1
|
Soeroso NN, Ichwan M, Wahyuni AS, Mariedina CT, Pakpahan YA. Bleomycin-Induced Fibrosis and the Effectiveness of Centella Asiatica as a Treatment. J Exp Pharmacol 2024; 16:311-320. [PMID: 39345799 PMCID: PMC11438459 DOI: 10.2147/jep.s463899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Plant treatment has been used for thousands of years and has been proven to treat acute and chronic diseases. The function of the traditional plant Centella asiatica is as an antimicrobial agent, anticancer, antioxidant, and therapeutic gene in healing wounds and inflammation. Lung fibrosis caused by bleomycin can develop into chronic lung disease, which ends in tissue death if not treated immediately. The purpose of this study is to predict and explain the impact of Centella asiatica extract on model rats exposed to bleomycin in their lungs as a treatment or anti-fibrinolysis. Methods This research is an analytical study with a randomized in-vivo experimental design divided into 3 groups of 5 male Wistar rats aged 10 weeks. Negative control group (K) with intratracheal induction of bleomycin alone. The positive group was given intratracheal bleomycin 4 mg/kg/BB on days 0 and 21 and added Centella asiatica induction at 400 mg (P1) on days 15 to 49. The other positive group was given intratracheal bleomycin 4 mg/kg/BB on days 0 and 21 and added Centella asiatica induction at 800 mg (P2) on days 15 to 49. Data were collected according to findings of lung histology analysis of rat samples. Results In the interalveolar septum group, there was a difference in Masson's Trichrome staining results in groups K and P1 with p<0.05 (p=0.036). However, there was no difference in histopathological staining results in groups K and P2 (p>0.05). Conclusion The induction of bleomycin 4 mg/kg/BB was proven to cause fibrosis in the lungs of rats, and Centella asiatica extract was used as a treatment. Therefore, further research regarding antifibrotic drugs is hoped to reduce fibrotic areas significantly.
Collapse
Affiliation(s)
- Noni Novisari Soeroso
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Sumatera Utara, Prof. dr. Chairuddin P. Lubis Universitas Sumatera Utara Hospital, Medan, Indonesia
| | - Muhammad Ichwan
- Department of Pharmacology & Therapeutic, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Arlinda Sari Wahyuni
- Department of Community Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Causa Trisna Mariedina
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Yabestin Alfrianus Pakpahan
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Sumatera Utara, Prof. dr. Chairuddin P. Lubis Universitas Sumatera Utara Hospital, Medan, Indonesia
| |
Collapse
|
2
|
Yang F, Wendusubilige, Kong J, Zong Y, Wang M, Jing C, Ma Z, Li W, Cao R, Jing S, Gao J, Li W, Wang J. Identifying oxidative stress-related biomarkers in idiopathic pulmonary fibrosis in the context of predictive, preventive, and personalized medicine using integrative omics approaches and machine-learning strategies. EPMA J 2023; 14:417-442. [PMID: 37605652 PMCID: PMC10439879 DOI: 10.1007/s13167-023-00334-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/09/2023] [Indexed: 08/23/2023]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a rare interstitial lung disease with a poor prognosis that currently lacks effective treatment methods. Preventing the acute exacerbation of IPF, identifying the molecular subtypes of patients, providing personalized treatment, and developing individualized drugs are guidelines for predictive, preventive, and personalized medicine (PPPM / 3PM) to promote the development of IPF. Oxidative stress (OS) is an important pathological process of IPF. However, the relationship between the expression levels of oxidative stress-related genes (OSRGs) and clinical indices in patients with IPF is unclear; therefore, it is still a challenge to identify potential beneficiaries of antioxidant therapy. Because PPPM aims to recognize and manage diseases by integrating multiple methods, patient stratification and analysis based on OSRGs and identifying biomarkers can help achieve the above goals. Methods Transcriptome data from 250 IPF patients were divided into training and validation sets. Core OSRGs were identified in the training set and subsequently clustered to identify oxidative stress-related subtypes. The oxidative stress scores, clinical characteristics, and expression levels of senescence-associated secretory phenotypes (SASPs) of different subtypes were compared to identify patients who were sensitive to antioxidant therapy to conduct differential gene functional enrichment analysis and predict potential therapeutic drugs. Diagnostic markers between subtypes were obtained by integrating multiple machine learning methods, their expression levels were tested in rat models with different degrees of pulmonary fibrosis and validation sets, and nomogram models were constructed. CIBERSORT, single-cell RNA sequencing, and immunofluorescence staining were used to explore the effects of OSRGs on the immune microenvironment. Results Core OSRGs classified IPF into two subtypes. Patients classified into subtypes with low oxidative stress levels had better clinical scores, less severe fibrosis, and lower expression of SASP-related molecules. A reliable nomogram model based on five diagnostic markers was constructed, and these markers' expression stability was verified in animal experiments. The number of neutrophils in the immune microenvironment was significantly different between the two subtypes and was closely related to the degree of fibrosis. Conclusion Within the framework of PPPM, this work comprehensively explored the role of OSRGs and their mediated cellular senescence and immune processes in the progress of IPF and assessed their capabilities aspredictors of high oxidative stress and disease progression,targets of the vicious loop between regulated pulmonary fibrosis and OS for targeted secondary and tertiary prevention, andreferences for personalized antioxidant and antifibrotic therapies. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00334-4.
Collapse
Affiliation(s)
- Fan Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wendusubilige
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Kong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Manting Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanqing Jing
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaotian Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wanyang Li
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), Beijing, China
| | - Renshuang Cao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuwen Jing
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenxin Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Thatcher TH, Freeberg MAT, Myo YPA, Sime PJ. Is there a role for specialized pro-resolving mediators in pulmonary fibrosis? Pharmacol Ther 2023; 247:108460. [PMID: 37244406 PMCID: PMC10335230 DOI: 10.1016/j.pharmthera.2023.108460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Pulmonary fibrotic diseases are characterized by proliferation of lung fibroblasts and myofibroblasts and excessive deposition of extracellular matrix proteins. Depending on the specific form of lung fibrosis, there can be progressive scarring of the lung, leading in some cases to respiratory failure and/or death. Recent and ongoing research has demonstrated that resolution of inflammation is an active process regulated by families of small bioactive lipid mediators termed "specialized pro-resolving mediators." While there are many reports of beneficial effects of SPMs in animal and cell culture models of acute and chronic inflammatory and immune diseases, there have been fewer reports investigating SPMs and fibrosis, especially pulmonary fibrosis. Here, we will review evidence that resolution pathways are impaired in interstitial lung disease, and that SPMs and other similar bioactive lipid mediators can inhibit fibroblast proliferation, myofibroblast differentiation, and accumulation of excess extracellular matrix in cell culture and animal models of pulmonary fibrosis, and we will consider future therapeutic implications of SPMs in fibrosis.
