1
|
Jiang H, Xu Y, Jiang Y, Li Y. FOXO3 Activation Prevents Cellular Senescence in Emphysema Induced by Cigarette Smoke. COPD 2023; 20:80-91. [PMID: 36656684 DOI: 10.1080/15412555.2022.2164262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/15/2022] [Indexed: 01/20/2023]
Abstract
Because cigarette smoke can induce COPD/emphysema through accelerating senescence with or without an incomplete repair system. However, the pathogenesis of COPD following lung senescence induced by CS is not fully understood. Airspace enlargement and airway epithelial cell senescence are common finding during the COPD development. We investigated the lung tress response to CS and demonstrated that a stress-responsive transcription factor, FOXO3, was regulated by deacetylase. SIRT1 inhibited FOXO3 acetylation and FOXO3 degradation, leading to FOXO3 accumulation and activation in airway epithelial cells. CS exposure activated SIRT1 contributed to FOXO3 activation and functioned to protect lungs, as deletion of SIRT1 decreased CS-induced FOXO3 activation and resulted in more severe airway epithelial cells senescence airspace enlargement. Strikingly, deletion of FOXO3 during the development of COPD aggravated lung structural and functional damage, leading to a much more profound COPD phenotype. We show that deletion of FOXO3 resulted in decreased autophagic response and increased senescence, which may explain lung protection by FOXO3. Our study indicates that in the COPD, stress-responsive transcription factors can be activated for adaptions to counteract senescence insults, thus attenuating COPD development.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Internal Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuanrui Xu
- Graduate Department, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yaona Jiang
- Graduate Department, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yaqing Li
- Department of Internal Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| |
Collapse
|
2
|
Luo Y, Zhang L, Zhao T. Identification and analysis of cellular senescence-associated signatures in diabetic kidney disease by integrated bioinformatics analysis and machine learning. Front Endocrinol (Lausanne) 2023; 14:1193228. [PMID: 37396184 PMCID: PMC10313062 DOI: 10.3389/fendo.2023.1193228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/04/2023] [Indexed: 07/04/2023] Open
Abstract
Background Diabetic kidney disease (DKD) is a common complication of diabetes that is clinically characterized by progressive albuminuria due to glomerular destruction. The etiology of DKD is multifactorial, and numerous studies have demonstrated that cellular senescence plays a significant role in its pathogenesis, but the specific mechanism requires further investigation. Methods This study utilized 5 datasets comprising 144 renal samples from the Gene Expression Omnibus (GEO) database. We obtained cellular senescence-related pathways from the Molecular Signatures Database and evaluated the activity of senescence pathways in DKD patients using the Gene Set Enrichment Analysis (GSEA) algorithm. Furthermore, we identified module genes related to cellular senescence pathways through Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm and used machine learning algorithms to screen for hub genes related to senescence. Subsequently, we constructed a cellular senescence-related signature (SRS) risk score based on hub genes using the Least Absolute Shrinkage and Selection Operator (LASSO), and verified mRNA levels of hub genes by RT-PCR in vivo. Finally, we validated the relationship between the SRS risk score and kidney function, as well as their association with mitochondrial function and immune infiltration. Results The activity of cellular senescence-related pathways was found to be elevated among DKD patients. Based on 5 hub genes (LIMA1, ZFP36, FOS, IGFBP6, CKB), a cellular senescence-related signature (SRS) was constructed and validated as a risk factor for renal function decline in DKD patients. Notably, patients with high SRS risk scores exhibited extensive inhibition of mitochondrial pathways and upregulation of immune cell infiltration. Conclusion Collectively, our findings demonstrated that cellular senescence is involved in the process of DKD, providing a novel strategy for treating DKD.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Department of Endocrinology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lingxiao Zhang
- Department of Endocrinology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tongfeng Zhao
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Guerra S, Ledford JG, Melén E, Lavi I, Carsin AE, Stern DA, Zhai J, Vidal M, Bustamante M, Addison KJ, Vallecillo RG, Billheimer D, Koppelman GH, Garcia-Aymerich J, Lemonnier N, Fitó M, Dobaño C, Kebede Merid S, Kull I, McEachan RRC, Wright J, Chatzi L, Kogevinas M, Porta D, Narduzzi S, Ballester F, Esplugues A, Zabaleta C, Irizar A, Sunyer J, Halonen M, Bousquet J, Martinez FD, Anto JM. Creatine Kinase Is Decreased in Childhood Asthma. Am J Respir Crit Care Med 2023; 207:544-552. [PMID: 35876143 PMCID: PMC10870915 DOI: 10.1164/rccm.202010-3746oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 07/22/2022] [Indexed: 02/02/2023] Open
Abstract
Rationale: The identification of novel molecules associated with asthma may provide insights into the mechanisms of disease and their potential clinical implications. Objectives: To conduct a screening of circulating proteins in childhood asthma and to study proteins that emerged from human studies in a mouse model of asthma. Methods: We included 2,264 children from eight birth cohorts from the Mechanisms of the Development of ALLergy project and the Tucson Children's Respiratory Study. In cross-sectional analyses, we tested 46 circulating proteins for association with asthma in the selection stage and carried significant signals forward to a validation and replication stage. As CK (creatine kinase) was the only protein consistently associated with asthma, we also compared whole blood CK gene expression between subjects with and without asthma (n = 249) and used a house dust mite (HDM)-challenged mouse model to gain insights into CK lung expression and its role in the resolution of asthma phenotypes. Measurements and Main Results: As compared with the lowest CK tertile, children in the highest tertile had significantly lower odds for asthma in selection (adjusted odds ratio, 95% confidence interval: 0.31; 0.15-0.65; P = 0.002), validation (0.63; 0.42-0.95; P = 0.03), and replication (0.40; 0.16-0.97; P = 0.04) stages. Both cytosolic CK forms (CKM and CKB) were underexpressed in blood from asthmatics compared with control subjects (P = 0.01 and 0.006, respectively). In the lungs of HDM-challenged mice, Ckb expression was reduced, and after the HDM challenge, a CKB inhibitor blocked the resolution of airway hyperresponsiveness and reduction of airway mucin. Conclusions: Circulating concentrations and gene expression of CK are inversely associated with childhood asthma. Mouse models support a possible direct involvement of CK in asthma protection via inhibition of airway hyperresponsiveness and reduction of airway mucin.
Collapse
Affiliation(s)
- Stefano Guerra
- Asthma and Airway Disease Research Center
- ISGlobal, Barcelona, Spain
| | - Julie G. Ledford
- Asthma and Airway Disease Research Center
- Department of Cellular and Molecular Medicine
| | - Erik Melén
- Department of Clinical Science and Education and
- Sachs’ Children’s and Youth Hospital, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | | | - Anne-Elie Carsin
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | - Jing Zhai
- Asthma and Airway Disease Research Center
| | - Marta Vidal
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Dean Billheimer
- BIO5 Institute, and
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | - Gerard H. Koppelman
- Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Judith Garcia-Aymerich
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Nathanaël Lemonnier
- Institute for Advanced Biosciences, UGA-INSERM U1209-CNRS UMR5309, Site Santé, Allée des Alpes, 38700 La Tronche, France
| | - Montserrat Fitó
- Cardiovascular Risk and Nutrition Group and
- CIBER de Fisiopatología de la Obesidad y Nutricion (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | | | - Inger Kull
- Department of Clinical Science and Education and
- Sachs’ Children’s and Youth Hospital, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | | | - John Wright
- Bradford Institute for Health Research, Bradford, United Kingdom
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Manolis Kogevinas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Daniela Porta
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Silvia Narduzzi
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Ferran Ballester
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Nursing School, Universitat de València, Valencia, Spain
- FISABIO–Universitat Jaume I–Universitat de València Joint Research Unit of Epidemiology and Environmental Health, Valencia, Spain
| | - Ana Esplugues
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Nursing School, Universitat de València, Valencia, Spain
- FISABIO–Universitat Jaume I–Universitat de València Joint Research Unit of Epidemiology and Environmental Health, Valencia, Spain
| | - Carlos Zabaleta
- Pediatrics Service, Hospital de Zumárraga, Gipuzkoa, Spain
- Group of Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Amaia Irizar
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Group of Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | - Jean Bousquet
- University Hospital Montpellier, France; and
- Respiratory and Environmental Epidemiology Team, INSERM 1018, CESP Centre, Villejuif, France
| | | | - Josep M. Anto
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| |
Collapse
|
4
|
Rivas M, Gupta G, Costanzo L, Ahmed H, Wyman AE, Geraghty P. Senescence: Pathogenic Driver in Chronic Obstructive Pulmonary Disease. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:817. [PMID: 35744080 PMCID: PMC9228143 DOI: 10.3390/medicina58060817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 01/10/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is recognized as a disease of accelerated lung aging. Over the past two decades, mounting evidence suggests an accumulation of senescent cells within the lungs of patients with COPD that contributes to dysregulated tissue repair and the secretion of multiple inflammatory proteins, termed the senescence-associated secretory phenotype (SASP). Cellular senescence in COPD is linked to telomere dysfunction, DNA damage, and oxidative stress. This review gives an overview of the mechanistic contributions and pathologic consequences of cellular senescence in COPD and discusses potential therapeutic approaches targeting senescence-associated signaling in COPD.
