1
|
Schiefermeier-Mach N, Polleux J, Heinrich L, Lechner L, Vorona O, Perkhofer S. Biological boundary conditions regulate the internalization of Aspergillus fumigatus conidia by alveolar cells. Front Cell Infect Microbiol 2025; 15:1515779. [PMID: 40066070 PMCID: PMC11891256 DOI: 10.3389/fcimb.2025.1515779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/05/2025] [Indexed: 05/13/2025] Open
Abstract
Introduction The lung environment is defined by unique biological boundary conditions, including complex alveolar geometry, extracellular matrix composition and mechanical forces generated during respiration. These factors were shown to regulate alveolar permeability, surfactant secretion, cell contractility and apoptosis, but their role in fungal infections remains unknown. Aspergillus fumigatus is a critical fungal pathogen that causes severe pulmonary infections in immunocompromised individuals. Our study addresses a knowledge gap by investigating how boundary conditions affect A. fumigatus conidia interactions with alveolar epithelial cells. Methods We applied micropatterned substrates to confine cells into defined shapes and densities, allowing precise control over geometric conditions and extracellular matrix composition. Using cell line stably expressing the phagolysosomal protein Lamp1-NeonGreen and multiplane fluorescent microscopy, we evaluated A. fumigatus conidia binding and internalization efficiency. Results We observed significantly faster and more efficient A. fumigatus conidia internalization in cells confined on micropatterns compared to previously reported studies using cell monolayers. Altering cell geometry, density and extracellular matrix composition strongly affected conidia binding and localization to Lamp1+ phagolysosomes. Cells on X-shaped or multicellular micropatterns showed higher internalization rates, particularly at the periphery, suggesting spatial heterogeneity in pathogen uptake. Additionally, changes in extracellular matrix composition influenced the intracellular trafficking of A. fumigatus conidia. Discussion Our findings emphasize the essential role that local mechanical and biochemical cues play in shaping the interactions between fungal pathogens and alveolar cells. Understanding how lung boundary conditions change in disease states will provide important insights into fungal infection outcomes.
Collapse
Affiliation(s)
- Natalia Schiefermeier-Mach
- Research and Innovation Unit, Health University of Applied Sciences Tyrol, FH
Gesundheit Tirol, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
2
|
Xia T, Pan Z, Wan H, Li Y, Mao G, Zhao J, Zhang F, Pan S. Mechanisms of mechanical stimulation in the development of respiratory system diseases. Am J Physiol Lung Cell Mol Physiol 2024; 327:L724-L739. [PMID: 39316681 DOI: 10.1152/ajplung.00122.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
During respiration, mechanical stress can initiate biological responses that impact the respiratory system. Mechanical stress plays a crucial role in the development of the respiratory system. However, pathological mechanical stress can impact the onset and progression of respiratory diseases by influencing the extracellular matrix and cell transduction processes. In this article, we explore the mechanisms by which mechanical forces communicate with and influence cells. We outline the basic knowledge of respiratory mechanics, elucidating the important role of mechanical stimulation in influencing respiratory system development and differentiation from a microscopic perspective. We also explore the potential mechanisms of mechanical transduction in the pathogenesis and development of respiratory diseases such as asthma, lung injury, pulmonary fibrosis, and lung cancer. Finally, we look forward to new research directions in cellular mechanotransduction, aiming to provide fresh insights for future therapeutic research on respiratory diseases.
Collapse
Affiliation(s)
- Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Haoxin Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongsen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guocai Mao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fangbiao Zhang
- Department of Cardiothoracic Surgery, Lishui Municipal Central Hospital, Lishui, People's Republic of China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
3
|
Wasnick R, Korfei M, Piskulak K, Henneke I, Wilhelm J, Mahavadi P, Dartsch RC, von der Beck D, Koch M, Shalashova I, Weiss A, Klymenko O, Askevold I, Fink L, Witt H, Hackstein H, El Agha E, Bellusci S, Klepetko W, Königshoff M, Eickelberg O, Schermuly RT, Braun T, Seeger W, Ruppert C, Guenther A. Notch1 Induces Defective Epithelial Surfactant Processing and Pulmonary Fibrosis. Am J Respir Crit Care Med 2023; 207:283-299. [PMID: 36047984 DOI: 10.1164/rccm.202105-1284oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rationale: Although type II alveolar epithelial cells (AEC2s) are chronically injured in idiopathic pulmonary fibrosis (IPF), they contribute to epithelial regeneration in IPF. Objectives: We hypothesized that Notch signaling may contribute to AEC2 proliferation, dedifferentiation characterized by loss of surfactant processing machinery, and lung fibrosis in IPF. Methods: We applied microarray analysis, kinome profiling, flow cytometry, immunofluorescence analysis, western blotting, quantitative PCR, and proliferation and surface activity analysis to study epithelial differentiation, proliferation, and matrix deposition in vitro (AEC2 lines, primary murine/human AEC2s), ex vivo (human IPF-derived precision-cut lung slices), and in vivo (bleomycin and pepstatin application, Notch1 [Notch receptor 1] intracellular domain overexpression). Measurements and Main Results: We document here extensive SP-B and -C (surfactant protein-B and -C) processing defects in IPF AEC2s, due to loss of Napsin A, resulting in increased intra-alveolar surface tension and alveolar collapse and induction of endoplasmic reticulum stress in AEC2s. In vivo pharmacological inhibition of Napsin A results in the development of AEC2 injury and overt lung fibrosis. We also demonstrate that Notch1 signaling is already activated early in IPF and determines AEC2 fate by inhibiting differentiation (reduced lamellar body compartment, reduced capacity to process hydrophobic SP) and by causing increased epithelial proliferation and development of lung fibrosis, putatively via altered JAK (Janus kinase)/Stat (signal transducer and activator of transcription) signaling in AEC2s. Conversely, inhibition of Notch signaling in IPF-derived precision-cut lung slices improved the surfactant processing capacity of AEC2s and reversed fibrosis. Conclusions: Notch1 is a central regulator of AEC2 fate in IPF. It induces alveolar epithelial proliferation and loss of Napsin A and of surfactant proprotein processing, and it contributes to fibroproliferation.
Collapse
Affiliation(s)
- Roxana Wasnick
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Martina Korfei
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Katarzyna Piskulak
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Ingrid Henneke
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany.,Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Jochen Wilhelm
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany.,Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Poornima Mahavadi
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany
| | - Ruth Charlotte Dartsch
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Daniel von der Beck
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Miriam Koch
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Lung Clinic, Evangelisches Krankenhaus Mittelhessen, 35398 Giessen, Germany
| | - Irina Shalashova
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Astrid Weiss
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Oleksiy Klymenko
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Ingolf Askevold
- Department of Surgery, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Ludger Fink
- Institut für Pathologie, Überregionale Gemeinschaftspraxis für Pathologie und Zytologie, 35578 Wetzlar, Germany
| | - Heiko Witt
- Pediatric Nutritional Medicine, Else-Kröner-Fresenius-Fresenius-Ceter for Nutritional Sciences, Technical University Munich, 85354 Freising, Germany
| | - Holger Hackstein
- Department of Clinical Immunology and Transfusion Medicine, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Elie El Agha
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany.,Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Saverio Bellusci
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany.,Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Walter Klepetko
- Department of Thoracic Surgery, Vienna General Hospital, 1090 Vienna, Austria
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, 81377 Munich, Germany.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Ralph Theo Schermuly
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany.,Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Thomas Braun
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany.,Institute for Lung Health (ILH), 35392 Giessen, Germany.,Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; and
| | - Werner Seeger
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany.,Institute for Lung Health (ILH), 35392 Giessen, Germany.,Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; and
| | - Clemens Ruppert
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany.,European IPF Registry/Biobank, 35392 Giessen, Germany
| | - Andreas Guenther
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany.,Institute for Lung Health (ILH), 35392 Giessen, Germany.,Lung Clinic, Evangelisches Krankenhaus Mittelhessen, 35398 Giessen, Germany.,European IPF Registry/Biobank, 35392 Giessen, Germany
| |
Collapse
|
4
|
Wang Y, Fang X, Yang Y, Chen L, Xiong W, Song L, Li B, Zhou T, Yu Y, Yang X, Shu H, Yuan S, Yao S, Shang Y. Death-Associated Protein Kinase 1 Promotes Alveolar Epithelial Cell Apoptosis and Ventilator-Induced Lung Injury Through P53 Pathway. Shock 2022; 57:140-150. [PMID: 34265832 DOI: 10.1097/shk.0000000000001831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Mechanical stretch-induced alveolar epithelial cell (AEC) apoptosis participates in the onset of ventilator-induced lung injury (VILI). In this study, we explored whether death-associated protein kinase 1 (DAPK1) mediated cyclic stretch (CS)-induced AEC apoptosis and VILI though P53 pathway. MATERIALS AND METHODS AEC apoptosis was induced by CS using the FX-5000T Flexercell Tension Plus system. C57BL/6 mouse received high tidal volume ventilation to build VILI model. DAPK1 inhibitor, P53 inhibitor, or DAPK1 plasmid was used to regulate the expression of DAPK1 and P53, respectively. Flow cytometery was performed to assay cell apoptosis and the changes of mitochondrial membrane potential (MMP); immunoblotting was adopted to analyze related protein expression. The binding of related proteins was detected by coimmunoprecipitation; AEC apoptosis in vivo was determined by immunohistochemistry assay. RESULTS CS promoted AEC apoptosis, increased DAPK1 and P53 expression, and induced the binding of DAPK1 and P53; inhibition of DAPK1 or P53 reduced CS-induced AEC apoptosis, suppressed the expression of Bax, increased Bcl-2 level, and stabilized MMP; AEC apoptosis and the level of P53 were both increased after overexpressing of DAPK1. Moreover, DAPK1 plasmid transfection also promoted the expression of Bax and the change of MMP, but decreased the level of Bcl-2. Inhibition of DAPK1 or P53 in vivo alleviated high tidal volume ventilation-induced AEC apoptosis and lung injury. CONCLUSIONS DAPK1 contributes to AEC apoptosis and the onset of VILI though P53 and its intrinsic pro-apoptotic pathway. Inhibition of DAPK1 or P53 alleviates high tidal volume ventilation-induced lung injury and AEC apoptosis.