Collapse
Affiliation(s)
- Thomas H Thatcher
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Margaret A T Freeberg
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yu Par Aung Myo
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Patricia J Sime
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
4
|
Abstract
Inflammation and its timely resolution are critical to ensure effective host defense and appropriate tissue repair after injury and or infection. Chronic, unresolved inflammation typifies many prevalent pathologies. The key mediators that initiate and drive the inflammatory response are well defined and targeted by conventional anti-inflammatory therapeutics. More recently, there is a growing appreciation that specific mediators, including arachidonate-derived lipoxins, are generated in self-limiting inflammatory responses to promote the resolution of inflammation and endogenous repair mechanisms without compromising host defense. We discuss the proresolving biological actions of lipoxins and recent efforts to harness their therapeutic potential through the development of novel, potent lipoxin mimetics generated via efficient, modular stereoselective synthetic pathways. We consider the evidence that lipoxin mimetics may have applications in limiting inflammation and reversing fibrosis and the underlying mechanisms.
Collapse
Affiliation(s)
- Catherine Godson
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland;
- The Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland;
- The Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Guilherme RF, Silva JBN, Waclawiack I, Fraga-Junior VS, Nogueira TO, Pecli C, Araújo-Silva CA, Magalhães NS, Lemos FS, Bulant CA, Blanco PJ, Serra R, Svensjö E, Scharfstein J, Moraes JA, Canetti C, Benjamim CF. Pleiotropic antifibrotic actions of aspirin-triggered resolvin D1 in the lungs. Front Immunol 2023; 14:886601. [PMID: 36960058 PMCID: PMC10030054 DOI: 10.3389/fimmu.2023.886601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 02/02/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Pulmonary fibrosis is a destructive, progressive disease that dramatically reduces life quality of patients, ultimately leading to death. Therapeutic regimens for pulmonary fibrosis have shown limited benefits, hence justifying the efforts to evaluate the outcome of alternative treatments. Methods Using a mouse model of bleomycin (BLM)-induced lung fibrosis, in the current work we asked whether treatment with pro-resolution molecules, such as pro-resolving lipid mediators (SPMs) could ameliorate pulmonary fibrosis. To this end, we injected aspirin-triggered resolvin D1 (7S,8R,17R-trihydroxy-4Z,9E,11E,13Z,15E19Z-docosahexaenoic acid; ATRvD1; i.v.) 7 and 10 days after BLM (intratracheal) challenge and samples were two weeks later. Results and discussion Assessment of outcome in the lung tissues revealed that ATRvD1 partially restored lung architecture, reduced leukocyte infiltration, and inhibited formation of interstitial edema. In addition, lung tissues from BLM-induced mice treated with ATRvD1 displayed reduced levels of TNF-α, MCP-1, IL-1-β, and TGF-β. Of further interest, ATRvD1 decreased lung tissue expression of MMP-9, without affecting TIMP-1. Highlighting the beneficial effects of ATRvD1, we found reduced deposition of collagen and fibronectin in the lung tissues. Congruent with the anti-fibrotic effects that ATRvD1 exerted in lung tissues, α-SMA expression was decreased, suggesting that myofibroblast differentiation was inhibited by ATRvD1. Turning to culture systems, we next showed that ATRvD1 impaired TGF-β-induced fibroblast differentiation into myofibroblast. After showing that ATRvD1 hampered extracellular vesicles (EVs) release in the supernatants from TGF-β-stimulated cultures of mouse macrophages, we verified that ATRvD1 also inhibited the release of EVs in the bronco-alveolar lavage (BAL) fluid of BLM-induced mice. Motivated by studies showing that BLM-induced lung fibrosis is linked to angiogenesis, we asked whether ATRvD1 could blunt BLM-induced angiogenesis in the hamster cheek pouch model (HCP). Indeed, our intravital microscopy studies confirmed that ATRvD1 abrogates BLM-induced angiogenesis. Collectively, our findings suggest that treatment of pulmonary fibrosis patients with ATRvD1 deserves to be explored as a therapeutic option in the clinical setting.
Collapse
Affiliation(s)
- Rafael F. Guilherme
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Bruno N.F. Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia, Imunobiologia e Estudos em Saúde, Universidade Federal do Tocantins, Palmas, TO, Brazil
| | - Ingrid Waclawiack
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanderlei S. Fraga-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaís O. Nogueira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cyntia Pecli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlla A. Araújo-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalia S. Magalhães
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Felipe S. Lemos
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Carlos A. Bulant
- Pladema Institute, National Scientific and Technical Research Council (CONICET), Tandil, Buenos Aires, Argentina
| | - Pablo J. Blanco
- Departamento de Métodos Matemático e Computacional, Laboratório Nacional para Computação Científica, Rio de Janeiro, Brazil
| | - Rafaela Serra
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erik Svensjö
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Júlio Scharfstein
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João A. Moraes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio Canetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia F. Benjamim
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Claudia F. Benjamim,
| |
Collapse
|
6
|
Liu A, Sharma L, Yan X, Dela Cruz CS, Herzog EL, Ryu C. Emerging insights in sarcoidosis: moving forward through reverse translational research. Am J Physiol Lung Cell Mol Physiol 2022; 322:L518-L525. [PMID: 35196896 PMCID: PMC8957321 DOI: 10.1152/ajplung.00266.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/13/2021] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Sarcoidosis is a chronic granulomatous disease of unknown etiology that primarily affects the lungs. The development of stage IV or fibrotic lung disease accounts for a significant proportion of the morbidity and mortality attributable to sarcoidosis. Further investigation into the active mechanisms of disease pathogenesis and fibrogenesis might illuminate fundamental mediators of injury and repair while providing new opportunities for clinical intervention. However, progress in sarcoidosis research has been hampered by the heterogeneity of clinical phenotypes and the lack of a consensus modeling system. Recently, reverse translational research, wherein observations made at the patient level catalyze hypothesis-driven research at the laboratory bench, has generated new discoveries regarding the immunopathogenic mechanisms of pulmonary granuloma formation, fibrogenesis, and disease model development. The purpose of this review is to highlight the promise and possibility of these novel investigative efforts.
