cui YH, Wang YY, Liu Z. Transdifferentiation of Clara cell 10-kDa protein secreting cells in experimental allergic rhinitis. Am J Rhinol Allergy 2011; 25:145-51. [PMID: 21294974 DOI: 10.2500/ajra.2011.25.3596] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The reasons for the down-regulated Clara cell 10-kDa protein (CC10) expression in allergic rhinitis (AR) are unclear and the airway remodeling in AR has received little attention. This study explores epithelium remodeling and the change of CC10 secreting cells in AR by using a murine model. METHODS AR murine models were established by ovalbumin sensitization and challenge. In some mice, dexamethasone was given before each challenge. Histological changes of nasal mucosa were examined by means of hematoxylin and eosin and periodic acid-Schiff staining. CC10 and trefoil factor family (TFF) 1 expression were evaluated by immunohistochemistry. RESULTS In AR mice, both in turbinate and in septal mucosa, total cell number and the number of basal cells did not change; however, the number of dome-shaped cells decreased and the number of ciliated and goblet cells increased in turbinate mucosa, and the number of ciliated cells decreased and the number of goblet cells increased in septal mucosa. In turbinate mucosa, the number of CC10(+) cells (mainly dome-shaped cells) decreased whereas the number of TFF1(+) cells (mainly ciliated cells) increased. In septal mucosa, the number of CC10(+) and TFF1(+) cells (mainly ciliated cells) decreased simultaneously. Intermediate phenotypic goblet cells could express CC10 and TFF1. CC10 and TFF1 could be localized in the same cells. Dexamethasone reversed the changes of epithelium significantly. CONCLUSION Allergen exposure leads to a possible transdifferentiation of CC10 secreting cells into TFF1 secreting cells and/or goblet cells in upper airways. Nasal turbinate and septal epithelium display different patterns of transdifferentiation.
Collapse
Affiliation(s)
- Yong-Hua Cui
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | | | | |
Collapse
|
29
|
Zhu L, Lee P, Yu D, Tao S, Chen Y. Cloning and characterization of human MUC19 gene. Am J Respir Cell Mol Biol 2010; 45:348-58. [PMID: 21075863 DOI: 10.1165/rcmb.2010-0312oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The most recently discovered gel-forming mucin, MUC19, is expressed in both salivary glands and tracheal submucosal glands. We previously cloned the 3'-end partial sequence (AY236870), and here report the complete sequencing of the entire MUC19 cDNA. One highly variable region (HVR) was discovered in the 5' end of MUC19. A total of 20 different splicing variants were detected in HVR, and 18 variants are able to translate into proteins along with the rest of the MUC19 sequence. The longest variant of MUC19 consists of 182 exons, with a transcript of approximately 25 kb. A central exon of approximately 12 kb contains highly repetitive sequences and has no intron interruption. The deduced MUC19 protein has the bona fide gel-forming mucin structure, VWD-VWD-VWD-"threonine/serine-rich repeats"-VWC-CT. An unusual structural feature of MUC19, which is lacking in other gel-forming mucins, is its long amino terminus upstream of the first VWD domain. The long amino terminus is mostly translated from the sequences in HVR, and contains serine-rich repetitive sequences. To validate the integrity of the MUC19 sequence, primers from both the 3' and 5' end were used to demonstrate a similar tissue expression pattern of MUC19 in trachea and salivary glands. In addition, antibodies were developed against either the amino (N) or carboxy (C) terminus of MUC19, and similar antibody staining patterns were observed in both salivary and tracheal submucosal glands. In conclusion, we have cloned and elucidated the entire MUC19 gene, which will facilitate understanding of the function and regulation of this important, yet understudied, mucin gene in airway diseases.
