1
|
Yang C, Yang H, Xian Y, Liu N, Tan H, Ren Z, Lin Y, Zhao H, Fang C, Yu K, Pan D, Zhang Y, Huang X, Xia N, Wang W, Cheng T. Development of a rat airway organoids model for studying chronic obstructive pulmonary disease. Tissue Cell 2025; 93:102692. [PMID: 39742548 DOI: 10.1016/j.tice.2024.102692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/03/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) poses global health challenges owing to limited treatment options and high rates of morbidity and mortality. Airway organoids have recently become a valuable resource for the investigation of respiratory diseases. However, limited access to clinical tissue samples hinders the use of airway organoids to study COPD. Therefore, alternative models that can mimic human airway pathology without relying on human tissues are needed. In this study, airway organoids were developed from tracheal epithelial cells obtained from 8-week-old Sprague-Dawley rats and exposed to lipopolysaccharide (LPS) to induce COPD-like characteristics. Exposure to LPS leads to structural changes in organoids, including an increase in goblet cells, a decrease in ciliated cells, increased mucin production, and elevated levels of pro-inflammatory cytokines. The COPD drugs erdosteine and R-HP210 effectively reduced mucin secretion, although none was able to restore the function of ciliated cells. Inflammatory markers responded differently, with ensifentrine and erdosteine significantly reducing cytokine levels. These results demonstrate that rat airway organoids replicate important aspects of human COPD pathology, thus providing an accessible, ethical, and clinically relevant alternative to human tissues and traditional animal models to enhance our understanding of COPD pathogenesis and evaluate potential treatments.
Collapse
Affiliation(s)
- Chuanlai Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
| | - Hongwei Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
| | - Yangling Xian
- Beijing Wantai Biological Pharmacy Enterprise Co., Ltd., Beijing, China
| | - Nanyi Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
| | - Haoyin Tan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
| | - Zirui Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
| | - Yanzhen Lin
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Huan Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
| | - Changjian Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
| | - Kang Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
| | - Dequan Pan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
| | - Yali Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
| | - Xiumin Huang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
| | - Wei Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China.
| | - Tong Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China.
| |
Collapse
|
2
|
Zhang M, Wang S, Guan Q, Wang J, Yan B, Zhang L, Li D. A bidirectional Mendelian randomization study investigating the relationship between genetically predicted systemic inflammatory regulators and chronic obstructive pulmonary disease. Heliyon 2024; 10:e24109. [PMID: 38268600 PMCID: PMC10806290 DOI: 10.1016/j.heliyon.2024.e24109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Research has shown a connection between inflammation and chronic obstructive pulmonary disease (COPD), however the relationship between inflammation mediators and COPD causation remains unknown. To investigate the causal relationship of mediators of inflammation and COPD, we conducted a two-sample Mendelian randomization (MR) study. In our study, we incorporated 41 regulators of inflammation from 8293 Finnish individuals from genome-wide association studies (GWASs) of COPD corresponding to GWAS summary data for 2115 cases and 454,233 healthy individuals in Europe. Our research validated that higher levels of interleukin 8 (IL-8) are related with a decrease occurrence of COPD (OR = 0.795, 95 % CI = 0.642-0.984, p = 0.035) but that elevated levels of interleukin 18(IL-18) and interleukin 2 (IL-2) may be connected to an amplified risk of COPD (OR = 1.247, 95 % CI = 1.011-1.538; p = 0.039; OR = 1.257, 95 % CI = 1.037-1.523, p = 0.020, respectively). According to our research, cytokines play a crucial role in the development of COPD, and further investigation is necessary to explore the potential of utilizing these cytokines as targets for treatment and prevention of COPD.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shengnan Wang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qingtian Guan
- First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Jianglong Wang
- First Operating Room, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bailing Yan
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Dan Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
3
|
Giraldo-Montoya ÁM, Torres-Duque CA, Giraldo-Cadavid LF, Laucho-Contreras ME, González-Flórez A, Santos AM, Tuta-Quintero EA, Celli BR, González-García M. Sputum Biomarkers in Wood and Tobacco Smoke Etiotypes of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 19:1-10. [PMID: 38179428 PMCID: PMC10763680 DOI: 10.2147/copd.s439064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction There is a need to better understand the etiotypes of chronic obstructive pulmonary disease (COPD) beyond the tobacco-smoke (TS-COPD). Wood smoke COPD (WS-COPD) is characterized by greater airway compromise, milder emphysema, and slower rate of lung function decline than TS-COPD. However, it is unclear if these two etiotypes of COPD have differences in sputum biomarker concentrations. Objective was to compare sputum levels of selected sputum biomarkers between WS-COPD and TS-COPD, and healthy controls. Methods Eighty-eight women (69±12 years) were recruited and classified into: WS-COPD (n=31), TS-COPD (n=29) and controls (n=28). Using ELISA, we determined induced sputum levels of metalloproteinase 9 (MMP-9), chemokine ligand 5 (CCL5), interleukin-8 (IL-8), chemokine ligand 16 (CCL16/HCC-4) and vascular endothelial growth factor (VEGF-1). Differences were analyzed by Kruskal-Wallis and Mann-Whitney-U tests and correlation between airflow limitation and biomarkers by Spearman's test. Results At similar degree of airflow obstruction, anthropometrics and medications use, the level of sputum CCL5 was higher in TS-COPD than WS-COPD (p=0.03) without differences in MMP-9, IL-8, CCL16/HCC-4, and VEGF-1. Women with WS-COPD and TS-COPD showed significantly higher sputum levels of MMP-9, IL-8 and CCL5 compared with controls (p<0.001). FEV1% predicted correlated negatively with levels of MMP-9 (rho:-0.26; P=0.016), CCL5 (rho:-0.37; P=0.001), IL-8 (rho:-0.42; P<0.001) and VEGF (rho:-0.22; P=0.04). Conclusion While sputum concentrations of MMP-9, IL-8, and CCL5 were higher in COPD women compared with controls, women with TS-COPD had higher levels of CCL5 compared with those with WS-COPD. Whether this finding relates to differences in pathobiological pathways remains to be determined.
Collapse
Affiliation(s)
- Ángela María Giraldo-Montoya
- CINEUMO, Research Center, Fundación Neumológica Colombiana, Bogotá, Colombia
- School of Medicine, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Carlos A Torres-Duque
- CINEUMO, Research Center, Fundación Neumológica Colombiana, Bogotá, Colombia
- Biosciences Doctoral, Universidad de La Sabana, Chía, Colombia
| | - Luis F Giraldo-Cadavid
- Medical Department, Fundación Neumológica Colombiana, Bogotá, Colombia
- Epidemiology and Biostatistics Department, Universidad de La Sabana, Chía, Colombia
| | | | | | | | - Eduardo A Tuta-Quintero
- CINEUMO, Research Center, Fundación Neumológica Colombiana, Bogotá, Colombia
- Epidemiology and Biostatistics Department, Universidad de La Sabana, Chía, Colombia
| | | | - Mauricio González-García
- CINEUMO, Research Center, Fundación Neumológica Colombiana, Bogotá, Colombia
- School of Medicine, Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
4
|
Upadhyay P, Wu CW, Pham A, Zeki AA, Royer CM, Kodavanti UP, Takeuchi M, Bayram H, Pinkerton KE. Animal models and mechanisms of tobacco smoke-induced chronic obstructive pulmonary disease (COPD). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:275-305. [PMID: 37183431 PMCID: PMC10718174 DOI: 10.1080/10937404.2023.2208886] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, and its global health burden is increasing. COPD is characterized by emphysema, mucus hypersecretion, and persistent lung inflammation, and clinically by chronic airflow obstruction and symptoms of dyspnea, cough, and fatigue in patients. A cluster of pathologies including chronic bronchitis, emphysema, asthma, and cardiovascular disease in the form of hypertension and atherosclerosis variably coexist in COPD patients. Underlying causes for COPD include primarily tobacco use but may also be driven by exposure to air pollutants, biomass burning, and workplace related fumes and chemicals. While no single animal model might mimic all features of human COPD, a wide variety of published models have collectively helped to improve our understanding of disease processes involved in the genesis and persistence of COPD. In this review, the pathogenesis and associated risk factors of COPD are examined in different mammalian models of the disease. Each animal model included in this review is exclusively created by tobacco smoke (TS) exposure. As animal models continue to aid in defining the pathobiological mechanisms of and possible novel therapeutic interventions for COPD, the advantages and disadvantages of each animal model are discussed.