Collapse
Affiliation(s)
- Melissa Rivas
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Gayatri Gupta
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Louis Costanzo
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Huma Ahmed
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Anne E. Wyman
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| |
Collapse
|
5
|
Cipollina C, Bruno A, Fasola S, Cristaldi M, Patella B, Inguanta R, Vilasi A, Aiello G, La Grutta S, Torino C, Pace E. Cellular and Molecular Signatures of Oxidative Stress in Bronchial Epithelial Cell Models Injured by Cigarette Smoke Extract. Int J Mol Sci 2022; 23:1770. [PMID: 35163691 PMCID: PMC8836577 DOI: 10.3390/ijms23031770] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Exposure of the airways epithelium to environmental insults, including cigarette smoke, results in increased oxidative stress due to unbalance between oxidants and antioxidants in favor of oxidants. Oxidative stress is a feature of inflammation and promotes the progression of chronic lung diseases, including Chronic Obstructive Pulmonary Disease (COPD). Increased oxidative stress leads to exhaustion of antioxidant defenses, alterations in autophagy/mitophagy and cell survival regulatory mechanisms, thus promoting cell senescence. All these events are amplified by the increase of inflammation driven by oxidative stress. Several models of bronchial epithelial cells are used to study the molecular mechanisms and the cellular functions altered by cigarette smoke extract (CSE) exposure, and to test the efficacy of molecules with antioxidant properties. This review offers a comprehensive synthesis of human in-vitro and ex-vivo studies published from 2011 to 2021 describing the molecular and cellular mechanisms evoked by CSE exposure in bronchial epithelial cells, the most used experimental models and the mechanisms of action of cellular antioxidants systems as well as natural and synthetic antioxidant compounds.
Collapse
Affiliation(s)
- Chiara Cipollina
- Ri.MED Foundation, 90133 Palermo, Italy; (C.C.); (M.C.)
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
| | - Andreina Bruno
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
| | - Salvatore Fasola
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
| | | | - Bernardo Patella
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (B.P.); (R.I.); (G.A.)
| | - Rosalinda Inguanta
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (B.P.); (R.I.); (G.A.)
| | - Antonio Vilasi
- Institute of Clinical Physiology, National Research Council, 89124 Reggio Calabria, Italy;
| | - Giuseppe Aiello
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (B.P.); (R.I.); (G.A.)
| | - Stefania La Grutta
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
| | - Claudia Torino
- Institute of Clinical Physiology, National Research Council, 89124 Reggio Calabria, Italy;
| | - Elisabetta Pace
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
| |
Collapse
|
6
|
Cellular senescence-an aging hallmark in chronic obstructive pulmonary disease pathogenesis. Respir Investig 2021; 60:33-44. [PMID: 34649812 DOI: 10.1016/j.resinv.2021.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/12/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD),1 a representative aging-related pulmonary disorder, is mainly caused by cigarette smoke (CS) exposure. Age is one of the most important risk factors for COPD development, and increased cellular senescence in tissues and organs is a component of aging. CS exposure can induce cellular senescence, as characterized by irreversible growth arrest and aberrant cytokine secretion of the senescence-associated secretory phenotype; thus, accumulation of senescent cells is widely implicated in COPD pathogenesis. CS-induced oxidative modifications to cellular components may be causally linked to accelerated cellular senescence, especially during accumulation of damaged macromolecules. Autophagy is a conserved mechanism whereby cytoplasmic components are sent for lysosomal degradation to maintain proteostasis. Autophagy diminishes with age, and loss of proteostasis is one of the hallmarks of aging. We have reported the involvement of insufficient autophagy in regulating CS-induced cellular senescence with respect to COPD pathogenesis. However, the role of autophagy in COPD pathogenesis can vary based on levels of cell stress and type of selective autophagy because excessive activation of autophagy can be responsible for inducing regulated cell death. Senotherapies targeting cellular senescence may be effective COPD treatments. Autophagy activation could be a promising sonotherapeutic approach, but the optimal modality of autophagy activation should be examined in future studies.
Collapse
|
7
|
Hosaka Y, Araya J, Fujita Y, Kuwano K. Role of chaperone-mediated autophagy in the pathophysiology including pulmonary disorders. Inflamm Regen 2021; 41:29. [PMID: 34593046 PMCID: PMC8485456 DOI: 10.1186/s41232-021-00180-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/08/2021] [Indexed: 11/10/2022] Open
Abstract
Autophagy is a highly conserved mechanism of delivering cytoplasmic components for lysosomal degradation. Among the three major autophagic pathways, chaperone-mediated autophagy (CMA) is primarily characterized by its selective nature of protein degradation, which is mediated by heat shock cognate 71 kDa protein (HSC70: also known as HSPA8) recognition of the KFERQ peptide motif in target proteins. Lysosome-associated membrane protein type 2A (LAMP2A) is responsible for substrate binding and internalization to lysosomes, and thus, the lysosomal expression level of LAMP2A is a rate-limiting factor for CMA. Recent advances have uncovered not only physiological but also pathological role of CMA in multiple organs, including neurodegenerative disorders, kidney diseases, liver diseases, heart diseases, and cancers through the accumulation of unwanted proteins or increased degradation of target proteins with concomitant metabolic alterations resulting from CMA malfunction. With respect to pulmonary disorders, the involvement of CMA has been demonstrated in lung cancer and chronic obstructive pulmonary disease (COPD) pathogenesis through regulating apoptosis. Further understanding of CMA machinery may shed light on the molecular mechanisms of refractory disorders and lead to novel treatment modalities through CMA modulation.
Collapse
Affiliation(s)
- Yusuke Hosaka
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Yu Fujita
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
8
|
Beghé B, Cerri S, Fabbri LM, Marchioni A. COPD, Pulmonary Fibrosis and ILAs in Aging Smokers: The Paradox of Striking Different Responses to the Major Risk Factors. Int J Mol Sci 2021; 22:ijms22179292. [PMID: 34502194 PMCID: PMC8430914 DOI: 10.3390/ijms22179292] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/19/2023] Open
Abstract
Aging and smoking are associated with the progressive development of three main pulmonary diseases: chronic obstructive pulmonary disease (COPD), interstitial lung abnormalities (ILAs), and idiopathic pulmonary fibrosis (IPF). All three manifest mainly after the age of 60 years, but with different natural histories and prevalence: COPD prevalence increases with age to >40%, ILA prevalence is 8%, and IPF, a rare disease, is 0.0005–0.002%. While COPD and ILAs may be associated with gradual progression and mortality, the natural history of IPF remains obscure, with a worse prognosis and life expectancy of 2–5 years from diagnosis. Acute exacerbations are significant events in both COPD and IPF, with a much worse prognosis in IPF. This perspective discusses the paradox of the striking pathological and pathophysiologic responses on the background of the same main risk factors, aging and smoking, suggesting two distinct pathophysiologic processes for COPD and ILAs on one side and IPF on the other side. Pathologically, COPD is characterized by small airways fibrosis and remodeling, with the destruction of the lung parenchyma. By contrast, IPF almost exclusively affects the lung parenchyma and interstitium. ILAs are a heterogenous group of diseases, a minority of which present with the alveolar and interstitial abnormalities of interstitial lung disease.
Collapse
Affiliation(s)
- Bianca Beghé
- Respiratory Diseases Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (A.M.)
- Correspondence:
| | - Stefania Cerri
- Respiratory Diseases Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (A.M.)
| | - Leonardo M. Fabbri
- Department of Translational Medicine and Romagna, University of Ferrara, 44121 Ferrara, Italy;
| | - Alessandro Marchioni
- Respiratory Diseases Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (A.M.)
| |
Collapse
|
9
|
Deubiquitinating enzyme USP30 negatively regulates mitophagy and accelerates myocardial cell senescence through antagonism of Parkin. Cell Death Discov 2021; 7:187. [PMID: 34290230 PMCID: PMC8295395 DOI: 10.1038/s41420-021-00546-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/19/2020] [Accepted: 01/09/2021] [Indexed: 01/23/2023] Open
Abstract
Cell senescence is associated with age-related pathological changes. Increasing evidence has revealed that mitophagy can selectively remove dysfunctional mitochondria. Overexpression of ubiquitin-specific protease 30 (USP30) has been documented to influence mitophagy and deubiquitination of mitochondrial Parkin substrates. This study was conducted to evaluate the roles of USP30 and Parkin in myocardial cell senescence and mitophagy. Initially, myocardial cells were isolated from neonatal SD rats and subjected to d-gal treatment to induce cell senescence, after which the effects of d-gal on mitochondria damage, ROS production, cell senescence, and mitophagy were assessed. The myocardial cells were infected with lentiviruses bearing overexpression plasmids or shRNA targeting Parkin or USP30 to elucidate the effects of Parkin and USP30 on d-gal-induced mitophagy damage and cell senescence. Finally, aging was induced in rats by subcutaneous injection of d-gal to determine the role of Parkin and USP30 on cell senescence in vivo. d-gal was found to trigger mitochondria damage, ROS production, and cell senescence in myocardial cells. The overexpression of Parkin or silencing of USP30 reduced d-gal-induced mitochondrial damage and relieved d-gal-induced myocardial cell senescence. Moreover, the in vivo experiments validated that either elevation of Parkin or silencing USP30 could alleviate d-gal-induced myocardial cell senescence in rats. Silencing USP30 alleviates d-gal-induced mitochondrial damage and consequently suppresses myocardial cell senescence by activating Parkin. Our study highlights the potential of USP30 as a novel target against myocardial cell senescence.
