1
|
Guo H, Zhao Z, Liu L. HIF-1α modulates pancreatic cancer ECM proteins via the TGF-β1/Smad signaling pathway introduction. Front Oncol 2025; 15:1564655. [PMID: 40406267 PMCID: PMC12094911 DOI: 10.3389/fonc.2025.1564655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
Introduction Pancreatic cancer is characterized by its aggressive nature and poor prognosis, ranking among the most lethal malignancies. The tumor microenvironment, particularly the extracellular matrix (ECM), plays a crucial role in cancer progression. This study investigated the relationship between hypoxia-inducible factor-1α (HIF-1α) and transforming growth factor-β1 (TGF-β1) in regulating ECM protein expression in pancreatic cancer. Methods PANC-1 cells were cultured under both normoxic and hypoxic conditions. Pharmacological inhibition of HIF-1α and TGF-β1, as well as TGF-β1 stimulation, were employed to evaluate ECM protein expression. HIF-1α knockdown experiments and co-immunoprecipitation were performed to assess molecular interactions. Clinical specimens were analyzed for HIF-1α and TGF-β1 expression. Results HIF-1α was found to modulate ECM protein expression through the TGF-β1/Smad signaling pathway. Pharmacological inhibition of either HIF-1α or TGF-β1 significantly decreased the expression of ECM proteins, while TGF-β1 stimulation enhanced their production. HIF-1α knockdown abolished TGF-β1-induced ECM protein expression, indicating that HIF-1α is essential for TGF-β1-mediated ECM regulation. Co-immunoprecipitation experiments revealed a physical interaction between HIF-1α and TGF-β1. Clinical specimens showed significantly elevated expression of both HIF-1α and TGF-β1 in pancreatic cancer tissues compared to adjacent normal tissues, correlating with advanced disease stages. Discussion These findings elucidate a novel mechanism where HIF-1α and TGF-β1 cooperatively regulate ECM production in pancreatic cancer, providing potential therapeutic targets for intervention.
Collapse
Affiliation(s)
| | | | - Linxun Liu
- Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| |
Collapse
|
2
|
Liu X, Dong X, Peng Z, Wang C, Wan J, Chen M, Zheng C. Collagenase-functionalized Liposomes Based on Enhancing Penetration into the Extracellular Matrix Augment Therapeutic Effect on Idiopathic Pulmonary Fibrosis. AAPS PharmSciTech 2025; 26:113. [PMID: 40281247 DOI: 10.1208/s12249-025-03112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
In this study, a quercetin-loaded liposome system modified with collagenase was developed to increase QU penetration in the ECM and improve IPF treatment. Quercetin-loaded long circulation liposome (QU-LP) and quercetin-loaded liposome modified with collagenase type I (QU-CLP) were prepared, followed by characterization of the encapsulation efficiency, particle size, morphology, and in vitro drug release. Their effect on the cytotoxicity of A549 cells was detected by the Cell Counting Kit-8, and the cellular uptake was investigated using cellular fluorescence imaging and flow cytometry. TGF-β1 induced A549 cell model was established to mimic pulmonary fibrosis to explore further the anti-pulmonary fibrosis effect of QU-CLP by CCK8 experiment. QU-CLP significantly improves the solubility and bioavailability of QU by encapsulating it in the internal cavity with a high encapsulation efficiency (EE%) of 92.86 ± 1.03%. Liposomes alleviate the influence of QU on normal A549 cell growth. Enhanced fluorescence intensity was observed in A549 cells treated with coumarin 6-labeled and collagenase-modified nanoliposomes (C6-CLP) after 4 h of incubation on the collagen matrix, confirming that collagenase-loaded liposomes could penetrate the collagen barrier and cells internalized more hydrophobic drug. The mean fluorescence intensity (MFI) of the C6-CLP group was 2.88 times that of the C6-labeled nanoliposomes (C6-LP). Moreover, QU-CLP significantly (**P < 0.01) inhibited the proliferation of A549 cells stimulated by TGF-β1. QU-CLP has excellent potential for delivering QU with enhanced bioavailability, high cellular uptake efficiency, and improved therapeutic efficacy in IPF.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Xiaoling Dong
- Shandong Hubble Kisen Biological Technology Co.,Ltd., Jinan, 250100, China
| | - Zhen Peng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Cuihong Wang
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Jianwei Wan
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Min Chen
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China.
| | - Chunli Zheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Lu C, Liu Y, Ren F, Zhang H, Hou Y, Zhang H, Chen Z, Du X. HO-1: An emerging target in fibrosis. J Cell Physiol 2025; 240:e31465. [PMID: 39420552 DOI: 10.1002/jcp.31465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Fibrosis, an aberrant reparative response to tissue injury, involves a disruption in the equilibrium between the synthesis and degradation of the extracellular matrix, leading to its excessive accumulation within normal tissues, and culminating in organ dysfunction. Manifesting in the terminal stages of nearly all chronic ailments, fibrosis carries a high mortality rate and poses a significant threat to human health. Heme oxygenase-1 (HO-1) emerges as an endogenous protective agent, mitigating tissue damage through its antioxidant, anti-inflammatory, and antiapoptotic properties. Numerous studies have corroborated HO-1's potential as a therapeutic target in anti-fibrosis treatment. This review delves into the structural and functional attributes, and the upstream and downstream pathways of HO-1. Additionally, the regulatory networks and mechanisms of HO-1 in cells associated with fibrosis are elucidated. The role of HO-1 in various fibrosis-related diseases is also explored. Collectively, this comprehensive information serves as a foundation for future research and augments the viability of HO-1 as a therapeutic target for fibrosis.
Collapse
Affiliation(s)
- Chenxi Lu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Yuan Liu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Feifei Ren
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Haoran Zhang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Yafang Hou
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Hong Zhang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Zhiyong Chen
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Xia Du
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| |
Collapse
|
4
|
Gao Y, Liu MF, Li Y, Liu X, Cao YJ, Long QF, Yu J, Li JY. Mesenchymal stem cells-extracellular vesicles alleviate pulmonary fibrosis by regulating immunomodulators. World J Stem Cells 2024; 16:670-689. [PMID: 38948098 PMCID: PMC11212550 DOI: 10.4252/wjsc.v16.i6.670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/22/2024] [Accepted: 05/11/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a chronic interstitial lung disease characterized by fibroblast proliferation and extracellular matrix formation, causing structural damage and lung failure. Stem cell therapy and mesenchymal stem cells-extracellular vesicles (MSC-EVs) offer new hope for PF treatment. AIM To investigate the therapeutic potential of MSC-EVs in alleviating fibrosis, oxidative stress, and immune inflammation in A549 cells and bleomycin (BLM)-induced mouse model. METHODS The effect of MSC-EVs on A549 cells was assessed by fibrosis markers [collagen I and α-smooth muscle actin (α-SMA), oxidative stress regulators [nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), and inflammatory regulators [nuclear factor-kappaB (NF-κB) p65, interleukin (IL)-1β, and IL-2]. Similarly, they were assessed in the lungs of mice where PF was induced by BLM after MSC-EV transfection. MSC-EVs ion PF mice were detected by pathological staining and western blot. Single-cell RNA sequencing was performed to investigate the effects of the MSC-EVs on gene expression profiles of macrophages after modeling in mice. RESULTS Transforming growth factor (TGF)-β1 enhanced fibrosis in A549 cells, significantly increasing collagen I and α-SMA levels. Notably, treatment with MSC-EVs demonstrated a remarkable alleviation of these effects. Similarly, the expression of oxidative stress regulators, such as Nrf2 and HO-1, along with inflammatory regulators, including NF-κB p65 and IL-1β, were mitigated by MSC-EV treatment. Furthermore, in a parallel manner, MSC-EVs exhibited a downregulatory impact on collagen deposition, oxidative stress injuries, and inflammatory-related cytokines in the lungs of mice with PF. Additionally, the mRNA sequencing results suggested that BLM may induce PF in mice by upregulating pulmonary collagen fiber deposition and triggering an immune inflammatory response. The findings collectively highlight the potential therapeutic efficacy of MSC-EVs in ameliorating fibrotic processes, oxidative stress, and inflammatory responses associated with PF. CONCLUSION MSC-EVs could ameliorate fibrosis in vitro and in vivo by downregulating collagen deposition, oxidative stress, and immune-inflammatory responses.
Collapse
Affiliation(s)
- Ying Gao
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial Rehabilitation Hospital, Xi'an 710000, Shaanxi Province, China
| | - Mei-Fang Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Ningxia Medical University (The First People's Hospital of Yinchuan), Yinchuan 750001, Ningxia Hui Autonomous Region, China
| | - Yang Li
- School of Clinical Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi Province, China
| | - Xi Liu
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, Xi'an 710000, Shaanxi Province, China
| | - Yu-Jie Cao
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, Xi'an 710000, Shaanxi Province, China
| | - Qian-Fa Long
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an 710000, Shaanxi Province, China
| | - Jun Yu
- Department of Emergency, Xi'an Central Hospital, Xi'an 710000, Shaanxi Province, China
| | - Jian-Ying Li
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, Xi'an 710000, Shaanxi Province, China.
| |
Collapse
|
5
|
Gao Y, Liu MF, Li Y, Liu X, Cao YJ, Long QF, Yu J, Li JY. Mesenchymal stem cells-extracellular vesicles alleviate pulmonary fibrosis by regulating immunomodulators. World J Stem Cells 2024; 16:669-688. [DOI: 10.4252/wjsc.v16.i6.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/22/2024] [Accepted: 05/11/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a chronic interstitial lung disease characterized by fibroblast proliferation and extracellular matrix formation, causing structural damage and lung failure. Stem cell therapy and mesenchymal stem cells-extracellular vesicles (MSC-EVs) offer new hope for PF treatment.
AIM To investigate the therapeutic potential of MSC-EVs in alleviating fibrosis, oxidative stress, and immune inflammation in A549 cells and bleomycin (BLM)-induced mouse model.
METHODS The effect of MSC-EVs on A549 cells was assessed by fibrosis markers [collagen I and α-smooth muscle actin (α-SMA), oxidative stress regulators [nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), and inflammatory regulators [nuclear factor-kappaB (NF-κB) p65, interleukin (IL)-1β, and IL-2]. Similarly, they were assessed in the lungs of mice where PF was induced by BLM after MSC-EV transfection. MSC-EVs ion PF mice were detected by pathological staining and western blot. Single-cell RNA sequencing was performed to investigate the effects of the MSC-EVs on gene expression profiles of macrophages after modeling in mice.
RESULTS Transforming growth factor (TGF)-β1 enhanced fibrosis in A549 cells, significantly increasing collagen I and α-SMA levels. Notably, treatment with MSC-EVs demonstrated a remarkable alleviation of these effects. Similarly, the expression of oxidative stress regulators, such as Nrf2 and HO-1, along with inflammatory regulators, including NF-κB p65 and IL-1β, were mitigated by MSC-EV treatment. Furthermore, in a parallel manner, MSC-EVs exhibited a downregulatory impact on collagen deposition, oxidative stress injuries, and inflammatory-related cytokines in the lungs of mice with PF. Additionally, the mRNA sequencing results suggested that BLM may induce PF in mice by upregulating pulmonary collagen fiber deposition and triggering an immune inflammatory response. The findings collectively highlight the potential therapeutic efficacy of MSC-EVs in ameliorating fibrotic processes, oxidative stress, and inflammatory responses associated with PF.
CONCLUSION MSC-EVs could ameliorate fibrosis in vitro and in vivo by downregulating collagen deposition, oxidative stress, and immune-inflammatory responses.