Collapse
Affiliation(s)
- Lingxiang Zhu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, 85721, USA
| | | | | | | | | |
Collapse
|
30
|
Greeley MA, Van Winkle LS, Edwards PC, Plopper CG. Airway trefoil factor expression during naphthalene injury and repair. Toxicol Sci 2009; 113:453-67. [PMID: 19880587 DOI: 10.1093/toxsci/kfp268] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
While the role of trefoil factors (TFF) in the maintenance of epithelial integrity in the gastrointestinal tract is well known, their involvement in wound healing in the conducting airway is less well understood. We defined the pattern of expression of TFF1, TFF2, and TFF3 in the airways of mice during repair of both severe (300 mg/kg) and moderate (200 mg/kg) naphthalene-induced Clara cell injury. Quantitative real-time PCR for tff messenger RNA expression and immunohistochemistry for protein expression were applied to airway samples obtained by microdissection of airway trees or to fixed lung tissue from mice at 6 and 24 h and 4 and 7 days after exposure to either naphthalene or an oil (vehicle) control. All three TFF were expressed in normal whole lung and airways. TFF2 was the most abundant and was enriched in airways. Injury of the airway epithelium by 300 mg/kg naphthalene caused a significant induction of tff1 gene expression at 24 h, 4 days, and 7 days. In contrast, tff2 was decreased in the high-dose group at 24 h and 4 days but returned to baseline levels by 7 days. tff3 gene expression was not significantly changed at any time point. Protein localization via immunohistochemistry did not directly correlate with the gene expression measurements. TFF1 and TFF2 expression was most intense in the degenerating Clara cells in the injury target zone at 6 and 24 h. Following the acute injury phase, TFF1 and TFF2 were localized to the luminal apices of repairing epithelial cells and to the adjacent mesenchyme in focal regions that correlated with bifurcations and the bronchoalveolar duct junction. The temporal pattern of increases in TFF1, TFF2, and TFF3 indicate a role in cell death as well as proliferation, migration, and differentiation phases of airway epithelial repair.
Collapse
Affiliation(s)
- Melanie A Greeley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
31
|
Curran DR, Cohn L. Advances in mucous cell metaplasia: a plug for mucus as a therapeutic focus in chronic airway disease. Am J Respir Cell Mol Biol 2009; 42:268-75. [PMID: 19520914 DOI: 10.1165/rcmb.2009-0151tr] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mucous cell metaplasia is induced in response to harmful insults and provides front-line protection to clear the airway of toxic substances and cellular debris. In chronic airway diseases mucous metaplasia persists and results in airway obstruction and contributes significantly to morbidity and mortality. Mucus hypersecretion involves increased expression of mucin genes, and increased mucin production and release. The past decade has seen significant advances in our understanding of the molecular mechanisms by which these events occur. Inflammation stimulates epidermal growth factor receptor activation and IL-13 to induce both Clara and ciliated cells to transition into goblet cells through the coordinated actions of FoxA2, TTF-1, SPDEF, and GABA(A)R. Ultimately, these steps lead to up-regulation of MUC5AC expression, and increased mucin in goblet cell granules that fuse to the plasma membrane through actions of MARCKS, SNAREs, and Munc proteins. Blockade of mucus in exacerbations of asthma and chronic obstructive pulmonary disease may affect morbidity. Development of new therapies to target mucus production and secretion are now possible given the advances in our understanding of molecular mechanisms of mucous metaplasia. We now have a greater incentive to focus on inhibition of mucus as a therapy for chronic airway diseases.