Collapse
Affiliation(s)
- Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiangzhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiyi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xiong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Limin Song
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaobo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Xie H, Lu F, Liu W, Wang E, Wang L, Zhong M. Remimazolam alleviates neuropathic pain via regulating bradykinin receptor B1 and autophagy. J Pharm Pharmacol 2021; 73:1643-1651. [PMID: 34061162 DOI: 10.1093/jpp/rgab080] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Neuropathic pain (NP) represents a broad scope of various pathological ramifications of the nervous system. Remimazolam is a proved sedative in treating neuropathic pain. Considering the Bradykinin receptor's vital role and the potentials of Bradykinin receptor B1 (BDKRB1) in the neuropathic pain-signalling pathway, we nominated them as a primary target for remimazolam. METHODS In this study, rats were injected with complete freund's adjuvant (CFA) to construct NP models in vivo. BV2 microglia cells were treated with LPS to establish NP model in vitro. qRT-PCR, ELISA, western blot and immunofluorescence were applied to determine gene expression. KEY FINDINGS Our findings revealed that BDKRB1 was overexpressed in NP models in vivo, while R715 (an antagonist of BDKRB1) suppressed the levels of BDKRB1 and inhibited the hyperpathia induced by spinal nerve litigation surgery. Moreover, remimazolam inactivated BDKRB1 signalling via suppressing NF-κB translocation and decreased the release of pro-inflammatory cytokines. Additionally, remimazolam suppressed the translocation of NF-κB, and inhibited autophagic lysosome formation in vivo and in vitro. However, R838 (an agonist of BDKRB1) reversed the effects of remimazolam. CONCLUSIONS Remimazolam downregulated BDKRB1, inhibited BDKRB1/RAS/MEK signalling pathway and regulated the autophagic lysosome induction, exhibiting a better outcome in the NP.
Collapse
Affiliation(s)
- Haiyu Xie
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Zhanggong District, Ganzhou City, Jiangxi Province, China
| | - Feng Lu
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Zhanggong District, Ganzhou City, Jiangxi Province, China
| | - Weilian Liu
- Department of Anesthesiology, Xingguo People's Hospital, Xingguo County, Ganzhou City, Jiangxi Province, China
| | - Enfu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Zhanggong District, Ganzhou City, Jiangxi Province, China
| | - Lifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Zhanggong District, Ganzhou City, Jiangxi Province, China
| | - Maolin Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Zhanggong District, Ganzhou City, Jiangxi Province, China
| |
Collapse
|
6
|
Quan R, Liang W, Li H, Ning Q, Shang D. Silencing of miR-10b-5p alleviates the mechanical stretch-induced proliferation of HASMCs. Tissue Cell 2021; 74:101700. [PMID: 34871825 DOI: 10.1016/j.tice.2021.101700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) are important mediators to human airway smooth muscle cells (HASMCs) phenotype remodeling and airway diseases. MicroRNA-10b-5p (miR-10b-5p) has been extensively studied in different fields. This study set out to probe into the effect of miR-10b-5p in cyclic mechanical stretch-induced apoptosis in HASMCs. The results showed that after 15 % deformation, 0.5 s stretching and 0.5 s cyclic mechanical stretching relaxation (0.5 Hz) occurred to HASMCs, miR-10b-5p showed up-regulation without inducing significant apoptosis. Moreover, the mRNA and protein expressions of FLT1 were reduced. Then, dual-luciferase reporter assay verified that FLT1 was targeted by miR-10b-5p, and miR-10b-5p silencing increased FLT1 expression, leading to a prolonged arrest of stretch-treated HASMCs at the G1/S stage, and increased cell apoptosis compared with control group. Furthermore, the activity of Caspase-3 was reinforced, and the ratio of Bcl-2 to Bax was markedly reduced after miR-10b-5p silencing. The current study proved that expression levels of p-PI3K and p-Akt in stretch-treated HASMCs of the inhibition group were significantly inhibited in comparison to those of the controls. The effects of miR-10b-5p overexpression are opposite to that of inhibition of miR-10b-5p in stretched HASMCs. In conclusion, this study showed that miR-10b-5p silencing could weaken the hypertrophy of HASMCs. MiR-10b-5p negatively regulated FLT1 expression, but positively regulated the PI3K/Akt pathway in HASMCs. By referring to other previous studies, we concluded that miR-10b-5p might be a potent target in the treatment of airway diseases.
Collapse
Affiliation(s)
- Rongxi Quan
- Department of Intensive Care Unit, Affiliated Tumor Hospital of Xinjiang Medical University, China
| | - Wei Liang
- Department of Intensive Care Unit, Affiliated Tumor Hospital of Xinjiang Medical University, China
| | - Hong Li
- Department of Respiration, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Qian Ning
- Department of Respiration, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Dong Shang
- Department of Intensive Care Unit, Affiliated Tumor Hospital of Xinjiang Medical University, China; Department of Respiration, The First Affiliated Hospital of Xi'an Jiaotong University, China.
| |
Collapse
|
7
|
Meng X, Li Y, Li Q, Yang J, An M, Fu X, Zhang S, Chen J. Involvement of bradykinin and bradykinin B1 receptor in patients with endometriosis. Exp Ther Med 2021; 22:1240. [PMID: 34539836 PMCID: PMC8438668 DOI: 10.3892/etm.2021.10675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022] Open
Abstract
Endometriosis (EM), a benign aseptic inflammatory disease, is associated with the presence of endometrial foci. Pain, one of its typical symptoms, has been reported as a constant stressor, but the etiology and pathogenesis of EM-associated pain are unclear. In the present study, eutopic and ectopic endometrium samples from women with EM (n=50) and normal endometrium samples from control subjects (n=20) were collected. Serum levels of prostaglandin E2 (PGE2), prostaglandin F2α (PGF2α) and bradykinin (BK) were measured using commercial ELISA kits. The expression of the BKB1 receptor (BKB1R) protein was evaluated by immunohistochemical staining and western blot assay. The mRNA expression of BKB1R was measured by reverse transcription-quantitative PCR. The results revealed that there was a substantial increase in the protein and mRNA expression of BKB1R, as well as the release of PGE2, PGF2α and BK in the blood, in the EM group compared with that in the control group. Moreover, PGE2, PGF2α and BK levels were significantly correlated with each other, as well as with the pain intensity of EM. The increased expression levels of BKB1R protein and mRNA were positively correlated with the pain degree of EM. Thus, these data indicated that BK and BKB1R were involved in the pathological onset of EM-associated pain and that they may play an important role in EM-related pain by inducing PGE2 and PGF2α. The data indicate a potential new therapeutic target for EM-related pain.
Collapse
Affiliation(s)
- Xin Meng
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Ying Li
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Qingxue Li
- Department of Gynecology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Jian Yang
- Department of Rehabilitation, Special Care Hospital of Hebei, Shijiazhuang, Hebei 050051, P.R. China
| | - Mingli An
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Xinping Fu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Shuancheng Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Jingwei Chen
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| |
Collapse
|
8
|
Kolb P, Schundner A, Frick M, Gottschalk KE. In Vitro Measurements of Cellular Forces and their Importance in the Lung-From the Sub- to the Multicellular Scale. Life (Basel) 2021; 11:691. [PMID: 34357063 PMCID: PMC8307149 DOI: 10.3390/life11070691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Throughout life, the body is subjected to various mechanical forces on the organ, tissue, and cellular level. Mechanical stimuli are essential for organ development and function. One organ whose function depends on the tightly connected interplay between mechanical cell properties, biochemical signaling, and external forces is the lung. However, altered mechanical properties or excessive mechanical forces can also drive the onset and progression of severe pulmonary diseases. Characterizing the mechanical properties and forces that affect cell and tissue function is therefore necessary for understanding physiological and pathophysiological mechanisms. In recent years, multiple methods have been developed for cellular force measurements at multiple length scales, from subcellular forces to measuring the collective behavior of heterogeneous cellular networks. In this short review, we give a brief overview of the mechanical forces at play on the cellular level in the lung. We then focus on the technological aspects of measuring cellular forces at many length scales. We describe tools with a subcellular resolution and elaborate measurement techniques for collective multicellular units. Many of the technologies described are by no means restricted to lung research and have already been applied successfully to cells from various other tissues. However, integrating the knowledge gained from these multi-scale measurements in a unifying framework is still a major future challenge.
Collapse
Affiliation(s)
- Peter Kolb
- Institute of Experimental Physics, Ulm University, 89069 Ulm, Germany;
| | - Annika Schundner
- Institute of General Physiology, Ulm University, 89069 Ulm, Germany;
| | - Manfred Frick
- Institute of General Physiology, Ulm University, 89069 Ulm, Germany;
| | - Kay-E. Gottschalk
- Institute of Experimental Physics, Ulm University, 89069 Ulm, Germany;
| |
Collapse
|
9
|
Nossa R, Costa J, Cacopardo L, Ahluwalia A. Breathing in vitro: Designs and applications of engineered lung models. J Tissue Eng 2021; 12:20417314211008696. [PMID: 33996022 PMCID: PMC8107677 DOI: 10.1177/20417314211008696] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this review is to provide a systematic design guideline to users, particularly engineers interested in developing and deploying lung models, and biologists seeking to identify a suitable platform for conducting in vitro experiments involving pulmonary cells or tissues. We first discuss the state of the art on lung in vitro models, describing the most simplistic and traditional ones. Then, we analyze in further detail the more complex dynamic engineered systems that either provide mechanical cues, or allow for more predictive exposure studies, or in some cases even both. This is followed by a dedicated section on microchips of the lung. Lastly, we present a critical discussion of the different characteristics of each type of system and the criteria which may help researchers select the most appropriate technology according to their specific requirements. Readers are encouraged to refer to the tables accompanying the different sections where comprehensive and quantitative information on the operating parameters and performance of the different systems reported in the literature is provided.
Collapse
|
10
|
Park J, Kim WJ, Kim W, Park C, Choi CY, Cho JH, Kim SJ, Cheong H. Antihypertensive Effects of Dehydroabietic and 4- Epi- Trans-Communic Acid Isolated from Pinus densiflora. J Med Food 2021; 24:50-58. [PMID: 33449861 DOI: 10.1089/jmf.2020.4797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Korean red pine needle (RPN) exhibits various biological and pharmacological activities. Among the various compounds of RPN, we isolated dehydroabietic and 4-epi-trans-communic acid. At first, we confirmed that two compounds inhibited angiotensin converting enzyme (ACE) and induced p-Akt in human umbilical vein endothelial cells (HUVEC). RPN extract powder significantly reduced systolic blood pressure in spontaneous hypertensive rats (SHRs) through the reduced expression of ACE and angiotensin type I receptors in the lungs of SHRs. The Lineweaver-Burk plots suggested that the two compounds were noncompetitive inhibitors of ACE. Using docking analysis, we found that two compounds showed the best returned pose at ACE active sites, and formed hydrogen and hydrophobic bonds with ACE residues. These results demonstrate that RPNs may be a source of compounds effective for preventing hypertension and may be useful in the development of antihypertensive drugs.