Collapse
Affiliation(s)
- Angela Liu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Xiting Yan
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Erica L Herzog
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Changwan Ryu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
7
|
Czajka P, Przybyłkowski A, Nowak A, Postula M, Wolska M, Mirowska-Guzel D, Czlonkowska A, Eyileten C. Antiplatelet drugs and liver fibrosis. Platelets 2022; 33:219-228. [PMID: 33577391 DOI: 10.1080/09537104.2021.1883574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver fibrosis results from an imbalance between extracellular matrix formation and degradation. The background of liver fibrosis is chronic inflammation and subsequent microcirculation disturbance including microthrombosis. Platelets actively participate in liver fibrosis not only as a part of the clotting system but also by releasing granules containing important mediators. In fact, platelets may play a dual role in the pathophysiology of liver fibrosis as they are able to stimulate regeneration as well as aggravate the destruction of the liver. Recent studies revealed that antiplatelet therapy correlates with inhibition of liver fibrosis. However, liver impairment is associated with extensive coagulation disorders thus the safety of antiplatelet therapy is an area for detailed exploration. In this review, the role of platelets in liver fibrosis and accompanying hemostatic disorders are discussed. Additionally, results of animal and human studies on antiplatelet drugs in liver disorders and their potential therapeutic utility are presented.
Collapse
Affiliation(s)
- Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Anna Nowak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Marta Wolska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Anna Czlonkowska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| |
Collapse
|
8
|
Geng J, Liu Y, Dai H, Wang C. Fatty Acid Metabolism and Idiopathic Pulmonary Fibrosis. Front Physiol 2022; 12:794629. [PMID: 35095559 PMCID: PMC8795701 DOI: 10.3389/fphys.2021.794629] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty acid metabolism, including the de novo synthesis, uptake, oxidation, and derivation of fatty acids, plays several important roles at cellular and organ levels. Recent studies have identified characteristic changes in fatty acid metabolism in idiopathic pulmonary fibrosis (IPF) lungs, which implicates its dysregulation in the pathogenesis of this disorder. Here, we review the evidence for how fatty acid metabolism contributes to the development of pulmonary fibrosis, focusing on the profibrotic processes associated with specific types of lung cells, including epithelial cells, macrophages, and fibroblasts. We also summarize the potential therapeutics that target this metabolic pathway in treating IPF.
Collapse
Affiliation(s)
- Jing Geng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Liu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Huaping Dai,
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chen Wang,
| |
Collapse
|
9
|
Liu Y, Wei L, He C, Chen R, Meng L. Lipoxin A4 inhibits ovalbumin-induced airway inflammation and airway remodeling in a mouse model of asthma. Chem Biol Interact 2021; 349:109660. [PMID: 34537180 DOI: 10.1016/j.cbi.2021.109660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022]
Abstract
Asthma is a chronic respiratory disease, which is characterized by airway inflammation, remodeling and airway hyperresponsiveness. Airway remodeling is caused by long-term inflammation of the airways. Lipoxin A4 (LXA4) is a natural eicosanoid with powerful anti-inflammatory properties, and has been shown to serve a critical role in orchestrating pulmonary inflammation and airway hyper-responsiveness in asthmatic mice. However, its effect on airway remodeling is unknown. Female BALB/c mice were used to establish a mouse model of asthma which were sensitized and challenged by ovalbumin (OVA). LXA4 was intranasally administrated prior to the challenge. The results of our study indicated that LXA4 suppressed the OVA-induced inflammatory cell infiltration and T helper type 2 (Th2) cytokines secretion in the mouse model of asthma. Characteristics of airway remodeling, such as thickening of the bronchial wall and smooth muscle, overdeposition of collagen, and overexpression of α-smooth muscle actin (α-SMA) and collagen-I were reversed by LXA4. Furthermore, LXA4 suppressed the aberrant activation of the signal transducer and activator of transcription 3 (STAT3) pathway in the lung tissues of asthmatic mice. In conclusion, these findings demonstrated that LXA4 alleviated allergic airway inflammation and remodeling in asthmatic mice, which may be related to the inhibition of STAT3 pathway.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Li Wei
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Chao He
- Department of Gastrointestinal Surgery, Taian City Central Hospital, Taian, Shandong, China
| | - Ran Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Ling Meng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China.
| |
Collapse
|
10
|
Jaén RI, Sánchez-García S, Fernández-Velasco M, Boscá L, Prieto P. Resolution-Based Therapies: The Potential of Lipoxins to Treat Human Diseases. Front Immunol 2021; 12:658840. [PMID: 33968061 PMCID: PMC8102821 DOI: 10.3389/fimmu.2021.658840] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/07/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammation is an a physiological response instead an essential response of the organism to injury and its adequate resolution is essential to restore homeostasis. However, defective resolution can be the precursor of severe forms of chronic inflammation and fibrosis. Nowadays, it is known that an excessive inflammatory response underlies the most prevalent human pathologies worldwide. Therefore, great biomedical research efforts have been driven toward discovering new strategies to promote the resolution of inflammation with fewer side-effects and more specificity than the available anti-inflammatory treatments. In this line, the use of endogenous specialized pro-resolving mediators (SPMs) has gained a prominent interest. Among the different SPMs described, lipoxins stand out as one of the most studied and their deficiency has been widely associated with a wide range of pathologies. In this review, we examined the current knowledge on the therapeutic potential of lipoxins to treat diseases characterized by a severe inflammatory background affecting main physiological systems, paying special attention to the signaling pathways involved. Altogether, we provide an updated overview of the evidence suggesting that increasing endogenously generated lipoxins may emerge as a new therapeutic approach to prevent and treat many of the most prevalent diseases underpinned by an increased inflammatory response.