Collapse
Affiliation(s)
- Ying Gao
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial Rehabilitation Hospital, Xi’an 710000, Shaanxi Province, China
| | - Mei-Fang Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Ningxia Medical University (The First People’s Hospital of Yinchuan), Yinchuan 750001, Ningxia Hui Autonomous Region, China
| | - Yang Li
- School of Clinical Medicine, Xi’an Medical University, Xi’an 710021, Shaanxi Province, China
| | - Xi Liu
- Department of Respiratory and Critical Care Medicine, Xi’an Central Hospital, Xi’an 710000, Shaanxi Province, China
| | - Yu-Jie Cao
- Department of Respiratory and Critical Care Medicine, Xi’an Central Hospital, Xi’an 710000, Shaanxi Province, China
| | - Qian-Fa Long
- Department of Neurosurgery, Xi’an Central Hospital, Xi’an 710000, Shaanxi Province, China
| | - Jun Yu
- Department of Emergency, Xi’an Central Hospital, Xi’an 710000, Shaanxi Province, China
| | - Jian-Ying Li
- Department of Respiratory and Critical Care Medicine, Xi’an Central Hospital, Xi’an 710000, Shaanxi Province, China
| |
Collapse
|
6
|
Zhang L, Xu LY, Tang F, Liu D, Zhao XL, Zhang JN, Xia J, Wu JJ, Yang Y, Peng C, Ao H. New perspectives on the therapeutic potential of quercetin in non-communicable diseases: Targeting Nrf2 to counteract oxidative stress and inflammation. J Pharm Anal 2024; 14:100930. [PMID: 39005843 PMCID: PMC11245930 DOI: 10.1016/j.jpha.2023.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 07/16/2024] Open
Abstract
Non-communicable diseases (NCDs), including cardiovascular diseases, cancer, metabolic diseases, and skeletal diseases, pose significant challenges to public health worldwide. The complex pathogenesis of these diseases is closely linked to oxidative stress and inflammatory damage. Nuclear factor erythroid 2-related factor 2 (Nrf2), a critical transcription factor, plays an important role in regulating antioxidant and anti-inflammatory responses to protect the cells from oxidative damage and inflammation-mediated injury. Therefore, Nrf2-targeting therapies hold promise for preventing and treating NCDs. Quercetin (Que) is a widely available flavonoid that has significant antioxidant and anti-inflammatory properties. It modulates the Nrf2 signaling pathway to ameliorate oxidative stress and inflammation. Que modulates mitochondrial function, apoptosis, autophagy, and cell damage biomarkers to regulate oxidative stress and inflammation, highlighting its efficacy as a therapeutic agent against NCDs. Here, we discussed, for the first time, the close association between NCD pathogenesis and the Nrf2 signaling pathway, involved in neurodegenerative diseases (NDDs), cardiovascular disease, cancers, organ damage, and bone damage. Furthermore, we reviewed the availability, pharmacokinetics, pharmaceutics, and therapeutic applications of Que in treating NCDs. In addition, we focused on the challenges and prospects for its clinical use. Que represents a promising candidate for the treatment of NCDs due to its Nrf2-targeting properties.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
7
|
Duan X, Chen C, Liu X, Wang T, Feng S, Li J, Li G. Interference of periostin attenuates pathological changes, proinflammatory markers and renal fibrosis in diabetic kidney injury. Genes Genomics 2023; 45:1389-1397. [PMID: 37248423 DOI: 10.1007/s13258-023-01400-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a prevalent complication of diabetes, in which inflammation and fibrosis are the significant pathogenesis. Periostin is a matricellular protein that functions on stabilizing the extracellular matrix by binding to integrins during development. This study aimed to explored the role of periostin in DN. METHODS The animal and cell models of DN were constructed in streptozocin (STZ)-induced mice and high glucose-challenged human mesangial cells (HMCs). The role of periostin in pathological changes, inflammation and fibrosis in DN was investigated through biochemical detection, HE and Masson staining and scores, western blot, enzyme‑linked immunosorbent assay (ELISA) and real-time quantitative PCR (RT-qPCR) assays. RESULTS Knockdown of periostin counteracted the STZ-induced the ratio of kidney weight and body weight, and the concentrations of urine albumin excretion (UAE), serum creatinine (Scr), urine albumin/creatinine ratio (UACR) and blood urea nitrogen (BUN) in mice. Moreover, silencing of periostin alleviated the pathological manifestations and reduced the concentrations of IL-6, TNF-α and IL-1β in mice kidney tissues and sera. Also, downregulation of periostin decreased the relative protein expression of fibronectin, collagen IV and α-SMA in kidney tissues. Meanwhile, interference of periostin attenuated the levels of pro-inflammation factors and the expressions of fibrosis markers in HG-induced HMCs. CONCLUSION Interference of periostin resisted DN via attenuating the pro-inflammatory cytokines release and renal fibrosis in diabetic kidney injury. Our study establishes a basis for its further study and underlying application in clinical practice in diagnosing and treating diabetic kidney injury or other relevant diseases.
Collapse
Affiliation(s)
- Xiaoting Duan
- Department of Nephrology, Affiliated Hospital of Hebei Engineering University, No. 81 Congtai Road, Handan City, Hebei Province056000, China
| | - Cheng Chen
- The Second Department of Oncology, Affiliated Hospital of Hebei Engineering University, Hebei, 056000, China
| | - Xiaoli Liu
- Department of Nephrology, Affiliated Hospital of Hebei Engineering University, No. 81 Congtai Road, Handan City, Hebei Province056000, China
| | - Taoxia Wang
- Department of Nephrology, Affiliated Hospital of Hebei Engineering University, No. 81 Congtai Road, Handan City, Hebei Province056000, China
| | - Shuning Feng
- Department of Nephrology, Affiliated Hospital of Hebei Engineering University, No. 81 Congtai Road, Handan City, Hebei Province056000, China
| | - Jianwei Li
- Department of Nephrology, Affiliated Hospital of Hebei Engineering University, No. 81 Congtai Road, Handan City, Hebei Province056000, China
| | - Guiying Li
- Department of Nephrology, Affiliated Hospital of Hebei Engineering University, No. 81 Congtai Road, Handan City, Hebei Province056000, China.
| |
Collapse
|
8
|
Sabir U, Gu HM, Zhang DW. Extracellular matrix turnover: phytochemicals target and modulate the dual role of matrix metalloproteinases (MMPs) in liver fibrosis. Phytother Res 2023; 37:4932-4962. [PMID: 37461256 DOI: 10.1002/ptr.7959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 07/02/2023] [Indexed: 11/10/2023]
Abstract
Extracellular matrix (ECM) resolution by matrix metalloproteinases (MMPs) is a well-documented mechanism. MMPs play a dual and complex role in modulating ECM degradation at different stages of liver fibrosis, depending on the timing and levels of their expression. Increased MMP-1 combats disease progression by cleaving the fibrillar ECM. Activated hepatic stellate cells (HSCs) increase expression of MMP-2, -9, and -13 in different chemicals-induced animal models, which may alleviate or worsen disease progression based on animal models and the stage of liver fibrosis. In the early stage, elevated expression of certain MMPs may damage surrounding tissue and activate HSCs, promoting fibrosis progression. At the later stage, downregulation of MMPs can facilitate ECM accumulation and disease progression. A number of phytochemicals modulate MMP activity and ECM turnover, alleviating disease progression. However, the effects of phytochemicals on the expression of different MMPs are variable and may depend on the disease models and stage, and the dosage, timing and duration of phytochemicals used in each study. Here, we review the most recent advances in the role of MMPs in the effects of phytochemicals on liver fibrogenesis, which indicates that further studies are warranted to confirm and define the potential clinical efficacy of these phytochemicals.
Collapse
Affiliation(s)
- Usman Sabir
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
McKay TB, Emmitte KA, German C, Karamichos D. Quercetin and Related Analogs as Therapeutics to Promote Tissue Repair. Bioengineering (Basel) 2023; 10:1127. [PMID: 37892857 PMCID: PMC10604618 DOI: 10.3390/bioengineering10101127] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Quercetin is a polyphenol of the flavonoid class of secondary metabolites that is widely distributed in the plant kingdom. Quercetin has been found to exhibit potent bioactivity in the areas of wound healing, neuroprotection, and anti-aging research. Naturally found in highly glycosylated forms, aglycone quercetin has low solubility in aqueous environments, which has heavily limited its clinical applications. To improve the stability and bioavailability of quercetin, efforts have been made to chemically modify quercetin and related flavonoids so as to improve aqueous solubility while retaining bioactivity. In this review, we provide an updated overview of the biological properties of quercetin and proposed mechanisms of actions in the context of wound healing and aging. We also provide a description of recent developments in synthetic approaches to improve the solubility and stability of quercetin and related analogs for therapeutic applications. Further research in these areas is expected to enable translational applications to improve ocular wound healing and tissue repair.
Collapse
Affiliation(s)
- Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Carrie German
- CFD Research Corporation, Computational Biology Division, Huntsville, AL 35806, USA;
| | - Dimitrios Karamichos
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
10
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. A review of how the saffron (Crocus sativus) petal and its main constituents interact with the Nrf2 and NF-κB signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1879-1909. [PMID: 37067583 DOI: 10.1007/s00210-023-02487-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
The primary by-product of saffron (Crocus sativus) processing is saffron petals, which are produced in large quantities but are discarded. The saffron petals contain a variety of substances, including alkaloids, anthocyanins, flavonoids, glycosides, kaempferol, and minerals. Pharmacological investigations revealed the antibacterial, antidepressant, antidiabetic, antihypertensive, antinociceptive, antispasmodic, antitussive, hepatoprotective, immunomodulatory, and renoprotective properties of saffron petals, which are based on their antioxidant, anti-inflammatory, and antiapoptotic effects. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway protects against oxidative stress, carcinogenesis, and inflammation. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) is a protein complex involved in approximately all animal cells and participates in different biological procedures such as apoptosis, cell growth, development, deoxyribonucleic acid (DNA) transcription, immune response, and inflammation. The pharmacological properties of saffron and its compounds are discussed in this review, along with their associated modes of action, particularly the Nrf2 and NF-ĸB signaling pathways. Without considering a time constraint, our team conducted this review using search engines or electronic databases like PubMed, Scopus, and Web of Science. Saffron petals and their main constituents may have protective effects in numerous organs such as the brain, colon, heart, joints, liver, lung, and pancreas through several mechanisms, including the Nrf2/heme oxygenase-1 (HO-1)/Kelch-like ECH-associated protein 1 (Keap1) signaling cascade, which would then result in its antioxidant, anti-inflammatory, antiapoptotic, and therapeutic effects.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Matsushima M, Nose H, Tsuzuki H, Takekoshi M, Kusatsugu Y, Taniguchi H, Ohdachi T, Hashimoto N, Sato M, Kawabe T. Decrease in cholesterol in the cell membrane is essential for Nrf2 activation by quercetin. J Nutr Biochem 2023; 116:109329. [PMID: 36958420 DOI: 10.1016/j.jnutbio.2023.109329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/21/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Quercetin is a flavonoid with various cytoprotective effects. We previously reported that quercetin exerts anti-allergic, anti-oxidative, and anti-fibrotic activities via the induction of heme oxygenase (HO)-1. However, the mechanisms by which quercetin induces HO-1 to exhibit cytoprotective effects are poorly understood. We focused on its action on the cell membrane, which is the first part of the cell to interact with the extracellular environment. The cell membrane contains lipid rafts and caveolae, which play important roles in cellular signaling. A recent study showed that nuclear factor E2-related factor 2 (Nrf2), a transcription factor regulating anti-oxidative enzymes including HO-1, interacts with caveolin-1 (Cav-1), a component of caveolae, to regulate cellular anti-oxidative capacity. In this study, we investigated the changes in the cell membrane that leads to the induction of HO-1 by quercetin. Quercetin decreased the amount of cholesterol in the raft fractions, which in turn promoted the induction of HO-1. It also changed the composition of the lipid rafts and decreased and increased the expression of Cav-1 in the raft and non-raft fractions, respectively. Nrf2, which was localized in the cell membrane under resting conditions, was translocated along with Cav-1 to the nucleus after exposure to quercetin. These findings indicate for the first time that the HO-1-dependent cytoprotective effects of quercetin are mediated by the structural changes in lipid rafts brought about by decreasing the amount of cholesterol in the cell membrane, which thereby results in the translocation of the Cav-1-Nrf2 complex to the nucleus and induces the expression of HO-1.
Collapse
Affiliation(s)
- Miyoko Matsushima
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System
| | - Haruka Nose
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System
| | - Hikaru Tsuzuki
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System
| | - Masahiro Takekoshi
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System
| | - Yuto Kusatsugu
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System
| | - Hinata Taniguchi
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System
| | - Tomoko Ohdachi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System
| | - Mitsuo Sato
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System
| | - Tsutomu Kawabe
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System.
| |
Collapse
|
12
|
Role of Oxidative Stress in Peyronie's Disease: Biochemical Evidence and Experiences of Treatment with Antioxidants. Int J Mol Sci 2022; 23:ijms232415969. [PMID: 36555611 PMCID: PMC9781573 DOI: 10.3390/ijms232415969] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Peyronie's disease (PD) is a chronic inflammatory condition affecting adult males, involving the tunica albuginea of the corpora cavernosa of the penis. PD is frequently associated with penile pain, erectile dysfunction, and a secondary anxious-depressive state. The etiology of PD has not yet been completely elucidated, but local injury is generally recognized to be a triggering factor. It has also been widely proven that oxidative stress is an essential, decisive component in all inflammatory processes, whether acute or chronic. Current conservative medical treatment comprises oral substances, penile injections, and physical therapy. AIM This article intends to show how antioxidant therapy is able to interfere with the pathogenetic mechanisms of the disease. METHOD This article consists of a synthetic narrative review of the current scientific literature on antioxidant therapy for this disease. RESULTS The good results of the antioxidant treatment described above also prove that the doses used were adequate and the concentrations of the substances employed did not exceed the threshold at which they might have interacted negatively with the mechanisms of the redox regulation of tissue. CONCLUSIONS We believe new, randomized, controlled studies are needed to confirm the efficacy of treatment with antioxidants. However, we consider the experiences of antioxidant treatment which can already be found in the literature useful for the clinical practice of urologists in the treatment of this chronic inflammatory disease.