Collapse
Affiliation(s)
- Jaeyoung Park
- Department of Biomedical Science, Chosun University, Gwangju, Korea
| | - Won-Jin Kim
- Department of Biomedical Science, Chosun University, Gwangju, Korea
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, Korea
| | - Woong Kim
- Department of Biomedical Science, Chosun University, Gwangju, Korea
| | | | - Chul Yung Choi
- Division of Food Science, Jeollanamdo Institute of Natural Resources Research, Jangheung-gun, Korea
| | | | - Seok-Jun Kim
- Department of Biomedical Science, Chosun University, Gwangju, Korea
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, Korea
| | - Hyeonsook Cheong
- Department of Biomedical Science, Chosun University, Gwangju, Korea
| |
Collapse
|
11
|
Death-associated Protein Kinase 1 Mediates Ventilator-induced Lung Injury in Mice by Promoting Alveolar Epithelial Cell Apoptosis. Anesthesiology 2020; 133:905-918. [PMID: 32930731 DOI: 10.1097/aln.0000000000003464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Alveolar epithelial cell apoptosis is implicated in the onset of ventilator-induced lung injury. Death-associated protein kinase 1 (DAPK1) is associated with cell apoptosis. The hypothesis was that DAPK1 participates in ventilator-induced lung injury through promoting alveolar epithelial cell apoptosis. METHODS Apoptosis of mouse alveolar epithelial cell was induced by cyclic stretch. DAPK1 expression was altered (knockdown or overexpressed) in vitro by using a small interfering RNA or a plasmid, respectively. C57/BL6 male mice (n = 6) received high tidal volume ventilation to establish a lung injury model. Adeno-associated virus transfection of short hairpin RNA and DAPK1 inhibitor repressed DAPK1 expression and activation in lungs, respectively. The primary outcomes were alveolar epithelial cell apoptosis and lung injury. RESULTS Compared with the control group, the 24-h cyclic stretch group showed significantly higher alveolar epithelial cell apoptotic percentage (45 ± 4% fold vs. 6 ± 1% fold; P < 0.0001) and relative DAPK1 expression, and this group also demonstrated a reduced apoptotic percentage after DAPK1 knockdown (27 ± 5% fold vs. 53 ± 8% fold; P < 0.0001). A promoted apoptotic percentage in DAPK1 overexpression was observed without stretching (49 ± 6% fold vs. 14 ± 3% fold; P < 0.0001). Alterations in B-cell lymphoma 2 and B-cell lymphoma 2-associated X are associated with DAPK1 expression. The mice subjected to high tidal volume had higher DAPK1 expression and alveolar epithelial cell apoptotic percentage in lungs compared with the low tidal volume group (43 ± 6% fold vs. 4 ± 2% fold; P < 0.0001). Inhibition of DAPK1 through adeno-associated virus infection or DAPK1 inhibitor treatment appeared to be protective against lung injury with reduced lung injury score, resolved pulmonary inflammation, and repressed alveolar epithelial cell apoptotic percentage (47 ± 4% fold and 48 ± 6% fold; 35 ± 5% fold and 34 ± 4% fold; P < 0.0001, respectively). CONCLUSIONS DAPK1 promotes the onset of ventilator-induced lung injury by triggering alveolar epithelial cell apoptosis through intrinsic apoptosis pathway in mice. EDITOR’S PERSPECTIVE
Collapse
|
12
|
Mohammed El Tabaa M, Mohammed El Tabaa M. Targeting Neprilysin (NEP) pathways: A potential new hope to defeat COVID-19 ghost. Biochem Pharmacol 2020; 178:114057. [PMID: 32470547 PMCID: PMC7250789 DOI: 10.1016/j.bcp.2020.114057] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 is an ongoing viral pandemic disease that is caused by SARS-CoV2, inducing severe pneumonia in humans. However, several classes of repurposed drugs have been recommended, no specific vaccines or effective therapeutic interventions for COVID-19 are developed till now. Viral dependence on ACE-2, as entry receptors, drove the researchers into RAS impact on COVID-19 pathogenesis. Several evidences have pointed at Neprilysin (NEP) as one of pulmonary RAS components. Considering the protective effect of NEP against pulmonary inflammatory reactions and fibrosis, it is suggested to direct the future efforts towards its potential role in COVID-19 pathophysiology. Thus, the review aimed to shed light on the potential beneficial effects of NEP pathways as a novel target for COVID-19 therapy by summarizing its possible molecular mechanisms. Additional experimental and clinical studies explaining more the relationships between NEP and COVID-19 will greatly benefit in designing the future treatment approaches.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute, University of Sadat City, Egypt.
| | | |
Collapse
|
13
|
Chau AL, Rosas J, Degen GD, Månsson LK, Chen J, Valois E, Pitenis AA. Aqueous surface gels as low friction interfaces to mitigate implant-associated inflammation. J Mater Chem B 2020; 8:6782-6791. [PMID: 32364211 DOI: 10.1039/d0tb00582g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aqueous surface gels are fragile yet resilient biopolymer-based networks capable of sustaining extremely low friction coefficients despite tribologically-challenging environments. These superficial networks are ubiquitous in natural sliding interfaces and protect mechanosensitive cells from excessive contact pressures and frictional shear stresses from cell-fluid, cell-cell, or cell-solid interactions. Understanding these complex lubrication mechanisms may aid in the development of materials-based strategies for increasing biocompatibility in medical devices and implants. Equally as important is characterizing the interplay between soft and passive yet mobile implant materials and cellular reactions in response to direct contact and frictional shear stresses. Physically interrogating living biological systems without rupturing them in the process is nontrivial. To this end, custom biotribometers have been designed to precisely modulate contact pressures against living human telomerase-immortalized corneal epithelial (hTCEpi) cell layers using soft polyacrylamide membrane probes. Reverse-transcription quantitative polymerase chain-reaction (RT-qPCR) indicated that increased duration and, to a much greater extent, the magnitude of frictional shear stress lead to increased production of pro-inflammatory (IL-1β, IL-6, MMP9) and pro-apoptotic (DDIT3, FAS) genes, which in clinical studies are linked to pathological pain. The hierarchical structure often found in biological systems has also been investigated through the fabrication of high-water content (polyacrylamide) hydrogels through free-radical polymerization inhibition. Nanoindentation experiments and friction coefficient measurements indicate that these "gradient surface gels" reduce contact pressures and frictional shear stresses at the surface of the material while still maintaining stiffness within the bulk. Reducing frictional shear stresses through informed materials and surface design may concomitantly increase lubricity and quiet the immune response, and thus provide bio-inspired routes to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Allison L Chau
- Materials Department University of California, Santa Barbara, CA 93106, USA.
| | - Jonah Rosas
- Biomolecular Science and Engineering Department University of California, Santa Barbara, CA 93106, USA
| | - George D Degen
- Department of Chemical Engineering, University of California, Santa Barbara Santa Barbara, CA 93106, USA
| | - Lisa K Månsson
- Department of Physics Chalmers, University of Technology, 412 58 Gothenburg, Sweden
| | - Jonathan Chen
- Department of Chemical Engineering, University of California, Santa Barbara Santa Barbara, CA 93106, USA
| | - Eric Valois
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Angela A Pitenis
- Materials Department University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
14
|
Enhancement of FAK alleviates ventilator-induced alveolar epithelial cell injury. Sci Rep 2020; 10:419. [PMID: 31942012 PMCID: PMC6962166 DOI: 10.1038/s41598-019-57350-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/16/2019] [Indexed: 01/19/2023] Open
Abstract
Mechanical ventilation induces lung injury by damaging alveolar epithelial cells (AECs), but the pathogenesis remains unknown. Focal adhesion kinase (FAK) is a cytoplasmic protein tyrosine kinase that is involved in cell growth and intracellular signal transduction pathways. This study explored the potential role of FAK in AECs during lung injury induced by mechanical ventilation. High-volume mechanical ventilation (HMV) was used to create a mouse lung injury model, which was validated by analysis of lung weight, bronchoalveolar lavage fluid and histological investigation. The expression of FAK and Akt in AECs were evaluated. In addition, recombinant FAK was administered to mice via the tail vein, and then the extent of lung injury was assessed. Mouse AECs were cultured in vitro, and FAK expression in cells under stretch was investigated. The effects of FAK on cell proliferation, migration and apoptosis were investigated. The results showed that HMV decreased FAK expression in AECs of mice, while FAK supplementation attenuated lung injury, reduced protein levels/cell counts in the bronchoalveolar lavage fluid and decreased histological lung injury and oedema. The protective effect of FAK promoted AEC proliferation and migration and prevented cells from undergoing apoptosis, which restored the integrity of the alveoli through Akt pathway. Therefore, the decrease in FAK expression by HMV is essential for injury to epithelial cells and the disruption of alveolar integrity. FAK supplementation can reduce AEC injury associated with HMV.
Collapse
|
15
|
Adhesion G protein-coupled receptors: opportunities for drug discovery. Nat Rev Drug Discov 2019; 18:869-884. [PMID: 31462748 DOI: 10.1038/s41573-019-0039-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/24/2022]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) - one of the five main families in the GPCR superfamily - have several atypical characteristics, including large, multi-domain N termini and a highly conserved region that can be autoproteolytically cleaved. Although GPCRs overall have well-established pharmacological tractability, currently no therapies that target any of the 33 members of the aGPCR family are either approved or in clinical trials. However, human genetics and preclinical research have strengthened the links between aGPCRs and disease in recent years. This, together with a greater understanding of their functional complexity, has led to growing interest in aGPCRs as drug targets. A framework for prioritizing aGPCR targets and supporting approaches to develop aGPCR modulators could therefore be valuable in harnessing the untapped therapeutic potential of this family. With this in mind, here we discuss the unique opportunities and challenges for drug discovery in modulating aGPCR functions, including target identification, target validation, assay development and safety considerations, using ADGRG1 as an illustrative example.
