1
|
Chen J, Cheng Y, Cui H, Li S, Duan L, Jiao Z. N‑acetyl‑L‑cysteine protects rat lungs and RLE‑6TN cells from cigarette smoke‑induced oxidative stress. Mol Med Rep 2025; 31:97. [PMID: 39981906 PMCID: PMC11865697 DOI: 10.3892/mmr.2025.13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/14/2025] [Indexed: 02/22/2025] Open
Abstract
Cigarette smoke (CS) is a key contributor of chronic obstructive pulmonary disease (COPD); however, its role in the pathogenesis of COPD has not been fully elucidated. N‑acetyl‑L‑cysteine (NAC), as an antioxidant, has been used in the treatment of COPD; however, the mechanisms of action of NAC are not fully understood. Alveolar epithelial type 2 (ATII) cells serve an essential role in the maintenance of alveolar integrity. The aim of the present study was to identify the effect of CS on rat lungs and ATII cells. A subacute lung injury model of Wistar rats was established using CS exposure for 4 weeks. Interalveolar septa widening, infiltration of inflammatory cells, edema fluid in airspaces and abnormal enlargement of airspaces were observed through H&E staining. ELISA revealed that NAC could protect against CS‑induced increases in serum levels of malondialdehyde and decreases in serum levels of superoxide dismutase. Additionally, 8‑hydroxy‑deoxyguanosine was detected using immunohistochemical staining, and this was also expressed at increased levels in the lung tissue of the CS‑exposed group. In addition, the expression levels of Bcl‑2, BAX and caspase‑3 p12 in lung tissue were detected by western blotting or immunohistochemical staining. The expression levels of Bcl‑2 decreased and those of caspase3 p12 were increased in response to CS exposure when compared with those in the control group. These effects were prevented by treatment with NAC. In vitro, the effect of CS extract (CSE) on rat lung epithelial‑6‑T‑antigen negative (RLE‑6TN) cells was observed, flow cytometry was used to detect intracellular reactive oxygen species (ROS) levels and the occurrence of apoptosis, and the content of glutathione (GSH) was detected using a colorimetric assay. Additionally, the expression levels of heme oxygenase‑1 (HO‑1), p53 and Bcl‑2 were examined by western blotting, and HO‑1 mRNA expression was also examined using reverse transcription‑quantitative PCR. The results of the present study revealed that CSE induced apoptosis of RLE‑6TN cells, accompanied by increased levels of intracellular ROS and exhaustion of GSH. Significantly increased protein levels of HO‑1 and p53, as well as decreased protein levels of Bcl‑2 were also observed. These effects were prevented by administration of NAC. Overall, these findings suggested that CS could promote apoptosis in rat lung tissues and alveolar epithelial cells by inducing intracellular oxidative injury, and NAC may serve an antioxidant role by replenishing the intracellular GSH content.
Collapse
Affiliation(s)
- Jiameng Chen
- Department of Pathology, Research Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yuefeng Cheng
- Department of Pathology, Research Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Huijuan Cui
- Department of Pathology, Research Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shuangyan Li
- Department of Pathology, Research Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lantian Duan
- Department of Pathology, Research Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zongxian Jiao
- Department of Pathology, Research Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
2
|
Rojo AI, Buttari B, Cadenas S, Carlos AR, Cuadrado A, Falcão AS, López MG, Georgiev MI, Grochot-Przeczek A, Gumeni S, Jimenez-Villegas J, Horbanczuk JO, Konu O, Lastres-Becker I, Levonen AL, Maksimova V, Michaeloudes C, Mihaylova LV, Mickael ME, Milisav I, Miova B, Rada P, Santos M, Seabra MC, Strac DS, Tenreiro S, Trougakos IP, Dinkova-Kostova AT. Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases. Redox Biol 2025; 79:103464. [PMID: 39709790 PMCID: PMC11733061 DOI: 10.1016/j.redox.2024.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024] Open
Abstract
Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE). The products of these genes participate in numerous functions including biotransformation and redox homeostasis, lipid and iron metabolism, inflammation, proteostasis, as well as mitochondrial dynamics and energetics. Thus, it is possible that a single pharmacological NRF2 modulator might mitigate the effect of the main hallmarks of NCDs, including oxidative, proteostatic, inflammatory and/or metabolic stress. Research on model organisms has provided tremendous knowledge of the molecular mechanisms by which NRF2 affects NCDs pathogenesis. This review is a comprehensive summary of the most commonly used model organisms of NCDs in which NRF2 has been genetically or pharmacologically modulated, paving the way for drug development to combat NCDs. We discuss the validity and use of these models and identify future challenges.
Collapse
Affiliation(s)
- Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain.
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Ana Rita Carlos
- CE3C-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Ana Sofia Falcão
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - José Jimenez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Jarosław Olav Horbanczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; Department of Neuroscience, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Isabel Lastres-Becker
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000, Stip, Macedonia
| | | | - Liliya V Mihaylova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Michel Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia; Laboratory of oxidative stress research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde (E2S), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10 000, Zagreb, Croatia
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Zhao J, Han M, Tian Y, Zhao P, Liu X, Dong H, Feng S, Li J. N-acetylcysteine Attenuates Cigarette Smoke-induced Alveolar Epithelial Cell Apoptosis through Reactive Oxygen Species Depletion and Glutathione Replenish In vivo and In vitro. Curr Pharm Biotechnol 2024; 25:1466-1477. [PMID: 37921125 DOI: 10.2174/0113892010257526231019143524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. N-acetylcysteine (NAC) is well known for its antioxidant properties, along with potential protective effects on COPD. However, the molecular mechanism of NAC against the apoptosis of alveolar epithelial cells (AECs) in COPD remains unclear. OBJECTIVE This study aimed to explore the anti-apoptosis effect of NAC in COPD mice and alveolar epithelial cells. METHODS In the present study, the mouse model of COPD was established by cigarette smoke (CS), and mouse alveolar epithelial (MLE-12) cells were treated with cigarette smoke extract (CSE). TdT-mediated dUTP nick-end labeling (TUNEL) assay, reverse transcription polymerase chain reaction (RT-PCR), and western blot were performed to evaluate the effects of NAC on apoptosis, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Meanwhile, Lbuthionine- sulfoximine (BSO), a glutathione (GSH) inhibitor, was used to uncover the mechanism of COPD treatment by NAC. RESULTS We found that NAC pretreatment could attenuate the protein levels of apoptosis, ER stress, and mitochondrial dysfunction-related genes caused by CS in vivo. Meanwhile, CSE could decrease MLE-12 cell viability, which was prevented by apoptosis inhibitor ZVAD-FMK but not necroptosis inhibitor necrostatin-1. Pretreatment of MLE-12 cells with NAC increased cellular GSH levels, inhibited cellular and mitochondrial reactive oxygen species (ROS) accumulation, and decreased protein level of apoptosis, ER stress, and mitochondrial dysfunction-related genes. Moreover, experiment results showed that BSO could completely reverse the beneficial effects of NAC. CONCLUSION Our study confirmed that NAC can attenuate CS-induced AEC apoptosis via alleviating ROS-mediated ER stress and mitochondrial dysfunction pathway, and the mechanism was found to be related to replenishing the cellular GSH content.
Collapse
Affiliation(s)
- Jie Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of P.R. China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Mi Han
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of P.R. China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Yange Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of P.R. China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Peng Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of P.R. China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Xuefang Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of P.R. China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Haoran Dong
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of P.R. China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Suxiang Feng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of P.R. China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450000, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
4
|
Tieu S, Charchoglyan A, Paulsen L, Wagter-Lesperance LC, Shandilya UK, Bridle BW, Mallard BA, Karrow NA. N-Acetylcysteine and Its Immunomodulatory Properties in Humans and Domesticated Animals. Antioxidants (Basel) 2023; 12:1867. [PMID: 37891946 PMCID: PMC10604897 DOI: 10.3390/antiox12101867] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
N-acetylcysteine (NAC), an acetylated derivative of the amino acid L-cysteine, has been widely used as a mucolytic agent and antidote for acetaminophen overdose since the 1960s and the 1980s, respectively. NAC possesses antioxidant, cytoprotective, anti-inflammatory, antimicrobial, and mucolytic properties, making it a promising therapeutic agent for a wide range of diseases in both humans and domesticated animals. Oxidative stress and inflammation play a major role in the onset and progression of all these diseases. NAC's primary role is to replenish glutathione (GSH) stores, the master antioxidant in all tissues; however, it can also reduce levels of pro-inflammatory tumor necrosis factor-alpha (TNF-∝) and interleukins (IL-6 and IL-1β), inhibit the formation of microbial biofilms and destroy biofilms, and break down disulfide bonds between mucin molecules. Many experimental studies have been conducted on the use of NAC to address a wide range of pathological conditions; however, its effectiveness in clinical trials remains limited and studies often have conflicting results. The purpose of this review is to provide a concise overview of promising NAC usages for the treatment of different human and domestic animal disorders.
Collapse
Affiliation(s)
- Sophie Tieu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.T.); (U.K.S.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.P.); (L.C.W.-L.); (B.W.B.); (B.A.M.)
| | - Armen Charchoglyan
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
- Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lauryn Paulsen
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.P.); (L.C.W.-L.); (B.W.B.); (B.A.M.)
| | - Lauri C. Wagter-Lesperance
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.P.); (L.C.W.-L.); (B.W.B.); (B.A.M.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.T.); (U.K.S.)
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.P.); (L.C.W.-L.); (B.W.B.); (B.A.M.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
| | - Bonnie A. Mallard
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.P.); (L.C.W.-L.); (B.W.B.); (B.A.M.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.T.); (U.K.S.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
| |
Collapse
|
5
|
Mokra D, Mokry J, Barosova R, Hanusrichterova J. Advances in the Use of N-Acetylcysteine in Chronic Respiratory Diseases. Antioxidants (Basel) 2023; 12:1713. [PMID: 37760016 PMCID: PMC10526097 DOI: 10.3390/antiox12091713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
N-acetylcysteine (NAC) is widely used because of its mucolytic effects, taking part in the therapeutic protocols of cystic fibrosis. NAC is also administered as an antidote in acetaminophen (paracetamol) overdosing. Thanks to its wide antioxidative and anti-inflammatory effects, NAC may also be of benefit in other chronic inflammatory and fibrotizing respiratory diseases, such as chronic obstructive pulmonary disease, bronchial asthma, idiopathic lung fibrosis, or lung silicosis. In addition, NAC exerts low toxicity and rare adverse effects even in combination with other treatments, and it is cheap and easily accessible. This article brings a review of information on the mechanisms of inflammation and oxidative stress in selected chronic respiratory diseases and discusses the use of NAC in these disorders.