Collapse
|
10
|
Fujii S, Hara H, Araya J, Takasaka N, Kojima J, Ito S, Minagawa S, Yumino Y, Ishikawa T, Numata T, Kawaishi M, Hirano J, Odaka M, Morikawa T, Nishimura S, Nakayama K, Kuwano K. Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease. Oncoimmunology 2021; 1:630-641. [PMID: 22934255 PMCID: PMC3429567 DOI: 10.4161/onci.20297] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tobacco smoke-induced accelerated cell senescence has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Cell senescence is accompanied by the accumulation of damaged cellular components suggesting that in COPD, inhibition of autophagy may contribute to cell senescence. Here we look at whether autophagy contributes to cigarette smoke extract (CSE) - induced cell senescence of primary human bronchial epithelial cells (HBEC), and further evaluate p62 and ubiquitinated protein levels in lung homogenates from COPD patients. We demonstrate that CSE transiently induces activation of autophagy in HBEC, followed by accelerated cell senescence and concomitant accumulation of p62 and ubiquitinated proteins. Autophagy inhibition further enhanced accumulations of p62 and ubiquitinated proteins, resulting in increased senescence and senescence-associated secretory phenotype (SASP) with interleukin (IL)-8 secretion. Conversely, autophagy activation by Torin1, a mammalian target of rapamycin (mTOR inhibitor), suppressed accumulations of p62 and ubiquitinated proteins and inhibits cell senescence. Despite increased baseline activity, autophagy induction in response to CSE was significantly decreased in HBEC from COPD patients. Increased accumulations of p62 and ubiquitinated proteins were detected in lung homogenates from COPD patients. Insufficient autophagic clearance of damaged proteins, including ubiquitinated proteins, is involved in accelerated cell senescence in COPD, suggesting a novel protective role for autophagy in the tobacco smoke-induced senescence-associated lung disease, COPD.
Collapse
Affiliation(s)
- Satoko Fujii
- Division of Respiratory Diseases; Department of Internal Medicine; Jikei University School of Medicine; Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang S, Chen X, Zeng B, Xu X, Chen H, Zhao P, Hilaire ML, Bucala R, Zheng Q, Ren J. Knockout of macrophage migration inhibitory factor accentuates side-stream smoke exposure-induced myocardial contractile dysfunction through dysregulated mitophagy. Pharmacol Res 2020; 157:104828. [PMID: 32339783 DOI: 10.1016/j.phrs.2020.104828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/23/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
Second hand smoke exposure increases the prevalence of chronic diseases partly attributed to inflammatory responses. Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, is involved in the pathogenesis of multiple diseases although its role in second hand smoke exposure-induced cardiac anomalies remains elusive. This study evaluated the impact of MIF knockout on side-stream smoke exposure-induced cardiac pathology and underlying mechanisms. Adult WT and MIF knockout (MIFKO) mice were placed in a chamber exposed to cigarette smoke for 1 h daily for 60 consecutive days. Echocardiographic, cardiomyocyte function and intracellular Ca2+ handling were evaluated. Autophagy, mitophagy and apoptosis were examined using western blot. DHE staining was used to evaluate superoxide anion (O2-) generation. Masson trichrome staining was employed to assess interstitial fibrosis. Our data revealed that MIF knockout accentuated side-stream smoke-induced cardiac anomalies in fractional shortening, cardiomyocyte function, intracellular Ca2+ homeostasis, myocardial ultrastructure and mitochondrial content along with overt apoptosis and O2- generation. In addition, unfavorable effects of side-stream smoke were accompanied by excessive formation of autophagolysosome and elevated TFEB, the effect of which was exacerbated by MIF knockout. Recombinant MIF rescued smoke extract-induced myopathic anomalies through promoting AMPK activation, mitophagy and lysosomal function. Taken together, our data suggest that MIF serves as a protective factor against side-stream smoke exposure-induced myopathic changes through facilitating mitophagy and autophagolysosome formation.
Collapse
Affiliation(s)
- Shuyi Wang
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China; School of Pharmacy, University of Wyoming College of Health Sciences, Laramie 82071, WY USA.
| | - Xu Chen
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Biru Zeng
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Xihui Xu
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie 82071, WY USA
| | - Huaguo Chen
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Ping Zhao
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Michelle L Hilaire
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie 82071, WY USA
| | - Richard Bucala
- Department of Medicine, Yale School of Medicine, New Haven 06520, CT USA
| | - Qijun Zheng
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie 82071, WY USA; Department of Cardiovascular Surgery, Shenzhen People's Hospital, Second Clinical Medical College, Jinan University, Shenzhen 518020, China.
| | - Jun Ren
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie 82071, WY USA; Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China.
| |
Collapse
|
12
|
Colombo G, Garavaglia ML, Astori E, Giustarini D, Rossi R, Milzani A, Dalle-Donne I. Protein carbonylation in human bronchial epithelial cells exposed to cigarette smoke extract. Cell Biol Toxicol 2019; 35:345-360. [PMID: 30648195 DOI: 10.1007/s10565-019-09460-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022]
Abstract
Cigarette smoke is a well-established exogenous risk factor containing toxic reactive molecules able to induce oxidative stress, which in turn contributes to smoking-related diseases, including cardiovascular, pulmonary, and oral cavity diseases. We investigated the effects of cigarette smoke extract on human bronchial epithelial cells. Cells were exposed to various concentrations (2.5-5-10-20%) of cigarette smoke extract for 1, 3, and 24 h. Carbonylation was assessed by 2,4-dinitrophenylhydrazine using both immunocytochemical and Western immunoblotting assays. Cigarette smoke induced increasing protein carbonylation in a concentration-dependent manner. The main carbonylated proteins were identified by means of two-dimensional electrophoresis coupled to MALDI-TOF mass spectrometry analysis and database search (redox proteomics). We demonstrated that exposure of bronchial cells to cigarette smoke extract induces carbonylation of a large number of proteins distributed throughout the cell. Proteins undergoing carbonylation are involved in primary metabolic processes, such as protein and lipid metabolism and metabolite and energy production as well as in fundamental cellular processes, such as cell cycle and chromosome segregation, thus confirming that reactive carbonyl species contained in cigarette smoke markedly alter cell homeostasis and functions.
Collapse
Affiliation(s)
- Graziano Colombo
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133, Milan, Italy.
| | - Maria Lisa Garavaglia
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133, Milan, Italy
| | - Emanuela Astori
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133, Milan, Italy
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Aldo Milzani
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133, Milan, Italy
| | - Isabella Dalle-Donne
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
13
|
Tsubouchi K, Araya J, Kuwano K. PINK1-PARK2-mediated mitophagy in COPD and IPF pathogeneses. Inflamm Regen 2018; 38:18. [PMID: 30386443 PMCID: PMC6199723 DOI: 10.1186/s41232-018-0077-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/02/2018] [Indexed: 02/11/2023] Open
Abstract
Mitochondria regulate not only cell functions through energy generation but also aging-associated cell phenotypes. Impaired mitochondrial structural and functional integrity accompanied by excessive mitochondrial reactive oxygen species (mtROS) production is associated with enhanced programmed cell death (PCD) and cellular senescence. Dysregulation of mechanisms for mitochondrial integrity, including mitophagy, induces accumulation of mitochondrial damage. Mitophagy is a highly conserved mechanism of selectively delivering damaged mitochondria for lysosomal degradation and is mainly governed by phosphatase and tensin homolog (PTEN)-induced putative protein kinase 1 (PINK1) and PARK2. Accumulating evidence suggests that PINK1-PARK2-mediated mitophagy has an important role in the pathogenesis of aging-associated pulmonary disorders, represented by chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). COPD characterized by progressive airflow limitation is mainly caused by cigarette smoke (CS) exposure, and accumulation of damaged mitochondria in bronchial epithelial cells (BEC) has been demonstrated. Intriguingly, both enhanced and impaired mitophagy have been implicated in COPD pathogenesis. Enhanced mitophagy induced by increased PINK1 expression has been associated with programmed necrosis, necroptosis. On the other hand, reduced PARK2 levels were linked to insufficient mitophagy, resulting in accelerated cellular senescence in BEC. Although dominant involvement of PCD and cellular senescence remains unclear, PINK1-PARK2-mediated mitophagy regulates mitochondrial ROS and cell fate during COPD pathogenesis. Involvement of insufficient mitophagy has been proposed in lung fibrosis development during IPF pathogenesis. Accumulation of dysmorphic mitochondria and increased ROS production linked to decrease in PINK1 expression were demonstrated in type II alveolar epithelial cells (AECIIs) in IPF lungs, which can be associated with enhanced apoptosis and cellular senescence. Furthermore, reduced PARK2 expression levels have been shown in myofibroblasts in IPF lungs. Insufficient mitophagy caused by PARK2 deficiency induced mtROS production with concomitantly activated platelet-derived growth factor receptor (PDGFR)/mammalian target of rapamycin (mTOR) signaling, resulting in increased myofibroblast differentiation and proliferation. Inappropriate PINK1-PARK2-mediated mitophagy appears to be mainly responsible for regulating cell fate, including PCD, cellular senescence, and myofibroblast differentiation during COPD and IPF pathogeneses. Modalities to achieve specific and appropriate levels of PINK1-PARK2-mediated mitophagy activation may be a promising therapeutic option to regulate the aging-associated pathology, COPD, and IPF.