Collapse
Affiliation(s)
- Priya Upadhyay
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Alexa Pham
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Amir A. Zeki
- Department of Internal Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology and Medicine, School of Medicine; University of California, Davis, School of Medicine; U.C. Davis Lung Center; Davis, CA USA
| | - Christopher M. Royer
- California National Primate Research Center, University of California, Davis, Davis, CA 95616 USA
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Minoru Takeuchi
- Department of Animal Medical Science, Kyoto Sangyo University, Kyoto, Japan
| | - Hasan Bayram
- Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Istanbul, Turkey
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
5
|
Agarwood Oil Nanoemulsion Attenuates Cigarette Smoke-Induced Inflammation and Oxidative Stress Markers in BCi-NS1.1 Airway Epithelial Cells. Nutrients 2023; 15:nu15041019. [PMID: 36839377 PMCID: PMC9959783 DOI: 10.3390/nu15041019] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an irreversible inflammatory respiratory disease characterized by frequent exacerbations and symptoms such as cough and wheezing that lead to irreversible airway damage and hyperresponsiveness. The primary risk factor for COPD is chronic cigarette smoke exposure, which promotes oxidative stress and a general pro-inflammatory condition by stimulating pro-oxidant and pro-inflammatory pathways and, simultaneously, inactivating anti-inflammatory and antioxidant detoxification pathways. These events cause progressive damage resulting in impaired cell function and disease progression. Treatments available for COPD are generally aimed at reducing the symptoms of exacerbation. Failure to regulate oxidative stress and inflammation results in lung damage. In the quest for innovative treatment strategies, phytochemicals, and complex plant extracts such as agarwood essential oil are promising sources of molecules with antioxidant and anti-inflammatory activity. However, their clinical use is limited by issues such as low solubility and poor pharmacokinetic properties. These can be overcome by encapsulating the therapeutic molecules using advanced drug delivery systems such as polymeric nanosystems and nanoemulsions. In this study, agarwood oil nanoemulsion (agarwood-NE) was formulated and tested for its antioxidant and anti-inflammatory potential in cigarette smoke extract (CSE)-treated BCi-NS1.1 airway basal epithelial cells. The findings suggest successful counteractivity of agarwood-NE against CSE-mediated pro-inflammatory effects by reducing the expression of the pro-inflammatory cytokines IL-1α, IL-1β, IL-8, and GDF-15. In addition, agarwood-NE induced the expression of the anti-inflammatory mediators IL-10, IL-18BP, TFF3, GH, VDBP, relaxin-2, IFN-γ, and PDGF. Furthermore, agarwood-NE also induced the expression of antioxidant genes such as GCLC and GSTP1, simultaneously activating the PI3K pro-survival signalling pathway. This study provides proof of the dual anti-inflammatory and antioxidant activity of agarwood-NE, highlighting its enormous potential for COPD treatment.
Collapse
|
6
|
Zhang S, Lu X, Fang X, Wang Z, Cheng S, Song J. Cigarette smoke extract combined with LPS reduces ABCA3 expression in chronic pulmonary inflammation may be related to PPARγ/ P38 MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114086. [PMID: 36115154 DOI: 10.1016/j.ecoenv.2022.114086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
ABCA3 (ATP-binding cassette class A3) is a transmembrane transporter that plays a positive role in chronic pulmonary inflammation by regulating lipid metabolism. However, it is not completely clear whether ABCA3 and its signaling factors are involved in chronic pulmonary inflammation induced by the combination of CSE (cigarette smoke extract) and LPS (lipopolysaccharide). In this study, we used the method of combining CSE and LPS which was widely used to study lung inflammation-related diseases and has been proven effective in our group's studies to create in vivo and in vitro pulmonary inflammation models. The result showed that, after CSE in combination with LPS treatment, ABCA3 expression was downregulated in rat lung in vivo and in a human alveolar cell line in vitro. ABCA3 expression was upregulated, and related inflammatory factors were downregulated in the state of overexpression of PPARγ or inhibition of the p38 MAPK pathway, while PPARγ deletion or MAPK14 overexpression showed the opposite results. The level of PPARγ remained unchanged, and the expression of ABCA3 was upregulated in the state of the p38 MAPK pathway was inhibited under overexpression of PPARγ. These results indicate that CSE combined with LPS can result in downregulation of ABCA3 under conditions of inflammation, and that the p38 MAPK signaling pathway mediated by PPARγ can regulate the expression changes of ABCA3, thus providing new targets for treating chronic pulmonary inflammation.
Collapse
Affiliation(s)
- Shuyi Zhang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Xianwang Lu
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Xin Fang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Zihao Wang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Shihao Cheng
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Jue Song
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China.
| |
Collapse
|
7
|
Isaac A, Nehemiah HK, Dunston SD, Elgin Christo V, Kannan A. Feature selection using competitive coevolution of bio-inspired algorithms for the diagnosis of pulmonary emphysema. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Azargoon A, Kharazmkia A, Kordalivand N, Birjandi M, Mir S. Evaluation of exposure to secondhand smoke and serum level of interleukin 18 in non-smokers. Ann Med Surg (Lond) 2022; 73:103238. [PMID: 35079372 PMCID: PMC8767295 DOI: 10.1016/j.amsu.2021.103238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 11/24/2022] Open
Abstract
Objective Smoking is one significant global health care problems, that not only affects the users but also endangers the health of people inhaling the smoke (passive smoking/secondhand smoke). The serum level of IL-18, an important regulator of inherent and acquired immune response, is affected by cigarette smoking. The aim of this study was to evaluate the effect of secondhand smoke (SHS) exposure on IL-18 serum level in non-smoker adults. Methods In a case-control study, using easy sampling method, 76 non-smokers who were exposed to cigarette smoke for at least 1 h daily during the past year were considered as exposure group, while 76 of their companions without exposure to cigarette smoke (after matching age) were considered as non-exposure group. Serum IL-18 levels were measured for all participants and finally compared between the two groups using Chi-square test. P value < 0.05 was considered to be statistically significant. Results The exposure and non-exposure groups included 58 (76.3%) and 25 (32.9%) males, respectively (P < 0.001). The mean ± SD of age for the exposure and non-exposure groups was 35.42 ± 10.37 and 38.47 ± 12.49 years, respectively (P = 0.102). There was no significant difference between the mean serum levels of IL-18 in the exposure (54.81 ± 57.03 ng/ml) and non-exposure (41.49 ± 42.14 ng/ml) groups (P = 0.104). Conclusion The exposure to secondhand smoke has no significant effect on serum level of IL-18 in exposed adult individuals. However, more studies with larger sample sizes on different populations are required to confirm these results. Smoking is one significant global health care problems. That not only affects the users but also endangers the health of people inhaling the smoke. The serum level of IL-18, an important regulator of inherent and acquired immune response. The exposure to secondhand smoke has no significant effect on serum level of IL-18.