Collapse
Affiliation(s)
- Rafael I. Jaén
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | | | - María Fernández-Velasco
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de investigación del Hospital la Paz, IdiPaz, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Prieto
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Yang CY, Chang PY, Chen JY, Wu BS, Yang AH, Lee OKS. Adipose-derived mesenchymal stem cells attenuate dialysis-induced peritoneal fibrosis by modulating macrophage polarization via interleukin-6. Stem Cell Res Ther 2021; 12:193. [PMID: 33741073 PMCID: PMC7977319 DOI: 10.1186/s13287-021-02270-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background Life-long peritoneal dialysis (PD) as a renal replacement therapy is limited by peritoneal fibrosis. Previous studies showed immunomodulatory and antifibrotic effects of adipose-derived mesenchymal stem cells (ADSCs) on peritoneal fibrosis. However, the role of the peritoneal macrophage in this process remains uninvestigated. Methods We examined the therapeutic effects of ADSC and bone marrow-derived mesenchymal stem cells (BM-MSC) in the rat model of dialysis-induced peritoneal fibrosis using methylglyoxal. In addition, treatment of macrophages with the conditioned medium of ADSC and BM-MSC was performed individually to identify the beneficial component of the stem cell secretome. Results In the in vivo experiments, we found dialysis-induced rat peritoneal fibrosis was attenuated by both ADSC and BM-MSC. Interestingly, ADSC possessed a more prominent therapeutic effect than BM-MSC in ameliorating peritoneal membrane thickening while also upregulating epithelial cell markers in rat peritoneal tissues. The therapeutic effects of ADSC were positively associated with M2 macrophage polarization. In the in vitro experiments, we confirmed that interleukin-6 (IL-6) secreted by MSCs upon transforming growth factor-β1 stimulation promotes M2 macrophage polarization. Conclusions In dialysis-induced peritoneal fibrosis, MSCs are situated in an inflammatory environment of TGF-β1 and secrete IL-6 to polarize macrophages into the M2 phenotype. Our findings reveal a previously unidentified role of tissue macrophage in this antifibrotic process. ADSC has the advantage of abundance and accessibility, making the application values extremely promising. Graphical abstract In dialysis-induced peritoneal fibrosis, peritoneal mesothelial cells secrete transforming growth factor-β1 (TGF-β1) when exposed to methylglyoxal (MGO)-containing peritoneal dialysate. When situated in TGF-β1, the inflammatory environment induces mesenchymal stem cells to secrete interleukin-6 (IL-6), IL-6 polarizes macrophages into the M2 phenotype. The dominant peritoneal tissue M2 macrophages, marked by upregulated Arg-1 expression, account for the attenuation of MGO-induced dedifferentiation of peritoneal mesothelial cells to maintain epithelial integrity.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02270-4.
Collapse
Affiliation(s)
- Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan. .,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu, 30010, Taiwan.
| | - Pu-Yuan Chang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan
| | - Jun-Yi Chen
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan
| | - Bo-Sheng Wu
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - An-Hang Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Department of Pathology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Department of Orthopedics, China Medical University Hospital, Taichung, 40447, Taiwan
| |
Collapse
|
12
|
Flitter BA, Fang X, Matthay MA, Gronert K. The potential of lipid mediator networks as ocular surface therapeutics and biomarkers. Ocul Surf 2021; 19:104-114. [PMID: 32360792 PMCID: PMC7606340 DOI: 10.1016/j.jtos.2020.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 01/03/2023]
Abstract
In the last twenty years an impressive body of evidence in diverse inflammatory animal disease models and human tissues, has established polyunsaturated fatty acids (PUFA) derived specialized-pro-resolving mediators (SPM), as essential mediators for controlling acute inflammation, immune responses, wound healing and for resolving acute inflammation in many non-ocular tissues. SPM pathways and receptors are highly expressed in the ocular surface where they regulate wound healing, nerve regeneration, innate immunity and sex-specific regulation of auto-immune responses. Recent evidence indicates that in the eye these resident SPM networks are important for maintaining ocular surface health and immune homeostasis. Here, we will review and discuss evidence for SPMs and other PUFA-derived mediators as important endogenous regulators, biomarkers for ocular surface health and disease and their therapeutic potential.
Collapse
Affiliation(s)
- Becca A Flitter
- School of Optometry, University of California Berkeley, Berkeley, CA, 94720, USA; Vision Science Program, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Xiaohui Fang
- Department of Medicine and Anesthesia, University of California, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Michael A Matthay
- Department of Medicine and Anesthesia, University of California, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Karsten Gronert
- School of Optometry, University of California Berkeley, Berkeley, CA, 94720, USA; Vision Science Program, University of California Berkeley, Berkeley, CA, 94720, USA; Infectious Diseases and Immunity Program, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
13
|
Insuela DBR, Ferrero MR, Coutinho DDS, Martins MA, Carvalho VF. Could Arachidonic Acid-Derived Pro-Resolving Mediators Be a New Therapeutic Strategy for Asthma Therapy? Front Immunol 2020; 11:580598. [PMID: 33362766 PMCID: PMC7755608 DOI: 10.3389/fimmu.2020.580598] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Asthma represents one of the leading chronic diseases worldwide and causes a high global burden of death and disability. In asthmatic patients, the exacerbation and chronification of the inflammatory response are often related to a failure in the resolution phase of inflammation. We reviewed the role of the main arachidonic acid (AA) specialized pro-resolving mediators (SPMs) in the resolution of chronic lung inflammation of asthmatics. AA is metabolized by two classes of enzymes, cyclooxygenases (COX), which produce prostaglandins (PGs) and thromboxanes, and lypoxygenases (LOX), which form leukotrienes and lipoxins (LXs). In asthma, two primary pro-resolving derived mediators from COXs are PGE2 and the cyclopentenone prostaglandin15-Deoxy-Delta-12,14-PGJ2 (15d-PGJ2) while from LOXs are the LXA4 and LXB4. In different models of asthma, PGE2, 15d-PGJ2, and LXs reduced lung inflammation and remodeling. Furthermore, these SPMs inhibited chemotaxis and function of several inflammatory cells involved in asthma pathogenesis, such as eosinophils, and presented an antiremodeling effect in airway epithelial, smooth muscle cells and fibroblasts in vitro. In addition, PGE2, 15d-PGJ2, and LXs are all able to induce macrophage reprogramming to an alternative M2 pro-resolving phenotype in vitro and in vivo. Although PGE2 and LXA4 showed some beneficial effects in asthmatic patients, there are limitations to their clinical use, since PGE2 caused side effects, while LXA4 presented low stability. Therefore, despite the strong evidence that these AA-derived SPMs induce resolution of both inflammatory response and tissue remodeling in asthma, safer and more stable analogs must be developed for further clinical investigation of their application in asthma treatment.