Collapse
|
13
|
Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. VITAMINS AND HORMONES 2022; 121:271-292. [PMID: 36707137 DOI: 10.1016/bs.vh.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The liver performs various biochemical and molecular functions. Its location as a portal to blood arriving from the intestines makes it susceptible to several insults, leading to diverse pathologies, including alcoholic liver disease, viral infections, nonalcoholic steatohepatitis, and hepatocellular carcinoma, which are causes of death worldwide. Illuminating the molecular mechanism underlying hepatic injury will provide targets to develop new therapeutic strategies to fight liver maladies. In this regard, reactive oxygen species (ROS) are well-recognized mediators of liver damage. ROS induce nuclear factor-κB and the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 inflammasome, which are the main proinflammatory signaling pathways that upregulate several proinflammatory and profibrogenic mediators. Additionally, oxygen-derived free radicals induce hepatic stellate cell activation to produce exacerbated quantities of extracellular matrix proteins, leading to fibrosis, cirrhosis and eventually hepatocellular carcinoma. Exogenous and endogenous antioxidants counteract the harmful effects of ROS, preventing liver necroinflammation and fibrogenesis. Therefore, several researchers have demonstrated that the administration of antioxidants, mainly derived from plants, affords beneficial effects on the liver. Notably, nuclear factor-E2-related factor-2 (Nrf2) is a major factor against oxidative stress in the liver. Increasing evidence has demonstrated that Nrf2 plays an important role in liver necroinflammation and fibrogenesis via the induction of antioxidant response element genes. The use of Nrf2 inducers seems to be an interesting approach to prevent/attenuate hepatic disorders, particularly under conditions where ROS play a causative role.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Mexico City, Mexico.
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico.
| |
Collapse
|
14
|
Zhang X, Cao Y, Pan D, Yao X, Wang F, Zhang G, Luo Y. Antifibrotic pyridine-containing monoterpene alkaloids from Caryopteris glutinosa. PHYTOCHEMISTRY 2022; 203:113378. [PMID: 36007661 DOI: 10.1016/j.phytochem.2022.113378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Three undescribed dimeric pyridine-containing alkaloids, caryopterisines C - E, and four unreported cyclopenta[c]pyridine-derived alkaloids, caryopterisines F - I, were identified from Caryopteris glutinosa Rehder (Lamiaceae), together with two known monoterpene alkaloids. Caryopterisine C, featuring with an unprecedented 6/5/6/6/5 pentacyclic rings scaffold, may biosynthetically stem from a Diels-Alder reaction of two cyclopenta[c]pyridine-containing monomers and a following aromatization rearrangement reaction. Caryopterisines D and E, possessing an unprecedented 6/6/6/6/5 fused rings framework, may originate from a same Diels-Alder reaction of two monomers and subsequent aromatization arrangement, Baeyer-Villiger oxidation, and a set of tailoring reactions. Caryopterisine C showed strong inhibition on collagen accumulation in NIH3T3 cells (IC50 = 14.26 ± 1.46 μM). Caryopterisines G and I reduce collagen accumulation with IC50 values 88.91 ± 0.95 μM and 33.09 ± 1.38 μM, respectively. The Western blotting of the transforming growth factor-β-activated signaling pathways revealed that caryopterisine C inhibits collagen expression and accumulation via suppression of the phosphorylation of ERK1/2, P38, and SMAD2/3. The present works indicate caryopterisine C is a potential lead compound for the development of antifibrotic drugs.
Collapse
Affiliation(s)
- Xuejian Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yu Cao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dabo Pan
- Department of Medical Technology, Qiandongnan Vocational & Technical College for Nationalities, Kaili, 556000, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Guolin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Yinggang Luo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
15
|
Sánchez-Jaramillo EA, Gasca-Lozano LE, Vera-Cruz JM, Hernández-Ortega LD, Gurrola-Díaz CM, Bastidas-Ramírez BE, Vargas-Guerrero B, Mena-Enríquez M, Martínez-Limón FDJ, Salazar-Montes AM. Nanoparticles Formulation Improves the Antifibrogenic Effect of Quercetin on an Adenine-Induced Model of Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23105392. [PMID: 35628203 PMCID: PMC9140764 DOI: 10.3390/ijms23105392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Renal fibrosis is the final stage of chronic kidney injury characterized by glomerulosclerosis and tubulointerstitial fibrosis with parenchymal destruction. Quercetin belongs to the most studied flavonoids with antioxidant, anti-inflammatory, antifibrogenic, and antitumor activity. It modifies the TGF-β/Smad signaling pathway, decreasing profibrogenic expression molecules and inducing the expression of antioxidant, anti-inflammatory, and antifibrogenic molecules. However, quercetin exhibits poor water solubility and low absorption and bioavailability. This limitation was solved by developing a nanoparticles formulation that improves the solubility and bioavailability of several bioactive compounds. Therefore, we aimed to investigate the in vivo antifibrogenic effect of a quercetin nanoparticles formulation. Male C57BL/6 mice were induced into chronic renal failure with 50 mg/kg of adenine for four weeks. The animals were randomly grouped and treated with 25, 50, or 100 mg/kg of quercetin, either macroparticles or nanoparticles formulation. We performed biochemical, histological, and molecular analyses to evaluate and compare the effect of macroparticles versus nanoparticles formulation on kidney damage. Here, we demonstrated that smaller doses of nanoparticles exhibited the same beneficial effect as larger doses of macroparticles on preventing kidney damage. This finding translates into less quercetin consumption reaching the desired therapeutic effect.
Collapse
Affiliation(s)
- Esteban Andrés Sánchez-Jaramillo
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - Luz Elena Gasca-Lozano
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - José María Vera-Cruz
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico;
| | - Luis Daniel Hernández-Ortega
- Centro de Investigación Multidisciplinario en Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico 555, Tonalá 45425, Jalisco, Mexico; (L.D.H.-O.); (M.M.-E.)
| | - Carmen Magdalena Gurrola-Díaz
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - Blanca Estela Bastidas-Ramírez
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - Belinda Vargas-Guerrero
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - Mayra Mena-Enríquez
- Centro de Investigación Multidisciplinario en Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico 555, Tonalá 45425, Jalisco, Mexico; (L.D.H.-O.); (M.M.-E.)
| | | | - Adriana María Salazar-Montes
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
- Correspondence:
| |
Collapse
|
16
|
Mdivi-1 alleviates cardiac fibrosis post myocardial infarction at infarcted border zone, possibly via inhibition of Drp1-Activated mitochondrial fission and oxidative stress. Arch Biochem Biophys 2022; 718:109147. [PMID: 35143784 DOI: 10.1016/j.abb.2022.109147] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 01/17/2023]
Abstract
Mitochondrial division inhibitor 1(Mdivi-1) has been shown to play a beneficial role in a variety of diseases, mainly by inhibiting Drp1-mediated mitochondrial fission. The effects of Mdivi-1 on cardiac fibrosis at infarcted border zone area and its possible mechanism remain unclear. This study aimed to investigate the effects of Mdivi-1 on reactive cardiac fibrosis and cardiac function post myocardial infarction and its potential mechanisms. Mice were randomly divided into six groups(n = 9 for each group): Sham; Mdivi-1; MI 7d; MI 14d; MI 28d; MI 28d + Mdivi-1. The MI model was induced by ligation of LAD coronary artery. Mdivi-1 (1mg/kg) was administered to mice every other day at a time from the second day until the sacrifice of the mice (total 14 injection of Mdivi-1). In vitro experiments, the effect of Mdivi-1 on TGF-β1-induced fibrosis-related pathophysiological changes of fibroblasts was examined in NIH3T3 cells. We found that Mdivi-1 significantly attenuated fibroblast activation, collagen production and fibrosis at infarcted border zone after MI, improved impaired heart function. Mechanistically, we observed that Mdivi-1 reduced the protein expression of P-Drp1-S616 and abnormal mitochondrial fission of cardiac fibroblasts in the infarcted border zone area. In addition, we found that the effects of Mdivi-1 partially relied on increasing the expression of Hmox1 and inhibiting oxidative stress. In conclusion, Mdivi-1 could attenuate cardiac fibrosis at infarcted border zone and improve impaired heart function partially through attenuation of Drp1-mediated mitochondrial fission. Moreover, inhibition of oxidative stress, which is possible due to the up-regulation of Hmox1, may be another potential mechanism of action of Mdivi-1.
Collapse
|
17
|
Estornut C, Milara J, Bayarri MA, Belhadj N, Cortijo J. Targeting Oxidative Stress as a Therapeutic Approach for Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 12:794997. [PMID: 35126133 PMCID: PMC8815729 DOI: 10.3389/fphar.2021.794997] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 01/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease characterized by an abnormal reepithelialisation, an excessive tissue remodelling and a progressive fibrosis within the alveolar wall that are not due to infection or cancer. Oxidative stress has been proposed as a key molecular process in pulmonary fibrosis development and different components of the redox system are altered in the cellular actors participating in lung fibrosis. To this respect, several activators of the antioxidant machinery and inhibitors of the oxidant species and pathways have been assayed in preclinical in vitro and in vivo models and in different clinical trials. This review discusses the role of oxidative stress in the development and progression of IPF and its underlying mechanisms as well as the evidence of oxidative stress in human IPF. Finally, we analyze the mechanism of action, the efficacy and the current status of different drugs developed to inhibit the oxidative stress as anti-fibrotic therapy in IPF.
Collapse
Affiliation(s)
- Cristina Estornut
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- *Correspondence: Cristina Estornut, ; Javier Milara,
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy Unit, University General Hospital Consortium, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
- *Correspondence: Cristina Estornut, ; Javier Milara,
| | - María Amparo Bayarri
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Nada Belhadj
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy Unit, University General Hospital Consortium, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
- Research and Teaching Unit, University General Hospital Consortium, Valencia, Spain
| |
Collapse
|
18
|
Suliman HB, Healy Z, Zobi F, Kraft BD, Welty-Wolf K, Smith J, Barkauskas C, Piantadosi CA. Nuclear respiratory factor-1 negatively regulates TGF-β1 and attenuates pulmonary fibrosis. iScience 2022; 25:103535. [PMID: 34977500 PMCID: PMC8683592 DOI: 10.1016/j.isci.2021.103535] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/02/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
The preclinical model of bleomycin-induced lung fibrosis is useful to study mechanisms related to human pulmonary fibrosis. Using BLM in mice, we find low HO-1 expression. Although a unique Rhenium-CO-releasing molecule (ReCORM) up-regulates HO-1, NRF-1, CCN5, and SMAD7, it reduces TGFβ1, TGFβr1, collagen, α-SMA, and phosphorylated Smad2/3 levels in mouse lung and in human lung fibroblasts. ChIP assay studies confirm NRF-1 binding to the promoters of TGFβ1 repressors CCN5 and Smad7. ReCORM did not blunt lung fibrosis in Hmox1-deficient alveolar type 2 cell knockout mice, suggesting this gene participates in lung protection. In human lung fibroblasts, TGFβ1-dependent production of α-SMA is abolished by ReCORM or by NRF-1 gene transfection. We demonstrate effective HO-1/NRF-1 signaling in lung AT2 cells protects against BLM induced lung injury and fibrosis by maintaining mitochondrial health, function, and suppressing the TGFβ1 pathway. Thus, protection of AT2 cell mitochondrial integrity via HO-1/NRF-1 presents an innovative therapeutic target.
Collapse
Affiliation(s)
- Hagir B. Suliman
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
- Department of Anaesthesiology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Zachary Healy
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Bryan D. Kraft
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
| | - Karen Welty-Wolf
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
| | - Joshua Smith
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
| | - Christina Barkauskas
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
| | - Claude A. Piantadosi
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
- Department of Anaesthesiology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
19
|
Audousset C, McGovern T, Martin JG. Role of Nrf2 in Disease: Novel Molecular Mechanisms and Therapeutic Approaches - Pulmonary Disease/Asthma. Front Physiol 2021; 12:727806. [PMID: 34658913 PMCID: PMC8511424 DOI: 10.3389/fphys.2021.727806] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a major transcription factor involved in redox homeostasis and in the response induced by oxidative injury. Nrf2 is present in an inactive state in the cytoplasm of cells. Its activation by internal or external stimuli, such as infections or pollution, leads to the transcription of more than 500 elements through its binding to the antioxidant response element. The lungs are particularly susceptible to factors that generate oxidative stress such as infections, allergens and hyperoxia. Nrf2 has a crucial protective role against these ROS. Oxidative stress and subsequent activation of Nrf2 have been demonstrated in many human respiratory diseases affecting the airways, including asthma and chronic obstructive pulmonary disease (COPD), or the pulmonary parenchyma such as acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. Several compounds, both naturally occurring and synthetic, have been identified as Nrf2 inducers and enhance the activation of Nrf2 and expression of Nrf2-dependent genes. These inducers have proven particularly effective at reducing the severity of the oxidative stress-driven lung injury in various animal models. In humans, these compounds offer promise as potential therapeutic strategies for the management of respiratory pathologies associated with oxidative stress but there is thus far little evidence of efficacy through human trials. The purpose of this review is to summarize the involvement of Nrf2 and its inducers in ARDS, COPD, asthma and lung fibrosis in both human and in experimental models.