Collapse
Affiliation(s)
- Alireza Azargoon
- Department of Internal Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Kharazmkia
- Department of Clinical Pharmacy, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Nazanin Kordalivand
- Department of Internal Medicine, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mehdi Birjandi
- Department of Biostatistics and Epidemiology, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Samareh Mir
- Nutritional Health Research Center, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
9
|
Wang Z, Liang W, Ma C, Wang J, Gao X, Wei L. Macrophages Inhibit Ciliary Protein Levels by Secreting BMP-2 Leading to Airway Epithelial Remodeling Under Cigarette Smoke Exposure. Front Mol Biosci 2021; 8:663987. [PMID: 33981724 PMCID: PMC8107431 DOI: 10.3389/fmolb.2021.663987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/29/2021] [Indexed: 11/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease with high morbidity and mortality worldwide. So far, smoking is still its leading cause. The characteristics of COPD are emphysema and airway remodeling, as well as chronic inflammation, which were predominated by macrophages. Some studies have reported that macrophages were involved in emphysema and chronic inflammation, but whether there is a link between airway remodeling and macrophages remains unclear. In this study, we found that both acute and chronic cigarette smoke exposure led to an increase of macrophages in the lung and a decrease of ciliated cells in the airway epithelium of a mouse model. The results of in vitro experiments showed that the ciliary protein (β-tubulin-IV) levels of BEAS-2B cells could be inhibited when co-cultured with human macrophage line THP-1, and the inhibitory effect was augmented with the stimulation of cigarette smoke extract (CSE). Based on the results of transcriptome sequencing, we focused on the protein, bone morphogenetic protein-2 (BMP-2), secreted by the macrophage, which might mediate this inhibitory effect. Further studies confirmed that BMP-2 protein inhibited β-tubulin-IV protein levels of BEAS-2B cells under the stimulation of CSE. Coincidentally, this inhibitory effect could be nearly blocked by the BMP receptor inhibitor, LDN, or could be interfered with BMP-2 siRNA. This study suggests that activation and infiltration of macrophages in the lung induced by smoke exposure lead to a high expression of BMP-2, which in turn inhibits the ciliary protein levels of the bronchial epithelial cells, contributing to the remodeling of airway epithelium, and aggravates the development of COPD.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China.,Department of Intensive Care Unit, Hebei General Hospital, Shijiazhuang, China
| | - Wenzhang Liang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Cuiqing Ma
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Jiachao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Xue Gao
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Lin Wei
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Yetkin NA, Büyükoğlan H, Sönmez MF, Tutar N, Gülmez I, Yilmaz I. The protective effects of thymoquinone on lung damage caused by cigarette smoke. Biotech Histochem 2020; 95:268-275. [PMID: 31687851 DOI: 10.1080/10520295.2019.1681511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by systemic inflammation that usually is caused by exposure to noxious particles or gases. Thymoquinone (TQ) prevents the production of inflammatory mediators, such as thromboxane B2 and leukotriene, by altering arachidonic acid metabolism. We investigated the preventive and curative effects of TQ on lung damage in rats caused by cigarette smoke (CS). We used 50 adult male rats, 30 of which were exposed to CS every day for 3 months. TQ in dimethylsulfoxide (DMSO) was administered intraperitoneally (i.p.) every day to ten animals to investigate the protective effects of TQ, and to ten other animals during the last 21 days to investigate the curative effect. Ten rats received saline for the last 21 days. Ten subjects were untreated controls. Ten controls that were not exposed to CS received TQ for the last ten days. Serum IL-8, IL-6, IL-1β and MMP-9 levels were measured using ELISA. IL-1β and IL-8 levels were elevated in the group exposed to CS compared to controls. IL-8 levels were decreased in the group that received only TQ compared to controls, which indicated the anti-inflammatory effect of TQ. The apoptotic index (AI) was increased in all groups that were exposed to CS compared to controls. The AI index was decreased in the group that received TQ for the last 21 days compared to the other CS groups. AI was increased in the group that received TQ daily compared to the other CS groups. Our findings indicate that TQ exerts curative effects for the inflammation caused by CS and may prevent apoptosis if administered in appropriate doses; however, long term TQ or DMSO exposure may produce cumulative toxic effects.
Collapse
Affiliation(s)
- Nur Aleyna Yetkin
- Kayseri Training and Research Hospital, Department of Pulmonary Medicine, Kayseri, Turkey
| | - Hakan Büyükoğlan
- Kayseri Medical Palace Hospital, Department of Pulmonary Medicine, Kayseri, Turkey
| | | | - Nuri Tutar
- Department of Pulmonary Medicine, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Inci Gülmez
- Department of Pulmonary Medicine, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Insu Yilmaz
- Department of Pulmonary Medicine, School of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
11
|
Tielemans B, Stoian L, Gijsbers R, Michiels A, Wagenaar A, Farre Marti R, Belge C, Delcroix M, Quarck R. Cytokines trigger disruption of endothelium barrier function and p38 MAP kinase activation in BMPR2-silenced human lung microvascular endothelial cells. Pulm Circ 2019; 9:2045894019883607. [PMID: 31692724 PMCID: PMC6811766 DOI: 10.1177/2045894019883607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
The bone morphogenetic protein receptor II (BMPRII) signaling pathway is impaired
in pulmonary arterial hypertension and mutations in the BMPR2
gene have been observed in both heritable and idiopathic pulmonary arterial
hypertension. However, all BMPR2 mutation carriers do not
develop pulmonary arterial hypertension, and inflammation could trigger the
development of the disease in BMPR2 mutation carriers.
Circulating levels and/or lung tissue expression of cytokines such as tumor
necrosis factor-α or interleukin-18 are elevated in patients with pulmonary
arterial hypertension and could be involved in the pathogenesis of pulmonary
arterial hypertension. We consequently hypothesized that cytokines could trigger
endothelial dysfunction in addition to impaired BMPRII signaling. Our aim was to
determine whether impairment of BMPRII signaling might affect endothelium
barrier function and adhesiveness to monocytes, in response to cytokines.
BMPR2 was silenced in human lung microvascular endothelial
cells (HLMVECs) using lentiviral vectors encoding microRNA-based hairpins.
Effects of tumor necrosis factor-α and interleukin-18 on HLMVEC adhesiveness to
the human monocyte cell line THP-1, adhesion molecule expression, endothelial
barrier function and activation of P38MAPK were investigated in vitro. Stable
BMPR2 silencing in HLMVECs resulted in impaired endothelial
barrier function and constitutive activation of P38MAPK. Adhesiveness of
BMPR2-silenced HLMVECs to THP-1 cells was enhanced by tumor
necrosis factor-α and interleukin-18 through ICAM-1 adhesion molecule.
Interestingly, tumor necrosis factor-α induced activation of P38MAPK and
disrupted endothelial barrier function in BMPR2-silenced
HLMVECs. Altogether, our findings showed that stable BMPR2
silencing resulted in impaired endothelial barrier function and activation of
P38MAPK in HLMVECs. In BMPR2-silenced HLMVECs, cytokines
enhanced adhesiveness capacities, activation of P38MAPK and impaired endothelial
barrier function suggesting that cytokines could trigger the development of
pulmonary arterial hypertension in a context of impaired BMPRII signaling
pathway.