Collapse
Affiliation(s)
| | - Maximiliano Ruben Ferrero
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Diego de Sá Coutinho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Vinicius Frias Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Laboratory of Inflammation, National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Kaenmuang P, Navasakulpong A. Short-Term Lung Function Changes and Predictors of Progressive Systemic Sclerosis-Related Interstitial Lung Disease. Tuberc Respir Dis (Seoul) 2020; 83:312-320. [PMID: 32668825 PMCID: PMC7515676 DOI: 10.4046/trd.2020.0043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) involves multiple organ systems and has the highest mortality among connective tissue diseases. Interstitial lung disease is the most common cause of death among SSc patients and requires closer studies and follow-ups. This study aimed to identify lung function changes and predictors of progressive disease in systemic sclerosis-related interstitial lung disease (SSc-ILD). METHODS A retrospective study extracted SSc patients from an electronic database January 2002-July 2019. Eligible cases were SSc patients >age 15 diagnosed with SSc-ILD. Factors associated with progressive disease were analyzed by univariate and multivariate logistic regression analyses. RESULTS Seventy-eight SSc-ILD cases were enrolled. Sixty-five patients (83.3%) were female, with mean age of 44.7±14.4, and 50 (64.1%) were diffuse type SSc-ILD. Most SSc-ILD patients had crackles (75.6%) and dyspnea on exertion (71.8%), and 19.2% of the SSc-ILD patients had no abnormal respiratory symptoms but had abnormal chest radiographic findings. The most common diagnosis of SSc-ILD patients was non-specific interstitial pneumonia (43.6%). The lung function values of diffusing capacity of the lung for carbon monoxide (DLCO) and DLCO per unit alveolar volume declined in progressive SSc-ILD during a 12-month follow-up. Male and no previous aspirin treatment were the two significant predictive factors of progressive SSc-ILD with adjusted odds ratios of 5.72 and 4.99, respectively. CONCLUSION This present study showed that short-term lung function had declined during the 12-month follow-up in progressive SSc-ILD. The predictive factors in progressive SSc-ILD were male sex and no previous aspirin treatment. Close follow-up of the pulmonary function tests is necessary for early detection of progressive disease.
Collapse
Affiliation(s)
- Punchalee Kaenmuang
- Respiratory and Respiratory Critical Care Medicine Unit, Division of Internal Medicine, Songklanagarind Hospital, Prince of Songkla University, Hat Yai, Thailand
| | - Asma Navasakulpong
- Respiratory and Respiratory Critical Care Medicine Unit, Division of Internal Medicine, Songklanagarind Hospital, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
15
|
Szczuko M, Palma J, Kikut J, Komorniak N, Ziętek M. Changes of lipoxin levels during pregnancy and the monthly-cycle, condition the normal course of pregnancy or pathology. Inflamm Res 2020; 69:869-881. [PMID: 32488315 PMCID: PMC7395003 DOI: 10.1007/s00011-020-01358-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE AND DESIGN The purpose of the review was to gather information on the role and possibilities of using lipoxin in the treatment of infertility and maintaining a normal pregnancy. Ovulation, menstruation, embryo implantation, and childbirth are reactions representing short-term inflammatory events involving lipoxin activities. Lipoxin A4 (LXA4) is an arachidonic acid metabolite, and in cooperation with its positional isomer lipoxin B4 (LXB4), it is a major lipoxin in mammals. Biosynthesis process occurs in two stages: in the first step, the donor cell releases the eicosanoid intermediate; secondarily, the acceptor cell gets and converts the intermediate product into LXA4 (leukocyte/platelet interaction). RESULTS Generating lipoxin synthesis may also be triggered by salicylic acid, which acetylates cyclooxygenase-2. Lipoxin A4 and its analogues are considered as specialized pro-resolving mediators. LXA4 is an important component for a proper menstrual cycle, embryo implantation, pregnancy, and delivery. Its level in the luteal phase is high, while in the follicular phase, it decreases, which coincides with an increase in estradiol concentration with which it competes for the receptor. LXA4 inhibits the progression of endometriosis. However, during the peri-implantation period, before pregnancy is confirmed clinically, high levels of LXA4 can contribute to early pregnancy loss and may cause miscarriage. After implantation, insufficient LXA4 levels contribute to incorrect maternal vessel remodeling; decreased, shallow trophoblastic invasion; and the immuno-energetic abnormality of the placenta, which negatively affects fetal growth and the maintenance of pregnancy. Moreover, the level of LXA4 increases in the final stages of pregnancy, allowing vessel remodeling and placental separation. METHODS The review evaluates the literature published in the PubMed and Embase database up to 31 December 2019. The passwords were checked on terms: lipoxin and pregnancy with combined endometriosis, menstrual cycle, implantation, pre-eclampsia, fetal growth restriction, and preterm labor. CONCLUSIONS Although no human studies have been performed so far, the cell and animal model study results suggest that LXA4 will be used in obstetrics and gynecology soon.