Collapse
Affiliation(s)
- Camille Audousset
- Meakins-Christie Laboratories, McGill University, Montréal, QC, Canada
| | - Toby McGovern
- Meakins-Christie Laboratories, McGill University, Montréal, QC, Canada
| | - James G Martin
- Meakins-Christie Laboratories, McGill University, Montréal, QC, Canada
| |
Collapse
|
20
|
Comparison of Pharmacokinetics and Anti-Pulmonary Fibrosis-Related Effects of Sulforaphane and Sulforaphane N-acetylcysteine. Pharmaceutics 2021; 13:pharmaceutics13070958. [PMID: 34202008 PMCID: PMC8309207 DOI: 10.3390/pharmaceutics13070958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Sulforaphane (SFN), belonging to the isothiocyanate family, has received attention owing to its beneficial activities, including chemopreventive and antifibrotic effects. As sulforaphane N-acetylcysteine (SFN-NAC), a major sulforaphane metabolite, has presented similar pharmacological activities to those of SFN, it is crucial to simultaneously analyze the pharmacokinetics and activities of SFN and SFN-NAC, to comprehensively elucidate the efficacy of SFN-containing products. Accordingly, the anti-pulmonary fibrotic effects of SFN and SFN-NAC were assessed, with simultaneous evaluation of permeability, metabolic stability, and in vivo pharmacokinetics. Both SFN and SFN-NAC decreased the levels of transforming growth factor-β1-induced fibronectin, alpha-smooth muscle actin, and collagen, which are major mediators of fibrosis, in MRC-5 fibroblast cells. Regarding pharmacokinetics, SFN and SFN-NAC were metabolically unstable, especially in the plasma. SFN-NAC degraded considerably faster than SFN in plasma, with SFN being formed from SFN-NAC. In rats, SFN and SFN-NAC showed a similar clearance when administered intravenously; however, SFN showed markedly superior absorption when administered orally. Although the plasma SFN-NAC concentration was low owing to poor absorption following oral administration, SFN-NAC was converted to SFN in vivo, as in plasma. Collectively, these data suggest that SFN-NAC could benefit a prodrug formulation strategy, possibly avoiding the gastrointestinal side effects of SFN, and with improved SFN-NAC absorption.
Collapse
|
21
|
Chugh N, Koul A. Altered presence of extra cellular matrix components in murine skin cancer: Modulation by Azadirachta indica leaf extract. J Tradit Complement Med 2021; 11:197-208. [PMID: 34012866 PMCID: PMC8116721 DOI: 10.1016/j.jtcme.2020.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/13/2020] [Accepted: 03/20/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND AIM Although, the anticancer potential of Aqueous Azadirachta indica leaf extract (AAILE) has been robustly established against cutaneous squamous cell carcinoma (SCC) in mice, however, its ability in modulating tumor associated extra cellular matrix (ECM) is largely unknown. Therefore, the present study was conceived to explore changes in ECM during murine skin cancer and its chemoprevention by AAILE. EXPERIMENTAL PROCEDURE Skin tumors were induced using a two-stage model of carcinogenesis employing topical application of 7,12-Dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoyl phorbol-13-acetate (TPA) as carcinogen and promoter respectively. AAILE was administered orally to the animals. Male Laca mice were divided into four groups: control, AAILE, DMBA/TPA and AAILE + DMBA/TPA. RESULTS The tumors obtained in DMBA/TPA and AAILE + DMBA/TPA groups were histologically identified as SCC. Tumor induction in these groups was accompanied by raised serum carcinoembryonic antigen (CEA) levels when compared to control counterparts. Assessment of hydroxyproline levels and histochemical staining with sirius red and trichrome stain revealed an increase in collagen in tumors of DMBA/TPA group. An increase in glycosaminoglycans (GAGs) levels was also observed in DMBA/TPA group as made evident by biochemical studies and histochemical staining using mucicarmine and alcian blue-periodic acid schiff's stain. Administration of AAILE to DMBA/TPA treated animals caused a decrease in collagen and GAG levels along with a decrease in serum CEA levels. CONCLUSION Skin tumors exhibited altered presence of ECM components which is indicative of a modified ECM. AAILE administration antagonised tumor associated ECM alterations which may be contributing to its chemopreventive activity as reported previously.
Collapse
Affiliation(s)
- N.A. Chugh
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, South Campus, Sector 25, Chandigarh, 160014, India
| | - A. Koul
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, South Campus, Sector 25, Chandigarh, 160014, India
| |
Collapse
|
22
|
Yap JMG, Ueda T, Kanemitsu Y, Takeda N, Fukumitsu K, Fukuda S, Uemura T, Tajiri T, Ohkubo H, Maeno K, Ito Y, Oguri T, Ugawa S, Niimi A. AITC inhibits fibroblast-myofibroblast transition via TRPA1-independent MAPK and NRF2/HO-1 pathways and reverses corticosteroids insensitivity in human lung fibroblasts. Respir Res 2021; 22:51. [PMID: 33579280 PMCID: PMC7881560 DOI: 10.1186/s12931-021-01636-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/24/2021] [Indexed: 01/17/2023] Open
Abstract
Background Little is known on the role of transient receptor potential ankyrin 1 (TRPA1) in fibroblast—myofibroblast transition (FMT) that can lead to airway remodeling which is a major problem for severe asthma and fibrosis. Thus, this study investigated the effect of TRPA1 modulators on transforming growth factor beta 1(TGF-β1) -treated lung fibroblasts. Methods MRC-5 cells were preincubated with TGF-β1 for 24 h. TRPA1 agonist or antagonist were added and further incubated for 24 h. The changes in TRPA1 and alpha-smooth muscle actin (α-SMA) expressions by stimuli were evaluated using qRT-PCR, western blot and immunohistochemical analyses. Statistical significance was determined by using one- or two-way ANOVA, followed by Bonferroni’s post hoc analysis for comparison of multiple groups and paired 2-tailed Student’s t-test between 2 groups. Results MRC-5 cells treated by TGF-β1 significantly upregulated α-SMA mRNA expressions (P < 0.01), but downregulated TRPA1 gene expression (P < 0.001). Post-treatment of TRPA1 activator, allyl isothiocyanate (AITC), after TGF-β1 significantly downregulated the α-SMA gene induction (P < 0.01 at 24 h), protein expression (P < 0.05) and immunoreactivity with stress fibers (P < 0.05). On the other hand, TRPA1 antagonist HC-030031 did not prevent this effect, and instead tended to facilitate the suppressive effect of AITC when co-stimulated. AITC significantly increased phosphorylated- extracellular signal-regulated kinase (ERK) 1/2 and heme oxygenase (HO)-1 protein expressions (P < 0.05) in TGF-β1-treated cells. Combined inhibition with ERK1/2 mitogen-activated protein kinase (MAPK) and nuclear factor erythroid 2-related factor (NRF2) almost completely reversed AITC-induced α-SMA suppression (P < 0.05). Dexamethasone was not able to inhibit the upregulated α-SMA induction by TGF-β1. However, AITC improved dexamethasone-insensitive myodifferentiation in the presence of the corticosteroid (P < 0.01). Conclusion We found that AITC exerts protective effect on TGF-β1-induced α-SMA induction by activating ERK1/2 MAPK and NRF2/HO-1 pathways in lung fibroblasts. It also overcomes corticosteroids insensitivity in TGF-β1-induced α-SMA induction. TRPA1 antagonist modulates the suppressive effect, but not prevent it. AITC and TRPA1 antagonist may be therapeutic agents in treating chronic respiratory diseases.
Collapse
Affiliation(s)
- Jennifer Maries Go Yap
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takashi Ueda
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Yoshihiro Kanemitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Norihisa Takeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Kensuke Fukumitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Satoshi Fukuda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takehiro Uemura
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Tomoko Tajiri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Hirotsugu Ohkubo
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Ken Maeno
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yutaka Ito
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Testsuya Oguri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Shinya Ugawa
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| |
Collapse
|
23
|
Li H, Gao L, Min J, Yang Y, Zhang R. Neferine suppresses autophagy-induced inflammation, oxidative stress and adipocyte differentiation in Graves' orbitopathy. J Cell Mol Med 2021; 25:1949-1957. [PMID: 33443817 PMCID: PMC7882929 DOI: 10.1111/jcmm.15931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/30/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022] Open
Abstract
Previous studies in Graves’ orbitopathy (GO) patient‐derived fibroblasts showed that inhibition of autophagy suppresses adipogenic differentiation. Autophagy activation is associated with inflammation, production of reactive oxygen species and fibrosis. Neferine is an alkaloid extracted from Nelumbo nucifera, which induces Nrf2 expression and inhibits autophagy. Here, we have elucidated the role of neferine on interleukin (IL)‐13‐induced autophagy using patient‐derived orbital fibroblasts as an in vitro model of GO. GO patient‐derived orbital fibroblasts were isolated and cultured to generate an in vitro model of GO. Autophagy was determined by Western blot detection of the markers such as Beclin‐1, Atg‐5 and LC3 and by immunofluorescence detection of autophagosome formation. Analysis of differentiation towards an adipogenic lineage was performed by Oil red O staining. The expression of inflammatory factors was detected by ELISA and semiquantitative RT‐PCR. Neferine inhibited autophagy in GO orbital fibroblasts, as indicated by the suppression of IL‐13‐induced autophagosome formation, overexpression of autophagy markers, increased LC3‐II/LC3‐I levels and finally down‐regulation of p62. Neferine suppressed IL‐13‐induced inflammation, ROS generation, fibrosis and adipogenic differentiation in GO patient‐derived orbital fibroblasts. The anti‐inflammatory, antioxidant and antiadipogenic effects of neferine were accompanied by the up‐regulation of Nrf2. These results indicated that orbital tissue remodelling and inflammation in GO may be mediated by autophagy, and neferine suppressed autophagy‐related inflammation and adipogenesis through a mechanism involving Nrf2.
Collapse
Affiliation(s)
- Hong Li
- Department of Endocrinology, Shanghai University of Traditional Chinese Medicine Longhua affiliated Hospital, Shanghai, China
| | - Long Gao
- Department of Endocrinology, Shanghai University of Traditional Chinese Medicine Longhua affiliated Hospital, Shanghai, China
| | - Jie Min
- Department of Endocrinology, Shanghai University of Traditional Chinese Medicine Longhua affiliated Hospital, Shanghai, China
| | - Yucheng Yang
- Department of Endocrinology, Shanghai University of Traditional Chinese Medicine Longhua affiliated Hospital, Shanghai, China
| | - Ren Zhang
- Department of Endocrinology, Shanghai University of Traditional Chinese Medicine Longhua affiliated Hospital, Shanghai, China
| |
Collapse
|
24
|
Vieyra-Garcia PA, Wolf P. A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol Ther 2020; 222:107784. [PMID: 33316286 DOI: 10.1016/j.pharmthera.2020.107784] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
UV-based phototherapy (including psoralen plus UVA (PUVA), UVB and UVA1) has a long, successful history in the management of numerous cutaneous disorders. Photoresponsive diseases are etiologically diverse, but most involve disturbances in local (and occasionally systemic) inflammatory cells and/or abnormalities in keratinocytes that trigger inflammation. UV-based phototherapy works by regulating the inflammatory component and inducing apoptosis of pathogenic cells. This results in a fascinating and complex network of simultaneous events-immediate transcriptional changes in keratinocytes, immune cells, and pigment cells; the emergence of apoptotic bodies; and the trafficking of antigen-presenting cells in skin-that quickly transform the microenvironment of UV-exposed skin. Molecular elements in this system of UV recognition and response include chromophores, metabolic byproducts, innate immune receptors, neurotransmitters and mediators such as chemokines and cytokines, antimicrobial peptides, and platelet activating factor (PAF) and PAF-like molecules that simultaneously shape the immunomodulatory effects of UV and their interplay with the microbiota of the skin and beyond. Phototherapy's key effects-proapoptotic, immunomodulatory, antipruritic, antifibrotic, propigmentary, and pro-prebiotic-promote clinical improvement in various skin diseases such as psoriasis, atopic dermatitis (AD), graft-versus-host disease (GvHD), vitiligo, scleroderma, and cutaneous T-cell lymphoma (CTCL) as well as prevention of polymorphic light eruption (PLE). As understanding of phototherapy improves, new therapies (UV- and non-UV-based) are being developed that will modify regulatory T-cells (Treg), interact with (resident) memory T-cells and /or utilize agonists and antagonists as well as antibodies targeting soluble molecules such as cytokines and chemokines, transcription factors, and a variety of membrane-associated receptors.