Collapse
Affiliation(s)
- Birger Tielemans
- Division of Respiratory Diseases, Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| | - Leanda Stoian
- Division of Respiratory Diseases, Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| | - Rik Gijsbers
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium.,Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Annelies Michiels
- Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium.,Leuven Viral Vector Core, KU Leuven - University of Leuven, Leuven, Belgium
| | - Allard Wagenaar
- Division of Respiratory Diseases, Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| | - Ricard Farre Marti
- Translational Research in Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| | - Catharina Belge
- Division of Respiratory Diseases, University Hospitals and Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| | - Marion Delcroix
- Division of Respiratory Diseases, University Hospitals and Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| | - Rozenn Quarck
- Division of Respiratory Diseases, University Hospitals and Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Tanner L, Single AB. Animal Models Reflecting Chronic Obstructive Pulmonary Disease and Related Respiratory Disorders: Translating Pre-Clinical Data into Clinical Relevance. J Innate Immun 2019; 12:203-225. [PMID: 31527372 PMCID: PMC7265725 DOI: 10.1159/000502489] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) affects the lives of an ever-growing number of people worldwide. The lack of understanding surrounding the pathophysiology of the disease and its progression has led to COPD becoming the third leading cause of death worldwide. COPD is incurable, with current treatments only addressing associated symptoms and sometimes slowing its progression, thus highlighting the need to develop novel treatments. However, this has been limited by the lack of experimental standardization within the respiratory disease research area. A lack of coherent animal models that accurately represent all aspects of COPD clinical presentation makes the translation of promising in vitrodata to human clinical trials exceptionally challenging. Here, we review current knowledge within the COPD research field, with a focus on current COPD animal models. Moreover, we include a set of advantages and disadvantages for the selection of pre-clinical models for the identification of novel COPD treatments.
Collapse
Affiliation(s)
- Lloyd Tanner
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden,
| | - Andrew Bruce Single
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Abstract
Initially described as an interferon (IFN)γ‐inducing factor, interleukin (IL)‐18 is indeed involved in Th1 and NK cell activation, but also in Th2, IL‐17‐producing γδ T cells and macrophage activation. IL‐18, a member of the IL‐1 family, is similar to IL‐1β for being processed by caspase 1 to an 18 kDa‐biologically active mature form. IL‐18 binds to its specific receptor (IL‐18Rα, also known as IL‐1R7) forming a low affinity ligand chain. This is followed by recruitment of the IL‐18Rβ chain. IL‐18 then uses the same signaling pathway as IL‐1 to activate NF‐kB and induce inflammatory mediators such as adhesion molecules, chemokines and Fas ligand. IL‐18 also binds to the circulating high affinity IL‐18 binding protein (BP), such as only unbound free IL‐18 is active. IL‐18Rα may also bind IL‐37, another member of the IL‐1 family, but in association with the negative signaling chain termed IL‐1R8, which transduces an anti‐inflammatory signal. IL‐18BP also binds IL‐37 and this acts as a sink for the anti‐inflammatory properties of IL‐37. There is now ample evidence for a role of IL‐18 in various infectious, metabolic or inflammatory diseases such as influenza virus infection, atheroma, myocardial infarction, chronic obstructive pulmonary disease, or Crohn's disease. However, IL‐18 plays a very specific role in the pathogenesis of hemophagocytic syndromes (HS) also termed Macrophage Activation Syndrome. In children affected by NLRC4 gain‐of‐function mutations, IL‐18 circulates in the range of tens of nanograms/mL. HS is treated with the IL‐1 Receptor antagonist (anakinra) but also specifically with IL‐18BP. Systemic juvenile idiopathic arthritis or adult‐onset Still's disease are also characterized by high serum IL‐18 concentrations and are treated by IL‐18BP.
Collapse
Affiliation(s)
- Gilles Kaplanski
- Assistance Publique-Hôpitaux de Marseille, Centre Hospitalier Universitaire Conception, Service de Médecine Interne et Immunologie Clinique, Aix-Marseille Université, Marseille, France.,Vascular Research Center Marseille, Faculté de Pharmacie, Aix-Marseille Université, INSERM UMR_S1076, Marseille, France
| |
Collapse
|
14
|
Sonett J, Goldklang M, Sklepkiewicz P, Gerber A, Trischler J, Zelonina T, Westerterp M, Lemaître V, Okada Y, D’Armiento J. A critical role for ABC transporters in persistent lung inflammation in the development of emphysema after smoke exposure. FASEB J 2018; 32:fj201701381. [PMID: 29906247 PMCID: PMC6219826 DOI: 10.1096/fj.201701381] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/04/2018] [Indexed: 01/13/2023]
Abstract
Macrophage infiltration is common to both emphysema and atherosclerosis, and cigarette smoke down-regulates the macrophage cholesterol efflux transporter ATP binding cassette (ABC)A1. This decreased cholesterol efflux results in lipid-laden macrophages. We hypothesize that cigarette smoke adversely affects cholesterol transport via an ABCA1-dependent mechanism in macrophages, enhancing TLR4/myeloid differentiation primary response gene 88 (Myd88) signaling and resulting in matrix metalloproteinase (MMP) up-regulation and exacerbation of pulmonary inflammation. ABCA1 is significantly down-regulated in the lung upon smoke exposure conditions. Macrophages exposed to cigarette smoke in vivo and in vitro exhibit impaired cholesterol efflux correlating with significantly decreased ABCA1 expression, up-regulation of the TLR4/Myd88 pathway, and downstream MMP-9 and MMP-13 expression. Treatment with liver X receptor (LXR) agonist restores ABCA1 expression after short-term smoke exposure and attenuates the inflammatory response; after long-term smoke exposure, there is also attenuated physiologic and morphologic changes of emphysema. In vitro, treatment with LXR agonist decreases macrophage inflammatory activation in wild-type but not ABCA1 knockout mice, suggesting an ABCA1-dependent mechanism of action. These studies demonstrate an important association between cigarette smoke exposure and cholesterol-mediated pathways in the macrophage inflammatory response. Modulation of these pathways through manipulation of ABCA1 activity effectively blocks cigarette smoke-induced inflammation and provides a potential novel therapeutic approach for the treatment of chronic obstructive pulmonary disease.-Sonett, J., Goldklang, M., Sklepkiewicz, P., Gerber, A., Trischler, J., Zelonina, T., Westerterp, M., Lemaître, V., Okada, V., D'Armiento, J. A critical role for ABC transporters in persistent lung inflammation in the development of emphysema after smoke exposure.