Collapse
|
16
|
Wang J, Ji E, Lin C, Wang L, Dai L, Gao W. Effects of bradykinin on the survival of multiterritory perforator flaps in rats. World J Surg Oncol 2019; 17:44. [PMID: 30813916 PMCID: PMC6394035 DOI: 10.1186/s12957-019-1570-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/27/2019] [Indexed: 02/08/2023] Open
Abstract
Background Bradykinin, a vasoactive peptide, has many biological functions. For example, it accelerates angiogenesis. Thus, we studied the effects of bradykinin on the survival of perforator flaps. Methods Averagely, 50 male Sprague–Dawley rats were divided into control and bradykinin groups and underwent procedures to the multiterritory perforator flap. Areas of flap survival were tested 7 days later. Flap perfusion was evaluated by laser Doppler imaging. We assessed the extent of autophagy by determining LC3-II/I, Beclin 1, and p62. Flap angiogenesis was assessed by immunohistochemistry and H&E staining. We measured the level of vascular endothelial growth factor (VEGF) protein using western blot. We assessed oxidative stress by measuring the activity of superoxide dismutase (SOD) and malondialdehyde (MDA) levels. The apoptotic index was also evaluated by western blot, and we determined nitric oxide (NO) production using an NO assay kit. Results The bradykinin group exhibited significantly larger areas of flap survival, higher blood supply, and more neovascularization. The bradykinin group also had higher SOD activity, higher VEGF expression and NO content, and reduced MDA compared to the control group. Rats treated with bradykinin also had lower levels of apoptosis and autophagy relative to the control group. Conclusion Our results suggest that bradykinin promotes the survival of multiterritory perforator flaps by increasing angiogenesis, promoting the release of NO, suppressing apoptosis, reducing oxidative stress, and inhibiting autophagy.
Collapse
Affiliation(s)
- Jieke Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Encheng Ji
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Chen Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Long Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Li Dai
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Weiyang Gao
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China.
| |
Collapse
|
17
|
Khan M, Huang T, Lin CY, Wu J, Fan BM, Bian ZX. Exploiting cancer's phenotypic guise against itself: targeting ectopically expressed peptide G-protein coupled receptors for lung cancer therapy. Oncotarget 2017; 8:104615-104637. [PMID: 29262666 PMCID: PMC5732832 DOI: 10.18632/oncotarget.18403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023] Open
Abstract
Lung cancer, claiming millions of lives annually, has the highest mortality rate worldwide. This advocates the development of novel cancer therapies that are highly toxic for cancer cells but negligibly toxic for healthy cells. One of the effective treatments is targeting overexpressed surface receptors of cancer cells with receptor-specific drugs. The receptors-in-focus in the current review are the G-protein coupled receptors (GPCRs), which are often overexpressed in various types of tumors. The peptide subfamily of GPCRs is the pivot of the current article owing to the high affinity and specificity to and of their cognate peptide ligands, and the proven efficacy of peptide-based therapeutics. The article summarizes various ectopically expressed peptide GPCRs in lung cancer, namely, Cholecystokinin-B/Gastrin receptor, the Bombesin receptor family, Bradykinin B1 and B2 receptors, Arginine vasopressin receptors 1a, 1b and 2, and the Somatostatin receptor type 2. The autocrine growth and pro-proliferative pathways they mediate, and the distinct tumor-inhibitory effects of somatostatin receptors are then discussed. The next section covers how these pathways may be influenced or 'corrected' through therapeutics (involving agonists and antagonists) targeting the overexpressed peptide GPCRs. The review proceeds on to Nano-scaled delivery platforms, which enclose chemotherapeutic agents and are decorated with peptide ligands on their external surface, as an effective means of targeting cancer cells. We conclude that targeting these overexpressed peptide GPCRs is potentially evolving as a highly promising form of lung cancer therapy.
Collapse
Affiliation(s)
- Mahjabin Khan
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
| | - Tao Huang
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
| | - Cheng-Yuan Lin
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, P.R. China
| | - Jiang Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Bao-Min Fan
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, P.R. China
| | - Zhao-Xiang Bian
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
| |
Collapse
|
18
|
Boudreault F, Pinilla-Vera M, Englert JA, Kho AT, Isabelle C, Arciniegas AJ, Barragan-Bradford D, Quintana C, Amador-Munoz D, Guan J, Choi KM, Sholl L, Hurwitz S, Tschumperlin DJ, Baron RM. Zinc deficiency primes the lung for ventilator-induced injury. JCI Insight 2017; 2:86507. [PMID: 28570269 DOI: 10.1172/jci.insight.86507] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/25/2017] [Indexed: 01/13/2023] Open
Abstract
Mechanical ventilation is necessary to support patients with acute lung injury, but also exacerbates injury through mechanical stress-activated signaling pathways. We show that stretch applied to cultured human cells, and to mouse lungs in vivo, induces robust expression of metallothionein, a potent antioxidant and cytoprotective molecule critical for cellular zinc homeostasis. Furthermore, genetic deficiency of murine metallothionein genes exacerbated lung injury caused by high tidal volume mechanical ventilation, identifying an adaptive role for these genes in limiting lung injury. Stretch induction of metallothionein required zinc and the zinc-binding transcription factor MTF1. We further show that mouse dietary zinc deficiency potentiates ventilator-induced lung injury, and that plasma zinc levels are significantly reduced in human patients who go on to develop acute respiratory distress syndrome (ARDS) compared with healthy and non-ARDS intensive care unit (ICU) controls, as well as with other ICU patients without ARDS. Taken together, our findings identify a potentially novel adaptive response of the lung to stretch and a critical role for zinc in defining the lung's tolerance for mechanical ventilation. These results demonstrate that failure of stretch-adaptive responses play an important role in exacerbating mechanical ventilator-induced lung injury, and identify zinc and metallothionein as targets for lung-protective interventions in patients requiring mechanical ventilation.
Collapse
Affiliation(s)
- Francis Boudreault
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Miguel Pinilla-Vera
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua A Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - Alvin T Kho
- Boston Children's Hospital Informatics Program, Boston, Massachusetts, USA
| | - Colleen Isabelle
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Antonio J Arciniegas
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diana Barragan-Bradford
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carolina Quintana
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diana Amador-Munoz
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jiazhen Guan
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Shelley Hurwitz
- Center for Clinical Investigation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Rebecca M Baron
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Kuhn H, Nieuwenhuijsen H, Karthe B, Wirtz H. Stretch-induced apoptosis in rat alveolar epithelial cells is mediated by the intrinsic mitochondrial pathway. Exp Lung Res 2017; 43:49-56. [DOI: 10.1080/01902148.2017.1287228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hartmut Kuhn
- Department of Respiratory Medicine, University of Leipzig, Leipzig, Germany
| | | | - Bianca Karthe
- Department of Respiratory Medicine, University of Leipzig, Leipzig, Germany
| | - Hubert Wirtz
- Department of Respiratory Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
20
|
Scheiermann J, Klinman DM. Suppressive oligonucleotides inhibit inflammation in a murine model of mechanical ventilator induced lung injury. J Thorac Dis 2016; 8:2434-2443. [PMID: 27746995 DOI: 10.21037/jtd.2016.08.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Mechanical ventilation (MV) is commonly used to improve blood oxygenation in critically ill patients and for general anesthesia. Yet the cyclic mechanical stress induced at even moderate ventilation volume settings [tidal volume (Vt) <10 mL/kg] can injure the lungs and induce an inflammatory response. This work explores the effect of treatment with suppressive oligonucleotides (Sup ODN) in a mouse model of ventilator-induced lung injury (VILI). METHODS Balb/cJ mice were mechanically ventilated for 4 h using clinically relevant Vt and a positive end-expiratory pressure of 3 cmH2O under 2-3% isoflurane anesthesia. Lung tissue and bronchoalveolar lavage fluid were collected to assess lung inflammation and lung function was monitored using a FlexiVent®. RESULTS MV induced significant pulmonary inflammation characterized by the influx and activation of CD11c+/F4/80+ macrophages and CD11b+/Ly6G+ polymorphonuclear cells into the lung and bronchoalveolar lavage fluid. The concurrent administration of Sup ODN attenuated pulmonary inflammation as evidenced by reduced cellular influx and production of inflammatory cytokines. Oligonucleotide treatment did not worsen lung function as measured by static compliance or resistance. CONCLUSIONS Treatment with Sup ODN reduces the lung injury induced by MV in mice.
Collapse
Affiliation(s)
- Julia Scheiermann
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Dennis M Klinman
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
21
|
β3-adrenoceptor impacts apoptosis in cultured cardiomyocytes via activation of PI3K/Akt and p38MAPK. ACTA ACUST UNITED AC 2016; 36:1-7. [DOI: 10.1007/s11596-016-1533-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 11/29/2015] [Indexed: 12/25/2022]
|
22
|
Zuo H, Zeng L, Guo G, Zeng H. High-frequency oscillatory ventilation combined with partial liquid ventilation in experimental lung injury: effects on lung cell apoptosis. Wien Klin Wochenschr 2015; 127:606-11. [PMID: 25835591 PMCID: PMC4536271 DOI: 10.1007/s00508-015-0727-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 01/19/2015] [Indexed: 12/21/2022]
Abstract
Objective To investigate the effects of high-frequency oscillatory ventilation (HFOV) and partial liquid ventilation (PLV) on apoptosis of lung tissue induced by steam inhalation injury in rabbit. Design A prospective, randomized, controlled, multiple-group study. Setting An animal research laboratory centre in a university burns centre. Subjects New Zealand rabbits (n = 32; 2.25 ± 0.25 kg) of either sex. Interventions The animals were ventilated by HFOV with a mean airway pressure of 10 cm H2O, a frequency of 10 Hz, an amplitude of 20 cm H2O, an inspiratory:expiratory ratio of 1:1, and an FiO2 of 1.0. After the induction of acute lung injury (ALI) by steam inhalation, the animals were randomly divided into four groups: CMV, HFOV, CMV + PLV, HFOV + PLV group. Then they were ventilated for 4 h by CMV, HFOV, CMV + PLV and HFOV + PLV, respectively. After the experimental period, cell apoptosis and apoptosis indexes in the lung tissue were assessed with TUNEL FragELTM (Fragment End Labeling). Results Lung tissue apoptosis indexes in HFOV group and HFOV + PLV group were lower than that of in CMV group and CMV + PLV group; between-group comparison had significant difference (P < 0.01). HFOV + PLV group showed lowest apoptosis indexes. Conclusion HFOV combined with PLV can suppress lung tissue apoptosis induced by steam inhalation.