Collapse
Affiliation(s)
- Pablo A Vieyra-Garcia
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| |
Collapse
|
25
|
Sun X, Cui X, Chen X, Jiang X. Baicalein alleviated TGF β1-induced type I collagen production in lung fibroblasts via downregulation of connective tissue growth factor. Biomed Pharmacother 2020; 131:110744. [PMID: 32932046 DOI: 10.1016/j.biopha.2020.110744] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023] Open
Abstract
Although we have reported that baicalein ameliorated bleomycin-induced pulmonary fibrosis in rats and inhibited fibroblast-to-myofibroblast differentiation, the mechanisms of the capability of baicalein to suppress the production of type I collagen in fibroblasts remains unclear. Here, we showed that baicalein suppressed transforming growth factor β1 (TGF β1)-stimulated the production of type I collagen in lung fibroblast MRC-5 cells. By applying SILAC-based proteomic technology, 158 proteins were identified as baicalein-modulated proteins in TGF β1-stimulated the accumulation of type I collagen in MRC-5 cells. Our proteomic and biochemical analysis demonstrated that baicalein decreased the expression levels of connective tissue growth factor (CTGF) in TGF β1-stimulated MRC-5 cells. In addition, CTGF overexpression elevated the levels of type I collagen in baicalein-treated fibroblasts. Moreover, our results demonstrated that baicalein-downregulated CTGF expression might be related with the decrease of Smad2 phosphorylation, but not SP1. This work not only linked CTGF to TGF β1-stimulated the production of type I collagen in its attribution to the effects of baicalein, but also might provide valuable information for enhancing the knowledge of the pharmacological inhibition of collagen production, which might represent a promising strategy for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xionghua Sun
- College of Pharmaceutical Sciences, Soochow University, China
| | - Xinjian Cui
- College of Pharmaceutical Sciences, Soochow University, China
| | - Xihua Chen
- College of Pharmaceutical Sciences, Soochow University, China
| | - Xiaogang Jiang
- College of Pharmaceutical Sciences, Soochow University, China.
| |
Collapse
|
26
|
Shi S, Liu Y, Qiu X, Cao M, Xiao Y, Yan X. Correlation between serum bilirubin levels and the severity as well as the prognosis of idiopathic pulmonary fibrosis. Chron Respir Dis 2020; 17:1479973120957676. [PMID: 32909821 PMCID: PMC7493269 DOI: 10.1177/1479973120957676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bilirubin exerts antioxidant activity that has been associated with respiratory diseases. However, the relationship between serum bilirubin levels and idiopathic pulmonary fibrosis (IPF) is not clear. Therefore, in this study, we evaluated the relationship between serum bilirubin levels and the severity as well as the prognosis of IPF. One hundred and forty-six patients with IPF and 69 healthy individuals as the control group were enrolled as a derivation cohort. Routine blood examination and pulmonary function tests were performed and serum bilirubin levels were measured. To validate the value of serum bilirubin levels to predict the survival of patients with IPF, 40 additional IPF patients were included as a validation cohort. IPF patients were followed-up. Patients with IPF had significantly lower levels of serum total bilirubin (TBIL) and direct bilirubin (DBIL) than those in the control group (P < 0.05). Patients with acute exacerbation of IPF (AE-IPF) had significantly lower levels of serum TBIL and IBIL than those in patients with stable IPF (P < 0.05). The area under the receiver operating characteristic curve (AUROC) of serum TBIL levels for the prediction of the incidence of AE-IPF was 0.72 (95% CI: 0.56–0.87, P = 0.0057). The best cutoff value of serum TBIL level to predict the survival of patients with IPF was 8.8 μmol/l (AUC = 0.75, 95% CI: 0.64–0.87, P = 0.022). The log-rank test showed a significant difference in survival between the two groups (TBIL ≤8.8 μmol/l and TBIL >8.8 μmol/l) in derivation and validation cohort. Cox multiple regression analysis indicated that serum TBIL levels were an independent prognostic factor for IPF prognosis (HR = 0.582, P = 0.026). Serum TBIL levels might be useful for reflecting the severity and predicting the survival of patients with IPF.
Collapse
Affiliation(s)
- Shenyun Shi
- Department of Respiratory and Critical Care Medicine, 66506Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yin Liu
- Department of Respiratory and Critical Care Medicine, 66506Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaohua Qiu
- Department of Respiratory and Critical Care Medicine, 66506Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Min Cao
- Department of Respiratory and Critical Care Medicine, 66506Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yonglong Xiao
- Department of Respiratory and Critical Care Medicine, 66506Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, 66506Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Gong Y, Yang Y. Activation of Nrf2/AREs-mediated antioxidant signalling, and suppression of profibrotic TGF-β1/Smad3 pathway: a promising therapeutic strategy for hepatic fibrosis - A review. Life Sci 2020; 256:117909. [PMID: 32512009 DOI: 10.1016/j.lfs.2020.117909] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Hepatic fibrosis (HF) is a wound-healing response that occurs during chronic liver injury and features by an excessive accumulation of extracellular matrix (ECM) components. Activation of hepatic stellate cell (HSC), the leading effector in HF, is responsible for overproduction of ECM. It has been documented that transforming growth factor-β1 (TGF-β1) stimulates superfluous accumulation of ECM and triggers HSCs activation mainly via canonical Smad-dependent pathway. Also, the pro-fibrogenic TGF-β1 is correlated with generation of reactive oxygen species (ROS) and inhibition of antioxidant mechanisms. Moreover, involvement of oxidative stress (OS) can be clearly elucidated as a fundamental event in liver fibrogenesis. Nuclear factor erythroid 2-related factor 2-antioxidant response elements (Nrf2-AREs) pathway, a group of OS-mediated transcription factors with diverse downstream targets, is associated with the induction of diverse detoxifying enzymes and the most pivotal endogenous antioxidative system. More specifically, Nrf2-AREs pathway has recently assigned as a new therapeutic target for cure of HF. The overall goal of this review will focus on recent findings about activation of Nrf2-AREs-mediated antioxidant and suppression of profibrotic TGF-β1/Smad3 pathway in the liver, providing an overview of recent advances in transcriptional repressors that dislocated during HF formation, and highlighting possible novel therapeutic targets for liver fibrosis.
Collapse
Affiliation(s)
- Yongfang Gong
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Yan Yang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
28
|
Synthesis, in vitro and in silico studies of HO-1 inducers and lung antifibrotic agents. Future Med Chem 2020; 11:1523-1536. [PMID: 31469335 DOI: 10.4155/fmc-2018-0448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Dimethyl fumarate (DMF) analogs were synthesized to obtain inducers of HO-1 and antifibrotic agents. Methods: HO-1 expression levels were measured on lung fibroblasts (MRC5). NMR and docking studies were performed. Heme oxygenase activity, gene levels and protein expression have been measured for the most active compound 1a. Collagen production by fibroblast after exposure to TGF-β was measured. Results: Compound 1a showed to be a strong HO-1 inducer. Its activity seems to be mediated by activation of nuclear factor erythroid 2 related factor 2 (Nrf2). TGF-β-induced collagen production was significantly decreased on MRC5, pretreated with DMF or 1a. DMF and 1a have a high potential for treatment of lung fibrotic injuries.
Collapse
|
29
|
Sugiyama T, Matsushima M, Ohdachi T, Hashimoto N, Hasegawa Y, Yokoi K, Kawabe T. Involvement of heme oxygenase-1 in suppression of T cell activation by quercetin. Immunopharmacol Immunotoxicol 2020; 42:295-305. [PMID: 32397768 DOI: 10.1080/08923973.2020.1759623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM Acute rejection is still a major problem in transplantation and one of the most important causes of late graft loss. Cyclosporine and tacrolimus are widely used for suppression of T cell function to avoid graft rejection, but long-term use of these compounds is associated with serious toxicities. Quercetin, a flavonoid found in fruits and vegetables, has been demonstrated to exhibit cytoprotective effects through the induction of heme oxygenase (HO) -1, an enzyme involved in heme catabolism. We hypothesized that quercetin induces HO-1 in T cells and suppresses T cell function via HO-1. In the present study, we showed that quercetin suppressed the A23187-mediated expression of interleukin (IL) -2 in T cells. METHODS Mouse splenocytes, enriched T cells, and EL4 cells, a mouse T cell line, were treated with quercetin, and then stimulated with A23187, a calcium ionophore, concanavalin A, or anti-CD3ε and anti-CD28 antibodies. Cell proliferation, expression of IL-2, calcium mobilization, apoptosis, cell cycle, and phosphorylation of extracellular signal-regulated kinase (ERK) were investigated. RESULTS Quercetin induced HO-1, and this induction of HO-1 was implicated in the suppression of IL-2 production. Furthermore, the induction of HO-1 by quercetin suppressed the influx of calcium ions, a known trigger of IL-2 production. Additionally, quercetin suppressed T cell proliferation through promotion of cell cycle arrest via HO-1 induction, but quercetin did not induce apoptosis. To investigate the role of the signal transduction pathway in quercetin's effect on cell proliferation, we evaluated the phosphorylation of ERK in T cells. Quercetin suppressed the A23187-mediated stimulation of ERK, an effect that was mediated through HO-1. These results suggested that HO-1 is involved in the suppressive effects of quercetin on T cell activation and proliferation. CONCLUSION Our findings indicate that the quercetin may be a promising candidate for inducing HO-1 in T cells, thereby facilitating immunosuppressive effects.
Collapse
Affiliation(s)
- Tomoshi Sugiyama
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miyoko Matsushima
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoko Ohdachi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohei Yokoi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Kawabe
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
30
|
Boots AW, Veith C, Albrecht C, Bartholome R, Drittij MJ, Claessen SMH, Bast A, Rosenbruch M, Jonkers L, van Schooten FJ, Schins RPF. The dietary antioxidant quercetin reduces hallmarks of bleomycin-induced lung fibrogenesis in mice. BMC Pulm Med 2020; 20:112. [PMID: 32349726 PMCID: PMC7191795 DOI: 10.1186/s12890-020-1142-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, lethal disease of which the etiology is still not fully understood. Current treatment comprises two FDA-approved drugs that can slow down yet not stop or reverse the disease. As IPF pathology is associated with an altered redox balance, adding a redox modulating component to current therapy might exert beneficial effects. Quercetin is a dietary antioxidant with strong redox modulating capacities that is suggested to exert part of its antioxidative effects via activation of the redox-sensitive transcription factor Nrf2 that regulates endogenous antioxidant levels. Therefore, the aim of the present study was to investigate if the dietary antioxidant quercetin can exert anti-fibrotic effects in a mouse model of bleomycin-induced pulmonary fibrogenesis through Nrf2-dependent restoration of redox imbalance. METHODS Homozygous Nrf2 deficient mice and their wildtype littermates were fed a control diet without or with 800 mg quercetin per kg diet from 7 days prior to a single 1 μg/2 μl per g BW bleomycin challenge until they were sacrificed 14 days afterwards. Lung tissue and plasma were collected to determine markers of fibrosis (expression of extracellular matrix genes and histopathology), inflammation (pulmonary gene expression and plasma levels of tumor necrosis factor-α (TNFα) and keratinocyte chemoattrachtant (KC)), and redox balance (pulmonary gene expression of antioxidants and malondialdehyde-dG (MDA)- DNA adducts). RESULTS Mice fed the enriched diet for 7 days prior to the bleomycin challenge had significantly enhanced plasma and pulmonary quercetin levels (11.08 ± 0.73 μM versus 7.05 ± 0.2 μM) combined with increased expression of Nrf2 and Nrf2-responsive genes compared to mice fed the control diet in lung tissue. Upon bleomycin treatment, quercetin-fed mice displayed reduced expression of collagen (COL1A2) and fibronectin (FN1) and a tendency of reduced inflammatory lesions (2.8 ± 0.7 versus 1.9 ± 0.8). These beneficial effects were accompanied by reduced pulmonary gene expression of TNFα and KC, but not their plasma levels, and enhanced Nrf2-induced pulmonary antioxidant defences. In Nrf2 deficient mice, no effect of the dietary antioxidant on either histology or inflammatory lesions was observed. CONCLUSION Quercetin exerts anti-fibrogenic and anti-inflammatory effects on bleomycin-induced pulmonary damage in mice possibly through modulation of the redox balance by inducing Nrf2. However, quercetin could not rescue the bleomycin-induced pulmonary damage indicating that quercetin alone cannot ameliorate the progression of IPF.