Collapse
Affiliation(s)
- Jarrod Sonett
- Department of Anesthesiology, Center for Molecular Pulmonary Disease, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Monica Goldklang
- Department of Anesthesiology, Center for Molecular Pulmonary Disease, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Piotr Sklepkiewicz
- Department of Anesthesiology, Center for Molecular Pulmonary Disease, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Adam Gerber
- Department of Anesthesiology, Center for Molecular Pulmonary Disease, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jordis Trischler
- Department of Anesthesiology, Center for Molecular Pulmonary Disease, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Tina Zelonina
- Department of Anesthesiology, Center for Molecular Pulmonary Disease, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Marit Westerterp
- Division of Molecular Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Department of Pediatrics, Section of Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent Lemaître
- Department of Anesthesiology, Center for Molecular Pulmonary Disease, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jeanine D’Armiento
- Department of Anesthesiology, Center for Molecular Pulmonary Disease, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
15
|
Dianat M, Radan M, Badavi M, Mard SA, Bayati V, Ahmadizadeh M. Crocin attenuates cigarette smoke-induced lung injury and cardiac dysfunction by anti-oxidative effects: the role of Nrf2 antioxidant system in preventing oxidative stress. Respir Res 2018; 19:58. [PMID: 29631592 PMCID: PMC5891913 DOI: 10.1186/s12931-018-0766-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/02/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) has been emerging as a great health problem in world. Cigarette smoke is known to cause oxidative stress and deplete glutathione (GSH) levels. Nuclear erythroid-related factor 2 (Nrf2) is involved in transcriptional regulation of glutamate-cysteine ligase catalytic subunit (GCLc). Antioxidant compounds may be of therapeutic value in monitoring disease progression. Crocin demonstrates antioxidant and anti-inflammatory functions. The aim of this study was to investigate the protective role of crocin against CSE-mediated oxidative stress, inflammatory process, Nrf2 modifications and impairment of cardiac function in rats with COPD. METHODS Eighty rats were divided into four groups: Control, Cigarette smoke exposure (CSE), Crocin, Crocin+CS. Each group was divided into the two parts: 1) to evaluate lung inflammatory and oxidative process, 2) to evaluate the effect of Cigarette smoke induced-lung injuries on cardiac electrocardiogram (such as heart rate and QRS complex) and hemodynamic parameters (such as perfusion pressure and left ventricular developed pressure). RESULTS CSE rats showed a significant increase in cotinine concentration (17.24 ng/ml), and inflammatory parameters and a decrease in PO2 (75.87 mmHg) and expression of PKC (0.86 fold), PI3K (0.79 fold), MAPK (0.87 fold), Nrf2 (0.8 fold) and GCLc (0.75 fold) genes, antioxidant activity, and finally cardiac abnormalities in electrocardiogram and hemodynamic parameters. Co-treatment whit crocin could restore all these values to normal levels. CONCLUSIONS CS induced-COPD in rat model provides evidence that chronic CS exposure leads to lung injury and mediated cardiac dysfunction. Crocin co-treatment by modulating of Nrf2 pathway protected lung injury caused by COPD and its related cardiac dysfunction. In this study, we showed the importance of Nrf2 activators as a therapeutic target for the development of novel therapy for lung oxidative injuries.
Collapse
Affiliation(s)
- Mahin Dianat
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Radan
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Badavi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoumeh Ahmadizadeh
- Physiology Research Center, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| |
Collapse
|
16
|
Reinikovaite V, Rodriguez IE, Karoor V, Rau A, Trinh BB, Deleyiannis FWB, Taraseviciene-Stewart L. The effects of electronic cigarette vapour on the lung: direct comparison to tobacco smoke. Eur Respir J 2018; 51:13993003.01661-2017. [DOI: 10.1183/13993003.01661-2017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 01/23/2018] [Indexed: 01/13/2023]
|
17
|
Wang G, Mohammadtursun N, Sun J, Lv Y, Jin H, Lin J, Kong L, Zhao Z, Zhang H, Dong J. Establishment and Evaluation of a Rat Model of Sidestream Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease. Front Physiol 2018; 9:58. [PMID: 29467669 PMCID: PMC5808212 DOI: 10.3389/fphys.2018.00058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 01/09/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common cause of mortality worldwide. The current lack of an animal model that can be established within a certain time frame and imitate the unique features of the disease is a major limiting factor in its study. The present study established and evaluated an animal model of COPD that represents the early and advanced stage features using short-, middle-, and long-term sidestream cigarette smoke (CS) exposure. One hundred and nine Sprague-Dawley rats were randomly divided into 10 groups for different periods of sidestream CS exposure or no exposure (i.e., normal groups). The rats were exposed to CS from 3R4F cigarettes in an exposure chamber. Histological analysis was performed to determine pathological changes. We also conducted open-field tests, lung function evaluations, and cytokine analysis of the blood serum, bronchoalveolar lavage fluid, and lung tissue. The lung tissue protein levels, blood gases, and were also analyzed. As the CS exposure time increased, the indicators associated with oxidative stress, inflammatory responses, and airway remodeling were greater in the CS exposure groups than in the normal group. At 24 and 36 weeks, the COPD model rats displayed the middle- and advanced-stage features of COPD, respectively. In the 8-week CS exposure group, after the CS exposure was stopped for 4 weeks, inflammatory responses and oxidative responses were ameliorated and lung function exacerbation was reduced compared with the 12-week CS exposure group. Therefore, we established a more adequate rat model of sidestream CS induced COPD, which will have great significance for a better understanding of the pathogenesis of COPD and drug effectiveness evaluation.
Collapse
Affiliation(s)
- Genfa Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China.,Department of TCM, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nabijan Mohammadtursun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China.,College of Xinjiang Uyghur Medicine, Hotan, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yubao Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hualiang Jin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jinpei Lin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Lingwen Kong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhengxiao Zhao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hongying Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Abstract
Animal models of disease help accelerate the translation of basic science discoveries to the bedside, because they permit experimental interrogation of mechanisms at relatively high throughput, while accounting for the complexity of an intact organism. From the groundbreaking observation of emphysema-like alveolar destruction after direct instillation of elastase in the lungs to the more clinically relevant model of airspace enlargement induced by chronic exposure to cigarette smoke, animal models have advanced our understanding of alpha-1 antitrypsin (AAT) function. Experimental in vivo models that, at least in part, replicate clinical human phenotypes facilitate the translation of mechanistic findings into individuals with chronic obstructive pulmonary disease and with AAT deficiency. In addition, unexpected findings of alveolar enlargement in various transgenic mice have led to novel hypotheses of emphysema development. Previous challenges in manipulating the AAT genes in mice can now be overcome with new transgenic approaches that will likely advance our understanding of functions of this essential, lung-protective serine protease inhibitor (serpin).
Collapse
|
19
|
Shu J, Li D, Ouyang H, Huang J, Long Z, Liang Z, Chen Y, Chen Y, Zheng Q, Kuang M, Tang H, Wang J, Lu W. Comparison and evaluation of two different methods to establish the cigarette smoke exposure mouse model of COPD. Sci Rep 2017; 7:15454. [PMID: 29133824 PMCID: PMC5684336 DOI: 10.1038/s41598-017-15685-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 10/31/2017] [Indexed: 12/18/2022] Open
Abstract
Animal model of cigarette smoke (CS) -induced chronic obstructive pulmonary disease (COPD) is the primary testing methodology for drug therapies and studies on pathogenic mechanisms of disease. However, researchers have rarely run simultaneous or side-by-side tests of whole-body and nose-only CS exposure in building their mouse models of COPD. We compared and evaluated these two different methods of CS exposure, plus airway Lipopolysaccharides (LPS) inhalation, in building our COPD mouse model. Compared with the control group, CS exposed mice showed significant increased inspiratory resistance, functional residual capacity, right ventricular hypertrophy index, and total cell count in BALF. Moreover, histological staining exhibited goblet cell hyperplasia, lung inflammation, thickening of smooth muscle layer on bronchia, and lung angiogenesis in both methods of CS exposure. Our data indicated that a viable mouse model of COPD can be established by combining the results from whole-body CS exposure, nose-only CS exposure, and airway LPS inhalation testing. However, in our study, we also found that, given the same amount of particulate intake, changes in right ventricular pressure and intimal thickening of pulmonary small artery are a little more serious in nose-only CS exposure method than changes in the whole-body CS exposure method.
Collapse
Affiliation(s)
- Jiaze Shu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Defu Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Haiping Ouyang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Junyi Huang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Zhen Long
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Zhihao Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Yiguan Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Meidan Kuang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
- Division of Translational and Regenerative Medicine, Department of Medicine and Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China.