Collapse
Affiliation(s)
- Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland.
| | - Joanna Palma
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland
| | - Justyna Kikut
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland
| | - Natalia Komorniak
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland
| | - Maciej Ziętek
- Department of Perinatology, Obstetrics and Gynecology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
16
|
Bärnthaler T, Theiler A, Zabini D, Trautmann S, Stacher-Priehse E, Lanz I, Klepetko W, Sinn K, Flick H, Scheidl S, Thomas D, Olschewski H, Kwapiszewska G, Schuligoi R, Heinemann A. Inhibiting eicosanoid degradation exerts antifibrotic effects in a pulmonary fibrosis mouse model and human tissue. J Allergy Clin Immunol 2019; 145:818-833.e11. [PMID: 31812575 DOI: 10.1016/j.jaci.2019.11.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/26/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a disease with high 5-year mortality and few therapeutic options. Prostaglandin (PG) E2 exhibits antifibrotic properties and is reduced in bronchoalveolar lavage from patients with IPF. 15-Prostaglandin dehydrogenase (15-PGDH) is the key enzyme in PGE2 metabolism under the control of TGF-β and microRNA 218. OBJECTIVE We sought to investigate the expression of 15-PGDH in IPF and the therapeutic potential of a specific inhibitor of this enzyme in a mouse model and human tissue. METHODS In vitro studies, including fibrocyte differentiation, regulation of 15-PGDH, RT-PCR, and Western blot, were performed using peripheral blood from healthy donors and patients with IPF and A549 cells. Immunohistochemistry, immunofluorescence, 15-PGDH activity assays, and in situ hybridization as well as ex vivo IPF tissue culture experiments were done using healthy donor and IPF lungs. Therapeutic effects of 15-PGDH inhibition were studied in the bleomycin mouse model of pulmonary fibrosis. RESULTS We demonstrate that 15-PGDH shows areas of increased expression in patients with IPF. Inhibition of this enzyme increases PGE2 levels and reduces collagen production in IPF precision cut lung slices and in the bleomycin model. Inhibitor-treated mice show amelioration of lung function, decreased alveolar epithelial cell apoptosis, and fibroblast proliferation. Pulmonary fibrocyte accumulation is also decreased by inhibitor treatment in mice, similar to PGE2 that inhibits fibrocyte differentiation from blood of healthy donors and patients with IPF. Finally, microRNA 218-5p, which is downregulated in patients with IPF, suppressed 15-PGDH expression in vivo and in vitro. CONCLUSIONS These findings highlight the role of 15-PGDH in IPF and suggest 15-PGDH inhibition as a promising therapeutic approach.
Collapse
Affiliation(s)
- Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Anna Theiler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Diana Zabini
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Sandra Trautmann
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Elvira Stacher-Priehse
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Ilse Lanz
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Katharina Sinn
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Holger Flick
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Stefan Scheidl
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Dominique Thomas
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Rufina Schuligoi
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
17
|
Yang Y, Hu L, Xia H, Chen L, Cui S, Wang Y, Zhou T, Xiong W, Song L, Li S, Pan S, Xu J, Liu M, Xiao H, Qin L, Shang Y, Yao S. Resolvin D1 attenuates mechanical stretch-induced pulmonary fibrosis via epithelial-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1013-L1024. [PMID: 30724098 DOI: 10.1152/ajplung.00415.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mechanical ventilation-induced pulmonary fibrosis plays an important role in the high mortality rate of acute respiratory distress syndrome (ARDS). Resolvin D1 (RvD1) displays potent proresolving activities. Epithelial-mesenchymal transition (EMT) has been proved to be an important pathological feature of lung fibrosis. This study aimed to investigate whether RvD1 can attenuate mechanical ventilation-induced lung fibrosis. Human lung epithelial (BEAS-2B) cells were pretreated with RvD1 for 30 min and exposed to acid for 10 min before being subjected to mechanical stretch for 48 h. C57BL/6 mice were subjected to intratracheal acid aspiration followed by mechanical ventilation 24 h later (peak inspiratory pressure 22 cmH2O, positive end-expiratory pressure 2 cmH2O, and respiratory rate 120 breaths/min for 2 h). RvD1 was injected into mice for 5 consecutive days after mechanical ventilation. Treatment with RvD1 significantly inhibited mechanical stretch-induced mesenchymal markers (vimentin and α-smooth muscle actin) and stimulated epithelial markers (E-cadherin). Tert-butyloxycarbonyl 2 (BOC-2), a lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2) antagonist, is known to inhibit ALX/FPR2 function. BOC-2 could reverse the beneficial effects of RvD1. The antifibrotic effect of RvD1 was associated with the suppression of Smad2/3 phosphorylation. This study demonstrated that mechanical stretch could induce EMT and pulmonary fibrosis and that treatment with RvD1 could attenuate mechanical ventilation-induced lung fibrosis, thus highlighting RvD1 as an effective therapeutic agent against pulmonary fibrosis associated with mechanical ventilation.