Collapse
Affiliation(s)
- Kazuya Tsubouchi
- 1Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan.,2Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Araya
- 1Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Kazuyoshi Kuwano
- 1Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| |
Collapse
|
14
|
Araya J, Tsubouchi K, Sato N, Ito S, Minagawa S, Hara H, Hosaka Y, Ichikawa A, Saito N, Kadota T, Yoshida M, Fujita Y, Utsumi H, Kobayashi K, Yanagisawa H, Hashimoto M, Wakui H, Ishikawa T, Numata T, Kaneko Y, Asano H, Yamashita M, Odaka M, Morikawa T, Nishimura SL, Nakayama K, Kuwano K. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 2018; 15:510-526. [PMID: 30290714 DOI: 10.1080/15548627.2018.1532259] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Cigarette smoke (CS)-induced accumulation of mitochondrial damage has been widely implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Mitophagy plays a crucial role in eliminating damaged mitochondria, and is governed by the PINK1 (PTEN induced putative protein kinase 1)-PRKN (parkin RBR E3 ubiquitin protein ligase) pathway. Although both increased PINK1 and reduced PRKN have been implicated in COPD pathogenesis in association with mitophagy, there are conflicting reports for the role of mitophagy in COPD progression. To clarify the involvement of PRKN-regulated mitophagy in COPD pathogenesis, prkn knockout (KO) mouse models were used. To illuminate how PINK1 and PRKN regulate mitophagy in relation to CS-induced mitochondrial damage and cellular senescence, overexpression and knockdown experiments were performed in airway epithelial cells (AEC). In comparison to wild-type mice, prkn KO mice demonstrated enhanced airway wall thickening with emphysematous changes following CS exposure. AEC in CS-exposed prkn KO mice showed accumulation of damaged mitochondria and increased oxidative modifications accompanied by accelerated cellular senescence. In vitro experiments showed PRKN overexpression was sufficient to induce mitophagy during CSE exposure even in the setting of reduced PINK1 protein levels, resulting in attenuation of mitochondrial ROS production and cellular senescence. Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown, indicating that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated mitophagy during CSE exposure. These results suggest that PRKN levels may play a pivotal role in COPD pathogenesis by regulating mitophagy, suggesting that PRKN induction could mitigate the progression of COPD. Abbreviations: AD: Alzheimer disease; AEC: airway epithelial cells; BALF: bronchoalveolar lavage fluid; AKT: AKT serine/threonine kinase; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CDKN1A: cyclin dependent kinase inhibitor 1A; CDKN2A: cyclin dependent kinase inhibitor 2A; COPD: chronic obstructive pulmonary disease; CS: cigarette smoke; CSE: CS extract; CXCL1: C-X-C motif chemokine ligand 1; CXCL8: C-X-C motif chemokine ligand 8; HBEC: human bronchial epithelial cells; 4-HNE: 4-hydroxynonenal; IL: interleukin; KO: knockout; LF: lung fibroblasts; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; 8-OHdG: 8-hydroxy-2'-deoxyguanosine; OPTN: optineurin; PRKN: parkin RBR E3 ubiquitin protein ligase; PCD: programmed cell death; PFD: pirfenidone; PIK3C: phosphatidylinositol-4:5-bisphosphate 3-kinase catalytic subunit; PINK1: PTEN induced putative kinase 1; PTEN: phosphatase and tensin homolog; RA: rheumatoid arthritis; ROS: reactive oxygen species; SA-GLB1/β-Gal: senescence-associated-galactosidase, beta 1; SASP: senescence-associated secretory phenotype; SNP: single nucleotide polymorphism; TNF: tumor necrosis factor.
Collapse
Affiliation(s)
- Jun Araya
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Kazuya Tsubouchi
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan.,b Research Institute for Diseases of the Chest, Graduate School of Medical Sciences , Kyushu University , Fukuoka , Japan
| | - Nahoko Sato
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan.,c Department of Respiratory Medicine, Faculty of Life Science , Kumamoto University , Kumamoto , Japan
| | - Saburo Ito
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Shunsuke Minagawa
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Hiromichi Hara
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Yusuke Hosaka
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Akihiro Ichikawa
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Nayuta Saito
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Tsukasa Kadota
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Masahiro Yoshida
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Yu Fujita
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Hirofumi Utsumi
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Kenji Kobayashi
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Haruhiko Yanagisawa
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Mitsuo Hashimoto
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Hiroshi Wakui
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Takeo Ishikawa
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Takanori Numata
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Yumi Kaneko
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Hisatoshi Asano
- d Division of Chest Diseases, Department of Surgery , Jikei University School of Medicine , Tokyo , Japan
| | - Makoto Yamashita
- d Division of Chest Diseases, Department of Surgery , Jikei University School of Medicine , Tokyo , Japan
| | - Makoto Odaka
- d Division of Chest Diseases, Department of Surgery , Jikei University School of Medicine , Tokyo , Japan
| | - Toshiaki Morikawa
- d Division of Chest Diseases, Department of Surgery , Jikei University School of Medicine , Tokyo , Japan
| | - Stephen L Nishimura
- e Department of Pathology , University of California, San Francisco , San Francisco , CA , USA
| | - Katsutoshi Nakayama
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Kazuyoshi Kuwano
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| |
Collapse
|
15
|
Reduced proliferation capacity of lung cells in chronic obstructive pulmonary disease. Z Gerontol Geriatr 2018; 52:249-255. [DOI: 10.1007/s00391-018-1377-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
|
16
|
Abbadie C, Pluquet O, Pourtier A. Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses? Cell Mol Life Sci 2017; 74:4471-4509. [PMID: 28707011 PMCID: PMC11107641 DOI: 10.1007/s00018-017-2587-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023]
Abstract
Senescence is a cell state occurring in vitro and in vivo after successive replication cycles and/or upon exposition to various stressors. It is characterized by a strong cell cycle arrest associated with several molecular, metabolic and morphologic changes. The accumulation of senescent cells in tissues and organs with time plays a role in organismal aging and in several age-associated disorders and pathologies. Moreover, several therapeutic interventions are able to prematurely induce senescence. It is, therefore, tremendously important to characterize in-depth, the mechanisms by which senescence is induced, as well as the precise properties of senescent cells. For historical reasons, senescence is often studied with fibroblast models. Other cell types, however, much more relevant regarding the structure and function of vital organs and/or regarding pathologies, are regrettably often neglected. In this article, we will clarify what is known on senescence of epithelial cells and highlight what distinguishes it from, and what makes it like, replicative senescence of fibroblasts taken as a standard.
Collapse
Affiliation(s)
- Corinne Abbadie
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France.
| | - Olivier Pluquet
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| | - Albin Pourtier
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| |
Collapse
|
17
|
Klotho Regulates Cigarette Smoke-Induced Autophagy: Implication in Pathogenesis of COPD. Lung 2017; 195:295-301. [PMID: 28349330 DOI: 10.1007/s00408-017-9997-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/11/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease is a progressive lung disease characterized by abnormal cellular responses to cigarette smoke, resulting in tissue destruction and airflow limitation. Autophagy is a fundamental cellular process that eliminates long-lived proteins and damaged organelles through lysosomal degradation pathway, though its role in human diseases remains unclear. We hypothesized that an anti-aging protein, Klotho plays an important role in regulating autophagy in response to cigarette smoke (CS). METHODS Autophagy was measured by detecting LC3-I and LC3-II expressions. The regulation of autophagy expression by cigarette smoke extract (CSE) was studied in vitro, and small-interfering RNA (siRNA) and recombinant Klotho were employed to investigate the role of Klotho on CSE-induced autophagy. Protein levels and phosphorylation were measured by Western blot assay. RESULTS CS exposure resulted in induction of autophagy in alveolar macrophages. Pretreatment of cells with Klotho attenuated CS-induced autophagy whereas knockdown of Klotho augmented CS-induced autophagy. Klotho inhibited phosphorylation of ERK, Akt, and IGF-1 in CSE-stimulated cells. CONCLUSIONS These data suggest that Klotho plays a critical role in the regulation of CS-induced autophagy and have important implications in understanding the mechanisms of CS-induced cell death and senescence.
Collapse
|
18
|
Gu C, Li Y, Liu J, Ying X, Liu Y, Yan J, Chen C, Zhou H, Cao L, Ma Y. LncRNA‑mediated SIRT1/FoxO3a and SIRT1/p53 signaling pathways regulate type II alveolar epithelial cell senescence in patients with chronic obstructive pulmonary disease. Mol Med Rep 2017; 15:3129-3134. [PMID: 28339038 DOI: 10.3892/mmr.2017.6367] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
Abstract
The loss of alveolar structure and airspace enlargement are major pathological changes in chronic obstructive pulmonary disease (COPD). Type II alveolar epithelial cells (AECII) are involved in maintaining lung tissue repair and alveolar homeostasis. Long non‑coding RNAs (lncRNAs) are involved in multi‑regulating gene transcription, affecting processes including embryonic development, cell differentiation and cellular senescence. The primary aim of the present study was to explore the mechanisms of AECII senescence regulated by lncRNA‑mediated sirtuin 1 (SIRT1) and forkhead box O 3a (FoxO3a) signaling pathways in patients with COPD. Lung tissues from patients with COPD exhibited pathological characteristics and significantly increased senescence‑associated β‑galactosidase activity. Furthermore, the expression levels of senescence‑associated lncRNA1 (SAL‑RNA1), SIRT1 and FoxO3a were reduced, but SAL‑RNA2, SAL‑RNA3, p53 and p21 were upregulated in the lung tissues of patients with COPD compared with control. The results of the present study indicated that lncRNA‑mediated SIRT1/p53 and FoxO3a signaling pathways may regulate AECII senescence in the pathogenesis of COPD, which may provide a novel experimental basis for the treatment of COPD.