Collapse
Affiliation(s)
- Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia;
| | - Romana Barosova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Juliana Hanusrichterova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| |
Collapse
|
6
|
Montero P, Roger I, Estornut C, Milara J, Cortijo J. Influence of dose and exposition time in the effectiveness of N-Acetyl-l-cysteine treatment in A549 human epithelial cells. Heliyon 2023; 9:e15613. [PMID: 37144195 PMCID: PMC10151372 DOI: 10.1016/j.heliyon.2023.e15613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
N-Acetyl-l-cysteine (NAC) acts as a precursor of the tripeptide glutathione (GSH), one of the principal cell mechanisms for reactive oxygen species (ROS) detoxification. Chronic obstructive pulmonary disease (COPD) is associated with enhanced inflammatory response and oxidative stress and NAC has been used to suppress various pathogenic processes in this disease. Studies show that the effects of NAC are dose-dependent, and it appears that the efficient doses in vitro are usually higher than the achieved in vivo plasma concentrations. However, to date, the inconsistencies between the in vitro NAC antioxidant and anti-inflammatory in vitro effects, by reproducing the in vivo NAC plasma concentrations as well as high NAC concentrations. To do so, A549 were transfected with polyinosinic-polycytidylic acid (Poly (I:C)) and treated with NAC at different treatment periods. Oxidative stress, release of proinflammatory mediators and NFkB activation were analyzed. Results suggest that NAC at low doses in chronic administration has sustained antioxidant and anti-inflammatory effects, while acute treatment with high dose NAC exerts a strong antioxidant and anti-inflammatory response.
Collapse
Affiliation(s)
- Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010, Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
- Corresponding author. Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010, Valencia, Spain.
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010, Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029, Madrid, Spain
| | - Cristina Estornut
- Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029, Madrid, Spain
- Pharmacy Unit, University General Hospital Consortium, 46014, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029, Madrid, Spain
- Research and Teaching Unit, University General Hospital Consortium, 46014, Valencia, Spain
| |
Collapse
|
7
|
Zhang Y, Tian J, Wang C, Wu T, Yi D, Wang L, Zhao D, Hou Y. N-Acetylcysteine Administration Improves the Redox and Functional Gene Expression Levels in Spleen, Mesenteric Lymph Node and Gastrocnemius Muscle in Piglets Infected with Porcine Epidemic Diarrhea Virus. Animals (Basel) 2023; 13:ani13020262. [PMID: 36670802 PMCID: PMC9854467 DOI: 10.3390/ani13020262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Our previous study reported that N-acetylcysteine (NAC) administration improved the function of intestinal absorption in piglets infected with porcine epidemic diarrhea virus (PEDV). However, the effects of NAC administration on the functions of other tissues and organs in PEDV-infected piglets have not been reported. In this study, the effects of NAC on the liver, spleen, lung, lymph node, and gastrocnemius muscle in PEDV-infected piglets were investigated. Thirty-two 7-day-old piglets with similar body weights were randomly divided into one of four groups: Control group, NAC group, PEDV group, and PEDV+NAC group (eight replicates per group and one pig per replicate). The trial had a 2 × 2 factorial design consisting of oral administration of 0 or 25 mg/kg body weight NAC and oral administration of 0 or 1.0 × 104.5 TCID50 PEDV. The trial lasted 12 days. All piglets were fed a milk replacer. On days 5-9 of the trial, piglets in the NAC and PEDV + NAC groups were orally administered NAC once a day; piglets in the control and PEDV groups were orally administered the same volume of saline. On day 9 of trial, piglets in the PEDV and PEDV+NAC groups were orally administrated 1.0 × 104.5 TCID50 PEDV, and the piglets in the control and NAC groups were orally administrated the same volume of saline. On day 12 of trial, samples, including of the liver, spleen, lung, lymph node, and gastrocnemius muscle, were collected. PEDV infection significantly increased catalase activity but significantly decreased the mRNA levels of Keap1, Nrf2, HMOX2, IFN-α, MX1, IL-10, TNF-α, S100A12, MMP3, MMP13, TGF-β, and GJA1 in the spleens of piglets. NAC administration ameliorated abnormal changes in measured variables in the spleens of PEDV-infected piglets. In addition, NAC administration also enhanced the antioxidant capacity of the mesenteric lymph nodes and gastrocnemius muscles in PEDV-infected piglets. Collectively, these novel results revealed that NAC administration improved the redox and functional gene expression levels in the spleen, mesenteric lymph nodes, and gastrocnemius muscle in PEDV-infected piglets.
Collapse
|
8
|
Redox Regulation in Aging Lungs and Therapeutic Implications of Antioxidants in COPD. Antioxidants (Basel) 2021; 10:antiox10091429. [PMID: 34573061 PMCID: PMC8470212 DOI: 10.3390/antiox10091429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/23/2022] Open
Abstract
Mammals, including humans, are aerobic organisms with a mature respiratory system to intake oxygen as a vital source of cellular energy. Despite the essentiality of reactive oxygen species (ROS) as byproducts of aerobic metabolism for cellular homeostasis, excessive ROS contribute to the development of a wide spectrum of pathological conditions, including chronic lung diseases such as COPD. In particular, epithelial cells in the respiratory system are directly exposed to and challenged by exogenous ROS, including ozone and cigarette smoke, which results in detrimental oxidative stress in the lungs. In addition, the dysfunction of redox regulation due to cellular aging accelerates COPD pathogenesis, such as inflammation, protease anti-protease imbalance and cellular apoptosis. Therefore, various drugs targeting oxidative stress-associated pathways, such as thioredoxin and N-acetylcysteine, have been developed for COPD treatment to precisely regulate the redox system. In this review, we present the current understanding of the roles of redox regulation in the respiratory system and COPD pathogenesis. We address the insufficiency of current COPD treatment as antioxidants and discuss future directions in COPD therapeutics targeting oxidative stress while avoiding side effects such as tumorigenesis.
Collapse
|
9
|
Zhou R, Xia M, Zhang L, Cheng Y, Yan J, Sun Y, Wang J, Jiang H. Fine particles in surgical smoke affect embryonic cardiomyocyte differentiation through oxidative stress and mitophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112259. [PMID: 33910067 DOI: 10.1016/j.ecoenv.2021.112259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Surgical smoke is widespread in operating rooms, and fine particles are the main toxic components. However, the effect of fine particles in surgical smoke on embryonic development has not yet been studied. This study evaluated the effect of fine particles in surgical smoke on embryonic development and compared it with that of atmospheric fine particles. Afterwards, differentiated cardiomyocytes were purified, and the effect of exposure to fine particles in surgical smoke on cardiomyocyte differentiation was evaluated. Fine particles in surgical smoke exhibited weak embryotoxicity toward an embryonic stem cell test model, and their inhibitory effect on cardiomyocyte differentiation was slightly stronger than that of atmospheric fine particles. Fine particles in surgical smoke specifically inhibited the differentiation of the mesoderm lineage and promoted the differentiation of the ectoderm lineage. Furthermore, fine particles in surgical smoke reduced the beating rate of purified cardiomyocytes, promoted mitophagy, reduced ATP production and increased the reactive oxygen species (ROS) content. Antioxidants attenuated the inhibition of cardiomyocyte differentiation and the reduction in the cardiomyocyte beating rate caused by fine particles in surgical smoke and simultaneously restored mitophagy and other processes to the control levels. However, mitophagy inhibitors treatment blocked only the inhibition of cardiomyocyte differentiation caused by fine particles in surgical smoke; it had little effect on other changes caused by fine particles. Based on the results described above, we propose that fine particles in surgical smoke and atmospheric fine particles exhibit similar levels of toxicity toward embryonic development. Fine particles in surgical smoke potentially affect the beating of cardiomyocytes by damaging mitochondria and increasing oxidative stress.
Collapse
Affiliation(s)
- Ren Zhou
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China.
| | - Ming Xia
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Lei Zhang
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Yanyong Cheng
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Jia Yan
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Yu Sun
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Jie Wang
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Hong Jiang
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China.
| |
Collapse
|
10
|
Zuo L, Wijegunawardana D. Redox Role of ROS and Inflammation in Pulmonary Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:187-204. [PMID: 34019270 DOI: 10.1007/978-3-030-68748-9_11] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS), either derived from exogenous sources or overproduced endogenously, can disrupt the body's antioxidant defenses leading to compromised redox homeostasis. The lungs are highly susceptible to ROS-mediated damage. Oxidative stress (OS) caused by this redox imbalance leads to the pathogenesis of multiple pulmonary diseases such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS). OS causes damage to important cellular components in terms of lipid peroxidation, protein oxidation, and DNA histone modification. Inflammation further enhances ROS production inducing changes in transcriptional factors which mediate cellular stress response pathways. This deviation from normal cell function contributes to the detrimental pathological characteristics often seen in pulmonary diseases. Although antioxidant therapies are feasible approaches in alleviating OS-related lung impairment, a comprehensive understanding of the updated role of ROS in pulmonary inflammation is vital for the development of optimal treatments. In this chapter, we review the major pulmonary diseases-including COPD, asthma, ARDS, COVID-19, and lung cancer-as well as their association with ROS.