Collapse
Affiliation(s)
- Yiyi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Lisha Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Lin Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Shunan Cui
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Wei Xiong
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Limin Song
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Shengnan Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Jiqian Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Min Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Hairong Xiao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| |
Collapse
|
18
|
Wang Q, Yan SF, Hao Y, Jin SW. Specialized Pro-resolving Mediators Regulate Alveolar Fluid Clearance during Acute Respiratory Distress Syndrome. Chin Med J (Engl) 2018; 131:982-989. [PMID: 29664060 PMCID: PMC5912066 DOI: 10.4103/0366-6999.229890] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objective Acute respiratory distress syndrome (ARDS) is an acute and lethal clinical syndrome that is characterized by the injury of alveolar epithelium, which impairs active fluid transport in the lung, and impedes the reabsorption of edema fluid from the alveolar space. This review aimed to discuss the role of pro-resolving mediators on the regulation of alveolar fluid clearance (AFC) in ARDS. Data Sources Articles published up to September 2017 were selected from the PubMed, with the keywords of "alveolar fluid clearance" or "lung edema" or "acute lung injury" or "acute respiratory distress syndrome", and "specialized pro-resolving mediators" or "lipoxin" or "resolvin" or "protectin" or "maresin" or "alveolar epithelial cells" or "aspirin-triggered lipid mediators" or "carbon monoxide and heme oxygenase" or "annexin A1". Study Selection We included all relevant articles published up to September 2017, with no limitation of study design. Results Specialized pro-resolving mediators (SPMs), as the proinflammatory mediators, not only upregulated epithelial sodium channel, Na,K-ATPase, cystic fibrosis transmembrane conductance regulator (CFTR), and aquaporins levels, but also improved Na,K-ATPase activity to promote AFC in ARDS. In addition to the direct effects on ion channels and pumps of the alveolar epithelium, the SPMs also inhibited the inflammatory cytokine expression and improved the alveolar epithelial cell repair to enhance the AFC in ARDS. Conclusions The present review discusses a novel mechanism for pulmonary edema fluid reabsorption. SPMs might provide new opportunities to design "reabsorption-targeted" therapies with high degrees of precision in controlling ALI/ARDS.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Song-Fan Yan
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yu Hao
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
19
|
He F, Zhou A, Feng S. Use of human amniotic epithelial cells in mouse models of bleomycin-induced lung fibrosis: A systematic review and meta-analysis. PLoS One 2018; 13:e0197658. [PMID: 29772024 PMCID: PMC5957433 DOI: 10.1371/journal.pone.0197658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/03/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) urgently requires effective treatment. Bleomycin-induced lung injury models are characterized by initial inflammation and secondary fibrosis, consistent with the pathological features of IPF. Human amniotic epithelial cells (hAECs) exhibit good differentiation potential and paracrine activity and are thus ideal for cell-based clinical therapies. The therapeutic effects of hAECs on lung fibrosis are attributed to many factors. We performed a systematic review of preclinical studies investigating the treatment of pulmonary fibrosis with hAECs to provide suggestions for their clinical use. METHODS PubMed and EMBASE were searched for original studies describing hAEC therapy in animal bleomycin-induced pulmonary fibrosis models. After quality assessments, the number and species of experimental animals, bleomycin dose, hAEC source and dosage, time and route of administration of transplanted cells in animals, and time animals were euthanized in nine controlled preclinical studies were summarized. Ashcroft scores, lung collagen contents, inflammatory cells and cytokines were quantitatively and/or qualitatively analyzed in this review. Publication bias was also assessed. RESULTS Each of the nine preclinical studies have unique characteristics regarding hAEC use. Ashcroft scores and lung collagen contents were decreased following hAEC transplantation in bleomycin-injured mice. Histopathology was also improved in most studies following treatment with hAECs. hAECs modulated macrophages, neutrophils, T cells, dendritic cells and the mRNA or protein levels of cytokines associated with inflammatory reactions (tumor necrosis factor-α, transforming growth factor-β, interferon-γ and interleukin) in lung tissues of bleomycin-injured mice. CONCLUSIONS hAECs alleviate and reverse the progression of bleomycin-induced lung fibrosis in mice and may represent a new clinical treatment for IPF. hAECs exert anti-inflammatory and anti-fibrotic effects by modulating macrophage, neutrophil, T cell, dendritic cell and related cytokine levels in mice with bleomycin-induced lung fibrosis. Cell generation and the route, source and timing of hAEC transplantation all determine the therapeutic effectiveness of hAECs.
Collapse
Affiliation(s)
- Fang He
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
- * E-mail:
| | - Aiting Zhou
- Department of Spine Surgery, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Shuo Feng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Pádua TA, Torres ND, Candéa ALP, Costa MFS, Silva JD, Silva‐Filho JL, Costa FTM, Rocco PRM, Souza MC, Henriques MG. Therapeutic effect of Lipoxin A
4
in malaria‐induced acute lung injury. J Leukoc Biol 2018; 103:657-670. [DOI: 10.1002/jlb.3a1016-435rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 05/29/2017] [Accepted: 10/23/2017] [Indexed: 01/04/2023] Open
Affiliation(s)
- Tatiana A. Pádua
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - Natalia D. Torres
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - André L. P. Candéa
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - Maria Fernanda Souza Costa
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - Johnatas D. Silva
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - João Luiz Silva‐Filho
- Laboratory of Tropical Diseases – Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, Institute of Biology (IB)University of Campinas (UNICAMP) Campinas Brazil
| | - Fabio T. M. Costa
- Laboratory of Tropical Diseases – Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, Institute of Biology (IB)University of Campinas (UNICAMP) Campinas Brazil
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Mariana C. Souza
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - Maria G. Henriques
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| |
Collapse
|
21
|
Sommakia S, Baker OJ. Regulation of inflammation by lipid mediators in oral diseases. Oral Dis 2017; 23:576-597. [PMID: 27426637 PMCID: PMC5243936 DOI: 10.1111/odi.12544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023]
Abstract
Lipid mediators (LM) of inflammation are a class of compounds derived from ω-3 and ω-6 fatty acids that play a wide role in modulating inflammatory responses. Some LM possess pro-inflammatory properties, while others possess proresolving characteristics, and the class switch from pro-inflammatory to proresolving is crucial for tissue homeostasis. In this article, we review the major classes of LM, focusing on their biosynthesis and signaling pathways, and their role in systemic and, especially, oral health and disease. We discuss the detection of these LM in various body fluids, focusing on diagnostic and therapeutic applications. We also present data showing gender-related differences in salivary LM levels in healthy controls, leading to a hypothesis on the etiology of inflammatory diseases, particularly Sjögren's syndrome. We conclude by enumerating open areas of research where further investigation of LM is likely to result in therapeutic and diagnostic advances.
Collapse
Affiliation(s)
- Salah Sommakia
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| | - Olga J. Baker
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
22
|
Brennan EP, Cacace A, Godson C. Specialized pro-resolving mediators in renal fibrosis. Mol Aspects Med 2017; 58:102-113. [PMID: 28479307 DOI: 10.1016/j.mam.2017.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022]
Abstract
Inflammation and its timely resolution play a critical role in effective host defence and wound healing. Unresolved inflammatory responses underlie the pathology of many prevalent diseases resulting in tissue fibrosis and eventual organ failure as typified by kidney, lung and liver fibrosis. The role of autocrine and paracrine mediators including cytokines, prostaglandins and leukotrienes in initiating and sustaining inflammation is well established. More recently a physiological role for specialized pro-resolving lipid mediators [SPMs] in modulating inflammatory responses and promoting the resolution of inflammation has been appreciated. As will be discussed in this review, SPMs not only attenuate the development of fibrosis through promoting the resolution of inflammation but may also directly suppress fibrotic responses. These findings suggest novel therapeutic paradigms to treat intractable life-limiting diseases such as renal fibrosis.