Collapse
Affiliation(s)
- Chao Gu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Yaqing Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Jialiang Liu
- Department of Respiratory Medicine, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiwang Ying
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Yuanshun Liu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Jianping Yan
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Chun Chen
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Hongbin Zhou
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Liming Cao
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Yingyu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
19
|
Pathogenesis of COPD 4 – Cell Death, Senescence, and Autophagy: Is There a Possibility of Developing New Drugs from the Standpoint of This Pathogenetic Mechanism? RESPIRATORY DISEASE SERIES: DIAGNOSTIC TOOLS AND DISEASE MANAGEMENTS 2017. [DOI: 10.1007/978-981-10-0839-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Increased levels of prostaglandin E-major urinary metabolite (PGE-MUM) in chronic fibrosing interstitial pneumonia. Respir Med 2016; 122:43-50. [PMID: 27993290 DOI: 10.1016/j.rmed.2016.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Dysregulation of the prostaglandin E2 (PGE2) signaling pathway has been implicated in interstitial pneumonia (IP) pathogenesis. Due to the unstable nature of PGE2, available detection methods may not precisely reflect PGE2 levels. We explored the clinical usefulness of measuring stable prostaglandin E-major urinary metabolite (PGE-MUM) with respect to pathogenesis and extent of chronic fibrosing IP (CFIP), including idiopathic pulmonary fibrosis (IPF), as PGE-MUM is reflective of systemic PGE2 production. METHODS PGE-MUM was measured by radioimmunoassay in controls (n = 124) and patients with lung diseases (bronchial asthma (BA): n = 78, chronic obstructive pulmonary disease (COPD): n = 33, CFIP: n = 44). Extent of lung fibrosis was assessed by fibrosing score (FS) of computed tomography (CT) (FS1-4). Immunohistochemical evaluation of COX-2 was performed to find PGE2 producing cells in IPF. Human bronchial epithelial cells (HBEC) and lung fibroblasts (LFB) were used in in vitro experiments. RESULTS Compared to control, PGE-MUM levels were significantly elevated in CFIP. PGE-MUM levels were positively correlated with FS, and inversely correlated with %DLCO in IP (FS 1-3). COX-2 was highly expressed in metaplastic epithelial cells in IPF, but lower expression of EP2 receptor was demonstrated in LFB derived from IPF. TGF-β induced COX-2 expression in HBEC. CONCLUSIONS PGE-MUM, elevated in CFIP, is a promising biomarker reflecting disease activity. Metaplastic epithelial cells can be a source of elevated PGE-MUM in IPF.
Collapse
|
21
|
Wu Q, Jiang D, Matsuda JL, Ternyak K, Zhang B, Chu HW. Cigarette Smoke Induces Human Airway Epithelial Senescence via Growth Differentiation Factor 15 Production. Am J Respir Cell Mol Biol 2016; 55:429-38. [DOI: 10.1165/rcmb.2015-0143oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
22
|
Pace E, Di Vincenzo S, Ferraro M, Bruno A, Dino P, Bonsignore MR, Battaglia S, Saibene F, Lanata L, Gjomarkaj M. Carbocysteine counteracts the effects of cigarette smoke on cell growth and on the SIRT1/FoxO3 axis in bronchial epithelial cells. Exp Gerontol 2016; 81:119-28. [PMID: 27237816 DOI: 10.1016/j.exger.2016.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/18/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cigarette smoke may accelerate cellular senescence by increasing oxidative stress. Altered proliferation and altered expression of anti-aging factors, including SIRT1 and FoxO3, characterise cellular senescence. The effects of carbocysteine on the SIRT1/FoxO3 axis and on downstream molecular mechanisms in human bronchial epithelial cells exposed to cigarette smoke are largely unknown. AIMS Aim of this study was to explore whether carbocysteine modulated SIRT1/FoxO3 axis, and downstream molecular mechanisms associated to cellular senescence, in a bronchial epithelial cell line (16-HBE) exposed to cigarette smoke. METHODS 16HBE cells were stimulated with/without cigarette smoke extracts (CSE) and carbocysteine. Flow cytometry and clonogenic assay were used to assess cell proliferation; western blot analysis was used for assessing nuclear expression of SIRT1 and FoxO3. The nuclear co-localization of SIRT1 and FoxO3 was assessed by fluorescence microscopy. Beta galactosidase (a senescence marker) and SIRT1 activity were assessed by specific staining and colorimetric assays, respectively. ChiP Assay and flow cytometry were used for assessing survivin gene regulation and protein expression, respectively. RESULTS CSE decreased cell proliferation, the nuclear expression of SIRT1 and FoxO3 and increased beta galactosidase staining. CSE, reduced SIRT1 activity and FoxO3 localization on survivin promoter thus increasing survivin expression. In CSE stimulated bronchial epithelial cells carbocysteine reverted these phenomena by increasing cell proliferation, and SIRT1 and FoxO3 nuclear expression, and by reducing beta galactosidase staining and survivin expression. CONCLUSIONS The study shows for the first time that carbocysteine may revert some senescence processes induced by oxidative stress due to cigarette smoke exposure.
Collapse
Affiliation(s)
- E Pace
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy.
| | - S Di Vincenzo
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - M Ferraro
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - A Bruno
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - P Dino
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - M R Bonsignore
- Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S), University of Palermo, Palermo, Italy
| | - S Battaglia
- Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S), University of Palermo, Palermo, Italy
| | | | - L Lanata
- Dompè Medical Affair, Milan, Italy
| | - M Gjomarkaj
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| |
Collapse
|
23
|
Liu A, Wu J, Li A, Bi W, Liu T, Cao L, Liu Y, Dong L. The inhibitory mechanism of Cordyceps sinensis on cigarette smoke extract-induced senescence in human bronchial epithelial cells. Int J Chron Obstruct Pulmon Dis 2016; 11:1721-31. [PMID: 27555762 PMCID: PMC4968689 DOI: 10.2147/copd.s107396] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Cellular senescence is a state of irreversible growth arrest induced either by telomere shortening (replicative senescence) or stress. The bronchial epithelial cell is often injured by inhaled toxic substances, such as cigarette smoke. In the present study, we investigated whether exposure to cigarette smoke extract (CSE) induces senescence of bronchial epithelial cells; and Cordyceps sinensis mechanism of inhibition of CSE-induced cellular senescence. METHODS Human bronchial epithelial cells (16HBE cells) cultured in vitro were treated with CSE and/or C. sinensis. p16, p21, and senescence-associated-galactosidase activity were used to detect cellular senescence with immunofluorescence, quantitative polymerase chain reaction, and Western blotting. Reactive oxygen species (ROS), PI3K/AKT/mTOR and their phosphorylated proteins were examined to testify the activation of signaling pathway by ROS fluorescent staining and Western blotting. Then, inhibitors of ROS and PI3K were used to further confirm the function of this pathway. RESULTS Cellular senescence was upregulated by CSE treatment, and C. sinensis can decrease CSE-induced cellular senescence. Activation of ROS/PI3K/AKT/mTOR signaling pathway was enhanced by CSE treatment, and decreased when C. sinensis was added. Blocking ROS/PI3K/AKT/mTOR signaling pathway can attenuate CSE-induced cellular senescence. CONCLUSION CSE can induce cellular senescence in human bronchial epithelial cells, and ROS/PI3K/AKT/mTOR signaling pathway may play an important role in this process. C. sinensis can inhibit the CSE-induced senescence.
Collapse
Affiliation(s)
- Ailing Liu
- Department of Pulmonary Diseases, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Pulmonary Diseases, Weihai Municipal Hospital, Weihai, Shandong, People’s Republic of China
| | - Jinxiang Wu
- Department of Pulmonary Diseases, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Aijun Li
- Department of Pulmonary Diseases, Weihai Municipal Hospital, Weihai, Shandong, People’s Republic of China
| | - Wenxiang Bi
- Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Tian Liu
- Department of Pulmonary Diseases, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Liuzhao Cao
- Department of Pulmonary Diseases, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yahui Liu
- Department of Pulmonary Diseases, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Liang Dong
- Department of Pulmonary Diseases, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
24
|
Kuwano K, Araya J, Hara H, Minagawa S, Takasaka N, Ito S, Kobayashi K, Nakayama K. Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Respir Investig 2016; 54:397-406. [PMID: 27886850 DOI: 10.1016/j.resinv.2016.03.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/05/2016] [Accepted: 03/30/2016] [Indexed: 01/18/2023]
Abstract
Aging is associated with impairments in homeostasis. Although aging and senescence are not equivalent, the number of senescent cells increases with aging. Cellular senescence plays important roles in tissue repair or remodeling, as well as embryonic development. Autophagy is a process of lysosomal self-degradation that maintains a homeostatic balance between the synthesis, degradation, and recycling of cellular proteins. Autophagy diminishes with aging; additionally, accelerated aging can be attributed to reduced autophagy. Cellular senescence has been widely implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD), a disease of accelerated lung aging, presumably by impairing cell repopulation and by aberrant cytokine secretion in the senescence-associated secretory phenotype. The possible participation of autophagy in the pathogenic sequence of COPD has been extensively explored. Although it has been reported that increased autophagy may induce epithelial cell death, an insufficient reserve of autophagy can induce cellular senescence in bronchial epithelial cells of COPD. Furthermore, advanced age is one of the most important risk factors for the development of idiopathic pulmonary fibrosis (IPF). Telomere shortening is found in blood leukocytes and alveolar epithelial cells from patients with IPF. Accelerated senescence of epithelial cells plays a role in IPF pathogenesis by perpetuating abnormal epithelial-mesenchymal interactions. Insufficient autophagy may be an underlying mechanism of accelerated epithelial cell senescence and myofibroblast differentiation in IPF. Herein, we review the molecular mechanisms of cellular senescence and autophagy and summarize the role of cellular senescence and autophagy in both COPD and IPF.