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China.
- Division of Translational and Regenerative Medicine, Department of Medicine and Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona, United States.
| |
Collapse
|
20
|
|
21
|
Ghorani V, Boskabady MH, Khazdair MR, Kianmeher M. Experimental animal models for COPD: a methodological review. Tob Induc Dis 2017; 15:25. [PMID: 28469539 PMCID: PMC5414171 DOI: 10.1186/s12971-017-0130-2] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a progressive disorder that makes the breathing difficult and is characterized by pathological conditions ranging from chronic inflammation to tissue proteolysis. With regard to ethical issues related to the studies on patients with COPD, the use of animal models of COPD is inevitable. Animal models improve our knowledge about the basic mechanisms underlying COPD physiology, pathophysiology and treatment. Although these models are only able to mimic some of the features of the disease, they are valuable for further investigation of mechanisms involved in human COPD. METHODS We searched the literature available in Google Scholar, PubMed and ScienceDirect databases for English articles published until November 2015. For this purpose, we used 5 keywords for COPD, 3 for animal models, 4 for exposure methods, 3 for pathophysiological changes and 3 for biomarkers. One hundred and fifty-one studies were considered eligible for inclusion in this review. RESULTS According to the reviewed articles, animal models of COPD are mainly induced in mice, guinea pigs and rats. In most of the studies, this model was induced by exposure to cigarette smoke (CS), intra-tracheal lipopolysaccharide (LPS) and intranasal elastase. There were variations in time course and dose of inducers used in different studies. The main measured parameters were lung pathological data and lung inflammation (both inflammatory cells and inflammatory mediators) in most of the studies and tracheal responsiveness (TR) in only few studies. CONCLUSION The present review provides various methods used for induction of animal models of COPD, different animals used (mainly mice, guinea pigs and rats) and measured parameters. The information provided in this review is valuable for choosing appropriate animal, method of induction and selecting parameters to be measured in studies concerning COPD.
Collapse
Affiliation(s)
- Vahideh Ghorani
- Pharmaceutical Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564 Iran
| | - Mohammad Reza Khazdair
- Pharmaceutical Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Kianmeher
- Neurogenic Inflammation Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564 Iran
| |
Collapse
|
22
|
Xu L, Bian W, Gu XH, Shen C. Differing Expression of Cytokines and Tumor Markers in Combined Pulmonary Fibrosis and Emphysema Compared to Emphysema and Pulmonary Fibrosis. COPD 2017; 14:245-250. [PMID: 28128990 DOI: 10.1080/15412555.2017.1278753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ling Xu
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Bian
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao-hua Gu
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ce Shen
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
23
|
Białas AJ, Sitarek P, Miłkowska-Dymanowska J, Piotrowski WJ, Górski P. The Role of Mitochondria and Oxidative/Antioxidative Imbalance in Pathobiology of Chronic Obstructive Pulmonary Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7808576. [PMID: 28105251 PMCID: PMC5220474 DOI: 10.1155/2016/7808576] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/23/2016] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common preventable and treatable disease, characterized by persistent airflow limitation that is usually progressive and associated with an enhanced chronic inflammatory response in the airways and the lung to noxious particles or gases. The major risk factor of COPD, which has been proven in many studies, is the exposure to cigarette smoke. However, it is 15-20% of all smokers who develop COPD. This is why we should recognize the pathobiology of COPD as involving a complex interaction between several factors, including genetic vulnerability. Oxidant-antioxidant imbalance is recognized as one of the significant factors in COPD pathogenesis. Numerous exogenous and endogenous sources of ROS are present in pathobiology of COPD. One of endogenous sources of ROS is mitochondria. Although leakage of electrons from electron transport chain and forming of ROS are the effect of physiological functioning of mitochondria, there are various intra- and extracellular factors which may increase this amount and significantly contribute to oxidative-antioxidative imbalance. With the coexistence with impaired antioxidant defence, all these issues lead to oxidative and carbonyl stress. Both of these states play a significant role in pathobiology of COPD and may account for development of major comorbidities of this disease.
Collapse
Affiliation(s)
- Adam Jerzy Białas
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Łódź, Poland
| | - Joanna Miłkowska-Dymanowska
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| | - Wojciech Jerzy Piotrowski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| | - Paweł Górski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| |
Collapse
|
24
|
Jones B, Donovan C, Liu G, Gomez HM, Chimankar V, Harrison CL, Wiegman CH, Adcock IM, Knight DA, Hirota JA, Hansbro PM. Animal models of COPD: What do they tell us? Respirology 2016; 22:21-32. [DOI: 10.1111/resp.12908] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Bernadette Jones
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Gang Liu
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Henry M. Gomez
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Vrushali Chimankar
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Celeste L. Harrison
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Cornelis H. Wiegman
- The Airways Disease Section, National Heart and Lung Institute; Imperial College London; London UK
| | - Ian M. Adcock
- The Airways Disease Section, National Heart and Lung Institute; Imperial College London; London UK
| | - Darryl A. Knight
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Jeremy A. Hirota
- James Hogg Research Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| |
Collapse
|
25
|
Putcha N, Barr RG, Han MK, Woodruff PG, Bleecker ER, Kanner RE, Martinez FJ, Smith BM, Tashkin DP, Bowler RP, Eisner MD, Rennard SI, Wise RA, Hansel NN. Understanding the impact of second-hand smoke exposure on clinical outcomes in participants with COPD in the SPIROMICS cohort. Thorax 2016; 71:411-420. [PMID: 26962015 PMCID: PMC5235992 DOI: 10.1136/thoraxjnl-2015-207487] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Second-hand smoke (SHS) exposure has been linked to the development of and morbidity from lung disease. We sought to advance understanding of the impact of SHS on health-related outcomes in individuals with COPD. METHODS Among the participants with COPD in SPIROMICS, recent SHS exposure was quantified as (1) hours of reported exposure in the past week or (2) reported living with a smoker. We performed adjusted regression for SHS with outcomes, testing for interactions with gender, race, smoking and obesity. RESULTS Of the 1580 participants with COPD, 20% reported living with a smoker and 27% reported exposure in the past week. Living with a smoker was associated with worse St George's Respiratory Questionnaire score (SGRQ, β 3.10; 95% CI 0.99 to 5.21), COPD Assessment Test score (β 1.43; 95% CI 0.52 to 2.35) and increased risk for severe exacerbations (OR 1.51, 95% CI 1.04 to 2.17). SHS exposure in the past week was associated with worse SGRQ (β 2.52; 95% CI 0.47 to 4.58), nocturnal symptoms (OR 1.58; 95% CI 1.19 to 2.10), wheezing (OR 1.34; 95% CI 1.02 to 1.77), chronic productive cough (OR 1.77; 95% CI 1.33 to 2.35) and difficulty with cough and sputum (Ease of Cough and Sputum scale, β 0.84; 95% CI 0.42 to 1.25). SHS was associated with increased airway wall thickness on CT but not emphysema. Active smokers, obese individuals and individuals with less severe airflow obstruction also had higher susceptibility to SHS for some outcomes. CONCLUSION Individuals with COPD, including active smokers, have significant SHS exposure, associated with worse outcomes and airway wall thickness. Active smokers and obese individuals may have worse outcomes associated with SHS. TRIAL REGISTRATION NUMBER NCT01969344 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Nirupama Putcha