Collapse
Affiliation(s)
- Li Zuo
- College of Arts and Sciences, Molecular Physiology and Biophysics Lab, University of Maine, Presque Isle Campus, Presque Isle, ME, USA. .,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.
| | | |
Collapse
|
11
|
Zhang J, Lan T, Han X, Xu Y, Liao L, Xie L, Yang B, Tian W, Guo W. Improvement of ECM-based bioroot regeneration via N-acetylcysteine-induced antioxidative effects. Stem Cell Res Ther 2021; 12:202. [PMID: 33752756 PMCID: PMC7986250 DOI: 10.1186/s13287-021-02237-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/23/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The low survival rate or dysfunction of extracellular matrix (ECM)-based engineered organs caused by the adverse effects of unfavourable local microenvironments on seed cell viability and stemness, especially the effects of excessive reactive oxygen species (ROS), prompted us to examine the importance of controlling oxidative damage for tissue transplantation and regeneration. We sought to improve the tolerance of seed cells to the transplant microenvironment via antioxidant pathways, thus promoting transplant efficiency and achieving better tissue regeneration. METHODS We improved the antioxidative properties of ECM-based bioroots with higher glutathione contents in dental follicle stem cells (DFCs) by pretreating cells or loading scaffolds with the antioxidant NAC. Additionally, we developed an in situ rat alveolar fossa implantation model to evaluate the long-term therapeutic effects of NAC in bioroot transplantation. RESULTS The results showed that NAC decreased H2O2-induced cellular damage and maintained the differentiation potential of DFCs. The transplantation experiments further verified that NAC protected the biological properties of DFCs by repressing replacement resorption or ankylosis, thus facilitating bioroot regeneration. CONCLUSIONS The following findings suggest that NAC could significantly protect stem cell viability and stemness during oxidative stress and exert better and prolonged effects in bioroot intragrafts.
Collapse
Affiliation(s)
- Jiayu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China
| | - Tingting Lan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China
| | - Xue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China
| | - Yuchan Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China
| | - Li Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China. .,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China. .,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.
| |
Collapse
|
12
|
Wang J, Guo Z, Zhang R, Han Z, Huang Y, Deng C, Dong W, Zhuang G. Effects of N-acetylcysteine on oxidative stress and inflammation reactions in a rat model of allergic rhinitis after PM 2.5 exposure. Biochem Biophys Res Commun 2020; 533:275-281. [PMID: 32958257 DOI: 10.1016/j.bbrc.2020.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/18/2022]
Abstract
Particulate matter 2.5 (PM2.5) exposure can increase the prevalence of allergic rhinitis (AR), the mechanism underlying which may include oxidative stress and inflammatory response. As a ROS quenching agent, N-acetylcysteine (NAC) can attenuate the accumulation of inflammatory cells and hyper-responsiveness in animal asthma models. To explore the effect of NAC on the oxidative stress and inflammatory reactions in AR rats exposed to PM2.5, we analyzed the components of PM2.5 and examined the nasal symptoms, redox level in nasal mucosa, Th1/Th2-related serum cytokines, nasal mucosal histopathology and ultrastructure in AR rat models with NAC intervention after PM2.5 exposure. The results showed that the high concentrations of metal cations and PAHs in PM2.5 could aggravate Th2-dominant allergic inflammation in AR model and cause redox imbalance, accompanied by nasal epithelial cell stripping and eosinophil infiltration, while NAC intervention could alleviate the clinical symptoms of AR model after PM2.5 exposure, correct the redox imbalance, reduce the Th2 cytokines, reduce eosinophil infiltration, and promote the moderate regeneration of epithelial cells. The mechanism of NAC reversing PM2.5-mediated action may be related to its anti-oxidant and anti-inflammatory effects, which may provide some new insights for the prevention of AR exacerbated by exposure to PM2.5.
Collapse
Affiliation(s)
- Jinchao Wang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Guo
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Ruxin Zhang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China.
| | - Zhijin Han
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yu Huang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Congrui Deng
- Center for Atmospheric Chemistry Study,Department of Environmental Science and Engineering,Fudan University, Shanghai, China
| | - Weiyang Dong
- Center for Atmospheric Chemistry Study,Department of Environmental Science and Engineering,Fudan University, Shanghai, China
| | - Guoshun Zhuang
- Center for Atmospheric Chemistry Study,Department of Environmental Science and Engineering,Fudan University, Shanghai, China
| |
Collapse
|
13
|
Liang LY, Wang MM, Liu M, Zhao W, Wang X, Shi L, Zhu MJ, Zhao YL, Liu L, Maurya P, Wang Y. Chronic toxicity of methamphetamine: Oxidative remodeling of pulmonary arteries. Toxicol In Vitro 2019; 62:104668. [PMID: 31629073 DOI: 10.1016/j.tiv.2019.104668] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/27/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022]
Abstract
Methamphetamine (MA) has a high uptake in lung, but the precise mechanism of MA-induced lung toxicity remains unclear. The aim of this study is to investigate the role of MA abuse in remodeling of pulmonary arteries and to explore the possible correlation of the association of the remodeling with the redox imbalance in pulmonary arterial smooth muscle cells (PASMCs). Wistar rats were randomly divided into control group and MA group for the experimental study. We employed H&E staining, western blot, immunofluorescence, knockdown, flow in our experimental approach. Our studies shows that chronic exposure to MA led to weight loss, increased pulmonary arterial pressure, hypertrophy of right ventricle and remodeling of pulmonary arterial wall of rats. Our cell culture study with PASMCs indicates that MA significantly induced the imbalance between proliferation and apoptosis by upregulating the level of PCNA, Bcl-2 and reduction in the expression of BAX and Caspase 3. MA markedly prevented the nuclear translocation of Nrf2 to inhibit antioxidation. The knockdown of Nrf2 expression using siRNA significantly elevated the expression of SOD2/GCS and the production of ROS in PASMCs and even scaled up the amount of PASMCs induced by MA. Linear regression analysis showed that knockdown of Nrf2 promoted the positive correlation of relative ROS level with proliferation of PASMCs. Therefore, chronic exposure to MA induces pulmonary arterial remodeling by Nrf2-mediated imbalance of redox system to aggravate oxidative stress, and Nrf2 is a possible target for the treatment of MA-lung toxicity.
Collapse
Affiliation(s)
- Li-Ye Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Meng-Meng Wang
- Sleep Medical Center, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110022, PR China
| | - Ming Liu
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, Liaoning 110854, PR China
| | - Wei Zhao
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, Liaoning 110854, PR China
| | - Xin Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Lin Shi
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Mei-Jia Zhu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yuan-Ling Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Lian Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Preeti Maurya
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, CVRI, Rochester, NY 14642, USA
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
14
|
Bahmed K, Lin CR, Simborio H, Karim L, Aksoy M, Kelsen S, Tomar D, Madesh M, Elrod J, Messier E, Mason R, Unterwald EM, Eisenstein TK, Criner GJ, Kosmider B. The role of DJ-1 in human primary alveolar type II cell injury induced by e-cigarette aerosol. Am J Physiol Lung Cell Mol Physiol 2019; 317:L475-L485. [PMID: 31313616 PMCID: PMC6842910 DOI: 10.1152/ajplung.00567.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 06/11/2019] [Accepted: 07/07/2019] [Indexed: 01/18/2023] Open
Abstract
The alveolus participates in gas exchange, which can be impaired by environmental factors and toxins. There is an increase in using electronic cigarettes (e-cigarettes); however, their effect on human primary alveolar epithelial cells is unknown. Human lungs were obtained from nonsmoker organ donors to isolate alveolar type II (ATII) cells. ATII cells produce and secrete pulmonary surfactant and restore the epithelium after damage, and mitochondrial function is important for their metabolism. Our data indicate that human ATII cell exposure to e-cigarette aerosol increased IL-8 levels and induced DNA damage and apoptosis. We also studied the cytoprotective effect of DJ-1 against ATII cell injury. DJ-1 knockdown in human primary ATII cells sensitized cells to mitochondrial dysfunction as detected by high mitochondrial superoxide production, decreased mitochondrial membrane potential, and calcium elevation. DJ-1 knockout (KO) mice were more susceptible to ATII cell apoptosis and lung injury induced by e-cigarette aerosol compared with wild-type mice. Regulation of the oxidative phosphorylation (OXPHOS) is important for mitochondrial function and protection against oxidative stress. Major subunits of the OXPHOS system are encoded by both nuclear and mitochondrial DNA. We found dysregulation of OXPHOS complexes in DJ-1 KO mice after exposure to e-cigarette aerosol, which could disrupt the nuclear/mitochondrial stoichiometry, resulting in mitochondrial dysfunction. Together, our results indicate that DJ-1 deficiency sensitizes ATII cells to damage induced by e-cigarette aerosol leading to lung injury.