Collapse
Affiliation(s)
- Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Hiromichi Hara
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Shunsuke Minagawa
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Naoki Takasaka
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Saburo Ito
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Kenji Kobayashi
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Katsutoshi Nakayama
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
25
|
Ito S, Araya J, Kurita Y, Kobayashi K, Takasaka N, Yoshida M, Hara H, Minagawa S, Wakui H, Fujii S, Kojima J, Shimizu K, Numata T, Kawaishi M, Odaka M, Morikawa T, Harada T, Nishimura SL, Kaneko Y, Nakayama K, Kuwano K. PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy 2016; 11:547-59. [PMID: 25714760 PMCID: PMC4502689 DOI: 10.1080/15548627.2015.1017190] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cigarette smoke (CS)-induced mitochondrial damage with increased reactive oxygen species (ROS) production has been implicated in COPD pathogenesis by accelerating senescence. Mitophagy may play a pivotal role for removal of CS-induced damaged mitochondria, and the PINK1 (PTEN-induced putative kinase 1)-PARK2 pathway has been proposed as a crucial mechanism for mitophagic degradation. Therefore, we sought to investigate to determine if PINK1-PARK2-mediated mitophagy is involved in the regulation of CS extract (CSE)-induced cell senescence and in COPD pathogenesis. Mitochondrial damage, ROS production, and cell senescence were evaluated in primary human bronchial epithelial cells (HBEC). Mitophagy was assessed in BEAS-2B cells stably expressing EGFP-LC3B, using confocal microscopy to measure colocalization between TOMM20-stained mitochondria and EGFP-LC3B dots as a representation of autophagosome formation. To elucidate the involvement of PINK1 and PARK2 in mitophagy, knockdown and overexpression experiments were performed. PINK1 and PARK2 protein levels in lungs from patients were evaluated by means of lung homogenate and immunohistochemistry. We demonstrated that CSE-induced mitochondrial damage was accompanied by increased ROS production and HBEC senescence. CSE-induced mitophagy was inhibited by PINK1 and PARK2 knockdown, resulting in enhanced mitochondrial ROS production and cellular senescence in HBEC. Evaluation of protein levels demonstrated decreased PARK2 in COPD lungs compared with non-COPD lungs. These results suggest that PINK1-PARK2 pathway-mediated mitophagy plays a key regulatory role in CSE-induced mitochondrial ROS production and cellular senescence in HBEC. Reduced PARK2 expression levels in COPD lung suggest that insufficient mitophagy is a part of the pathogenic sequence of COPD.
Collapse
Key Words
- Baf A1, bafilomycin A1
- COPD
- COPD, chronic obstructive pulmonary disease
- CS, cigarette smoke
- CSE, cigarette smoke extract
- EM, electron microscopy
- FEV1, forced expiratory volume in one second
- FVC, forced vital capacity
- HBEC, human bronchial epithelial cell
- MAP1LC3/LC3, microtubule-associated protein 1 light chain 3
- NAC, N-acetylcysteine
- PARK2
- PCD, programmed cell death
- PINK1, PTEN-induced putative kinase 1
- ROS
- ROS, reactive oxygen species
- SA-β-Gal, senescence-associated β-galactosidase
- TLR, toll-like receptor
- WB, western blotting
- mitophagy
- senescence
Collapse
Affiliation(s)
- Saburo Ito
- a Division of Respiratory Diseases; Department of Internal Medicine ; Jikei University School of Medicine ; Tokyo , Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shahin S, Banerjee S, Singh SP, Chaturvedi CM. 2.45 GHz Microwave Radiation Impairs Learning and Spatial Memory via Oxidative/Nitrosative Stress Induced p53-Dependent/Independent Hippocampal Apoptosis: Molecular Basis and Underlying Mechanism. Toxicol Sci 2015; 148:380-99. [DOI: 10.1093/toxsci/kfv205] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
Hu N, Yang L, Dong M, Ren J, Zhang Y. Deficiency in adiponectin exaggerates cigarette smoking exposure-induced cardiac contractile dysfunction: Role of autophagy. Pharmacol Res 2015; 100:175-89. [PMID: 26276084 DOI: 10.1016/j.phrs.2015.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/17/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
Second hand smoke is an independent risk factor for cardiovascular disease. Adiponectin (APN), an adipose-derived adipokine, has been shown to offer cardioprotective effect through an AMPK-dependent manner. This study was designed to evaluate the impact of adiponectin deficiency on second hand smoke-induced cardiac pathology and underlying mechanisms using a mouse model of side-stream smoke exposure. Adult wild-type (WT) and adiponectin knockout (APNKO) mice were placed in a chamber exposed to cigarette smoke for 1 hour daily for 40 days. Echocardiographic, cardiomyocyte function, and intracellular Ca2+ handling were evaluated. Autophagy and apoptosis were examined using western blot. 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) staining was used to evaluate reactive oxygen species (ROS) generation. Masson trichrome staining was employed to measure interstitial fibrosis. Our data revealed that adiponectin deficiency provoked smoke exposure-induced cardiomyopathy (compromised fractional shortening, disrupted cardiomyocyte function and intracellular Ca2+ homeostasis, apoptosis and ROS generation). In addition, these detrimental effects of side-stream smoke were accompanied by defective autophagolysosome formation, the effect of which was exacerbated by adiponectin deficiency. Blocking autophagolysosome formation using bafilomycin A1 (BafA1) negated the cardioprotective effect of rapamycin against smoke extract. Induction of autophagy using rapamycin and AMPKα activation using AICAR rescued against smoke extract-induced myopathic anomalies in APNKO mice. Our data suggest that adiponectin serves as an indispensable cardioprotective factor against side-stream smoke exposure-induced myopathic changes possibly through facilitating autophagolysosome formation.
Collapse
Affiliation(s)
- Nan Hu
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Lifang Yang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China; Department of Anesthesiology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Maolong Dong
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China; Department of Burn and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Jun Ren
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| | - Yingmei Zhang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
28
|
Ahmad T, Sundar IK, Lerner CA, Gerloff J, Tormos AM, Yao H, Rahman I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease. FASEB J 2015; 29:2912-29. [PMID: 25792665 DOI: 10.1096/fj.14-268276] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/02/2015] [Indexed: 02/07/2023]
Abstract
Cigarette smoke (CS)-induced cellular senescence is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). The molecular mechanism by which CS induces cellular senescence is unknown. Here, we show that CS stress (exposure of primary lung cells to CS extract 0.2-0.75% with a half-maximal inhibitory concentration of ∼0.5%) led to impaired mitophagy and perinuclear accumulation of damaged mitochondria associated with cellular senescence in both human lung fibroblasts and small airway epithelial cells (SAECs). Impaired mitophagy was attributed to reduced Parkin translocation to damaged mitochondria, which was due to CS-induced cytoplasmic p53 accumulation and its interaction with Parkin. Impaired Parkin translocation to damaged mitochondria was also observed in mouse lungs with emphysema (6 months CS exposure, 100 mg TPM/m(3)) as well as in lungs of chronic smokers and patients with COPD. Primary SAECs from patients with COPD also exhibited impaired mitophagy and increased cellular senescence via suborganellar signaling. Mitochondria-targeted antioxidant (Mito-Tempo) restored impaired mitophagy, decreased mitochondrial mass accumulation, and delayed cellular senescence in Parkin-overexpressing cells. In conclusion, defective mitophagy leads to CS stress-induced lung cellular senescence, and restoring mitophagy delays cellular senescence, which provides a promising therapeutic intervention in chronic airway diseases.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, USA
| | - Chad A Lerner
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, USA
| | - Janice Gerloff
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, USA
| | - Ana M Tormos
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, USA
| | - Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, USA
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
29
|
Abstract
Ageing is the main risk factor for major non-communicable chronic lung diseases, including chronic obstructive pulmonary disease, most forms of lung cancer and idiopathic pulmonary fibrosis. While the prevalence of these diseases continually increases with age, their respective incidence peaks at different times during the lifespan, suggesting specific effects of ageing on the onset and/or pathogenesis of chronic obstructive pulmonary disease, lung cancer and idiopathic pulmonary fibrosis. Recently, the nine hallmarks of ageing have been defined as cell-autonomous and non-autonomous pathways involved in ageing. Here, we review the available evidence for the involvement of each of these hallmarks in the pathogenesis of chronic obstructive pulmonary disease, lung cancer, or idiopathic pulmonary fibrosis. Importantly, we propose an additional hallmark, “dysregulation of the extracellular matrix”, which we argue acts as a crucial modifier of cell-autonomous changes and functions, and as a key feature of the above-mentioned lung diseases.