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R. Graham Barr
- Columbia University School of Medicine, New York, NY, USA
| | - Meilan K. Han
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Prescott G. Woodruff
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Eugene R. Bleecker
- Wake Forest University Center for Genomics and Personalized Medicine Research, Winston-Salem, NC, USA
| | - Richard E. Kanner
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | | | | | - Donald P. Tashkin
- University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | | | - Mark D. Eisner
- University of California San Francisco School of Medicine, San Francisco, CA, USA
- Genentech, Inc., South San Francisco, CA
| | | | - Robert A. Wise
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nadia N. Hansel
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Mühlfeld C, Hegermann J, Wrede C, Ochs M. A review of recent developments and applications of morphometry/stereology in lung research. Am J Physiol Lung Cell Mol Physiol 2015; 309:L526-36. [DOI: 10.1152/ajplung.00047.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/09/2015] [Indexed: 11/22/2022] Open
Abstract
Design-based stereology is the gold standard of morphometry in lung research. Here, we analyze the current use of morphometric and stereological methods in lung research and provide an overview on recent methodological developments and biological observations made by the use of stereology. Based on this analysis we hope to provide useful recommendations for a good stereological practice to further the use of advanced and unbiased stereological methods.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| |
Collapse
|
27
|
Dima E, Koltsida O, Katsaounou P, Vakali S, Koutsoukou A, Koulouris NG, Rovina N. Implication of Interleukin (IL)-18 in the pathogenesis of chronic obstructive pulmonary disease (COPD). Cytokine 2015; 74:313-7. [PMID: 25922275 DOI: 10.1016/j.cyto.2015.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 12/15/2022]
Abstract
Interleukin (IL)-18 is a pro-inflammatory cytokine that was firstly described as an interferon (IFN)-γ-inducing factor. Similar to IL-1β, IL-18 is synthesized as an inactive precursor requiring processing by caspase-1 into an active cytokine. The platform for activating caspase-1 is known as the inflammasome, a multiple protein complex. Macrophages and dendritic cells are the primary sources for the release of active IL-18, whereas the inactive precursor remains in the intracellular compartment of mesenchymal cells. Finally, the IL-18 precursor is released from dying cells and processed extracellularly. IL-18 has crucial host defense and antitumor activities, and gene therapy to increase IL-18 levels in tissues protects experimental animals from infection and tumor growth and metastasis. Moreover, multiple studies in experimental animal models have shown that IL-18 over-expression results to emphysematous lesions in mice. The published data prompt to the hypothesis that IL-18 induces a broad spectrum of COPD-like inflammatory and remodeling responses in the murine lung and also induces a mixed type 1, type 2, and type 17 cytokine responses. The majority of studies identify IL-18 as a potential target for future COPD therapeutics to limit both the destructive and remodeling processes occurring in COPD lungs.
Collapse
Affiliation(s)
- Efrossini Dima
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and "Sotiria" Chest Disease Hospital, 11527 Athens, Greece
| | - Ourania Koltsida
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and "Sotiria" Chest Disease Hospital, 11527 Athens, Greece
| | - Paraskevi Katsaounou
- Pumonary Department, Intensive Care Medicine, Evaggelismos Hospital, Medical School, University of Athens, Greece
| | - Sofia Vakali
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and "Sotiria" Chest Disease Hospital, 11527 Athens, Greece
| | - Antonia Koutsoukou
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and "Sotiria" Chest Disease Hospital, 11527 Athens, Greece
| | - Nikolaos G Koulouris
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and "Sotiria" Chest Disease Hospital, 11527 Athens, Greece
| | - Nikoletta Rovina
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and "Sotiria" Chest Disease Hospital, 11527 Athens, Greece.
| |
Collapse
|
28
|
Obesity and extent of emphysema depicted at CT. Clin Radiol 2015; 70:e14-9. [PMID: 25703460 DOI: 10.1016/j.crad.2015.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/23/2014] [Accepted: 01/16/2015] [Indexed: 11/22/2022]
Abstract
AIM To investigate the underlying relationship between obesity and the extent of emphysema depicted at CT. METHODS AND MATERIALS A dataset of 477 CT examinations was retrospectively collected from a study of chronic obstructive pulmonary disease (COPD). The low attenuation areas (LAAs; ≤950 HU) of the lungs were identified. The extent of emphysema (denoted as %LAA) was defined as the percentage of LAA divided by the lung volume. The association between log-transformed %LAA and body mass index (BMI) adjusted for age, sex, the forced expiratory volume in one second as percent predicted value (FEV1% predicted), and smoking history (pack years) was assessed using multiple linear regression analysis. RESULTS After adjusting for age, gender, smoking history, and FEV1% predicted, BMI was negatively associated with severe emphysema in patients with COPD. Specifically, one unit increase in BMI is associated with a 0.93-fold change (95% CI: 0.91-0.96, p<0.001) in %LAA; the estimated %LAA for males was 1.75 (95% CI: 1.36-2.26, p<0.001) times that of females; per 10% increase in FEV1% predicated is associated with a 0.72-fold change (95% CI: 0.69-0.76, p<0.001) in %LAA. CONCLUSION Increasing obesity is negatively associated with severity of emphysema independent of gender, age, and smoking history.
Collapse
|
29
|
Eltom S, Belvisi MG, Stevenson CS, Maher SA, Dubuis E, Fitzgerald KA, Birrell MA. Role of the inflammasome-caspase1/11-IL-1/18 axis in cigarette smoke driven airway inflammation: an insight into the pathogenesis of COPD. PLoS One 2014; 9:e112829. [PMID: 25405768 PMCID: PMC4236128 DOI: 10.1371/journal.pone.0112829] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/16/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory airway disease often associated with cigarette smoke (CS) exposure. The disease is increasing in global prevalence and there is no effective therapy. A major step forward would be to understand the disease pathogenesis. The ATP-P2X7 pathway plays a dominant role in murine models of CS induced airway inflammation, and markers of activation of this axis are upregulated in patients with COPD. This strongly suggests that the axis could be important in the pathogenesis of COPD. The aim of this study was to perform a detailed characterisation of the signalling pathway components involved in the CS-driven, P2X7 dependent airway inflammation. METHODS We used a murine model system, bioassays and a range of genetically modified mice to better understand this complex signalling pathway. RESULTS The inflammasome-associated proteins NALP3 and ASC, but not IPAF and AIM2, are required for CS-induced IL-1β/IL-18 release, but not IL-1α. This was associated with a partial decrease in lung tissue caspase 1 activity and BALF neutrophilia. Mice missing caspase 1/11 or caspase 11 had markedly attenuated levels of all three cytokines and neutrophilia. Finally the mechanism by which these inflammatory proteins are involved in the CS-induced neutrophilia appeared to be via the induction of proteins involved in neutrophil transmigration e.g. E-Selectin. CONCLUSION This data indicates a key role for the P2X7-NALP3/ASC-caspase1/11-IL-1β/IL-18 axis in CS induced airway inflammation, highlighting this pathway as a possible therapeutic target for the treatment of COPD.