Collapse
Affiliation(s)
- Huimin Zuo
- Department of Respiration, The Second Affiliated Hospital of Nanchang University, 330006, Nanchang, China,
| | | | | | | |
Collapse
|
23
|
Kuhn H, Petzold K, Hammerschmidt S, Wirtz H. Interaction of cyclic mechanical stretch and toll-like receptor 4-mediated innate immunity in rat alveolar type II cells. Respirology 2014; 19:67-73. [PMID: 23796194 DOI: 10.1111/resp.12149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/14/2013] [Accepted: 05/30/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVE In cases of infection-induced acute lung injury, mechanical ventilation might be necessary to maintain oxygenation. Although low tidal volume ventilation is applied, alveolar over-distension may occur and result in ventilator-induced lung injury. In this study, we investigate (i) the influence of lipopolysaccharide (LPS) stimulation on high-amplitude stretching; and (ii) the effect of stretching on LPS-mediated immune response in isolated rat alveolar type II cells. METHODS Type II cells were incubated with LPS and stretched for 24 h on elastic membranes. Initially we examined apoptosis and lactic acid dehydrogenase release in LPS-treated stretched cells. Furthermore we determined toll-like receptor (TLR) 4 expression, TLR4 signalling by analysis of nuclear factor κB (NF-κB) activation and the secretion of inflammatory cytokines (monocyte chemoattractant protein-1, macrophage inflammatory protein-2, interleukin-1 beta, tumour necrosis factor alpha). RESULTS Our results show that LPS increases apoptosis and cytotoxicity in high amplitude stretched cells. Stretching and LPS activate NF-κB. The LPS influence is the prevailing one while no synergistic effects were observed by additional stretching. LPS stimulates an increased secretion of the inflammatory mediators only. Stretching had no influence on cytokines secretion. CONCLUSIONS We conclude that activation of TLR4 mediated immunity intensifies cell damage caused by stretching whereas in return stretching had no influence on TLR4 mediated innate immunity.
Collapse
Affiliation(s)
- Hartmut Kuhn
- Department of Respiratory Medicine, University of Leipzig, Leipzig, Germany
| | | | | | | |
Collapse
|
24
|
Gamerdinger K, Wernet F, Smudde E, Schneider M, Guttmann J, Schumann S. Mechanical load and mechanical integrity of lung cells - experimental mechanostimulation of epithelial cell- and fibroblast-monolayers. J Mech Behav Biomed Mater 2014; 40:201-209. [PMID: 25241284 DOI: 10.1016/j.jmbbm.2014.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/10/2014] [Accepted: 08/11/2014] [Indexed: 11/26/2022]
Abstract
Experimental mechanostimulation of soft biologic tissue is widely used to investigate cellular responses to mechanical stress or strain. Reactions on mechanostimulation are investigated in terms of morphological changes, inflammatory responses and apoptosis/necrosis induction on a cellular level. In this context, the analysis of the mechanical characteristics of cell-layers might allow to indicate patho-physiological changes in the cell-cell contacts. Recently, we described a device for experimental mechanostimulation that allows simultaneous measurement of the mechanical characteristics of cell-monolayers. Here, we investigated how cultivated lung epithelial cell- and fibroblast-monolayers behave mechanically under different amplitudes of biaxial distension. The cell monolayers were sinusoidally deflected to 5%, 10% or 20% surface gain and their mechanical properties during mechanostimulation were analyzed. With increasing stimulation amplitudes more pronounced reductions of cell junctions were observed. These findings were accompanied by a substantial loss of monolayer rigidity. Pulmonary fibroblast monolayers were initially stiffer but were stronger effected by the mechanostimulation compared to epithelial cell-monolayers. We conclude that, according to their biomechanical function within the pulmonary tissue, epithelial cells and fibroblasts differ with respect to their mechanical characteristics and tolerance of mechanical load.
Collapse
Affiliation(s)
- Katharina Gamerdinger
- Department of Anesthesiology and Intensive Care Medicine, Division of Experimental Anesthesiology, University Medical Center Freiburg, Hugstetter Straße 55, D-79106 Freiburg, Germany.
| | - Florian Wernet
- Department of Anesthesiology and Intensive Care Medicine, Division of Experimental Anesthesiology, University Medical Center Freiburg, Hugstetter Straße 55, D-79106 Freiburg, Germany
| | - Eva Smudde
- Department of Anesthesiology and Intensive Care Medicine, Division of Experimental Anesthesiology, University Medical Center Freiburg, Hugstetter Straße 55, D-79106 Freiburg, Germany
| | - Matthias Schneider
- Department of Anesthesiology and Intensive Care Medicine, Division of Experimental Anesthesiology, University Medical Center Freiburg, Hugstetter Straße 55, D-79106 Freiburg, Germany
| | - Josef Guttmann
- Department of Anesthesiology and Intensive Care Medicine, Division of Experimental Anesthesiology, University Medical Center Freiburg, Hugstetter Straße 55, D-79106 Freiburg, Germany
| | - Stefan Schumann
- Department of Anesthesiology and Intensive Care Medicine, Division of Experimental Anesthesiology, University Medical Center Freiburg, Hugstetter Straße 55, D-79106 Freiburg, Germany
| |
Collapse
|
25
|
Gulino-Debrac D. Mechanotransduction at the basis of endothelial barrier function. Tissue Barriers 2014; 1:e24180. [PMID: 24665386 PMCID: PMC3879236 DOI: 10.4161/tisb.24180] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/01/2013] [Accepted: 03/02/2013] [Indexed: 01/03/2023] Open
Abstract
Destabilization of cell-cell contacts involved in the maintenance of endothelial barrier function can lead to increased endothelial permeability. This increase in endothelial permeability results in an anarchical movement of fluid, solutes and cells outside the vasculature and into the surrounding tissues, thereby contributing to various diseases such as stroke or pulmonary edema. Thus, a better understanding of the molecular mechanisms regulating endothelial cell junction integrity is required for developing new therapies for these diseases. In this review, we describe the mechanotransduction mechanism at the basis of adherens junction strengthening at endothelial cell-cell contacts. More particularly, we report on the emerging role of α-catenin and EPLIN that act as a mechanotransmitter of myosin-IIgenerated traction forces. The interplay between α-catenin, EPLIN and the myosin-II machinery initiates the junctional recruitment of vinculin and α-actinin leading to a drastic remodeling of the actin cytoskeleton and to cortical actin ring reshaping. The pathways initiated by tyrosine phosphorylation of VE-cadherin at the basis of endothelial cell-cell junction remodeling is also reported, as it may be interrelated to α-catenin/ EPLIN-mediated mechanotransduction mechanisms. We also describe the junctional mechanosensory complex composed of PECAM-1, VE-cadherin and VEGFR2 that is able to transmit signaling pathway under the onset of shear stress. This mechanosensing mechanism, involved in the earliest events promoting atherogenesis, is required for endothelial cell alignment along flow direction.
Collapse
Affiliation(s)
- Danielle Gulino-Debrac
- Biology of Cancer and Infection Laboratory; U INSERM 1036, iRTSV; Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA); Université Joseph Fourier; Grenoble, France
| |
Collapse
|
26
|
Hirsch J, Chalkley RJ, Bentley T, Burlingame AL, Frank JA. Double impact of cigarette smoke and mechanical ventilation on the alveolar epithelial type II cell. Crit Care 2014; 18:R50. [PMID: 24666941 PMCID: PMC4056080 DOI: 10.1186/cc13795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 02/28/2014] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Ventilator-induced lung injury (VILI) impacts clinical outcomes in acute respiratory distress syndrome (ARDS), which is characterized by neutrophil-mediated inflammation and loss of alveolar barrier function. Recent epidemiological studies suggest that smoking may be a risk factor for the development of ARDS. Because alveolar type II cells are central to maintaining the alveolar epithelial barrier during oxidative stress, mediated in part by neutrophilic inflammation and mechanical ventilation, we hypothesized that exposure to cigarette smoke and mechanical strain have interactive effects leading to the activation of and damage to alveolar type II cells. METHODS To determine if cigarette smoke increases susceptibility to VILI in vivo, a clinically relevant rat model was established. Rats were exposed to three research cigarettes per day for two weeks. After this period, some rats were mechanically ventilated for 4 hours. Bronchoalveolar lavage (BAL) and differential cell count was done and alveolar type II cells were isolated. Proteomic analysis was performed on the isolated alveolar type II cells to discover alterations in cellular pathways at the protein level that might contribute to injury. Effects on levels of proteins in pathways associated with innate immunity, oxidative stress and apoptosis were evaluated in alveolar type II cell lysates by enzyme-linked immunosorbent assay. Statistical comparisons were performed by t-tests, and the results were corrected for multiple comparisons using the false discovery rate. RESULTS Tobacco smoke exposure increased airspace neutrophil influx in response to mechanical ventilation. The combined exposure to cigarette smoke and mechanical ventilation significantly increased BAL neutrophil count and protein content. Neutrophils were significantly higher after smoke exposure and ventilation than after ventilation alone. DNA fragments were significantly elevated in alveolar type II cells. Smoke exposure did not significantly alter other protein-level markers of cell activation, including Toll-like receptor 4; caspases 3, 8 and 9; and heat shock protein 70. CONCLUSIONS Cigarette smoke exposure may impact ventilator-associated alveolar epithelial injury by augmenting neutrophil influx. We found that cigarette smoke had less effect on other pathways previously associated with VILI, including innate immunity, oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Jan Hirsch
- Anesthesia and Perioperative Care, University of California, San Francisco VA Medical Center, San Francisco, CA, USA
- Anesthesia Service, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Robert J Chalkley
- Anesthesia and Perioperative Care, University of California, San Francisco VA Medical Center, San Francisco, CA, USA
- Anesthesia Service, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Trevor Bentley
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, Genentech Hall, N472A, MC 2240, 600 16th Street, San Francisco, CA 94158-2517, USA
- Department of Medicine, University of California, San Francisco, and San Francisco VA Medical Center, San Francisco, CA, USA
- Pulmonary Division, Medicine Service, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Alma L Burlingame
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, Genentech Hall, N472A, MC 2240, 600 16th Street, San Francisco, CA 94158-2517, USA
- Department of Medicine, University of California, San Francisco, and San Francisco VA Medical Center, San Francisco, CA, USA
- Pulmonary Division, Medicine Service, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | - James A Frank
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, Genentech Hall, N472A, MC 2240, 600 16th Street, San Francisco, CA 94158-2517, USA
- Department of Medicine, University of California, San Francisco, and San Francisco VA Medical Center, San Francisco, CA, USA
- Pulmonary Division, Medicine Service, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| |
Collapse
|
27
|
Bi J, Tong L, Zhu X, Yang D, Bai C, Song Y, She J. Keratinocyte growth factor-2 intratracheal instillation significantly attenuates ventilator-induced lung injury in rats. J Cell Mol Med 2014; 18:1226-35. [PMID: 24650242 PMCID: PMC4508161 DOI: 10.1111/jcmm.12269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/28/2014] [Indexed: 11/29/2022] Open
Abstract
Preservation or restoration of normal alveolar epithelial barrier function is crucial for pulmonary oedema resolution. Keratinocyte growth factor-2 (KGF-2), a potent epithelial cell mitogen, may have a role in preventing ventilator-induced lung injury (VILI), which occurs frequently in mechanically ventilated patients. The aim of the study was to test the role of KGF-2 in VILI in rats. Forty healthy adult male Sprague-Dawley rats were randomly allocated into four groups, where rats in Groups HVZP (high-volume zero positive end-expiratory pressure) and HVZP+KGF-2 were given intratracheally equal PBS and 5 mg/kg KGF-2 72 hrs before 4 hrs HVZP ventilation (20 ml/kg), respectively, while PBS and KGF-2 were administered in the same manner in Groups Control and KGF-2, which underwent tracheotomy only with spontaneous breathing. Inflammatory cytokines (tumour necrosis factor-α, macrophage inflammatory protein 2), neutrophil and total protein levels in bronchoalveolar lavage fluid and surfactant protein mRNA expression in lung tissue were detected; the number of alveolar type II cells, lung water content and lung morphology were also evaluated. The results indicate that pre-treatment with KGF-2 showed dramatic improvement in lung oedema and inflammation compared with HVZP alone, together with increased surfactant protein mRNA and alveolar type II cells. Our results suggest that KGF-2 might be considered a promising prevention for human VILI or other acute lung injury diseases.