Collapse
|
30
|
Aug A, Altraja A, Altraja S, Laaniste L, Mahlapuu R, Soomets U, Kilk K. Alterations of bronchial epithelial metabolome by cigarette smoke are reversible by an antioxidant, O-methyl-L-tyrosinyl-γ-L-glutamyl-L-cysteinylglycine. Am J Respir Cell Mol Biol 2014; 51:586-94. [PMID: 24810251 DOI: 10.1165/rcmb.2013-0377oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Human bronchial epithelial cells (HBECs) have first-line contact with harmful substances during smoking, and changes in their metabolism most likely represent a defining factor in coping with the stress and development of airway diseases. This study was designed to determine the dynamics of metabolome changes in HBECs treated with cigarette smoke condensate (CSC), and to test whether normal metabolism can be restored by synthetic antioxidants. Principal component analysis, based on untargeted mass spectra, indicated that treatment of CSC-exposed HBECs with O-methyl-L-tyrosinyl-γ-L-glutamyl-L-cysteinylglycine (UPF1) acted faster than did N-acetylcysteine to revert the effect of CSC. The maximum effect of 10 μg/ml CSC itself on HBEC cell line, BEAS-2B, metabolism was seen at 2 hours after treatment, with return to the baseline level by 7 hours. In primary HBECs, the initial maximum effect was seen at 1 hour after CSC exposure. Certain metabolites associated with redox pathways and energy production were affected by CSC. Subsequent restoration of their content by UPF1 supports the hypothetical protective capacity of UPF1 against the oxidative stress and increased energy demand, respectively. Furthermore, UPF1 up-regulated the contents of phospholipid species identified as phosphatidylcholines and phosphatidylethanolamines in the CSC-exposed HBECs, indicating possible suppression of inflammatory processes along with an increase in spermidine as an endogenous cytoprotector. In conclusion, with this dynamic metabolomics study, we characterize the durability of the CSC-induced metabolic changes in BEAS-2B line cells and primary HBECs, and demonstrate the ability of UPF1 to significantly accelerate the recovery of HBECs from CSC insult.
Collapse
Affiliation(s)
- Argo Aug
- 1 Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, the Centre of Excellence for Translational Medicine, Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
31
|
Gu C, Li Y, Xu WL, Yan JP, Xia YJ, Ma YY, Chen C, Wang HJ, Tao HQ. Sirtuin 1 Activator SRT1720 Protects Against Lung Injury via Reduction of Type II Alveolar Epithelial Cells Apoptosis in Emphysema. COPD 2014; 12:444-52. [DOI: 10.3109/15412555.2014.974740] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Kanaji N, Basma H, Nelson A, Farid M, Sato T, Nakanishi M, Wang X, Michalski J, Li Y, Gunji Y, Feghali-Bostwick C, Liu X, Rennard SI. Fibroblasts that resist cigarette smoke-induced senescence acquire profibrotic phenotypes. Am J Physiol Lung Cell Mol Physiol 2014; 307:L364-73. [PMID: 25015975 DOI: 10.1152/ajplung.00041.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study assessed the effect of extended exposure to cigarette smoke extract (CSE) on tissue repair functions in lung fibroblasts. Human fetal (HFL-1) and adult lung fibroblasts were exposed to CSE for 14 days. Senescence-associated β-galactosidase (SA β-gal) expression, cell proliferation, and tissue repair functions including chemotaxis and gel contraction were assessed. HFL-1 proliferation was inhibited by CSE and nearly half of the CSE-exposed cells were SA β-gal positive after 14 days exposure, whereas 33% of adult lung fibroblasts were SA β-gal positive in response to 10% CSE exposure. The SA β-gal-positive cells did not proliferate as indicated by bromodeoxyuridine incorporation. In contrast, cells negative for SA β-gal after CSE exposure proliferated faster than cells never exposed to CSE. These nonsenescent cells migrated more and contracted collagen gels more than control cells. CSE exposure stimulated TGF-β1 production, and both inhibition of TGF-β receptor kinase and TGF-β1 siRNA blocked CSE modulation of fibroblast function. Extended exposure to CSE might induce two different fibroblast phenotypes, a senescent and a profibrotic phenotype. The fibroblasts that resist CSE-induced cellular senescence may contribute to the pathogenesis of idiopathic pulmonary fibrosis and could contribute to fibrotic lesions in chronic obstructive pulmonary disease acting through a TGF-β1-mediated pathway. In contrast, the senescent cells may contribute to the pathogenesis of emphysema.
Collapse
Affiliation(s)
- Nobuhiro Kanaji
- Division of Endocrinology and Metabolism, Hematology, Rheumatology and Respiratory Medicine, Kagawa University, Kagawa, Japan
| | - Hesham Basma
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Amy Nelson
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Maha Farid
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Tadashi Sato
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Masanori Nakanishi
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Xingqi Wang
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Joel Michalski
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - YingJi Li
- Department of Hygiene and Public Health, Nippon Medical School, Tokyo, Japan
| | - Yoko Gunji
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiangde Liu
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Stephen I Rennard
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska;
| |
Collapse
|
33
|
Vucic EA, Chari R, Thu KL, Wilson IM, Cotton AM, Kennett JY, Zhang M, Lonergan KM, Steiling K, Brown CJ, McWilliams A, Ohtani K, Lenburg ME, Sin DD, Spira A, MacAulay CE, Lam S, Lam WL. DNA methylation is globally disrupted and associated with expression changes in chronic obstructive pulmonary disease small airways. Am J Respir Cell Mol Biol 2014; 50:912-22. [PMID: 24298892 PMCID: PMC4068945 DOI: 10.1165/rcmb.2013-0304oc] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 12/03/2013] [Indexed: 01/06/2023] Open
Abstract
DNA methylation is an epigenetic modification that is highly disrupted in response to cigarette smoke and involved in a wide spectrum of malignant and nonmalignant diseases, but surprisingly not previously assessed in small airways of patients with chronic obstructive pulmonary disease (COPD). Small airways are the primary sites of airflow obstruction in COPD. We sought to determine whether DNA methylation patterns are disrupted in small airway epithelia of patients with COPD, and evaluate whether changes in gene expression are associated with these disruptions. Genome-wide methylation and gene expression analysis were performed on small airway epithelial DNA and RNA obtained from the same patient during bronchoscopy, using Illumina's Infinium HM27 and Affymetrix's Genechip Human Gene 1.0 ST arrays. To control for known effects of cigarette smoking on DNA methylation, methylation and gene expression profiles were compared between former smokers with and without COPD matched for age, pack-years, and years of smoking cessation. Our results indicate that aberrant DNA methylation is (1) a genome-wide phenomenon in small airways of patients with COPD, and (2) associated with altered expression of genes and pathways important to COPD, such as the NF-E2-related factor 2 oxidative response pathway. DNA methylation is likely an important mechanism contributing to modulation of genes important to COPD pathology. Because these methylation events may underlie disease-specific gene expression changes, their characterization is a critical first step toward the development of epigenetic markers and an opportunity for developing novel epigenetic therapeutic interventions for COPD.
Collapse
Affiliation(s)
- Emily A. Vucic
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Raj Chari
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Kelsie L. Thu
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Ian M. Wilson
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Allison M. Cotton
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer Y. Kennett
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - May Zhang
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Kim M. Lonergan
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Katrina Steiling
- Division of Computational Biomedicine, Department of Medicine, Boston University Medical Center, Boston, Massachusetts; and
| | - Carolyn J. Brown
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Annette McWilliams
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Keishi Ohtani
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Marc E. Lenburg
- Division of Computational Biomedicine, Department of Medicine, Boston University Medical Center, Boston, Massachusetts; and
| | - Don D. Sin
- University of British Columbia James Hogg Research Centre and the Institute of Heart and Lung Health, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Avrum Spira
- Division of Computational Biomedicine, Department of Medicine, Boston University Medical Center, Boston, Massachusetts; and
| | - Calum E. MacAulay
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Wan L. Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
34
|
Takasaka N, Araya J, Hara H, Ito S, Kobayashi K, Kurita Y, Wakui H, Yoshii Y, Yumino Y, Fujii S, Minagawa S, Tsurushige C, Kojima J, Numata T, Shimizu K, Kawaishi M, Kaneko Y, Kamiya N, Hirano J, Odaka M, Morikawa T, Nishimura SL, Nakayama K, Kuwano K. Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:958-68. [PMID: 24367027 DOI: 10.4049/jimmunol.1302341] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Cigarette smoke (CS)-induced cellular senescence has been implicated in the pathogenesis of chronic obstructive pulmonary disease, and SIRT6, a histone deacetylase, antagonizes this senescence, presumably through the attenuation of insulin-like growth factor (IGF)-Akt signaling. Autophagy controls cellular senescence by eliminating damaged cellular components and is negatively regulated by IGF-Akt signaling through the mammalian target of rapamycin (mTOR). SIRT1, a representative sirtuin family, has been demonstrated to activate autophagy, but a role for SIRT6 in autophagy activation has not been shown. Therefore, we sought to investigate the regulatory role for SIRT6 in autophagy activation during CS-induced cellular senescence. SIRT6 expression levels were modulated by cDNA and small interfering RNA transfection in human bronchial epithelial cells (HBECs). Senescence-associated β-galactosidase staining and Western blotting of p21 were performed to evaluate senescence. We demonstrated that SIRT6 expression levels were decreased in lung homogenates from chronic obstructive pulmonary disease patients, and SIRT6 expression levels correlated significantly with the percentage of forced expiratory volume in 1 s/forced vital capacity. CS extract (CSE) suppressed SIRT6 expression in HBECs. CSE-induced HBEC senescence was inhibited by SIRT6 overexpression, whereas SIRT6 knockdown and mutant SIRT6 (H133Y) without histone deacetylase activity enhanced HBEC senescence. SIRT6 overexpression induced autophagy via attenuation of IGF-Akt-mTOR signaling. Conversely, SIRT6 knockdown and overexpression of a mutant SIRT6 (H133Y) inhibited autophagy. Autophagy inhibition by knockdown of ATG5 and LC3B attenuated the antisenescent effect of SIRT6 overexpression. These results suggest that SIRT6 is involved in CSE-induced HBEC senescence via autophagy regulation, which can be attributed to attenuation of IGF-Akt-mTOR signaling.