Collapse
Affiliation(s)
- Suffwan Eltom
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Maria G. Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Christopher S. Stevenson
- Hoffmann-La Roche Inc., pRED, Pharma Research & Early Development, DTA Inflammation, Nutley, New Jersey, United States of America
| | - Sarah A. Maher
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Eric Dubuis
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Kate A. Fitzgerald
- University of Massachusetts, Division of Infectious Diseases & Immunology, Worcester, Massachusetts, United States of America
| | - Mark A. Birrell
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Caramori G, Adcock IM, Di Stefano A, Chung KF. Cytokine inhibition in the treatment of COPD. Int J Chron Obstruct Pulmon Dis 2014; 9:397-412. [PMID: 24812504 PMCID: PMC4010626 DOI: 10.2147/copd.s42544] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cytokines play an important part in many pathobiological processes of chronic obstructive pulmonary disease (COPD), including the chronic inflammatory process, emphysema, and altered innate immune response. Proinflammatory cytokines of potential importance include tumor necrosis factor (TNF)-α, interferon-γ, interleukin (IL)-1β, IL-6, IL-17, IL-18, IL-32, and thymic stromal lymphopoietin (TSLP), and growth factors such as transforming growth factor-β. The current objectives of COPD treatment are to reduce symptoms, and to prevent and reduce the number of exacerbations. While current treatments achieve these goals to a certain extent, preventing the decline in lung function is not currently achievable. In addition, reversal of corticosteroid insensitivity and control of the fibrotic process while reducing the emphysematous process could also be controlled by specific cytokines. The abnormal pathobiological process of COPD may contribute to these fundamental characteristics of COPD, and therefore targeting cytokines involved may be a fruitful endeavor. Although there has been much work that has implicated various cytokines as potentially playing an important role in COPD, there have been very few studies that have examined the effect of specific cytokine blockade in COPD. The two largest studies that have been reported in the literature involve the use of blocking antibody to TNFα and CXCL8 (IL-8), and neither has provided benefit. Blocking the actions of CXCL8 through its CXCR2 receptor blockade was not successful either. Studies of antibodies against IL-17, IL-18, IL-1β, and TSLP are currently either being undertaken or planned. There is a need to carefully phenotype COPD and discover good biomarkers of drug efficacy for each specific target. Specific groups of COPD patients should be targeted with specific anticytokine therapy if there is evidence of high expression of that cytokine and there are features of the clinical expression of COPD that will respond.
Collapse
Affiliation(s)
- Gaetano Caramori
- Dipartimento di Scienze Mediche, Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate (CEMICEF; formerly Centro di Ricerca su Asma e BPCO), Sezione di Medicina Interna e Cardiorespiratoria, Università di Ferrara, Ferrara, Italy
| | - Ian M Adcock
- Airway Diseases Section, National Heart and Lung Institute, Imperial College London, UK
- Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio-Respiratorio, Fondazione Salvatore Maugeri, IRCCS, Veruno, Italy
| | - Kian Fan Chung
- Airway Diseases Section, National Heart and Lung Institute, Imperial College London, UK
- Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| |
Collapse
|
31
|
Fricker M, Deane A, Hansbro PM. Animal models of chronic obstructive pulmonary disease. Expert Opin Drug Discov 2014; 9:629-45. [PMID: 24754714 DOI: 10.1517/17460441.2014.909805] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a leading global cause of mortality and chronic morbidity. Inhalation of cigarette smoke is the principal risk factor for development of this disease. COPD is a progressive disease that is typically characterised by chronic pulmonary inflammation, mucus hypersecretion, airway remodelling and emphysema that collectively reduce lung function. There are currently no therapies that effectively halt or reverse disease progression. It is hoped that the development of animal models that develop the hallmark features of COPD, in a short time frame, will aid in the identifying and testing of new therapeutic approaches. AREAS COVERED The authors review the recent developments in mouse models of chronic cigarette smoke-induced COPD as well as the principal findings. Furthermore, the authors discuss the use of mouse models to understand the pathogenesis and the contribution of infectious exacerbations. They also discuss the investigations of the systemic co-morbidities of COPD (pulmonary hypertension, cachexia and osteoporosis). EXPERT OPINION Recent advances in the field mark a point where animal models recapitulate the pathologies of COPD patients in a short time frame. They also reveal novel insights into the pathogenesis and potential treatment of this debilitating disease.
Collapse
Affiliation(s)
- Michael Fricker
- University of Newcastle and Hunter Medical Research Institute, Priority Research Centre for Asthma and Respiratory Disease , New Lambton Heights, New South Wales , Australia
| | | | | |
Collapse
|
32
|
Erratum: Role of IL-18 in Second-Hand Smoke–Induced Emphysema. Am J Respir Cell Mol Biol 2014. [DOI: 10.1165/rcmb.2014.502470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
33
|
Inflammation and immune response in COPD: where do we stand? Mediators Inflamm 2013; 2013:413735. [PMID: 23956502 PMCID: PMC3728539 DOI: 10.1155/2013/413735] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/02/2013] [Indexed: 01/05/2023] Open
Abstract
Increasing evidence indicates that chronic inflammatory and immune responses play key roles in the development and progression of COPD. Recent data provide evidence for a role in the NLRP3 inflammasome in the airway inflammation observed in COPD. Cigarette smoke activates innate immune cells by triggering pattern recognition receptors (PRRs) to release “danger signal”. These signals act as ligands to Toll-like receptors (TLRs), triggering the production of cytokines and inducing innate inflammation. In smokers who develop COPD there appears to be a specific pattern of inflammation in the airways and parenchyma as a result of both innate and adaptive immune responses, with the predominance of CD8+ and CD4+ cells, and in the more severe disease, with the presence of lymphoid follicles containing B lymphocytes and T cells. Furthermore, viral and bacterial infections interfere with the chronic inflammation seen in stable COPD and exacerbations via pathogen-associated molecular patterns (PAMPs). Finally, autoimmunity is another novel aspect that may play a critical role in the pathogenesis of COPD. This review is un update of the currently discussed roles of inflammatory and immune responses in the pathogenesis of COPD.
Collapse
|
34
|
Leberl M, Kratzer A, Taraseviciene-Stewart L. Tobacco smoke induced COPD/emphysema in the animal model-are we all on the same page? Front Physiol 2013; 4:91. [PMID: 23720629 PMCID: PMC3654205 DOI: 10.3389/fphys.2013.00091] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/10/2013] [Indexed: 12/18/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is one of the foremost causes of death worldwide. It is primarily caused by tobacco smoke, making it an easily preventable disease, but facilitated by genetic α-1 antitrypsin deficiency. In addition to active smokers, health problems also occur in people involuntarily exposed to second hand smoke (SHS). Currently, the relationship between SHS and COPD is not well established. Knowledge of pathogenic mechanisms is limited, thereby halting the advancement of new treatments for this socially and economically detrimental disease. Here, we attempt to summarize tobacco smoke studies undertaken in animal models, applying both mainstream (direct, nose only) and side stream (indirect, whole body) smoke exposures. This overview of 155 studies compares cellular and molecular mechanisms as well as proteolytic, inflammatory, and vasoreactive responses underlying COPD development. This is a difficult task, as listing of exposure parameters is limited for most experiments. We show that both mainstream and SHS studies largely present similar inflammatory cell populations dominated by macrophages as well as elevated chemokine/cytokine levels, such as TNF-α. Additionally, SHS, like mainstream smoke, has been shown to cause vascular remodeling and neutrophil elastase-mediated proteolytic matrix breakdown with failure to repair. Disease mechanisms and therapeutic interventions appear to coincide in both exposure scenarios. One of the more widely applied interventions, the anti-oxidant therapy, is successful for both mainstream and SHS. The comparison of direct with indirect smoke exposure studies in this review emphasizes that, even though there are many overlapping pathways, it is not conclusive that SHS is using exactly the same mechanisms as direct smoke in COPD pathogenesis, but should be considered a preventable health risk. Some characteristics and therapeutic alternatives uniquely exist in SHS-related COPD.
Collapse
Affiliation(s)
- Maike Leberl
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine Denver, CO, USA
| | | | | |
Collapse
|