Collapse
Affiliation(s)
- Karim Bahmed
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania
- Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | - Chih-Ru Lin
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania
- Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | - Hannah Simborio
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania
- Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | - Loukmane Karim
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania
- Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | - Mark Aksoy
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania
- Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | - Steven Kelsen
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania
- Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | - Dhanendra Tomar
- Department of Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, Pennsylvania
| | - Muniswamy Madesh
- Department of Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, Pennsylvania
| | - John Elrod
- Department of Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, Pennsylvania
| | - Elise Messier
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Robert Mason
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Ellen M Unterwald
- Department of Pharmacology, Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania
| | - Toby K Eisenstein
- Department of Microbiology and Immunology, Temple University, Philadelphia, Pennsylvania
- Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania
- Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | - Beata Kosmider
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania
- Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
- Department of Medicine, National Jewish Health, Denver, Colorado
- Department of Physiology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Liu X, Wang J, Fan Y, Xu Y, Xie M, Yuan Y, Li H, Qian X. Particulate Matter Exposure History Affects Antioxidant Defense Response of Mouse Lung to Haze Episodes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9789-9799. [PMID: 31328514 DOI: 10.1021/acs.est.9b01068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Few studies have focused on the association between previous particulate matter (PM) exposure and antioxidant defense response to a haze challenge. In this study, a combined exposure model was used to investigate whether and how PM exposure history affected the antioxidant defense response to haze episodes. At first, C57BL/6 male mice were randomly assigned to three groups and exposed for 5 weeks to whole ambient air, ambient air containing a low (≤75 μg/m3) PM concentration, and filtered air, which simulated different exposure history of high, relatively low, and almost zero PM concentrations. Thereafter, all mice underwent a 3-day haze exposure followed by a 7-day exposure to filtered air. The indexes involved in the primary and secondary antioxidant defense response were determined after pre-exposure and haze exposure, as well as 1 day, 3 days, and 7 days after haze exposure. Our research demonstrated repeated exposure to a high PM concentration compromised the antioxidant defense response and was accompanied by an increased susceptibility to a haze challenge. Conversely, mice with a lower PM exposure developed an oxidative stress adaption that protected them against haze challenge more efficiently and in a more timely manner than was the case in mice without PM exposure history.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
- Huaiyin Institute of Technology , School of Chemical Engineering , Huaian 223001 , P. R. China
| | - Jinhua Wang
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
| | - Yifan Fan
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
| | - Yue Xu
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
| | - Mengxing Xie
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
| | - Yu Yuan
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
| | - Huiming Li
- School of Environment , Nanjing Normal University , Nanjing 210023 , P. R. China
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET) , Nanjing University of Information Science & Technology , Nanjing 210044 , P. R. China
| |
Collapse
|
16
|
Kosmider B, Lin CR, Karim L, Tomar D, Vlasenko L, Marchetti N, Bolla S, Madesh M, Criner GJ, Bahmed K. Mitochondrial dysfunction in human primary alveolar type II cells in emphysema. EBioMedicine 2019; 46:305-316. [PMID: 31383554 PMCID: PMC6711885 DOI: 10.1016/j.ebiom.2019.07.063] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Cigarette smoke is the main risk factor of pulmonary emphysema development, which is characterized by alveolar wall destruction. Mitochondria are important for alveolar type II (ATII) cell metabolism due to ATP generation. METHODS We isolated ATII cells from control non-smoker and smoker organ donors, and after lung transplant of patients with emphysema to determine mitochondrial function, dynamics and mitochondrial (mt) DNA damage. FINDINGS We found high mitochondrial superoxide generation and mtDNA damage in ATII cells in emphysema. This correlated with decreased mtDNA amount. We also detected high TOP1-cc and low TDP1 levels in mitochondria in ATII cells in emphysema. This contributed to the decreased resolution of TOP1-cc leading to accumulation of mtDNA damage and mitochondrial dysfunction. Moreover, we used lung tissue obtained from areas with mild and severe emphysema from the same patients. We found a correlation between the impaired fusion and fission as indicated by low MFN1, OPA1, FIS1, and p-DRP1 levels and this disease severity. We detected lower TDP1 expression in severe compared to mild emphysema. INTERPRETATION We found high DNA damage and impairment of DNA damage repair in mitochondria in ATII cells isolated from emphysema patients, which contribute to abnormal mitochondrial dynamics. Our findings provide molecular mechanisms of mitochondrial dysfunction in this disease. FUND: This work was supported by National Institutes of Health (NIH) grant R01 HL118171 (B.K.) and the Catalyst Award from the American Lung Association (K.B.).
Collapse
Affiliation(s)
- Beata Kosmider
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, United States of America; Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA 19140, United States of America; Department of Physiology, Temple University, Philadelphia, PA 19140, United States of America.
| | - Chih-Ru Lin
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, United States of America; Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA 19140, United States of America
| | - Loukmane Karim
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, United States of America; Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA 19140, United States of America
| | - Dhanendra Tomar
- Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, PA 19140, United States of America
| | - Liudmila Vlasenko
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, United States of America; Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA 19140, United States of America
| | - Nathaniel Marchetti
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, United States of America; Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA 19140, United States of America
| | - Sudhir Bolla
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, United States of America
| | - Muniswamy Madesh
- Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, PA 19140, United States of America
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, United States of America; Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA 19140, United States of America
| | - Karim Bahmed
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, United States of America; Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA 19140, United States of America.
| |
Collapse
|
17
|
Lin CR, Bahmed K, Criner GJ, Marchetti N, Tuder RM, Kelsen S, Bolla S, Mandapati C, Kosmider B. S100A8 Protects Human Primary Alveolar Type II Cells against Injury and Emphysema. Am J Respir Cell Mol Biol 2019; 60:299-307. [PMID: 30277795 PMCID: PMC6397980 DOI: 10.1165/rcmb.2018-0144oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022] Open
Abstract
Pulmonary emphysema is characterized by alveolar wall destruction, and cigarette smoking is the main risk factor in this disease development. S100A8 is a member of the S100 protein family, with an oxidative stress-related and antiinflammatory role. The mechanisms of human alveolar type II (ATII) cell injury contributing to emphysema pathophysiology are not completely understood. We wanted to determine whether S100A8 can protect ATII cells against injury induced by cigarette smoke and this disease development. We used freshly isolated ATII cells from nonsmoking and smoking organ donors, as well as patients with emphysema to determine S100A8 function. S100A8 protein and mRNA levels were low in individuals with this disease and correlated with its severity as determined by using lung tissue from areas with mild and severe emphysema obtained from the same patient. Its expression negatively correlated with high oxidative stress as observed by 4-hydroxynonenal levels. We also detected decreased serine phosphorylation within S100A8 by PKAα in this disease. This correlated with increased S100A8 ubiquitination by SYVN1. Moreover, we cultured ATII cells isolated from nonsmokers followed by treatment with cigarette smoke extract. We found that this exposure upregulated S100A8 expression. We also confirmed the cytoprotective role of S100A8 against cell injury using gain- and loss-of-function approaches in vitro. S100A8 knockdown sensitized cells to apoptosis induced by cigarette smoke. In contrast, S100A8 overexpression rescued cell injury. Our results suggest that S100A8 protects ATII cells against injury and cigarette smoke-induced emphysema. Targeting S100A8 may provide a potential therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Chih-Ru Lin
- Department of Thoracic Medicine and Surgery
- Center for Inflammation, Translational and Clinical Lung Research, and
| | - Karim Bahmed
- Department of Thoracic Medicine and Surgery
- Center for Inflammation, Translational and Clinical Lung Research, and
| | - Gerard J. Criner
- Department of Thoracic Medicine and Surgery
- Center for Inflammation, Translational and Clinical Lung Research, and
| | - Nathaniel Marchetti
- Department of Thoracic Medicine and Surgery
- Center for Inflammation, Translational and Clinical Lung Research, and
| | - Rubin M. Tuder
- Department of Pathology, School of Medicine, University of Colorado, Aurora, Colorado
| | - Steven Kelsen
- Department of Thoracic Medicine and Surgery
- Center for Inflammation, Translational and Clinical Lung Research, and
| | | | | | - Beata Kosmider
- Department of Thoracic Medicine and Surgery
- Center for Inflammation, Translational and Clinical Lung Research, and
- Department of Physiology, Temple University, Philadelphia, Pennsylvania; and
| |
Collapse
|
18
|
Impaired non-homologous end joining in human primary alveolar type II cells in emphysema. Sci Rep 2019; 9:920. [PMID: 30696938 PMCID: PMC6351635 DOI: 10.1038/s41598-018-37000-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Emphysema is characterized by alveolar wall destruction induced mainly by cigarette smoke. Oxidative damage of DNA may contribute to the pathophysiology of this disease. We studied the impairment of the non-homologous end joining (NHEJ) repair pathway and DNA damage in alveolar type II (ATII) cells and emphysema development. We isolated primary ATII cells from control smokers, nonsmokers, and patients with emphysema to determine DNA damage and repair. We found higher reactive oxygen species generation and DNA damage in ATII cells obtained from individuals with this disease in comparison with controls. We also observed low phosphorylation of H2AX, which activates DSBs repair signaling, in emphysema. Our results indicate the impairement of NHEJ, as detected by low XLF expression. We also analyzed the role of DJ-1, which has a cytoprotective activity. We detected DJ-1 and XLF interaction in ATII cells in emphysema, which suggests the impairment of their function. Moreover, we found that DJ-1 KO mice are more susceptible to DNA damage induced by cigarette smoke. Our results suggest that oxidative DNA damage and ineffective the DSBs repair via the impaired NHEJ may contribute to ATII cell death in emphysema.
Collapse
|
19
|
Zhang Q, Ju Y, Ma Y, Wang T. N-acetylcysteine improves oxidative stress and inflammatory response in patients with community acquired pneumonia: A randomized controlled trial. Medicine (Baltimore) 2018; 97:e13087. [PMID: 30407312 PMCID: PMC6250560 DOI: 10.1097/md.0000000000013087] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress is considered to be part of the pathogenic mechanism for community-acquired pneumonia (CAP) and is closely linked to inflammation. Attenuation of oxidative stress would be expected to reduce pulmonary damage. Antioxidants have been found to be effective in alleviating lung injury and protecting against damage of other organs.The aim of the study was to compare the effect of adding N-acetylcysteine (NAC) to conventional treatment versus conventional treatment on oxidative stress, inflammatory factors, and radiological changes in CAP patients.Eligible CAP patients at Weihai Municipal Hospital were stratified and randomly assigned to either NAC group or non-NAC group between August 2016 and March 2017. The NAC group received conventional treatment for pneumonia and NAC (1200 mg/d). Thenon-NAC group received conventional therapy. malondialdehyde (MDA), superoxide dismutase (SOD), total antioxidant capacity (TAOC), tumor necrosis factor-α (TNF-α), and computed tomography (CT) images were evaluated at baseline and after treatment. The primary endpoint indicators were the changes in oxidative stress parameters (MDA, TAOC, SOD) and TNF-α after treatment in the NAC group compared with those in the non-NAC group. The secondary endpoint indicator was any difference in CT scores after treatment in the NAC group compared with the non-NAC group.Baseline levels of MDA, TAOC, SOD, and TNF-α were similar between the 2 groups before treatment. Plasma levels of MDA and TNF-α decreased more (P < .05 MDA:p 0.004, TNF-α:p <0.001) in the NAC group than the non-NAC group, and there was a reliable increase in TAOC content (p 0.005). There was no significant difference in increased plasma SOD activity between the groups (p 0.368), and the NAC group did not show a greater improvement from CT scores. No NAC-related adverse effects were observed.Addition of NAC therapy for CAP patients reduced MDA and TNF-α and increased TAOC. Treatment with NAC may help to reduce oxidative and inflammatory damage in pneumonia patients.