Collapse
Affiliation(s)
- Agnes W Boots
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands. .,IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, DE, Germany.
| | - Carmen Veith
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Catrin Albrecht
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, DE, Germany
| | - Roger Bartholome
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Marie-José Drittij
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Sandra M H Claessen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | | | - Leonie Jonkers
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, DE, Germany
| |
Collapse
|
31
|
Yang T, Wang H, Li Y, Zeng Z, Shen Y, Wan C, Wu Y, Dong J, Chen L, Wen F. Serotonin receptors 5-HTR2A and 5-HTR2B are involved in cigarette smoke-induced airway inflammation, mucus hypersecretion and airway remodeling in mice. Int Immunopharmacol 2020; 81:106036. [PMID: 31787571 DOI: 10.1016/j.intimp.2019.106036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cigarette smoke plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Recently, elevated serotonin (5-HT) levels were found in the plasma of COPD patients. The role of 5-HT and its receptors in airway inflammation and remodeling induced by cigarette smoke is unclear. METHODS BALB/c mice received the 5-HTR2A inhibitor ketanserin, the 5-HTR2B inhibitor RS-127445 or the natural 5-HTR2A/2B inhibitor quercetin intraperitoneally, then were exposed to cigarette smoke for 6 or 12 weeks. Control mice received placebo and were exposed to room air or cigarette smoke. Mice were sacrificed and bronchial alveolar lavage fluid (BALF) and lung tissue samples were collected. RESULTS Immunohistochemistry and western blot confirmed an increase in both 5-HTR2A and 5-HTR2B expression in mouse lungs after exposure to cigarette smoke for 6 and 12 weeks. Cigarette smoke induced accumulation of macrophages and neutrophils and increased levels of inflammatory cytokines, including IL-1β and TNF-ɑ, in BALF and lung tissue; these effects were inhibited by ketanserin, RS-127445 and quercetin. Pretreatment with 5-HT receptor antagonists suppressed the goblet cell hyperplasia induced by 6- or 12-week exposure to cigarette smoke, based on Alcian blue-periodic acid Schiff staining. After 12 weeks of cigarette smoke exposure, Masson's staining showed fibrosis surrounding the mouse airways, and inhibitor pretreatment significantly attenuated the thickening and collagen deposition around the small airways. CONCLUSIONS Our results suggest that cigarette smoke-induced airway inflammation and small airway remodeling are partially mediated by 5-HTR2A and 5-HTR2B, which could be a new therapeutic target for airway remodeling in COPD.
Collapse
Affiliation(s)
- Ting Yang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuhao Li
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zijian Zeng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Yongchun Shen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chun Wan
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yanqiu Wu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiajia Dong
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lei Chen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
32
|
Greco S, Islam MS, Zannotti A, Delli Carpini G, Giannubilo SR, Ciavattini A, Petraglia F, Ciarmela P. Quercetin and indole-3-carbinol inhibit extracellular matrix expression in human primary uterine leiomyoma cells. Reprod Biomed Online 2020; 40:593-602. [PMID: 32276890 DOI: 10.1016/j.rbmo.2020.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 01/03/2023]
Abstract
RESEARCH QUESTION What is the effect of quercetin and indole-3-carbinol (I3C) on extracellular matrix expression, cell migration and proliferation in human myometrial and uterine leiomyoma cells. DESIGN Myometrial and leiomyoma cells were treated with quercetin or I3C at different concentrations (10 µg/ml; 50 µg/ml; 100 µg/ml; and 250 µg/ml) for 48 h to measure mRNA and protein expressions of extracellular matrix (collagen 1A1, fibronectin and versican), as well as cell migration and the proliferation rate. RESULTS Quercetin decreased mRNA levels of collagen 1A1 in myometrial (P < 0.0001) and leiomyoma cells (P < 0.0001). Quercetin reduced mRNA and protein levels of fibronectin in myometrial cells (P < 0.05) and fibronectin protein in leiomyoma cells (P < 0.05). I3C reduced collagen 1A1 mRNA levels in myometrial (P < 0.05) and leiomyoma cells at higher dose (P < 0.05). The protein levels of fibronectin were also reduced in both myometrial and leiomyoma cells with highest dose of I3C (P < 0.05), although mRNA levels were not affected in leiomyoma cells. Neither quercetin nor I3C treatment altered versican mRNA levels in both cell types. A significant reduction of the migration of both myometrial and leiomyoma cells in response to quercetin was observed (P < 0.05) and I3C (P < 0.05 for myometrial and P < 0.01 for leiomyoma cells) treatment. Both quercetin and I3C significantly reduced myometrial cell proliferation (P < 0.05). CONCLUSIONS The in-vitro anti-fibrotic, anti-migratory and anti-proliferative effects of quercetin and I3C form the scientific basis for developing new therapeutic, preventive agents, or both, for uterine leiomyomas.
Collapse
Affiliation(s)
- Stefania Greco
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Università Politecnica delle Marche, 60020 via Tronto 10/a Ancona, Italy
| | - Md Soriful Islam
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Università Politecnica delle Marche, 60020 via Tronto 10/a Ancona, Italy
| | - Alessandro Zannotti
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Università Politecnica delle Marche, 60020 via Tronto 10/a Ancona, Italy; Department of Medical Biotechnology and Department of Molecular and Developmental, Medicine, Obstetrics, and Gynaecology, Università Politecnica delle Marche, Ancona 60020, Italy
| | - Giovanni Delli Carpini
- Department of Medical Biotechnology and Department of Molecular and Developmental, Medicine, Obstetrics, and Gynaecology, Università Politecnica delle Marche, Ancona 60020, Italy
| | - Stefano Raffaele Giannubilo
- Department of Medical Biotechnology and Department of Molecular and Developmental, Medicine, Obstetrics, and Gynaecology, Università Politecnica delle Marche, Ancona 60020, Italy
| | - Andrea Ciavattini
- Department of Medical Biotechnology and Department of Molecular and Developmental, Medicine, Obstetrics, and Gynaecology, Università Politecnica delle Marche, Ancona 60020, Italy
| | - Felice Petraglia
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Obstetrics and Gynaecology, University of Florence, Italy
| | - Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Università Politecnica delle Marche, 60020 via Tronto 10/a Ancona, Italy.
| |
Collapse
|
33
|
Hammad ASA, Ahmed ASF, Heeba GH, Taye A. Heme oxygenase-1 contributes to the protective effect of resveratrol against endothelial dysfunction in STZ-induced diabetes in rats. Life Sci 2019; 239:117065. [PMID: 31751579 DOI: 10.1016/j.lfs.2019.117065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/28/2022]
Abstract
Endothelial dysfunction is a common complication of diabetes that mainly stems from increased reactive oxygen species, which makes antioxidants of great benefit. Resveratrol (RSV) is an antioxidant that shows protective effects in a variety of disease models where the ameliorative effect appears to be mediated, in part, via heme oxygenase-1 (HO-1) induction. However, the pathophysiological relevance of HO-1 in the ameliorative response of RSV in endothelial dysfunction is not clearly defined. The present study was conducted to investigate whether HO-1 plays a role in diabetes-induced vascular dysfunction. Streptozotocin-diabetic rats were treated with RSV (10 mg/kg) in presence or absence of an HO-1 blocker, Zinc protoporphyrin (ZnPP) to assess vascular function and indicators of disease status. We found that RSV treatment significantly abrogated diabetes induced vascular dysfunction. This improvement was associated with the ability of RSV to decrease oxidative stress markers alongside a reduction in the aortic TGF-β expression, elevation of NOS3 expression and aortic nitrite concentration as well as HO activity. These ameliorative effects were diminished when ZnPP was administered prior to RSV. Our results clearly demonstrate the protective effects of RSV in diabetes-associated endothelial dysfunction and verified a causal role of HO-1 in this setting.
Collapse
Affiliation(s)
- Asmaa S A Hammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt.
| | - Gehan H Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| | - Ashraf Taye
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Egypt
| |
Collapse
|
34
|
Veith C, Boots AW, Idris M, van Schooten FJ, van der Vliet A. Redox Imbalance in Idiopathic Pulmonary Fibrosis: A Role for Oxidant Cross-Talk Between NADPH Oxidase Enzymes and Mitochondria. Antioxid Redox Signal 2019; 31:1092-1115. [PMID: 30793932 PMCID: PMC6767863 DOI: 10.1089/ars.2019.7742] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Significance: Idiopathic pulmonary fibrosis (IPF) is a progressive age-related lung disease with a median survival of only 3 years after diagnosis. The pathogenic mechanisms behind IPF are not clearly understood, and current therapeutic approaches have not been successful in improving disease outcomes. Recent Advances: IPF is characterized by increased production of reactive oxygen species (ROS), primarily by NADPH oxidases (NOXes) and mitochondria, as well as altered antioxidant defenses. Recent studies have identified the NOX isoform NOX4 as a key player in various important aspects of IPF pathology. In addition, mitochondrial dysfunction is thought to enhance pathological features of IPF, in part by increasing mitochondrial ROS (mtROS) production and altering cellular metabolism. Recent findings indicate reciprocal interactions between NOX enzymes and mitochondria, which affect regulation of NOX activity as well as mitochondrial function and mtROS production, and collectively promote epithelial injury and profibrotic signaling. Critical Issues and Future Directions: The precise molecular mechanisms by which ROS from NOX or mitochondria contribute to IPF pathology are not known. This review summarizes the current knowledge with respect to the various aspects of ROS imbalance in the context of IPF and its proposed roles in disease development, with specific emphasis on the importance of inappropriate NOX activation, mitochondrial dysfunction, and the emerging evidence of NOX-mitochondria cross-talk as important drivers in IPF pathobiology.
Collapse
Affiliation(s)
- Carmen Veith
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition, Translational Research and Metabolism, University of Maastricht, Maastricht, the Netherlands
| | - Agnes W. Boots
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition, Translational Research and Metabolism, University of Maastricht, Maastricht, the Netherlands
| | - Musa Idris
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition, Translational Research and Metabolism, University of Maastricht, Maastricht, the Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition, Translational Research and Metabolism, University of Maastricht, Maastricht, the Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Address correspondence to: Dr. Albert van der Vliet, Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, HSRF 216, 149 Beaumont Avenue, Burlington, VT 05405
| |
Collapse
|
35
|
Role of Nrf2 and Its Activators in Respiratory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7090534. [PMID: 30728889 PMCID: PMC6341270 DOI: 10.1155/2019/7090534] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/22/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a major regulator of antioxidant response element- (ARE-) driven cytoprotective protein expression. The activation of Nrf2 signaling plays an essential role in preventing cells and tissues from injury induced by oxidative stress. Under the unstressed conditions, natural inhibitor of Nrf2, Kelch-like ECH-associated protein 1 (Keap1), traps Nrf2 in the cytoplasm and promotes the degradation of Nrf2 by the 26S proteasome. Nevertheless, stresses including highly oxidative microenvironments, impair the ability of Keap1 to target Nrf2 for ubiquitination and degradation, and induce newly synthesized Nrf2 to translocate to the nucleus to bind with ARE. Due to constant exposure to external environments, including diverse pollutants and other oxidants, the redox balance maintained by Nrf2 is fairly important to the airways. To date, researchers have discovered that Nrf2 deletion results in high susceptibility and severity of insults in various models of respiratory diseases, including bronchopulmonary dysplasia (BPD), respiratory infections, acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), asthma, idiopathic pulmonary fibrosis (IPF), and lung cancer. Conversely, Nrf2 activation confers protective effects on these lung disorders. In the present review, we summarize Nrf2 involvement in the pathogenesis of the above respiratory diseases that have been identified by experimental models and human studies and describe the protective effects of Nrf2 inducers on these diseases.