Collapse
Affiliation(s)
- Naoki Takasaka
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hara H, Araya J, Ito S, Kobayashi K, Takasaka N, Yoshii Y, Wakui H, Kojima J, Shimizu K, Numata T, Kawaishi M, Kamiya N, Odaka M, Morikawa T, Kaneko Y, Nakayama K, Kuwano K. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am J Physiol Lung Cell Mol Physiol 2013; 305:L737-46. [PMID: 24056969 DOI: 10.1152/ajplung.00146.2013] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mitochondria are dynamic organelles that continuously change their shape through fission and fusion. Disruption of mitochondrial dynamics is involved in disease pathology through excessive reactive oxygen species (ROS) production. Accelerated cellular senescence resulting from cigarette smoke exposure with excessive ROS production has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Hence, we investigated the involvement of mitochondrial dynamics and ROS production in terms of cigarette smoke extract (CSE)-induced cellular senescence in human bronchial epithelial cells (HBEC). Mitochondrial morphology was examined by electron microscopy and fluorescence microscopy. Senescence-associated β-galactosidase staining and p21 Western blotting of primary HBEC were performed to evaluate cellular senescence. Mitochondrial-specific superoxide production was measured by MitoSOX staining. Mitochondrial fragmentation was induced by knockdown of mitochondrial fusion proteins (OPA1 or Mitofusins) by small-interfering RNA transfection. N-acetylcysteine and Mito-TEMPO were used as antioxidants. Mitochondria in bronchial epithelial cells were prone to be more fragmented in COPD lung tissues. CSE induced mitochondrial fragmentation and mitochondrial ROS production, which were responsible for acceleration of cellular senescence in HBEC. Mitochondrial fragmentation induced by knockdown of fusion proteins also increased mitochondrial ROS production and percentages of senescent cells. HBEC senescence and mitochondria fragmentation in response to CSE treatment were inhibited in the presence of antioxidants. CSE-induced mitochondrial fragmentation is involved in cellular senescence through the mechanism of mitochondrial ROS production. Hence, disruption of mitochondrial dynamics may be a part of the pathogenic sequence of COPD development.
Collapse
Affiliation(s)
- Hiromichi Hara
- Division of Respiratory diseases, Dept. of Internal Medicine, Jikei Univ. School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yuan F, Dong P, Wang X, Fu X, Dai M, Zhang W. Toxicological effects of cigarette smoke on Ana-1 macrophages in vitro. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2013; 65:1011-8. [PMID: 23517752 DOI: 10.1016/j.etp.2013.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/14/2013] [Accepted: 02/26/2013] [Indexed: 11/25/2022]
Abstract
Cigarette smoke exposure is associated with increased risk of different disorders. Immunological dysfunction especially in macrophages is one of important reasons in the initiation, progression and exacerbation of smoke-related pulmonary illnesses. However, it is still obscure how cigarette smoke impacts the vitality and functions of macrophages. In the present study, we examined the effects of cigarette smoke extract (CSE) on mouse Ana-1 macrophages and tried to elucidate the involved mechanism. The results showed CSE induced cell apoptosis accompanied by increased releasing of lactate dehydrogenase (LDH), mitochondrial injury and oxidative stress. It also inhibited anti-apoptosis protein Bcl-2 expression and promoted pro-apoptosis protein Bax and Bad expressions. Moreover, low-dose CSE increased nuclear NF-κB levels of macrophages; on the contrary, high-dose CSE or long-time treatment decreased it. These observations were in correspondence with changes of intracellular ROS level and antioxidant enzymes' activity. Furthermore, pretreatment with 10μM of NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) for 1h significantly enhanced macrophage apoptosis. Taken together, these data implied that mitochondrial dysfunction and oxidative stress played important roles in the injury of Ana-1 cells caused by CSE, which was related to NF-κB pathway; an anti-apoptotic program played a dominant role at low doses/short-term exposure to CSE, whereas a pro-apoptotic program was initiated at high doses/long-term exposure.
Collapse
Affiliation(s)
- Fengjiao Yuan
- Jiangsu Key Laboratory of Molecular Medicine, Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Haines DD, Juhasz B, Tosaki A. Management of multicellular senescence and oxidative stress. J Cell Mol Med 2013; 17:936-57. [PMID: 23789967 PMCID: PMC3780549 DOI: 10.1111/jcmm.12074] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/18/2013] [Indexed: 12/15/2022] Open
Abstract
Progressively sophisticated understanding of cellular and molecular processes that contribute to age-related physical deterioration is being gained from ongoing research into cancer, chronic inflammatory syndromes and other serious disorders that increase with age. Particularly valuable insight has resulted from characterization of how senescent cells affect the tissues in which they form in ways that decrease an organism's overall viability. Increasingly, the underlying pathophysiology of ageing is recognized as a consequence of oxidative damage. This leads to hyperactivity of cell growth pathways, prominently including mTOR (mammalian target of rapamycin), that contribute to a build-up in cells of toxic aggregates such as progerin (a mutant nuclear cytoskeletal protein), lipofuscin and other cellular debris, triggering formation of senescent cellular phenotypes, which interact destructively with surrounding tissue. Indeed, senescent cell ablation dramatically inhibits physical deterioration in progeroid (age-accelerated) mice. This review explores ways in which oxidative stress creates ageing-associated cellular damage and triggers induction of the cell death/survival programs' apoptosis, necrosis, autophagy and 'necroapoptophagy'. The concept of 'necroapoptophagy' is presented here as a strategy for varying tissue oxidative stress intensity in ways that induce differential activation of death versus survival programs, resulting in enhanced and sustained representation of healthy functional cells. These strategies are discussed in the context of specialized mesenchymal stromal cells with the potential to synergize with telocytes in stabilizing engrafted progenitor cells, thereby extending periods of healthy life. Information and concepts are summarized in a hypothetical approach to suppressing whole-organism senescence, with methods drawn from emerging understandings of ageing, gained from Cnidarians (jellyfish, corals and anemones) that undergo a unique form of cellular regeneration, potentially conferring open-ended lifespans.
Collapse
Affiliation(s)
- David D Haines
- Department of Pharmacology, Faculty of Pharmacy, Health and Science Center, University of Debrecen, Debrecen, Hungary
| | | | | |
Collapse
|
39
|
Lin YS, Cheng TH, Chang CP, Chen HM, Chern Y. Enhancement of brain-type creatine kinase activity ameliorates neuronal deficits in Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2013; 1832:742-53. [DOI: 10.1016/j.bbadis.2013.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/22/2013] [Accepted: 02/05/2013] [Indexed: 12/27/2022]
|
40
|
Abstract
Autophagy is a process of lysosomal self-degradation that helps to maintain the homeostatic balance between the synthesis, degradation and recycling of cellular proteins and organelles. Autophagy does not simply function as the machinery for supplying amino acids in response to energy demands, it is an adaptive pathway of cytoprotection against cellular stressors, including starvation, reactive oxygen species (ROS), endoplasmic reticulum (ER) stress and microbial infection. Accordingly, autophagy is considered to be the mediator of a variety of cellular processes and cell fates, including cell survival and death, cellular senescence and immune responses. Due to the organ-specific role of gas exchange, various cell types within the lungs are serially exposed to a diverse array of cellular stressors, and growing evidence has revealed the crucial involvement of autophagy in the pathogenic processes underlying pulmonary diseases. We herein review recent findings regarding the role of autophagy in cellular processes and cell fates and summarize the role that autophagy appears to play in the pathogenesis of pulmonary diseases.
Collapse
Affiliation(s)
- Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Japan
| | | | | |
Collapse
|
41
|
Yao H, Chung S, Hwang JW, Rajendrasozhan S, Sundar IK, Dean DA, McBurney MW, Guarente L, Gu W, Rönty M, Kinnula VL, Rahman I. SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Invest 2012; 122:2032-45. [PMID: 22546858 DOI: 10.1172/jci60132] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 03/07/2012] [Indexed: 01/06/2023] Open
Abstract
Chronic obstructive pulmonary disease/emphysema (COPD/emphysema) is characterized by chronic inflammation and premature lung aging. Anti-aging sirtuin 1 (SIRT1), a NAD+-dependent protein/histone deacetylase, is reduced in lungs of patients with COPD. However, the molecular signals underlying the premature aging in lungs, and whether SIRT1 protects against cellular senescence and various pathophysiological alterations in emphysema, remain unknown. Here, we showed increased cellular senescence in lungs of COPD patients. SIRT1 activation by both genetic overexpression and a selective pharmacological activator, SRT1720, attenuated stress-induced premature cellular senescence and protected against emphysema induced by cigarette smoke and elastase in mice. Ablation of Sirt1 in airway epithelium, but not in myeloid cells, aggravated airspace enlargement, impaired lung function, and reduced exercise tolerance. These effects were due to the ability of SIRT1 to deacetylate the FOXO3 transcription factor, since Foxo3 deficiency diminished the protective effect of SRT1720 on cellular senescence and emphysematous changes. Inhibition of lung inflammation by an NF-κB/IKK2 inhibitor did not have any beneficial effect on emphysema. Thus, SIRT1 protects against emphysema through FOXO3-mediated reduction of cellular senescence, independently of inflammation. Activation of SIRT1 may be an attractive therapeutic strategy in COPD/emphysema.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|