Collapse
Affiliation(s)
- Qianwen Zhang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University
- Department of Respiratory, Weihai Municipal Hospital, Weihai
| | - Yuanrong Ju
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University
| | - Yan Ma
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University
| | - Tao Wang
- Shandong Medical Imaging Research Institute Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
20
|
Womersley JS, Townsend DM, Kalivas PW, Uys JD. Targeting redox regulation to treat substance use disorder using N‐acetylcysteine. Eur J Neurosci 2018; 50:2538-2551. [PMID: 30144182 DOI: 10.1111/ejn.14130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/28/2018] [Accepted: 07/25/2018] [Indexed: 12/17/2022]
Abstract
Substance use disorder (SUD) is a chronic relapsing disorder characterized by transitioning from acute drug reward to compulsive drug use. Despite the heavy personal and societal burden of SUDs, current treatments are limited and unsatisfactory. For this reason, a deeper understanding of the mechanisms underlying addiction is required. Altered redox status, primarily due to drug-induced increases in dopamine metabolism, is a unifying feature of abused substances. In recent years, knowledge of the effects of oxidative stress in the nervous system has evolved from strictly neurotoxic to include a more nuanced role in redox-sensitive signaling. More specifically, S-glutathionylation, a redox-sensitive post-translational modification, has been suggested to influence the response to drugs of abuse. In this review we will examine the evidence for redox-mediating drugs as therapeutic tools focusing on N-acetylcysteine as a treatment for cocaine addiction. We will conclude by suggesting future research directions that may further advance this field.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 409 Drug Discovery Building, 70 President Street, Charleston, SC, 29425, USA
| | - Danyelle M Townsend
- Department of Drug Discover and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Joachim D Uys
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 409 Drug Discovery Building, 70 President Street, Charleston, SC, 29425, USA
| |
Collapse
|
21
|
Jang AJ, Lee JH, Yotsu-Yamashita M, Park J, Kye S, Benza RL, Passineau MJ, Jeon YJ, Nyunoya T. A Novel Compound, "FA-1" Isolated from Prunus mume, Protects Human Bronchial Epithelial Cells and Keratinocytes from Cigarette Smoke Extract-Induced Damage. Sci Rep 2018; 8:11504. [PMID: 30065307 PMCID: PMC6068145 DOI: 10.1038/s41598-018-29701-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022] Open
Abstract
Extract of the Japanese apricot (JAE) has biological properties as an antioxidant and anti-inflammatory agent. We hypothesized that JAE might exert therapeutic effects on cigarette smoke (CS)-induced DNA damage and cytotoxicity. In this study, we found that concentrated JAE protects against cigarette smoke extract (CSE)-induced cytotoxicity and DNA damage accompanied by increased levels of aldehyde dehydrogenase (ALDH)2, 3A1, and Werner's syndrome protein (WRN) in immortalized human bronchial epithelial cells (HBEC2) and normal human epidermal keratinocytes (NHEK). Using the centrifugal partition chromatography (CPC) method, we identified an undescribed compound, 5-hydroxymethyl-2-furaldehyde bis(5-formylfurfuryl) acetal (which we named FA-1), responsible for the protective effects against CSE. This chemical structure has not been reported from a natural source to date. Protective effects of isolated FA-1 against CSE were observed in both HBEC2 and NHEK cells. The studies described herein suggest that FA-1 isolated from JAE protects against CSE-induced DNA damage and apoptosis by augmenting multiple isozymes of ALDH and DNA repair and reducing oxidative stress.
Collapse
Affiliation(s)
- Andrew J Jang
- Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA, 15212, USA.
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Ji-Hyeok Lee
- Lee Gil Ya Cancer and Diabetes Institute, 7-45, Songdodong, Yeonsugu, Incheon, 406-840, Republic of Korea
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - Joodong Park
- Fysee Inc., 131, Angam-ro, Angseong-myeon, Chungju-si, Chungcheongbuk-do, 27303, Republic of Korea
| | - Steve Kye
- Acerta Pharma, 2200 Bridge Parkway, Suite 101, Redwood City, CA, 94065, USA
| | - Raymond L Benza
- Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | - Michael J Passineau
- Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756, Republic of Korea
| | - Toru Nyunoya
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
22
|
Nour OAA, Shehatou GSG, Rahim MA, El-Awady MS, Suddek GM. Cinnamaldehyde exerts vasculoprotective effects in hypercholestrolemic rabbits. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1203-1219. [PMID: 30058017 DOI: 10.1007/s00210-018-1547-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/19/2018] [Indexed: 01/05/2023]
Abstract
The effects of cinnamaldehyde (CIN), a commonly consumed food flavor, against high-cholesterol diet (HCD)-induced vascular damage in rabbits were evaluated. Male New Zealand rabbits (n = 24) were allocated to four groups at random: control, fed with standard rabbit chow; CIN, fed with standard diet and administered CIN; HCD, fed with 1% cholesterol-enriched diet; and HCD-CIN, fed with HCD and treated with CIN. CIN was orally given at a dose of (10 mg/kg/day) concomitantly with each diet type from day 1 until the termination of the experimental protocol (4 weeks). HCD elicited significant elevations in serum levels of total cholesterol (TC), triglycerides (TGs), and high- and low-density lipoprotein cholesterol (HDL-C and LDL-C, respectively) compared with control rabbits. Moreover, aortic levels of nitric oxide metabolites (NOx) and antioxidant enzyme activities were significantly lower, while aortic levels of malondialdehyde (MDA) and myeloperoxidase (MPO) activity were significantly higher, in HCD-fed rabbits relative to control animals. CIN administration mitigated or completely reversed HCD-induced metabolic alterations, vascular oxidative stress, and inflammation. Moreover, CIN ameliorated HCD-induced vascular functional and structural irregularities. Aortic rings from HCD-CIN group showed improved relaxation to acetylcholine compared to aortas from HCD group. Moreover, CIN decreased atherosclerotic lipid deposition and intima/media (I/M) ratio of HCD aortas. CIN-mediated effects might be related to its ability to attenuate the elevated aortic mRNA expression of cholesteryl ester transfer protein (CETP) and MPO in HCD group. Interestingly, the vasculoprotective effects of CIN treatment in the current study do not seem to be mediated via Nrf2-dependent mechanisms. In conclusion, CIN may mitigate the development of atherosclerosis in hypercholestrolemic rabbits via cholesterol-lowering, antiinflammatory and antioxidant activities.
Collapse
Affiliation(s)
- Omnia A A Nour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - George S G Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mona Abdel Rahim
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammed S El-Awady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
23
|
Chiang S, Kalinowski DS, Jansson PJ, Richardson DR, Huang MLH. Mitochondrial dysfunction in the neuro-degenerative and cardio-degenerative disease, Friedreich's ataxia. Neurochem Int 2018; 117:35-48. [PMID: 28782591 DOI: 10.1016/j.neuint.2017.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/25/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023]
Abstract
Mitochondrial homeostasis is essential for maintaining healthy cellular function and survival. The detrimental involvement of mitochondrial dysfunction in neuro-degenerative diseases has recently been highlighted in human conditions, such as Parkinson's, Alzheimer's and Huntington's disease. Friedreich's ataxia (FA) is another neuro-degenerative, but also cardio-degenerative condition, where mitochondrial dysfunction plays a crucial role in disease progression. Deficient expression of the mitochondrial protein, frataxin, is the primary cause of FA, which leads to adverse alterations in whole cell and mitochondrial iron metabolism. Dys-regulation of iron metabolism in these compartments, results in the accumulation of inorganic iron deposits in the mitochondrial matrix that is thought to potentiate oxidative damage observed in FA. Therefore, the maintenance of mitochondrial homeostasis is crucial in the progression of neuro-degenerative conditions, particularly in FA. In this review, vital mitochondrial homeostatic processes and their roles in FA pathogenesis will be discussed. These include mitochondrial iron processing, mitochondrial dynamics (fusion and fission processes), mitophagy, mitochondrial biogenesis, mitochondrial energy production and calcium metabolism.
Collapse
Affiliation(s)
- Shannon Chiang
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Danuta S Kalinowski
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Patric J Jansson
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Des R Richardson
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Michael L-H Huang
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
24
|
Tan LH, Bahmed K, Lin CR, Marchetti N, Bolla S, Criner GJ, Kelsen S, Madesh M, Kosmider B. The cytoprotective role of DJ-1 and p45 NFE2 against human primary alveolar type II cell injury and emphysema. Sci Rep 2018; 8:3555. [PMID: 29476075 PMCID: PMC5824795 DOI: 10.1038/s41598-018-21790-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/06/2018] [Indexed: 12/11/2022] Open
Abstract
Emphysema is characterized by irreversibly enlarged airspaces and destruction of alveolar walls. One of the factors contributing to this disease pathogenesis is an elevation in extracellular matrix (ECM) degradation in the lung. Alveolar type II (ATII) cells produce and secrete pulmonary surfactants and proliferate to restore the epithelium after damage. We isolated ATII cells from control non-smokers, smokers and patients with emphysema to determine the role of NFE2 (nuclear factor, erythroid-derived 2). NFE2 is a heterodimer composed of two subunits, a 45 kDa (p45 NFE2) and 18 kDa (p18 NFE2) polypeptides. Low expression of p45 NFE2 in patients with emphysema correlated with a high ECM degradation. Moreover, we found that NFE2 knockdown increased cell death induced by cigarette smoke extract. We also studied the cross talk between p45 NFE2 and DJ-1. DJ-1 protein is a redox-sensitive chaperone that protects cells from oxidative stress. We detected that cigarette smoke significantly increased p45 NFE2 levels in DJ-1 KO mice compared to wild-type mice. Our results indicate that p45 NFE2 expression is induced by exposure to cigarette smoke, has a cytoprotective activity against cell injury, and its downregulation in human primary ATII cells may contribute to emphysema pathogenesis.