Collapse
Affiliation(s)
- Jing Bi
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Mechanical ventilation (MV) is, by definition, the application of external forces to the lungs. Depending on their magnitude, these forces can cause a continuum of pathophysiological alterations ranging from the stimulation of inflammation to the disruption of cell-cell contacts and cell membranes. These side effects of MV are particularly relevant for patients with inhomogeneously injured lungs such as in acute lung injury (ALI). These patients require supraphysiological ventilation pressures to guarantee even the most modest gas exchange. In this situation, ventilation causes additional strain by overdistension of the yet non-injured region, and additional stress that forms because of the interdependence between intact and atelectatic areas. Cells are equipped with elaborate mechanotransduction machineries that respond to strain and stress by the activation of inflammation and repair mechanisms. Inflammation is the fundamental response of the host to external assaults, be they of mechanical or of microbial origin and can, if excessive, injure the parenchymal tissue leading to ALI. Here, we will discuss the forces generated by MV and how they may injure the lungs mechanically and through inflammation. We will give an overview of the mechanotransduction and how it leads to inflammation and review studies demonstrating that ventilator-induced lung injury can be prevented by blocking pathways of mechanotransduction or inflammation.
Collapse
Affiliation(s)
- Ulrike Uhlig
- Department of Pharmacology & Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
29
|
Dipaolo BC, Davidovich N, Kazanietz MG, Margulies SS. Rac1 pathway mediates stretch response in pulmonary alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2013; 305:L141-53. [PMID: 23686855 DOI: 10.1152/ajplung.00298.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alveolar epithelial cells (AECs) maintain the pulmonary blood-gas barrier integrity with gasketlike intercellular tight junctions (TJ) that are anchored internally to the actin cytoskeleton. We have previously shown that AEC monolayers stretched cyclically and equibiaxially undergo rapid magnitude- and frequency-dependent actin cytoskeletal remodeling to form perijunctional actin rings (PJARs). In this work, we show that even 10 min of stretch induced increases in the phosphorylation of Akt and LIM kinase (LIMK) and decreases in cofilin phosphorylation, suggesting that the Rac1/Akt pathway is involved in these stretch-mediated changes. We confirmed that Rac1 inhibitors wortmannin or EHT-1864 decrease stretch-stimulated Akt and LIMK phosphorylation and that Rac1 agonists PIP3 or PDGF increase phosphorylation of these proteins in unstretched cells. We also confirmed that Rac1 pathway inhibition during stretch modulated stretch-induced changes in occludin content and monolayer permeability, actin remodeling and PJAR formation, and cell death. As further validation, overexpression of Rac GTPase-activating protein β2-chimerin also preserved monolayer barrier properties in stretched monolayers. In summary, our data suggest that constitutive activity of Rac1, which is necessary for stretch-induced activation of the Rac1 downstream proteins, mediates stretch-induced increases in permeability and PJAR formation.
Collapse
Affiliation(s)
- Brian C Dipaolo
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
30
|
Suresh Babu S, Wojtowicz A, Freichel M, Birnbaumer L, Hecker M, Cattaruzza M. Mechanism of stretch-induced activation of the mechanotransducer zyxin in vascular cells. Sci Signal 2012; 5:ra91. [PMID: 23233529 DOI: 10.1126/scisignal.2003173] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vascular cells respond to supraphysiological amounts of stretch with a characteristic phenotypic change that results in dysfunctional remodeling of the affected arteries. Although the pathophysiological consequences of stretch-induced signaling are well characterized, the mechanism of mechanotransduction is unclear. We focused on the mechanotransducer zyxin, which translocates to the nucleus to drive gene expression in response to stretch. In cultured human endothelial cells and perfused femoral arteries isolated from wild-type and several knockout mouse strains, we characterized a multistep signaling pathway whereby stretch led to a transient receptor potential channel 3-mediated release of the endothelial vasoconstrictor peptide endothelin-1 (ET-1). ET-1, through autocrine activation of its B-type receptor, elicited the release of pro-atrial natriuretic peptide (ANP), which caused the autocrine activation of the ANP receptor guanylyl cyclase A (GC-A). Activation of GC-A, in turn, led to protein kinase G-mediated phosphorylation of zyxin at serine 142, thereby triggering the translocation of zyxin to the nucleus, where it was required for stretch-induced gene expression. Thus, we have identified a stretch-induced signaling pathway in vascular cells that leads to the activation of zyxin, a cytoskeletal protein specifically involved in transducing mechanical stimuli.
Collapse
Affiliation(s)
- Sahana Suresh Babu
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Waters CM, Roan E, Navajas D. Mechanobiology in lung epithelial cells: measurements, perturbations, and responses. Compr Physiol 2012; 2:1-29. [PMID: 23728969 PMCID: PMC4457445 DOI: 10.1002/cphy.c100090] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis.
Collapse
|
32
|
Roan E, Waters CM. What do we know about mechanical strain in lung alveoli? Am J Physiol Lung Cell Mol Physiol 2011; 301:L625-35. [PMID: 21873445 PMCID: PMC3213982 DOI: 10.1152/ajplung.00105.2011] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 08/23/2011] [Indexed: 12/25/2022] Open
Abstract
The pulmonary alveolus, terminal gas-exchange unit of the lung, is composed of alveolar epithelial and endothelial cells separated by a thin basement membrane and interstitial space. These cells participate in the maintenance of a delicate system regulated not only by biological factors but also by the mechanical environment of the lung, which undergoes dynamic deformation during breathing. Clinical and animal studies as well as cell culture studies point toward a strong influence of mechanical forces on lung cells and tissues including effects on growth and repair, surfactant release, injury, and inflammation. However, despite substantial advances in our understanding of lung mechanics over the last half century, there are still many unanswered questions regarding the micromechanics of the alveolus and how it deforms during lung inflation. Therefore, the aims of this review are to draw a multidisciplinary account of the mechanics of the alveolus on the basis of its structure, biology, and chemistry and to compare estimates of alveolar deformation from previous studies.
Collapse
Affiliation(s)
- Esra Roan
- Departments of Biomedical Engineering and Mechanical Engineering, University of Memphis, Memphis, Tennessee 38163-0001, USA
| | | |
Collapse
|
33
|
Koh SWM. Corneal endothelial autocrine trophic factor VIP in a mechanism-based strategy to enhance human donor cornea preservation for transplantation. Exp Eye Res 2011; 95:48-53. [PMID: 22036689 DOI: 10.1016/j.exer.2011.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 10/03/2011] [Accepted: 10/14/2011] [Indexed: 12/13/2022]
Abstract
Vasoactive intestinal peptide (VIP) and ciliary neurotrophic factor (CNTF) are identified as autocrines of human corneal endothelial (CE) cells working in concert to maintain the differentiated state and promote the survival of the corneal endothelium. From VIP gene knockdown study, endogenous VIP is shown to maintain the level of the differentiation marker, the adhesion molecule N-cadherin, CE cell size, shape, and retention, in situ in the human donor corneoscleral explants. Exogenous VIP protects the corneal endothelium against the killing effect of oxidative stress, in part by upholding ATP levels in CE cells dying of oxidative stress-induced injury, allowing them to die of an apoptotic death instead of an acute necrotic one. The switch from the acute necrosis to the programmed cell death (apoptosis) may have allowed the injured CE cell to be rescued by the VIP-upregulated pathways, including those of Bcl-2 and N-cadherin, and resulted in long-term CE cell survival. The endogenous VIP in CE cells is upregulated by CNTF, which is released by CE cells surviving the oxidative stress. The CNTF receptor (CNTFRα) is expressed in CE cells in human donor corneoscleral explant and gradually becomes lost during corneal storage. VIP treatment (10(-8) M, 37 °C, 30 min) prior to storage of freshly dissected human donor corneoscleral explants increases their CE cell CNTFRα level and responsiveness to CNTF in upregulating the gap junctional protein connexin-43 expression. VIP treatment of both fresh and preserved corneoscleral explants reduces CE damage in the corneoscleral explants and in the corneal buttons trephined from them. CE cell loss is a critical risk factor in corneal graft failure at any time in the life of the graft, which can be as late as 5-10 years after an initially successful transplant. A new procedure, Descemet's stripping automated endothelial keratoplasty (DSAEK), which is superior to the traditional full thickness transplantation in many aspects, nevertheless subjects the corneal endothelium to extensive mechanical forces, resulting in even more pronounced CE cell loss than the traditional technique. Whereas it is known that cells transduce mechanical stress through N-cadherin, stimulation of the N-cadherin pathway increases the anti-apoptotic protein Bcl-2 expression. Since N-cadherin and Bcl-2 in the corneal endothelium are both upregulated by VIP, we aim to strengthen the CE sheet by VIP treatments of the corneoscleral explants for full thickness traditional corneal transplantation and pre-cut corneas for DSAEK.