Collapse
Affiliation(s)
- David R Curran
- Section of Pulmonary and Critical Care, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
32
|
Ganss B, Hoffmann W. Calcium-induced conformational transition of trout ependymins monitored by tryptophan fluorescence. Open Biochem J 2009; 3:14-7. [PMID: 19401757 PMCID: PMC2669641 DOI: 10.2174/1874091x00903010014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 12/05/2008] [Accepted: 01/20/2009] [Indexed: 11/22/2022] Open
Abstract
Ependymins are secretory, calcium-binding sialoproteins which are the predominant constituents of the cerebrospinal fluid of many teleost fish. A bound form of these regeneration-responsive glycoproteins is associated with collagen fibrils of the extracellular matrix. Here, the tryptophan fluorescence of ependymins was monitored at various Ca(2+) concentrations. Two distinct states were identified with a relatively sharp transition at about 1 mM Ca(2+). In agreement with previous circular dichroism measurements, this strongly supports the hypothesis that a calcium-induced conformational change is important for the interaction of ependymins with components of the extracellular matrix. Such interactions with constituents of various basal laminae would also explain the important roles of piscine ependymins as well as invertebrate and mammalian ependymin-related proteins for cell adhesion processes and cell migration.
Collapse
Affiliation(s)
- Bernhard Ganss
- Max-Planck-Institute for Psychiatry, Department of Neurochemistry, D-82152 Martinsried, Germany
| | | |
Collapse
|
33
|
Kirkeby S, Jensen NEV, Mandel U, Poulsen SS. Asthma induction in mice leads to appearance of alpha2-3- and alpha2-6-linked sialic acid residues in respiratory goblet-like cells. Virchows Arch 2008; 453:283-90. [PMID: 18682981 DOI: 10.1007/s00428-008-0645-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/26/2008] [Accepted: 07/10/2008] [Indexed: 02/07/2023]
Abstract
Allergic asthmatic inflammation in mice was induced by sensitization with ovalbumin and lipopolysaccharide from Escherichia coli and visualized in the airways of asthmatic mice by spatial and temporal changes of carbohydrates containing sialic acid residues. Immunohistochemistry was used to demonstrate binding of lectins and antibodies that detect alpha2-3- and alpha2-6-linked sialic acid residues. After sensitization and challenge, the histology of the lung changed markedly, and goblet-like cells appeared, most likely caused by Clara cell metaplasia. Normal Clara cells showed no reaction after incubation with the sialic acid detecting agents, while the goblet-like cells expressed both alpha2-3- and alpha2-6-linked sialic acid residues in the asthmatic animals. The lectins but not the antibodies reacted with intestinal goblet cells. Instead, an antibody recognizing a disialoganglioside, stained large mononuclear cells in the submucosa, indicating a difference in sialylation between goblet cells in the intestine and goblet-like cells developed from Clara cells.
Collapse
Affiliation(s)
- Svend Kirkeby
- Dental School, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
34
|
Stellato C. Glucocorticoid actions on airway epithelial responses in immunity: functional outcomes and molecular targets. J Allergy Clin Immunol 2008; 120:1247-63; quiz 1264-5. [PMID: 18073120 DOI: 10.1016/j.jaci.2007.10.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/26/2007] [Accepted: 10/29/2007] [Indexed: 12/27/2022]
Abstract
Research on the biology of airway epithelium in the last decades has progressively uncovered the many roles of this cell type during the immune response. Far from the early view of the epithelial layer simply as a passive barrier, the airway epithelium is now considered a central player in mucosal immunity, providing innate mechanisms of first-line host defense as well as facilitating adaptive immune responses. Alterations of the epithelial phenotype are primarily involved in the pathogenesis of allergic airways disease, particularly in severe asthma. Appreciation of the epithelium as target of glucocorticoid therapy has also grown, because of studies defining the pathways and mediators affected by glucocorticoids, and studies illustrating the relevance of the control of the response from epithelium in the overall efficacy of topical and systemic therapy with glucocorticoids. Studies of the mechanism of action of glucocorticoids within the biology of the immune response of the epithelium have uncovered mechanisms of gene regulation involving both transcriptional and posttranscriptional events. The view of epithelium as therapeutic target therefore has plenty of room to evolve, as new knowledge on the role of epithelium in immunity is established and novel pathways mediating glucocorticoid regulation are elucidated.
Collapse
Affiliation(s)
- Cristiana Stellato
- Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|