Collapse
Affiliation(s)
- Li Hui Tan
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, 19140, United States.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA, 19140, United States
| | - Karim Bahmed
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, 19140, United States.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA, 19140, United States
| | - Chih-Ru Lin
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, 19140, United States.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA, 19140, United States
| | - Nathaniel Marchetti
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, 19140, United States.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA, 19140, United States
| | - Sudhir Bolla
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, 19140, United States.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA, 19140, United States
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, 19140, United States.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA, 19140, United States
| | - Steven Kelsen
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, 19140, United States.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA, 19140, United States
| | - Muniswamy Madesh
- Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, PA, 19140, United States
| | - Beata Kosmider
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, 19140, United States. .,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA, 19140, United States. .,Department of Physiology, Temple University, Philadelphia, PA, 19140, United States.
| |
Collapse
|
25
|
Reactive Oxygen Species in Chronic Obstructive Pulmonary Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5730395. [PMID: 29599897 PMCID: PMC5828402 DOI: 10.1155/2018/5730395] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/23/2017] [Accepted: 01/01/2018] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) includes chronic bronchitis and emphysema. Environmental exposure, primarily cigarette smoking, can cause high oxidative stress and is the main factor of COPD development. Cigarette smoke also contributes to the imbalance of oxidant/antioxidant due to exogenous reactive oxygen species (ROS). Moreover, endogenously released ROS during the inflammatory process and mitochondrial dysfunction may contribute to this disease progression. ROS and reactive nitrogen species (RNS) can oxidize different biomolecules such as DNA, proteins, and lipids leading to epithelial cell injury and death. Various detoxifying enzymes and antioxidant defense systems can be involved in ROS removal. In this review, we summarize the main findings regarding the biological role of ROS, which may contribute to COPD development, and cytoprotective mechanisms against this disease progression.
Collapse
|
26
|
Miyashita L, Suri R, Dearing E, Mudway I, Dove RE, Neill DR, Van Zyl-Smit R, Kadioglu A, Grigg J. E-cigarette vapour enhances pneumococcal adherence to airway epithelial cells. Eur Respir J 2018; 51:1701592. [PMID: 29437942 PMCID: PMC7614837 DOI: 10.1183/13993003.01592-2017] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022]
Abstract
E-cigarette vapour contains free radicals with the potential to induce oxidative stress. Since oxidative stress in airway cells increases platelet-activating factor receptor (PAFR) expression, and PAFR is co-opted by pneumococci to adhere to host cells, we hypothesised that E-cigarette vapour increases pneumococcal adhesion to airway cells.Nasal epithelial PAFR was assessed in non-vaping controls, and in adults before and after 5 min of vaping. We determined the effect of vapour on oxidative stress-induced, PAFR-dependent pneumococcal adhesion to airway epithelial cells in vitro, and on pneumococcal colonisation in the mouse nasopharynx. Elemental analysis of vapour was done by mass spectrometry, and oxidative potential of vapour assessed by antioxidant depletion in vitroThere was no difference in baseline nasal epithelial PAFR expression between vapers (n=11) and controls (n=6). Vaping increased nasal PAFR expression. Nicotine-containing and nicotine-free E-cigarette vapour increased pneumococcal adhesion to airway cells in vitro Vapour-stimulated adhesion in vitro was attenuated by the PAFR blocker CV3988. Nicotine-containing E-cigarette vapour increased mouse nasal PAFR expression, and nasopharyngeal pneumococcal colonisation. Vapour contained redox-active metals, had considerable oxidative activity, and adhesion was attenuated by the antioxidant N-acetyl cysteine.This study suggests that E-cigarette vapour has the potential to increase susceptibility to pneumococcal infection.
Collapse
Affiliation(s)
- Lisa Miyashita
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK
| | - Reetika Suri
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK
| | - Emma Dearing
- The Dept of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Ian Mudway
- MRC-PHE Centre for Environment and Health, King's College London, London, UK
- NIHR Health Protection Research Unit on Health Impacts of Environmental Hazards, King's College London, London, UK
| | - Rosamund E Dove
- NIHR Health Protection Research Unit on Health Impacts of Environmental Hazards, King's College London, London, UK
| | - Daniel R Neill
- The Dept of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Richard Van Zyl-Smit
- Division of Pulmonology, Dept of Medicine, University of Cape Town and UCT Lung Institute, Cape Town, South Africa
| | - Aras Kadioglu
- The Dept of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Jonathan Grigg
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
27
|
Bahmed K, Messier EM, Zhou W, Tuder RM, Freed CR, Chu HW, Kelsen SG, Bowler RP, Mason RJ, Kosmider B. DJ-1 Modulates Nuclear Erythroid 2-Related Factor-2-Mediated Protection in Human Primary Alveolar Type II Cells in Smokers. Am J Respir Cell Mol Biol 2017; 55:439-49. [PMID: 27093578 DOI: 10.1165/rcmb.2015-0304oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cigarette smoke (CS) is a main source of oxidative stress and a key risk factor for emphysema, which consists of alveolar wall destruction. Alveolar type (AT) II cells are in the gas exchange regions of the lung. We isolated primary ATII cells from deidentified organ donors whose lungs were not suitable for transplantation. We analyzed the cell injury obtained from nonsmokers, moderate smokers, and heavy smokers. DJ-1 protects cells from oxidative stress and induces nuclear erythroid 2-related factor-2 (Nrf2) expression, which activates the antioxidant defense system. In ATII cells isolated from moderate smokers, we found DJ-1 expression by RT-PCR, and Nrf2 and heme oxygenase (HO)-1 translocation by Western blotting and immunocytofluorescence. In ATII cells isolated from heavy smokers, we detected Nrf2 and HO-1 cytoplasmic localization. Moreover, we found high oxidative stress, as detected by 4-hydroxynonenal (4-HNE) (immunoblotting), inflammation by IL-8 and IL-6 levels by ELISA, and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in ATII cells obtained from heavy smokers. Furthermore, we detected early DJ-1 and late Nrf2 expression after ATII cell treatment with CS extract. We also overexpressed DJ-1 by adenovirus construct and found that this restored Nrf2 and HO-1 expression and induced nuclear translocation in heavy smokers. Moreover, DJ-1 overexpression also decreased ATII cell apoptosis caused by CS extract in vitro. Our results indicate that DJ-1 activates the Nrf2-mediated antioxidant defense system. Furthermore, DJ-1 overexpression can restore the impaired Nrf2 pathway, leading to ATII cell protection in heavy smokers. This suggests a potential therapeutic strategy for targeting DJ-1 in CS-related lung diseases.
Collapse
Affiliation(s)
- Karim Bahmed
- 1 Department of Thoracic Medicine and Surgery.,2 Center for Inflammation, Translational and Clinical Lung Research, and
| | - Elise M Messier
- 3 Department of Medicine, National Jewish Health, Denver, Colorado
| | - Wenbo Zhou
- 4 Department of Medicine, Division of Clinical Pharmacology, University of Colorado Denver, Aurora, Colorado; and
| | - Rubin M Tuder
- 5 Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Curt R Freed
- 4 Department of Medicine, Division of Clinical Pharmacology, University of Colorado Denver, Aurora, Colorado; and
| | - Hong Wei Chu
- 3 Department of Medicine, National Jewish Health, Denver, Colorado
| | - Steven G Kelsen
- 1 Department of Thoracic Medicine and Surgery.,2 Center for Inflammation, Translational and Clinical Lung Research, and
| | - Russell P Bowler
- 3 Department of Medicine, National Jewish Health, Denver, Colorado
| | - Robert J Mason
- 3 Department of Medicine, National Jewish Health, Denver, Colorado
| | - Beata Kosmider
- 1 Department of Thoracic Medicine and Surgery.,2 Center for Inflammation, Translational and Clinical Lung Research, and.,6 Department of Physiology, Temple University, Philadelphia, Pennsylvania.,3 Department of Medicine, National Jewish Health, Denver, Colorado
| |
Collapse
|
28
|
Bai Y, Wang Y, Liu M, Gu YH, Jiang B, Wu X, Wang HL. Suppression of nuclear factor erythroid‑2‑related factor 2‑mediated antioxidative defense in the lung injury induced by chronic exposure to methamphetamine in rats. Mol Med Rep 2017; 15:3135-3142. [PMID: 28339044 DOI: 10.3892/mmr.2017.6356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/10/2017] [Indexed: 11/06/2022] Open
Abstract
The imbalance between oxidative stress and antioxidant defense is important in the pathogenesis of lung diseases. Nuclear factor erythroid‑2‑related factor 2 (Nrf2) is a key transcriptional factor that regulates the antioxidant response. The purpose of the present study was to investigate whether Nrf2‑mediated antioxidative defense is involved in methamphetamine (MA)‑induced lung injury in rats. Following establishment of chronic MA toxicity in rats, Doppler ultrasonic detection was used to measure the changes of physiological indexes, followed by hematoxylin and eosin staining, ELISA and western blot analysis. MA was demonstrated to increase the heart rate and peak blood flow velocity of pulmonary arterial valves and to decrease the survival rate of rats, and resulted in lung injury characterized by perivascular exudates, airspace edema, slight hemorrhage and inflammatory cell infiltration. MA significantly inhibited the expression of nuclear Nrf2 protein and its target genes (glutamate‑cysteine ligase catalytic subunit C and heme oxygenase‑1), and dose‑dependently reduced glutathione (GSH) levels and the ratio of GSH/oxidized glutathione, accompanied by increases in reactive oxygen species (ROS) levels in rat lungs. Linear regression analysis revealed that there was a positive correlation between lung ROS level and lung injury indexes. These findings suggested that chronic exposure to MA led to lung injury by suppression of Nrf2‑mediated antioxidative defense, suggesting that Nrf2 may be an important therapeutic target for MA‑induced chronic lung toxicity.