Collapse
|
36
|
Gáll T, Pethő D, Nagy A, Hendrik Z, Méhes G, Potor L, Gram M, Åkerström B, Smith A, Nagy P, Balla G, Balla J. Heme Induces Endoplasmic Reticulum Stress (HIER Stress) in Human Aortic Smooth Muscle Cells. Front Physiol 2018; 9:1595. [PMID: 30515102 PMCID: PMC6255930 DOI: 10.3389/fphys.2018.01595] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Accumulation of damaged or misfolded proteins resulted from oxidative protein modification induces endoplasmic reticulum (ER) stress by activating the pathways of unfolded protein response. In pathologic hemolytic conditions, extracellular free hemoglobin is submitted to rapid oxidation causing heme release. Resident cells of atherosclerotic lesions, after intraplaque hemorrhage, are exposed to heme leading to oxidative injury. Therefore, we raised the question whether heme can also provoke ER stress. Smooth muscle cells are one of the key players of atherogenesis; thus, human aortic smooth muscle cells (HAoSMCs) were selected as a model cell to reveal the possible link between heme and ER stress. Using immunoblotting, quantitative polymerase chain reaction and immunocytochemistry, we quantitated the markers of ER stress. These were: phosphorylated eIF2α, Activating transcription factor-4 (ATF4), DNA-damage-inducible transcript 3 (also known as C/EBP homology protein, termed CHOP), X-box binding protein-1 (XBP1), Activating transcription factor-6 (ATF6), GRP78 (glucose-regulated protein, 78kDa) and heme responsive genes heme oxygenase-1 and ferritin. In addition, immunohistochemistry was performed on human carotid artery specimens from patients who had undergone carotid endarterectomy. We demonstrate that heme increases the phosphorylation of eiF2α in HAoSMCs and the expression of ATF4. Heme also enhances the splicing of XBP1 and the proteolytic cleavage of ATF6. Consequently, there is up-regulation of target genes increasing both mRNA and protein levels of CHOP and GRP78. However, TGFβ and collagen type I decreased. When the heme binding proteins, alpha-1-microglobulin (A1M) and hemopexin (Hpx) are present in cell media, the ER stress provoked by heme is inhibited. ER stress pathways are also retarded by the antioxidant N-acetyl cysteine (NAC) indicating that reactive oxygen species are involved in heme-induced ER stress. Consistent with these findings, elevated expression of the ER stress marker GRP78 and CHOP were observed in smooth muscle cells of complicated lesions with hemorrhage compared to either atheromas or healthy arteries. In conclusion, heme triggers ER stress in a time- and dose-dependent manner in HAoSMCs. A1M and Hpx as well as NAC effectively hamper heme-induced ER stress, supporting their use as a potential therapeutic approach to reverse such a deleterious effects of heme toxicity.
Collapse
Affiliation(s)
- Tamás Gáll
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dávid Pethő
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annamária Nagy
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Hendrik
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Potor
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Magnus Gram
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, Lund, Sweden
| | - Bo Åkerström
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, Lund, Sweden
| | - Ann Smith
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Péter Nagy
- Department of Vascular Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - József Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
37
|
Wang XF, Song SD, Li YJ, Hu ZQ, Zhang ZW, Yan CG, Li ZG, Tang HF. Protective Effect of Quercetin in LPS-Induced Murine Acute Lung Injury Mediated by cAMP-Epac Pathway. Inflammation 2018; 41:1093-1103. [PMID: 29569077 DOI: 10.1007/s10753-018-0761-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Quercetin (Que) as an abundant flavonol element possesses potent antioxidative properties and has protective effect in lipopolysaccharide (LPS)-induced acute lung injury (ALI), but the specific mechanism is still unclear, so we investigated the effect of Que from in vivo and in vitro studies and the related mechanism of cAMP-PKA/Epac pathway. The results in mice suggested that Que can inhibit the release of inflammatory cytokine, block neutrophil recruitment, and decrease the albumin leakage in dose-dependent manners. At the same time, Que can increase the cAMP content of lung tissue, and Epac content, except PKA. The results in epithelial cell (MLE-12) suggested that Que also can inhibit the inflammatory mediators keratinocyte-derived chemokines release after LPS stimulation; Epac inhibitor ESI-09 functionally antagonizes the inhibitory effect of Que; meanwhile, PKA inhibitor H89 functionally enhances the inhibitory effect of Que. Overexpression of Epac1 in MLE-12 suggested that Epac1 enhance the effect of Que. All those results suggested that the protective effect of quercetin in ALI is involved in cAMP-Epac pathway.
Collapse
Affiliation(s)
- Xue-Feng Wang
- Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Shun-de Song
- Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ya-Jun Li
- Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zheng Qiang Hu
- Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhe-Wen Zhang
- Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Guang Yan
- Department of Pathogenic Biology and Immunology, Southeast University School of Medicine, Nanjing, 210009, China
| | - Zi-Gang Li
- Department of Anesthesiology, Women's Hospital,School of Medicine, Zhejiang University , Hangzhou, 310006, China
| | - Hui-Fang Tang
- Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
38
|
The protective and therapeutic effects of total flavonoids of Astragalus against bleomycin-induced pulmonary fibrosis are through the enhancement of autophagy. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2018. [DOI: 10.1016/j.jtcms.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
39
|
Chirumbolo S, Bjørklund G. Quercetin in collagen-induced arthritis. Some comments. Int Immunopharmacol 2018; 62:335-336. [PMID: 29970297 DOI: 10.1016/j.intimp.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy.
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
40
|
Kyung SY, Kim DY, Yoon JY, Son ES, Kim YJ, Park JW, Jeong SH. Sulforaphane attenuates pulmonary fibrosis by inhibiting the epithelial-mesenchymal transition. BMC Pharmacol Toxicol 2018; 19:13. [PMID: 29609658 PMCID: PMC5879815 DOI: 10.1186/s40360-018-0204-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/21/2018] [Indexed: 01/06/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease with no effective treatment. The epithelial-mesenchymal transition (EMT) is a critical stage during the development of fibrosis. To assess the effect of sulforaphane (SFN) on the EMT and fibrosis using an in vitro transforming growth factor (TGF)-β1-induced model and an in vivo bleomycin (BLM)-induced model. Methods In vitro studies, cell viability, and cytotoxicity were measured using a Cell Counting Kit-8. The functional TGF-β1-induced EMT and fibrosis were assessed using western blotting and a quantitative real-time polymerase chain reaction. The lungs were analyzed histopathologically in vivo using hematoxylin and eosin and Masson’s trichrome staining. The BLM-induced fibrosis was characterized by western blotting and immunohistochemical analyses for fibronectin, TGF-β1, E-cadherin (E-cad), and α-smooth muscle actin (SMA) in lung tissues. Results SFN reversed mesenchymal-like changes induced by TGF-β1 and restored cells to their epithelial-like morphology. The results confirmed that the expression of the epithelial marker, E-cadherin, increased after SFN treatment, while expression of the mesenchymal markers, N-cadherin, vimentin, and α-SMA decreased in A549 cells after SFN treatment. In addition, SFN inhibited TGF-β1-induced mRNA expression of the EMT-related transcription factors, Slug, Snail, and Twist. The SFN treatment attenuated TGF-β1-induced expression of fibrosis-related proteins, such as fibronection, collagen I, collagen IV, and α-SMA in MRC-5 cells. Furthermore, SFN reduced the TGF-β1-induced phosphorylation of SMAD2/3 protein in A549 cells and MRC-5 cells. BLM induced fibrosis in mouse lungs that was also attenuated by SFN treatment, and SFN treatment decreased BLM-induced fibronectin expression, TGF-β1 expression, and the levels of collagen I in the lungs of mice. Conclusions SFN showed a significant anti-fibrotic effect in TGF-β-treated cell lines and BLM-induced fibrosis in mice. These findings showed that SFN has anti-fibrotic activity that may be considered in the treatment of IPF. Electronic supplementary material The online version of this article (10.1186/s40360-018-0204-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sun Young Kyung
- Department of Internal Medicine, Gachon University Gil Medical Center, 21 Namdong-daero 774, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Dae Young Kim
- Department of Biological Science, College of Bio-nano Technology, Gachon University, Seongnam-daero 1342, Seongnam, South Korea
| | - Jin Young Yoon
- Department of Internal Medicine, Gachon University Gil Medical Center, 21 Namdong-daero 774, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Eun Suk Son
- Department of Internal Medicine, Gachon University Gil Medical Center, 21 Namdong-daero 774, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Yu Jin Kim
- Department of Internal Medicine, Gachon University Gil Medical Center, 21 Namdong-daero 774, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Jeong Woong Park
- Department of Internal Medicine, Gachon University Gil Medical Center, 21 Namdong-daero 774, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Sung Hwan Jeong
- Department of Internal Medicine, Gachon University Gil Medical Center, 21 Namdong-daero 774, Namdong-gu, Incheon, 21565, Republic of Korea.
| |
Collapse
|
41
|
Veith C, Drent M, Bast A, van Schooten FJ, Boots AW. The disturbed redox-balance in pulmonary fibrosis is modulated by the plant flavonoid quercetin. Toxicol Appl Pharmacol 2017; 336:40-48. [PMID: 28987380 DOI: 10.1016/j.taap.2017.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/26/2017] [Accepted: 10/03/2017] [Indexed: 02/08/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by a disturbed pulmonary redox balance associated with inflammation. To restore this balance, antioxidants are often suggested as therapy for IPF but previous clinical trials with these compounds and their precursors have not been successful in the clinic. The exogenous antioxidant quercetin, which has a versatile antioxidant profile and is effective in restoring a disturbed redox balance, might be a better candidate. The aim of this study was to evaluate the protective effect of quercetin on oxidative and inflammatory markers in IPF. Here, we demonstrate that IPF patients have a significantly reduced endogenous antioxidant defense, shown by a reduced total antioxidant capacity and lowered glutathione and uric acid levels compared to healthy controls. This confirms that the redox balance is disturbed in IPF. Ex vivo incubation with quercetin in blood of both IPF patients and healthy controls reduces LPS-induced production of the pro-inflammatory cytokines IL-8 and TNFα. This anti-inflammatory effect was more pronounced in the blood of the patients. Our pro-fibrotic in vitro model, consisting of bleomycin-triggered BEAS-2B cells, shows that quercetin boosts the antioxidant response, by increasing Nrf2 activity, and decreases pro-inflammatory cytokine production in a concentration-dependent manner. Collectively, our findings implicate that IPF patients may benefit from the use of quercetin to restore the disturbed redox balance and reduce inflammation.
Collapse
Affiliation(s)
- C Veith
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition & Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - M Drent
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition & Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; ILD Center of Excellence, St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
| | - A Bast
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition & Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - F J van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition & Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - A W Boots
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition & Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
42
|
Paulis G, Paulis A, Romano G, Barletta D, Fabiani A. Rationale of combination therapy with antioxidants in medical management of Peyronie's disease: results of clinical application. Res Rep Urol 2017; 9:129-139. [PMID: 28791261 PMCID: PMC5530853 DOI: 10.2147/rru.s141748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Peyronie's disease (PD) is a connective tissue disorder involving the tunica albuginea of the corpora cavernosa of the penis. We have published several studies describing a "combined therapy" for PD patients, but the present study aims to clearly demonstrate how the association between various antioxidants in PD treatment can significantly increase the likelihood of therapeutic success. We used the following substances: silymarin, ginkgo biloba, vitamin E, bilberry, topical diclofenac sodium, and pentoxifylline (PTX). We analyzed the therapeutic impact and possible side effects of one or more antioxidants in patients with early-stage PD. To clearly prove that it is possible to achieve better results when combining more than one agent, we designed this study with five treatment groups, corresponding, respectively, to the administration of a single oral antioxidant; two oral antioxidants; three oral antioxidants; five oral antioxidants + local diclofenac; and five oral antioxidants + local diclofenac + PTX by perilesional injection. One hundred and twenty patients were assigned to five groups of treatment designed according to the abovementioned study aim. Outcomes after 6 months of treatment showed that combined antioxidant therapy is effective in treating PD. Statistical analysis showed significant differences between the treatment groups with regard to: improvement and disappearance of penile pain; percentage of reduction in the volume of penile plaque; reduction in penile curvature; recovery of erectile function in patients with erectile dysfunction; increase in the International Index of Erectile Function score; and reduction of psychosexual impact. Furthermore, we observed that the clinical efficacy of combined therapy is greater when topical use of diclofenac gel and perilesional injection of PTX are added to oral treatment with more than one antioxidant. Although several articles have already been published reporting the effectiveness of combined treatment in PD, this is the first study clearly proving how, as the number of substances used in treatment rises, a proportionally greater therapeutic effect is achieved.