Collapse
Affiliation(s)
- Shay-Whey Margaret Koh
- Department of Ophthalmology & Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
34
|
Chan DD, Van Dyke WS, Bahls M, Connell SD, Critser P, Kelleher JE, Kramer MA, Pearce SM, Sharma S, Neu CP. Mechanostasis in apoptosis and medicine. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:517-24. [PMID: 21846479 DOI: 10.1016/j.pbiomolbio.2011.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
Abstract
Mechanostasis describes a complex and dynamic process where cells maintain equilibrium in response to mechanical forces. Normal physiological loading modes and magnitudes contribute to cell proliferation, tissue growth, differentiation and development. However, cell responses to abnormal forces include compensatory apoptotic mechanisms that may contribute to the development of tissue disease and pathological conditions. Mechanotransduction mechanisms tightly regulate the cell response through discrete signaling pathways. Here, we provide an overview of links between pro- and anti-apoptotic signaling and mechanotransduction signaling pathways, and identify potential clinical applications for treatments of disease by exploiting mechanically-linked apoptotic pathways.
Collapse
Affiliation(s)
- D D Chan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Crosby LM, Luellen C, Zhang Z, Tague LL, Sinclair SE, Waters CM. Balance of life and death in alveolar epithelial type II cells: proliferation, apoptosis, and the effects of cyclic stretch on wound healing. Am J Physiol Lung Cell Mol Physiol 2011; 301:L536-46. [PMID: 21724858 DOI: 10.1152/ajplung.00371.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
After acute lung injury, repair of the alveolar epithelium occurs on a substrate undergoing cyclic mechanical deformation. While previous studies showed that mechanical stretch increased alveolar epithelial cell necrosis and apoptosis, the impact of cell death during repair was not determined. We examined epithelial repair during cyclic stretch (CS) in a scratch-wound model of primary rat alveolar type II (ATII) cells and found that CS altered the balance between proliferation and cell death. We measured cell migration, size, and density; intercellular gap formation; cell number, proliferation, and apoptosis; cytoskeletal organization; and focal adhesions in response to scratch wounding followed by CS for up to 24 h. Under static conditions, wounds were closed by 24 h, but repair was inhibited by CS. Wounding stimulated cell motility and proliferation, actin and vinculin redistribution, and focal adhesion formation at the wound edge, while CS impeded cell spreading, initiated apoptosis, stimulated cytoskeletal reorganization, and attenuated focal adhesion formation. CS also caused significant intercellular gap formation compared with static cells. Our results suggest that CS alters several mechanisms of epithelial repair and that an imbalance occurs between cell death and proliferation that must be overcome to restore the epithelial barrier.
Collapse
Affiliation(s)
- Lynn M Crosby
- Department of Physiology, University of Tennessee Health Science Center, Memphis, USA
| | | | | | | | | | | |
Collapse
|
36
|
Liu XY, Chen XF, Ren YH, Zhan QY, Wang C, Yang C. Alveolar type II cells escape stress failure caused by tonic stretch through transient focal adhesion disassembly. Int J Biol Sci 2011; 7:588-99. [PMID: 21614151 PMCID: PMC3101527 DOI: 10.7150/ijbs.7.588] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 05/07/2011] [Indexed: 01/11/2023] Open
Abstract
Mechanical ventilation-induced excessive stretch of alveoli is reported to induce cellular stress failure and subsequent lung injury, and is therefore an injurious factor to the lung. Avoiding cellular stress failure is crucial to ventilator-induced lung injury (VILI) treatment. In the present study, primary rat alveolar type II (ATII) cells were isolated to evaluate their viability and the mechanism of their survival under tonic stretch. By the annexin V/ PI staining and flow cytometry assay, we demonstrated that tonic stretch-induced cell death is an immediate injury of mechanical stress. In addition, immunofluorescence and immunoblots assay showed that the cells experienced an expansion-contraction-reexpansion process, accompanied by partial focal adhesion (FA) disassembly during contraction. Manipulation of integrin adherent affinity by altering bivalent cation levels in the culture medium and applying an integrin neutralizing antibody showed that facilitated adhesion affinity promoted cell death under tonic stretch, while lower level of adhesion protected the cells from stretch-induced stress failure. Finally, a simplified numerical model was established to reveal that adequate disassembly of FAs reduced the forces transmitting throughout the cell. Taken together, these results indicate that ATII cells escape stress failure caused by tonic stretch via active cell morphological remodeling, during which cells transiently disassemble FAs to unload mechanical forces.
Collapse
Affiliation(s)
- Xiao-Yang Liu
- Beijing Chao-Yang Hospital, Capital Medical University, China
| | | | | | | | | | | |
Collapse
|
37
|
Kwak SJ, Paeng J, Kim DH, Lee SH, Nam BY, Kang HY, Li JJ, Jung DS, Han SH, Ryu DR, Park JT, Chang TI, Yoo TH, Han DS, Kang SW. Local kallikrein–kinin system is involved in podocyte apoptosis under diabetic conditions. Apoptosis 2011; 16:478-90. [DOI: 10.1007/s10495-011-0585-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Merrien J, Gras D, Robert P, Chanez P. [Mechanotransduction and the bronchoalveolar epithelium]. Rev Mal Respir 2010; 27:1164-74. [PMID: 21163395 DOI: 10.1016/j.rmr.2010.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 06/08/2010] [Indexed: 11/25/2022]
Abstract
The bronchoalveolar epithelium is submitted to numerous mechanical strains. These strains induce a specific cellular activity at the tissue level. This type of activation has been studied in respiratory medicine, mainly in the context of mechanical ventilation and asthma. The phenomenon of mechanotransduction is linked to various epithelial cellular activities such as epithelium repair, extracellular matrix remodelling, inflammatory mediator release and mucociliary regulation. In this review, the main studies related to bronchoalveolar epithelial mechanotransduction are reported to bring a new perspective on this little known biological phenomenon. A better understanding of the physiological and pathological aspects will potentially offer new treatment approaches for bronchial diseases.
Collapse
Affiliation(s)
- J Merrien
- Département des Maladies Respiratoires, AP-HM, Université de la Méditerranée, 270 Boulevard de Sainte-Marguerite, 13009 Marseille, France.
| | | | | | | |
Collapse
|
39
|
Kuhn H, Krüger S, Hammerschmidt S, Wirtz H. High concentrations of vascular endothelial growth factor reduce stretch-induced apoptosis of alveolar type II cells. Respirology 2010; 15:343-8. [PMID: 20199645 DOI: 10.1111/j.1440-1843.2009.01701.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED Vascular endothelial growth factor (VEGF) has protective as well as injurious effects in ARDS/acute lung injury. The influence of VEGF was investigated in a model of stretch-induced apoptosis. High-amplitude mechanical stretch induced the secretion of VEGF. High VEGF concentrations may prevent stretch-induced apoptosis by restoring stretch-impaired phospatidylinositol-3 kinase signalling. BACKGROUND AND OBJECTIVE Vascular endothelial growth factor (VEGF) is strongly expressed in the alveolar epithelium. VEGF has been shown to exhibit protective as well as injurious effects in ARDS/acute lung injury. We therefore investigated the influence of VEGF in a model of stretch-induced apoptosis. METHODS Isolated rat alveolar type II (ATII) cells were subjected to high-amplitude cyclic mechanical stretch (40 per minute, 30% change in surface area) for 24 h. VEGF gene expression was investigated by real-time reverse transcription-PCR. Concentrations of VEGF in culture supernatants of stretched cells were determined by ELISA. Apoptosis of cells following stretching was assessed by flow cytometry. RESULTS Vascular endothelial growth factor gene expression increased during the first 4 h of stretching and then declined to a similar level to that of static control cells. VEGF concentrations in cell supernatants increased in response to mechanical stretch, as compared with those in supernatants of static control cells. Incubation of ATII cells with higher concentrations of VEGF (50 ng/mL) during stretching inhibited apoptosis, presumably by restoring stretch-impaired phosphatidylinositol-3 kinase signalling. However, blocking free VEGF in the supernatant with an anti-VEGF antibody did not influence stretch-induced apoptosis. CONCLUSIONS These findings suggest that high-amplitude mechanical stretch induced secretion of VEGF, which in high concentrations, may prevent stretch-induced apoptosis. In this model, however, the protective influence of VEGF was not essential for survival of ATII cells subjected to high-amplitude mechanical stretch.
Collapse
Affiliation(s)
- Hartmut Kuhn
- Department of Respiratory Medicine, University of Leipzig, Leipzig, Germany.
| | | | | | | |
Collapse
|
40
|
Effect of bradykinin on bradykinin-B2 receptor in rat aortic vascular smooth muscle cells and the involved signal transduction pathways. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11684-010-0003-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Crosby LM, Waters CM. Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol 2010; 298:L715-31. [PMID: 20363851 DOI: 10.1152/ajplung.00361.2009] [Citation(s) in RCA: 523] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The recovery of an intact epithelium following lung injury is critical for restoration of lung homeostasis. The initial processes following injury include an acute inflammatory response, recruitment of immune cells, and epithelial cell spreading and migration upon an autologously secreted provisional matrix. Injury causes the release of factors that contribute to repair mechanisms including members of the epidermal growth factor and fibroblast growth factor families (TGF-alpha, KGF, HGF), chemokines (MCP-1), interleukins (IL-1beta, IL-2, IL-4, IL-13), and prostaglandins (PGE(2)), for example. These factors coordinate processes involving integrins, matrix materials (fibronectin, collagen, laminin), matrix metalloproteinases (MMP-1, MMP-7, MMP-9), focal adhesions, and cytoskeletal structures to promote cell spreading and migration. Several key signaling pathways are important in regulating these processes, including sonic hedgehog, Rho GTPases, MAP kinase pathways, STAT3, and Wnt. Changes in mechanical forces may also affect these pathways. Both localized and distal progenitor stem cells are recruited into the injured area, and proliferation and phenotypic differentiation of these cells leads to recovery of epithelial function. Persistent injury may contribute to the pathology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. For example, dysregulated repair processes involving TGF-beta and epithelial-mesenchymal transition may lead to fibrosis. This review focuses on the processes of epithelial restitution, the localization and role of epithelial progenitor stem cells, the initiating factors involved in repair, and the signaling pathways involved in these processes.