Collapse
Affiliation(s)
- Yang Bai
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Ming Liu
- Department of Drug Control, China Criminal Police University, Shenyang, Liaoning 110035, P.R. China
| | - Yu-Han Gu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Bin Jiang
- Department of Cardiovascular Ultrasound, The First Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Huai-Liang Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
29
|
Lin BH, Tsai MH, Lii CK, Wang TS. IP3 and calcium signaling involved in the reorganization of the actin cytoskeleton and cell rounding induced by cigarette smoke extract in human endothelial cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:1293-1306. [PMID: 25758670 DOI: 10.1002/tox.22133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/09/2015] [Accepted: 02/15/2015] [Indexed: 06/04/2023]
Abstract
Smoking increases the risk of cardiovascular disorders and leads to damage caused by inflammation and oxidative stress. The actin cytoskeleton is a key player in the response to inflammatory stimuli and is an early target of cellular oxidative stress. The purpose of this study was to investigate the changes in actin cytoskeleton dynamics in human endothelial EA.hy926 cells exposed to cigarette smoke extract (CSE). Immunostaining revealed that CSE exposure resulted in modification of the actin cytoskeleton and led to cell rounding in a dose- and time-dependent manner. In addition, the intracellular calcium concentration was increased by treatment with CSE. Pretreatment with antioxidants (lipoic acid, glutathione, N-acetyl cysteine, aminoguanidine, α-tocopherol, and vitamin C) significantly attenuated the CSE-induced actin cytoskeleton reorganization and cell rounding. Calcium ion chelators (EGTA, BAPTA-AM AM) and a potent store-operated calcium channel inhibitor (MRS 1845) also reduced CSE-induced intracellular calcium changes and attenuated actin cytoskeleton reorganization and cell morphology change. Moreover, the CSE-induced intracellular calcium increase was suppressed by pretreatment with the inositol trisphosphate receptor (IP3R) inhibitor xestospongin C, the phospholipase C (PLC) inhibitor U-73122, and the protein kinase C (PKC) inhibitor GF109203X. These results suggest that reactive oxygen species production and intracellular calcium increase play an essential role in CSE-induced actin disorganization and cell rounding through a PLC-IP3-PKC signaling pathway. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1293-1306, 2016.
Collapse
Affiliation(s)
- Bo-Hong Lin
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Hsuan Tsai
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Tsu-Shing Wang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
30
|
Pardo M, Porat Z, Rudich A, Schauer JJ, Rudich Y. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 210:227-37. [PMID: 26735168 DOI: 10.1016/j.envpol.2015.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/02/2015] [Accepted: 12/05/2015] [Indexed: 05/25/2023]
Abstract
Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
31
|
Suri R, Periselneris J, Lanone S, Zeidler-Erdely PC, Melton G, Palmer KT, Andujar P, Antonini JM, Cohignac V, Erdely A, Jose RJ, Mudway I, Brown J, Grigg J. Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae. J Allergy Clin Immunol 2016; 137:527-534.e7. [PMID: 26277596 PMCID: PMC4747856 DOI: 10.1016/j.jaci.2015.06.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/29/2015] [Accepted: 06/29/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Welders are at increased risk of pneumococcal pneumonia. The mechanism for this association is not known. The capacity of pneumococci to adhere to and infect lower airway cells is mediated by host-expressed platelet-activating factor receptor (PAFR). OBJECTIVE We sought to assess the effect of mild steel welding fumes (MS-WF) on PAFR-dependent pneumococcal adhesion and infection to human airway cells in vitro and on pneumococcal airway infection in a mouse model. METHODS The oxidative potential of MS-WF was assessed by their capacity to reduce antioxidants in vitro. Pneumococcal adhesion and infection of A549, BEAS-2B, and primary human bronchial airway cells were assessed by means of quantitative bacterial culture and expressed as colony-forming units (CFU). After intranasal instillation of MS-WF, mice were infected with Streptococcus pneumoniae, and bronchoalveolar lavage fluid (BALF) and lung CFU values were determined. PAFR protein levels were assessed by using immunofluorescence and immunohistochemistry, and PAFR mRNA expression was assessed by using quantitative PCR. PAFR was blocked by CV-3988, and oxidative stress was attenuated by N-acetylcysteine. RESULTS MS-WF exhibited high oxidative potential. In A549 and BEAS-2B cells MS-WF increased pneumococcal adhesion and infection and PAFR protein expression. Both CV-3988 and N-acetylcysteine reduced MS-WF-stimulated pneumococcal adhesion and infection of airway cells. MS-WF increased mouse lung PAFR mRNA expression and increased BALF and lung pneumococcal CFU values. In MS-WF-exposed mice CV-3988 reduced BALF CFU values. CONCLUSIONS Hypersusceptibility of welders to pneumococcal pneumonia is in part mediated by the capacity of welding fumes to increase PAFR-dependent pneumococcal adhesion and infection of lower airway cells.
Collapse
Affiliation(s)
- Reetika Suri
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Jimstan Periselneris
- Centre for Inflammation and Tissue Repair, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| | - Sophie Lanone
- Inserm U955 Équipe 4, Faculté de Médecine, Créteil, France
| | - Patti C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | | | - Keith T Palmer
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
| | - Pascal Andujar
- Inserm U955 Équipe 4, Faculté de Médecine, Créteil, France
| | - James M Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | | | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - Ricardo J Jose
- Centre for Inflammation and Tissue Repair, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| | - Ian Mudway
- MRC-PHE Centre for Environment and Health, Analytical & Environmental Sciences Division, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Jeremy Brown
- Centre for Inflammation and Tissue Repair, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| | - Jonathan Grigg
- Blizard Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
32
|
Sarill M, Zago M, Sheridan JA, Nair P, Matthews J, Gomez A, Roussel L, Rousseau S, Hamid Q, Eidelman DH, Baglole CJ. The aryl hydrocarbon receptor suppresses cigarette-smoke-induced oxidative stress in association with dioxin response element (DRE)-independent regulation of sulfiredoxin 1. Free Radic Biol Med 2015; 89:342-57. [PMID: 26408075 DOI: 10.1016/j.freeradbiomed.2015.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 01/13/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ubiquitously expressed receptor/transcription factor that mediates toxicological responses of environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Emerging evidence indicates that the AhR suppresses apoptosis and proliferation independent of exogenous ligands, including suppression of apoptosis by cigarette smoke, a key risk factor for chronic obstructive pulmonary disease (COPD). As cigarette smoke is a potent inducer of oxidative stress, a feature that may contribute to the development of COPD, we hypothesized that the AhR prevents smoke-induced apoptosis by regulating oxidative stress. Utilizing primary lung fibroblasts derived from AhR(+/+) and AhR(-/-) mice as well as A549 human lung adenocarcinoma cells deficient in AhR expression (A549-AhR(ko)), we first show that AhR(-/-) fibroblasts and A549-AhR(ko) epithelial cells have a significant increase in cigarette smoke extract (CSE)-induced oxidative stress compared to wild type. CSE induced a significant increase in the mRNA expression of key antioxidant genes, including Nqo1 and Srxn1, predominantly in AhR(+/+) fibroblasts, with significantly less induction in AhR(-/-) cells. The induction of Srxn1, but not Nqo1, was independent of dioxin-response element (DRE) binding as AhR(DBD/DBD) lung fibroblasts, which express an AhR incapable of binding the DRE, increased Srxn1 to a degree similar to wild-type cells in response to CSE. There was no difference in Nrf2 expression or activation based on AhR expression. Lung fibroblasts derived from COPD subjects have significantly less AhR protein expression compared with both never-smokers (Normal) and smokers (At Risk). Consequently, COPD-derived fibroblasts were less robust in their induction of both Nqo1 and Srxn1 mRNA after exposure to CSE, which also failed to activate the AhR in the COPD fibroblasts. Taken together, these results support a new role for the AhR in regulating antioxidant defense in lung structural cells, such that low AhR expression may facilitate the development or progression of COPD.
Collapse
Affiliation(s)
- Miles Sarill
- Department of Medicine, Division of Experimental Medicine
| | - Michela Zago
- Research Institute of the McGill University Health Centre, McGill University, Centre for Translational Biology (CTB), Block E, 1001 Decarie Blvd., Montreal, QC H4A 3J1, Canada
| | | | | | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Alvin Gomez
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Lucie Roussel
- Research Institute of the McGill University Health Centre, McGill University, Centre for Translational Biology (CTB), Block E, 1001 Decarie Blvd., Montreal, QC H4A 3J1, Canada
| | - Simon Rousseau
- Research Institute of the McGill University Health Centre, McGill University, Centre for Translational Biology (CTB), Block E, 1001 Decarie Blvd., Montreal, QC H4A 3J1, Canada
| | - Qutayba Hamid
- Department of Medicine, Division of Experimental Medicine; Research Institute of the McGill University Health Centre, McGill University, Centre for Translational Biology (CTB), Block E, 1001 Decarie Blvd., Montreal, QC H4A 3J1, Canada
| | - David H Eidelman
- Department of Medicine, Division of Experimental Medicine; Research Institute of the McGill University Health Centre, McGill University, Centre for Translational Biology (CTB), Block E, 1001 Decarie Blvd., Montreal, QC H4A 3J1, Canada
| | - Carolyn J Baglole
- Department of Medicine, Division of Experimental Medicine; Research Institute of the McGill University Health Centre, McGill University, Centre for Translational Biology (CTB), Block E, 1001 Decarie Blvd., Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
33
|
Pardo M, Shafer MM, Rudich A, Schauer JJ, Rudich Y. Single Exposure to near Roadway Particulate Matter Leads to Confined Inflammatory and Defense Responses: Possible Role of Metals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8777-8785. [PMID: 26121492 DOI: 10.1021/acs.est.5b01449] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Inhalation of traffic-associated atmospheric particulate matter (PM2.5) is recognized as a significant health risk. In this study, we focused on a single ("subclinical response") exposure to water-soluble extracts from PM collected at a roadside site in a major European city to elucidate potential components that drive pulmonary inflammatory, oxidative, and defense mechanisms and their systemic impacts. Intratracheal instillation (IT) of the aqueous extracts induced a 24 h inflammatory response characterized by increased broncho-alveolar lavage fluid (BALF) cells and cytokines (IL-6 and TNF-α), increased reactive oxygen species production, but insignificant lipids and proteins oxidation adducts in mouse lungs. This local response was largely self-resolved by 48 h, suggesting that it could represent a subclinical response to everyday-level exposure. Removal of soluble metals by chelation markedly diminished the pulmonary PM-mediated response. An artificial metal solution (MS) recapitulated the PM extract response. The self-resolving nature of the response is associated with activating defense mechanisms (increased levels of catalase and glutathione peroxidase expression), observed with both PM extract and MS. In conclusion, metals present in PM collected near roadways are largely responsible for the observed transient local pulmonary inflammation and oxidative stress. Simultaneous activation of the antioxidant defense response may protect against oxidative damage.