Collapse
Affiliation(s)
- Gianni Paulis
- Department of Surgical Sciences, Andrology Center, Regina Apostolorum Hospital, Rome, Italy.,Department of Uro-Andrology, Peyronie's Disease Care Center, Rome, Italy
| | - Andrea Paulis
- Section of Psycho-Sexology, Peyronie's Disease Care Center, Rome, Italy
| | - Gennaro Romano
- Department of Urologic Oncology, Section of Avellino, Italian League against Cancer, Avellino, Italy
| | - Davide Barletta
- Department of Urology, Andrology Center, San Matteo Hospital, Pavia, Italy
| | - Andrea Fabiani
- Department of Surgery, Section of Urology and Andrology, Macerata, Italy
| |
Collapse
|
43
|
Recent Pathophysiological Aspects of Peyronie's Disease: Role of Free Radicals, Rationale, and Therapeutic Implications for Antioxidant Treatment-Literature Review. Adv Urol 2017; 2017:4653512. [PMID: 28744308 PMCID: PMC5514334 DOI: 10.1155/2017/4653512] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
Peyronie's disease (PD) is a chronic inflammation of tunica albuginea of the corpora cavernosa that causes an inelastic plaque resulting in penis deformation. Although its etiology is not completely known, there is general consensus that PD is genetically transmitted and secondary to penile trauma. In recent years, numerous studies demonstrated the role played by oxidative stress in PD pathogenesis, and other studies have described successful use of antioxidants in PD treatment. Oxidative stress is an integral part of this disease, influencing its progression. In the early stages of PD, the inflammatory infiltrate cells produce high quantities of free radicals and proinflammatory and profibrotic cytokines, with consequent activation of transcription factor NF-κB. While conservative therapies commonly used in the early stages of PD include oral substances (Potaba, tamoxifen, colchicine, and vitamin E), intralesional treatment (verapamil, interferon, steroids, and more recently collagenase clostridium histolyticum-Xiaflex), and local physical treatment (iontophoresis, extracorporeal shock wave therapy, and penile extender), the significant results obtained by emerging treatments with the antioxidants cited in this article suggest these therapeutic agents interfere at several levels with the disease's pathogenetic mechanisms. Antioxidants therapy outcomes are interesting for good clinical practice and also confirm the fundamental role played by oxidative stress in PD.
Collapse
|
44
|
Zhao YD, Yin L, Archer S, Lu C, Zhao G, Yao Y, Wu L, Hsin M, Waddell TK, Keshavjee S, Granton J, de Perrot M. Metabolic heterogeneity of idiopathic pulmonary fibrosis: a metabolomic study. BMJ Open Respir Res 2017; 4:e000183. [PMID: 28883924 PMCID: PMC5531310 DOI: 10.1136/bmjresp-2017-000183] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 11/28/2022] Open
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal disease of unknown cause characterised by progressive fibrotic formation in lung tissue. We hypothesise that disrupted metabolic pathways in IPF contribute to disease pathogenesis. Methods Metabolomics of human IPF was performed using mass spectroscopy (IPF lung=8; donor lung=8). Gene expression of key metabolic enzymes was measured using microarrays. Of the 108 metabolites whose levels were found altered, 48 were significantly increased, whereas 60 were significantly decreased in IPF samples compared with normal controls. Results Specific metabolic pathways mediating the IPF remodelling were found with a downregulated sphingolipid metabolic pathway but an upregulated arginine pathway in IPF. In addition, disrupted glycolysis, mitochondrial beta-oxidation and tricarboxylic acid cycle, altered bile acid, haem and glutamate/aspartate metabolism were found in IPF samples compared with control. Conclusions Our results show alterations in metabolic pathways for energy consumption during lung structural remodelling, which may contribute to IPF pathogenesis. We believe that this is the first report of simultaneously and systemically measuring changes of metabolites involving nine metabolic pathways in human severe IPF lungs. The measurement of the metabolites may serve in the future diagnosis and prognosis of IPF.
Collapse
Affiliation(s)
- Yidan D Zhao
- Department of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Li Yin
- Department of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Stephen Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Catherine Lu
- Department of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - George Zhao
- Department of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Yan Yao
- Department of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Licun Wu
- Department of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Michael Hsin
- Department of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Thomas K Waddell
- Department of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Department of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - John Granton
- Division of Respirology, University Health Network, Toronto, Ontario, Canada
| | - Marc de Perrot
- Department of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Swamy SM, Rajasekaran NS, Thannickal VJ. Nuclear Factor-Erythroid-2-Related Factor 2 in Aging and Lung Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 186:1712-23. [PMID: 27338106 DOI: 10.1016/j.ajpath.2016.02.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/31/2016] [Accepted: 02/22/2016] [Indexed: 12/30/2022]
Abstract
Aging and age-related diseases have been associated with elevated oxidative stress, which may be related to increased production of reactive species and/or a deficiency in antioxidant defenses. The nuclear factor-erythroid-2-related factor 2 (Nrf2)-mediated antioxidant response pathway maintains cellular reduction-oxidation homeostasis by inducing the transcription of an array of cytoprotective genes. However, there is evidence of impaired Nrf2 response in aging contributing to age-related fibrotic diseases. Herein, we review mechanisms for the dysregulation of Nrf2 signaling in aging. This understanding will pave the way for the design of novel therapeutic strategies that restore Nrf2 signaling to reestablish cellular homeostasis in aging and age-related fibrotic diseases.
Collapse
Affiliation(s)
- Shobha M Swamy
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama School of Medicine, Birmingham, Alabama
| | - Namakkal S Rajasekaran
- Center of Free Radical Biology, University of Alabama School of Medicine, Birmingham, Alabama
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama School of Medicine, Birmingham, Alabama.
| |
Collapse
|
46
|
Diallyl sulfide attenuates transforming growth factor-β-stimulated pulmonary fibrosis through Nrf2 activation in lung MRC-5 fibroblast. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
47
|
Abstract
Systemic and localized scleroderma are difficult to manage diseases with no accepted gold standard of therapy to date. Phototherapeutic modalities for scleroderma show promise. A PubMed search of information on phototherapy for scleroderma was conducted. The information was classified into effects on pathogenesis and clinical outcomes. Studies on photopheresis were excluded. There were no randomized, double-blind, placebo-controlled studies, and only three controlled studies. The vast majority of identified studies evaluated ultraviolet A1 (UVA1) phototherapy. More rigorous studies are needed to evaluate phototherapy in the treatment of scleroderma. Based on the limited studies available, 20-50 J/cm2 of UVA1 therapy 3-4 times a week for 30 treatments is recommended.
Collapse
Affiliation(s)
- John Hassani
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Steven R Feldman
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
48
|
Ren J, Li J, Liu X, Feng Y, Gui Y, Yang J, He W, Dai C. Quercetin Inhibits Fibroblast Activation and Kidney Fibrosis Involving the Suppression of Mammalian Target of Rapamycin and β-catenin Signaling. Sci Rep 2016; 6:23968. [PMID: 27052477 PMCID: PMC4823739 DOI: 10.1038/srep23968] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/17/2016] [Indexed: 02/06/2023] Open
Abstract
Quercetin, a flavonoid found in a wide variety of plants and presented in human diet, displays promising potential in preventing kidney fibroblast activation. However, whether quercetin can ameliorate kidney fibrosis in mice with obstructive nephropathy and the underlying mechanisms remain to be further elucidated. In this study, we found that administration of quercetin could largely ameliorate kidney interstitial fibrosis and macrophage accumulation in the kidneys with obstructive nephropathy. MTORC1, mTORC2, β-catenin as well as Smad signaling were activated in the obstructive kidneys, whereas quercetin could markedly reduce their abundance except Smad3 phosphorylation. In cultured NRK-49F cells, quercetin could inhibit α-SMA and fibronectin (FN) expression induced by TGFβ1 treatment. MTORC1, mTORC2, β-catenin and Smad signaling pathways were stimulated by TGFβ1 at a time dependent manner. Similar to those findings in the obstructive kidneys, mTORC1, mTORC2 and β-catenin, but not Smad signaling pathways were remarkably blocked by quercetin treatment. Together, these results suggest that quercetin inhibits fibroblast activation and kidney fibrosis involving a combined inhibition of mTOR and β-catenin signaling transduction, which may act as a therapeutic candidate for patients with chronic kidney diseases.
Collapse
Affiliation(s)
- Jiafa Ren
- Center for Kidney Diseases, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Jianzhong Li
- Center for Kidney Diseases, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Xin Liu
- Center for Kidney Diseases, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Ye Feng
- Center for Kidney Diseases, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Yuan Gui
- Center for Kidney Diseases, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Junwei Yang
- Center for Kidney Diseases, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Weichun He
- Center for Kidney Diseases, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Chunsun Dai
- Center for Kidney Diseases, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
49
|
Sueblinvong V, Tseng V, Smith T, Saghafi R, Mills ST, Neujahr DC, Guidot DM. TGFβ1 mediates alcohol-induced Nrf2 suppression in lung fibroblasts. Alcohol Clin Exp Res 2015; 38:2731-42. [PMID: 25421510 PMCID: PMC4244649 DOI: 10.1111/acer.12563] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/02/2014] [Indexed: 12/11/2022]
Abstract
Background Chronic alcohol ingestion induces the expression of transforming growth factor beta-1(TGFβ1), inhibits nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated activation of the antioxidant response element (ARE), depletes alveolar glutathione pools, and potentiates acute lung injury. In this study, we examined the mechanistic relationship between TGFβ1 and Nrf2-ARE signaling in the experimental alcoholic lung. Methods Wild-type mice were treated ± alcohol in drinking water for 8 weeks and their lungs were assessed for Nrf2 expression. In parallel, mouse lung fibroblasts were cultured ± alcohol and treated ± sulforaphane (SFP; an activator of Nrf2), ±TGFβ1, ±TGFβ1 neutralizing antibody, and/or ±activin receptor-like kinase 5 inhibitors (to block TGβ1 receptor signaling) and then analyzed for the expression of Nrf2, Kelch-like ECH-associated protein 1 (Keap1) and TGFβ1, Nrf2-ARE activity, and the expression of the Nrf2-ARE-dependent antioxidants glutathione s-transferase theta 2 (GSTT2) and glutamate-cysteine ligase catalytic subunit (GCLC). Finally, silencing RNA (siRNA) of Nrf2 was then performed prior to alcohol exposure and subsequent analysis of TGFβ1 expression. Results Alcohol treatment in vivo or in vitro decreased Nrf2 expression in murine whole lung and lung fibroblasts, respectively. In parallel, alcohol exposure in vitro decreased Keap1 gene and protein expression in lung fibroblasts. Furthermore, alcohol exposure increased TGFβ1 expression but decreased Nrf2-ARE activity and expression of the ARE-dependent genes for GSTT2 and GCLC. These effects of alcohol were prevented by treatment with SFP; in contrast, Nrf2 SiRNA expression exacerbated alcohol-induced TGFβ1 expression. Finally, TGFβ1 treatment directly suppressed Nrf2-ARE activity whereas blocking TGFβ1 signaling attenuated alcohol-induced suppression of Nrf2-ARE activity. Conclusions Alcohol-induced oxidative stress is mediated by TGFβ1, which suppresses Nrf2-ARE-dependent expression of antioxidant defenses and creates a vicious cycle that feeds back to further increase TGFβ1 expression. These effects of alcohol can be mitigated by activation of Nrf2, suggesting a potential therapy in individuals at risk for lung injury due to alcohol abuse.
Collapse
Affiliation(s)
- Viranuj Sueblinvong
- Division of Pulmonary, Allergy & Critical Care, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | | | | | | | | | | | | |
Collapse
|
50
|
Wan Y, Tang MH, Chen XC, Chen LJ, Wei YQ, Wang YS. Inhibitory effect of liposomal quercetin on acute hepatitis and hepatic fibrosis induced by concanavalin A. ACTA ACUST UNITED AC 2015; 47:655-61. [PMID: 25098714 PMCID: PMC4165292 DOI: 10.1590/1414-431x20143704] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/17/2014] [Indexed: 02/06/2023]
Abstract
Immune response plays an important role in the development of hepatic fibrosis. In
the present study, we investigated the effects of quercetin on hepatitis and hepatic
fibrosis induced by immunological mechanism. In the acute hepatitis model, quercetin
(2.5 mg/kg) was injected iv into mice 30 min after concanavalin A
(Con A) challenge. Mice were sacrificed 4 or 24 h after Con A injection, and
aminotransferase tests and histopathological sections were performed. Treatment with
quercetin significantly decreased the levels of alanine aminotransferase (ALT) and
aspartate aminotransferase (AST). Consistent with this observation, treatment with
quercetin markedly attenuated the pathologic changes in the liver. A hepatic fibrosis
model was also generated in mice by Con A challenge once a week for 6 consecutive
weeks. Mice in the experimental group were treated with daily iv
injections of quercetin (0.5 mg/kg). Histopathological analyses revealed that
treatment with quercetin markedly decreased collagen deposition, pseudolobuli
development, and hepatic stellate cells activation. We also examined the effects of
quercetin on the nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) and transforming growth factor beta (TGF-β) pathways by immunohistochemistry
and real-time reverse transcriptase-polymerase chain reaction (RT-PCR). NF-κB and
TGF-β production was decreased after treatment with quercetin, indicating that the
antifibrotic effect of quercetin is associated with its ability to modulate NF-κB and
TGF-β production. These results suggest that quercetin may be an effective
therapeutic strategy in the treatment of patients with liver damage and fibrosis.
Collapse
Affiliation(s)
- Y Wan
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - M H Tang
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - X C Chen
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - L J Chen
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Y Q Wei
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Y S Wang
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|