Collapse
Affiliation(s)
- Lynn M Crosby
- Departments of 1Physiology, University of Tennessee Health Science Center, Memphis, TN 38163-0001, USA
| | | |
Collapse
|
42
|
Desai LP, White SR, Waters CM. Cyclic mechanical stretch decreases cell migration by inhibiting phosphatidylinositol 3-kinase- and focal adhesion kinase-mediated JNK1 activation. J Biol Chem 2010; 285:4511-9. [PMID: 20018857 PMCID: PMC2836056 DOI: 10.1074/jbc.m109.084335] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 11/30/2009] [Indexed: 01/11/2023] Open
Abstract
Epithelial cell migration during wound healing requires coordinated signaling pathways that direct polarization of the leading and trailing ends of the cells, cytoskeletal organization, and remodeling of focal adhesions. These inherently mechanical processes are disrupted by cyclic stretch (CS), but the specific signaling molecules involved in this disruption are not well understood. In this study, we demonstrate that inhibition of phosphatidylinositol 3-kinase (PI3K) or expression of a dominant-negative form of PI3K caused inhibition of airway epithelial cell wound closure. CS caused a sustained decrease in activation of PI3K and inhibited wound healing. Expression of constitutively active PI3K stimulated translocation of Tiam1 to the membrane, increased Rac1 activity, and increased wound healing of airway epithelial cells. Increased Rac1 activity resulted in increased phosphorylation of JNK1. PI3K activation was not regulated by association with focal adhesion kinase. Restoration of efficient cell migration during CS required coexpression of constitutively active PI3K, focal adhesion kinase, and JIP3.
Collapse
Affiliation(s)
| | - Steven R. White
- the Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois 60637
| | - Christopher M. Waters
- From the Departments of Physiology
- Medicine, and
- Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| |
Collapse
|
43
|
Mokres LM, Parai K, Hilgendorff A, Ertsey R, Alvira CM, Rabinovitch M, Bland RD. Prolonged mechanical ventilation with air induces apoptosis and causes failure of alveolar septation and angiogenesis in lungs of newborn mice. Am J Physiol Lung Cell Mol Physiol 2009; 298:L23-35. [PMID: 19854954 DOI: 10.1152/ajplung.00251.2009] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Defective lung septation and angiogenesis, quintessential features of neonatal chronic lung disease (CLD), typically result from lengthy exposure of developing lungs to mechanical ventilation (MV) and hyperoxia. Previous studies showed fewer alveoli and microvessels, with reduced VEGF and increased transforming growth factor-beta (TGFbeta) signaling, and excess, scattered elastin in lungs of premature infants and lambs with CLD vs. normal controls. MV of newborn mice with 40% O(2) for 24 h yielded similar lung structural abnormalities linked to impaired VEGF signaling, dysregulated elastin production, and increased apoptosis. These studies could not determine the relative importance of cyclic stretch vs. hyperoxia in causing these lung growth abnormalities. We therefore studied the impact of MV for 24 h with air on alveolar septation (quantitative lung histology), angiogenesis [CD31 quantitative-immunohistochemistry (IHC), immunoblots], apoptosis [TdT-mediated dUTP nick end labeling (TUNEL), active caspase-3 assays], VEGF signaling [VEGF-A, VEGF receptor 1 (VEGF-R1), VEGF-R2 immunoblots], TGFbeta activation [phosphorylated Smad2 (pSmad2) quantitative-IHC], and elastin production (tropoelastin immunoblots, quantitative image analysis of Hart's stained sections) in lungs of 6-day-old mice. Compared with unventilated controls, MV caused a 3-fold increase in alveolar area, approximately 50% reduction in alveolar number and endothelial surface area, >5-fold increase in apoptosis, >50% decrease in lung VEGF-R2 protein, 4-fold increase of pSmad2 protein, and >50% increase in lung elastin, which was distributed throughout alveolar walls rather than at septal tips. This study is the first to show that prolonged MV of developing lungs, without associated hyperoxia, can inhibit alveolar septation and angiogenesis and increase apoptosis and lung elastin, findings that could reflect stretch-induced changes in VEGF and TGFbeta signaling, as reported in CLD.
Collapse
Affiliation(s)
- Lucia M Mokres
- Stanford Univ. School of Medicine, CCSR Bldg., Rm. 1225, 269 Campus Dr., Stanford, CA 94305-5162, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Lung function is inextricably linked to mechanics. On short timescales every breath generates dynamic cycles of cell and matrix stretch, along with convection of fluids in the airways and vasculature. Perturbations such airway smooth muscle shortening or surfactant dysfunction rapidly alter respiratory mechanics, with profound influence on lung function. On longer timescales, lung development, maturation, and remodeling all strongly depend on cues from the mechanical environment. Thus mechanics has long played a central role in our developing understanding of lung biology and respiratory physiology. This concise review focuses on progress over the past 5 years in elucidating the molecular origins of lung mechanical behavior, and the cellular signaling events triggered by mechanical perturbations that contribute to lung development, homeostasis, and injury. Special emphasis is placed on the tools and approaches opening new avenues for investigation of lung behavior at integrative cellular and molecular scales. We conclude with a brief summary of selected opportunities and challenges that lie ahead for the lung mechanobiology research community.
Collapse
|
45
|
Raaz U, Kuhn H, Wirtz H, Hammerschmidt S. Rapamycin reduces high-amplitude, mechanical stretch-induced apoptosis in pulmonary microvascular endothelial cells. Microvasc Res 2009; 77:297-303. [DOI: 10.1016/j.mvr.2009.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 12/20/2008] [Accepted: 01/30/2009] [Indexed: 12/19/2022]
|
46
|
Abstract
Cells sense their physical surroundings through mechanotransduction - that is, by translating mechanical forces and deformations into biochemical signals such as changes in intracellular calcium concentration or by activating diverse signalling pathways. In turn, these signals can adjust cellular and extracellular structure. This mechanosensitive feedback modulates cellular functions as diverse as migration, proliferation, differentiation and apoptosis, and is crucial for organ development and homeostasis. Consequently, defects in mechanotransduction - often caused by mutations or misregulation of proteins that disturb cellular or extracellular mechanics - are implicated in the development of various diseases, ranging from muscular dystrophies and cardiomyopathies to cancer progression and metastasis.
Collapse
Affiliation(s)
- Diana E Jaalouk
- Brigham and Women's Hospital, Harvard Medical School, Department of Medicine, Cardiovascular Division, 65 Landsdowne Street, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
47
|
Abstract
Dramatic changes in cell composition and function occur in the mammary gland during a pregnancy-lactation-involution cycle. We investigated the transcriptional changes associated with these biological events by using microarray analysis and identified the critical genes involved by using genetically modified mice. Two surprising findings arose from these studies. First, the microarray data showed that postlactational regression was associated with an acute phase inflammatory response, in addition to cell death. Conditional deletion of signal transducer and activator of transcription (Stat)3 or the nuclear factor-kappaB regulatory kinase inhibitor of kappa B kinase beta resulted in a failure of cell death induction during involution, an indication that these signaling pathways are essential mediators of the involution process. Both Stat3 and nuclear factor-kappaB have been shown to regulate acute phase gene expression in addition to apoptosis regulators. Four distinct transcriptional profiles are present in the first 4 d of involution, whereas there are 3 in lactation. At the peak of lactation (i.e., d 10 in mouse), more than 400 genes reach their maximum expression before declining dramatically in the first 12 h of involution. A reciprocal pattern was observed for more than 500 genes that were specifically upregulated within the first 12 h of forced involution. We are now investigating the role of a subset of these genes in involution. We also uncovered a role for genes normally associated with immune cell signaling in the differentiation of luminal mammary epithelial cells during pregnancy. Genetic deletion of the transcription factor Stat6 resulted in delayed development during pregnancy, and this phenotype was recapitulated in mammary tissue from IL-4 and IL-13 doubly deficient mice. Furthermore, we showed that mammary epithelial cells secrete T-cell regulatory cytokines. T-helper type 1 cytokines, such as interferon-gamma and IL-12a, are secreted by undifferentiated mammary epithelial cells, whereas T-helper type 2 cytokines, including IL-4 and IL-13, are secreted by differentiated cells. This unexpected finding demonstrates a role for immune cell signaling in mammary epithelial cell fate and function.
Collapse
Affiliation(s)
- C J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| |
Collapse
|
48
|
Bland RD, Ertsey R, Mokres LM, Xu L, Jacobson BE, Jiang S, Alvira CM, Rabinovitch M, Shinwell ES, Dixit A. Mechanical ventilation uncouples synthesis and assembly of elastin and increases apoptosis in lungs of newborn mice. Am J Physiol Lung Cell Mol Physiol 2008; 294:L3-14. [DOI: 10.1152/ajplung.00362.2007] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prolonged mechanical ventilation (MV) with O2-rich gas inhibits lung growth and causes excess, disordered accumulation of lung elastin in preterm infants, often resulting in chronic lung disease (CLD). Using newborn mice, in which alveolarization occurs postnatally, we designed studies to determine how MV with either 40% O2or air might lead to dysregulated elastin production and impaired lung septation. MV of newborn mice for 8 h with either 40% O2or air increased lung mRNA for tropoelastin and lysyl oxidase, relative to unventilated controls, without increasing lung expression of genes that regulate elastic fiber assembly (lysyl oxidase-like-1, fibrillin-1, fibrillin-2, fibulin-5, emilin-1). Serine elastase activity in lung increased fourfold after MV with 40% O2, but not with air. We then extended MV with 40% O2to 24 h and found that lung content of tropoelastin protein doubled, whereas lung content of elastin assembly proteins did not change (lysyl oxidases, fibrillins) or decreased (fibulin-5, emilin-1). Quantitative image analysis of lung sections showed that elastic fiber density increased by 50% after MV for 24 h, with elastin distributed throughout the walls of air spaces, rather than at septal tips, as in control lungs. Dysregulation of elastin was associated with a threefold increase in lung cell apoptosis (TUNEL and caspase-3 assays), which might account for the increased air space size previously reported in this model. Our findings of increased elastin synthesis, coupled with increased elastase activity and reduced lung abundance of proteins that regulate elastic fiber assembly, could explain altered lung elastin deposition, increased apoptosis, and defective septation, as observed in CLD.
Collapse
|