Collapse
Affiliation(s)
- Michal Pardo
- †Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Martin M Shafer
- ‡Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Assaf Rudich
- §Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - James J Schauer
- ‡Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Yinon Rudich
- †Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
34
|
Association of Nrf2 with airway pathogenesis: lessons learned from genetic mouse models. Arch Toxicol 2015; 89:1931-57. [PMID: 26194645 DOI: 10.1007/s00204-015-1557-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/17/2015] [Indexed: 01/11/2023]
Abstract
Nrf2 is a key transcription factor for antioxidant response element (ARE)-bearing genes involved in diverse host defense functions including redox balance, cell cycle, immunity, mitochondrial biogenesis, energy metabolism, and carcinogenesis. Nrf2 in the airways is particularly essential as the respiratory system continuously interfaces with environmental stress. Since Nrf2 was determined to be a susceptibility gene for a model of acute lung injury, its protective capacity in the airways has been demonstrated in experimental models of human disorders using Nrf2 mutant mice which were susceptible to supplemental respiratory therapy (e.g., hyperoxia, mechanical ventilation), cigarette smoke, allergens, virus, environmental pollutants, and fibrotic agents compared to wild-type littermates. Recent studies also determined that Nrf2 is indispensable in developmental lung injury. While association studies with genetic NRF2 polymorphisms supported a protective role for murine Nrf2 in oxidative airway diseases, somatic NRF2 mutations enhanced NRF2-ARE responses, and were favorable for lung carcinogenesis and chemoresistance. Bioinformatic tools have elucidated direct Nrf2 targets as well as Nrf2-interacting networks. Moreover, potent Nrf2-ARE agonists protected oxidant-induced lung phenotypes in model systems, suggesting a therapeutic or preventive intervention. Further investigations on Nrf2 should yield greater understanding of its contribution to normal and pathophysiological function in the airways.
Collapse
|
35
|
Yang SI, Kim BJ, Lee SY, Kim HB, Lee CM, Yu J, Kang MJ, Yu HS, Lee E, Jung YH, Kim HY, Seo JH, Kwon JW, Song DJ, Jang G, Kim WK, Shim JY, Lee SY, Yang HJ, Suh DI, Hong SA, Choi KY, Shin YH, Ahn K, Kim KW, Kim EJ, Hong SJ. Prenatal Particulate Matter/Tobacco Smoke Increases Infants' Respiratory Infections: COCOA Study. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:573-82. [PMID: 26333704 PMCID: PMC4605930 DOI: 10.4168/aair.2015.7.6.573] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 12/27/2022]
Abstract
Purpose To investigate whether prenatal exposure to indoor fine particulate matter (PM2.5) and environmental tobacco smoke (ETS) affects susceptibility to respiratory tract infections (RTIs) in infancy, to compare their effects between prenatal and postnatal exposure, and to determine whether genetic factors modify these environmental effects. Methods The study population consisted of 307 birth cohort infants. A diagnosis of RTIs was based on parental report of a physician's diagnosis. Indoor PM2.5 and ETS levels were measured during pregnancy and infancy. TaqMan was used for genotyping of nuclear factor erythroid 2-related factor (Nrf2) (rs6726395), glutathione-S-transferase-pi (GSTP) 1 (rs1695), and glutathione-S-transferase-mu (GSTM) 1. Microarrays were used for genome-wide methylation analysis. Results Prenatal exposure to indoor PM2.5 increased the susceptibility of lower RTIs (LRTIs) in infancy (adjusted odds ratio [aOR]=2.11). In terms of combined exposure to both indoor PM2.5 and ETS, prenatal exposure to both pollutants increased susceptibility to LRTIs (aOR=6.56); however, this association was not found for postnatal exposure. The Nrf2 GG (aOR=23.69), GSTM1 null (aOR=8.18), and GSTP1 AG or GG (aOR=7.37) genotypes increased the combined LRTIs-promoting effects of prenatal exposure to the 2 indoor pollutants. Such effects of prenatal indoor PM2.5 and ETS exposure were not found for upper RTIs. Conclusions Prenatal exposure to both indoor PM2.5 and ETS may increase susceptibility to LRTIs. This effect can be modified by polymorphisms in reactive oxygen species-related genes.
Collapse
Affiliation(s)
- Song I Yang
- Department of Pediatrics, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Byoung Ju Kim
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - So Yeon Lee
- Department of Pediatrics, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Hyo Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Cheol Min Lee
- Institute of Environmental and Industrial Medicine, Hanyang University, Seoul, Korea
| | - Jinho Yu
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Mi Jin Kang
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho Sung Yu
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Ho Jung
- Department of Pediatrics, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Hyung Young Kim
- Department of Pediatrics, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Ju Hee Seo
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| | - Ji Won Kwon
- Department of Pediatrics, Seoul National University Bundang Hospital, Seungnam, Korea
| | - Dae Jin Song
- Department of Pediatrics, College of Medicine, Korea University, Seoul, Korea
| | - Gwangcheon Jang
- Department of Pediatrics, National Health Insurance Corporation Ilsan Hospital, Goyang, Korea
| | - Woo Kyung Kim
- Department of Pediatrics and the Allergy and Respiratory Research Laboratory, Inje University Seoul Paik Hospital, Seoul, Korea
| | - Jung Yeon Shim
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Young Lee
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| | - Hyeon Jong Yang
- Department of Pediatrics, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Seo Ah Hong
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kil Yong Choi
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Youn Ho Shin
- Department of Pediatrics, Gangnam CHA Medical Center, CHA University College of Medicine, Seoul, Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jin Kim
- Division of Allergy and Chronic Respiratory diseases, Center for of Biomedical Sciences, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Osong, Korea
| | - Soo Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | | |
Collapse
|
36
|
Santus P, Corsico A, Solidoro P, Braido F, Di Marco F, Scichilone N. Oxidative stress and respiratory system: pharmacological and clinical reappraisal of N-acetylcysteine. COPD 2014; 11:705-17. [PMID: 24787454 PMCID: PMC4245155 DOI: 10.3109/15412555.2014.898040] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The large surface area for gas exchange makes the respiratory system particularly susceptible to oxidative stress-mediated injury. Both endogenous and exogenous pro-oxidants (e.g. cigarette smoke) trigger activation of leukocytes and host defenses. These mechanisms interact in a "multilevel cycle" responsible for the control of the oxidant/antioxidant homeostasis. Several studies have demonstrated the presence of increased oxidative stress and decreased antioxidants (e.g. reduced glutathione [GSH]) in subjects with chronic obstructive pulmonary disease (COPD), but the contribution of oxidative stress to the pathophysiology of COPD is generally only minimally discussed. The aim of this review was to provide a comprehensive overview of the role of oxidative stress in the pathogenesis of respiratory diseases, particularly COPD, and to examine the available clinical and experimental evidence on the use of the antioxidant N-acetylcysteine (NAC), a precursor of GSH, as an adjunct to standard therapy for the treatment of COPD. The proposed concept of "multilevel cycle" helps understand the relationship between respiratory diseases and oxidative stress, thus clarifying the rationale for using NAC in COPD. Until recently, antioxidant drugs such as NAC have been regarded only as mucolytic agents. Nevertheless, several clinical trials indicate that NAC may reduce the rate of COPD exacerbations and improve small airways function. The most plausible explanation for the beneficial effects observed in patients with COPD treated with NAC lies in the mucolytic and antioxidant effects of this drug. Modulation of bronchial inflammation by NAC may further account for these favorable clinical results.
Collapse
Affiliation(s)
- Pierachille Santus
- Università degli Studi di Milano, Dipartimento di Scienze della Salute. Pneumologia Riabilitativa Fondazione Salvatore Maugeri-Istituto Scientifico di Milano-IRCCS, Milano, Italy
| | - Angelo Corsico
- Respiratory Disease Unit, Fondazione IRCCS Policlinico San Matteo, University of Pavia, DMM, Pavia, Italy
| | - Paolo Solidoro
- SCDO Pneumologia, Dipartimento Cardiovascolare e Toracico, Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy
| | - Fulvio Braido
- Clinica Malattie Respiratorie e Allergologia Dipartimento di Medicina Interna (DiMI) Azienda Ospedaliera Universitaria IRCCS San Martino di Genova, Genova, Italy
| | - Fabiano Di Marco
- Università degli Studi di Milano, Dipartimento di Scienze della Salute, Pneumologia, Ospedale San Paolo, Milano, Italy
| | - Nicola Scichilone
- Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S.), Sezione di Pneumologia, University of Palermo, Palermo, Italy
| |
Collapse
|
37
|
Propofol activation of the Nrf2 pathway is associated with amelioration of acute lung injury in a rat liver transplantation model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:258567. [PMID: 24669282 PMCID: PMC3941594 DOI: 10.1155/2014/258567] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 12/23/2013] [Accepted: 12/30/2013] [Indexed: 12/11/2022]
Abstract
Objective. This study aimed to investigate whether propofol pretreatment can protect against liver transplantation-induced acute lung injury (ALI) and to explore whether Nrf2 pathway is involved in the protections provided by propofol pretreatment. Method. Adult male Sprague-Dawley rats were divided into five groups based on the random number table. Lung pathology was observed by optical microscopy. Lung water content was assessed by wet/dry ratio, and PaO2 was detected by blood gas analysis. The contents of H2O2, MDA, and SOD activity were determined by ELISA method, and the expression of HO-1, NQO1, Keap1, and nuclear Nrf2 was assayed by western blotting. Results. Compared with saline-treated model group, both propofol and N-acetylcysteine pretreatment can reduce the acute lung injury caused by orthotopic autologous liver transplantation (OALT), decrease the lung injury scores, lung water content, and H2O2 and MDA levels, and improve the arterial PaO2 and SOD activity. Furthermore, propofol (but not N-acetylcysteine) pretreatment especially in high dose inhibited the expression of Keap1 and induced translocation of Nrf2 into the nucleus to further upregulate the expression of HO-1 and NQO1 downstream. Conclusion. Pretreatment with propofol is associated with attenuation of OALT-induced ALI, and the Nrf2 pathway is involved in the antioxidative processes.
Collapse
|
38
|
N-Acetylcysteine Protects Murine Alveolar Type II Cells from Cigarette Smoke Injury in a Nuclear Erythroid 2–Related Factor–2–Independent Manner. Am J Respir Cell Mol Biol 2013. [DOI: 10.1165/rcmb.2013.491165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|