Collapse
Affiliation(s)
- Eoin P Brennan
- UCD Diabetes Complications Research Centre, UCD Conway Institute & UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Antonino Cacace
- UCD Diabetes Complications Research Centre, UCD Conway Institute & UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, UCD Conway Institute & UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
23
|
Li H, Hao Y, Zhang H, Ying W, Li D, Ge Y, Ying B, Cheng B, Lian Q, Jin S. Posttreatment with Protectin DX ameliorates bleomycin-induced pulmonary fibrosis and lung dysfunction in mice. Sci Rep 2017; 7:46754. [PMID: 28466866 PMCID: PMC5413938 DOI: 10.1038/srep46754] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
Protectin DX (10S,17S-dihydroxydocosa-4Z,7Z,11E,13Z,15E,19Z-hexaenoic acid) (PDX), generated from Ω-3 fatty docosahexaenoic acids, is believed to exert anti-inflammatory and proresolution bioactions. To date, few studies have been performed regarding its effect on pulmonary fibrosis. Herein we show that PDX exerts a potential therapeutic effect which is distinct from its anti-inflammation and pro-resolution activity on mice with pulmonary fibrosis. In the present study, we showed that bleomycin (BLM) increased inflammatory infiltration, collagen deposition, and lung dysfunction on day7 after challenged in mice. Posttreatment with PDX ameliorated BLM-induced inflammatory responses, extracellular matrix (ECM) deposition and the level of cytokines related to fibrosis as evaluated by histology analysis, transformation electron microscope (TEM), lung hydroxyproline content and cytokines test. Moreover, PDX improved lung respiratory function, remedied BLM-induced hypoxemia and prolonged life span. In addition, we found that PDX reversed epithelial–mesenchymal transition (EMT) phenotypic transformation in vivo and in vitro, reinforcing a potential mechanism of promoting fibrosis resolution. In summary, our findings showed that posttreatment with PDX could ameliorate BLM-induced pulmonary fibrosis and lung dysfunction in mice and PDX may be considered as a promising therapeutic approached to fibrotic lung diseases.
Collapse
Affiliation(s)
- Hui Li
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Yu Hao
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Huawei Zhang
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Weiyang Ying
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Dan Li
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Yahe Ge
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Binyu Ying
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Bihuan Cheng
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Qingquan Lian
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| |
Collapse
|
24
|
Selders GS, Fetz AE, Radic MZ, Bowlin GL. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen Biomater 2017; 4:55-68. [PMID: 28149530 PMCID: PMC5274707 DOI: 10.1093/rb/rbw041] [Citation(s) in RCA: 346] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite considerable recent progress in defining neutrophil functions and behaviors in tissue repair, much remains to be determined with regards to its overall role in the tissue integration of biomaterials. This article provides an overview of the neutrophil’s numerous, important roles in both inflammation and resolution, and subsequently, their role in biomaterial integration. Neutrophils function in three primary capacities: generation of oxidative bursts, release of granules and formation of neutrophil extracellular traps (NETs); these combined functions enable neutrophil involvement in inflammation, macrophage recruitment, M2 macrophage differentiation, resolution of inflammation, angiogenesis, tumor formation and immune system activation. Neutrophils exhibit great flexibility to adjust to the prevalent microenvironmental conditions in the tissue; thus, the biomaterial composition and fabrication will potentially influence neutrophil behavior following confrontation. This review serves to highlight the neutrophil’s plasticity, reiterating that neutrophils are not just simple suicidal killers, but the true maestros of resolution and regeneration.
Collapse
Affiliation(s)
- Gretchen S Selders
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| | - Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| | - Marko Z Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA, 858 Madison Ave, Room 201 Molecular Science Building, Memphis, TN 38163, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| |
Collapse
|
25
|
Tan JL, Tan YZ, Muljadi R, Chan ST, Lau SN, Mockler JC, Wallace EM, Lim R. Amnion Epithelial Cells Promote Lung Repair via Lipoxin A 4. Stem Cells Transl Med 2016; 6:1085-1095. [PMID: 28371562 PMCID: PMC5442827 DOI: 10.5966/sctm.2016-0077] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 08/15/2016] [Indexed: 12/18/2022] Open
Abstract
Human amnion epithelial cells (hAECs) have been shown to possess potent immunomodulatory properties across a number of disease models. Recently, we reported that hAECs influence macrophage polarization and activity, and that this step was dependent on regulatory T cells. In this study, we aimed to assess the effects of hAEC-derived proresolution lipoxin-A4 (LXA4) on T-cell, macrophage, and neutrophil phenotype and function during the acute phase of bleomycin-induced lung injury. Using C57Bl6 mice, we administered 4 million hAECs intraperitoneally 24 hours after bleomycin challenge. Outcomes were measured at days 3, 5, and 7. hAEC administration resulted in significant changes to T-cell, macrophage, dendritic cell, and monocyte/macrophage infiltration and phenotypes. Endogenous levels of lipoxygenases, LXA4, and the lipoxin receptor FPR2 were elevated in hAEC-treated animals. Furthermore, we showed that the effects of hAECs on macrophage phagocytic activity and T-cell suppression are LXA4 dependent, whereas the inhibition of neutrophil-derived myleoperoxidase by hAECs is independent of LXA4. This study provides the first evidence that lipid-based mediators contribute to the immunomodulatory effects of hAECs and further supports the growing body of evidence that LXA4 is proresolutionary in lung injury. This discovery of LXA4-dependent communication between hAECs, macrophages, T cells, and neutrophils is important to the understanding of hAEC biodynamics and would be expected to inform future clinical applications. Stem Cells Translational Medicine 2017;6:1085-1095.
Collapse
Affiliation(s)
- Jean L. Tan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Yan Z. Tan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Ruth Muljadi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Siow T. Chan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Sin N. Lau
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Joanne C. Mockler
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Euan M. Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
26
|
Jiang MJ, Dai JJ, Gu DN, Huang Q, Tian L. Aspirin in pancreatic cancer: chemopreventive effects and therapeutic potentials. Biochim Biophys Acta Rev Cancer 2016; 1866:163-176. [PMID: 27567928 DOI: 10.1016/j.bbcan.2016.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer is one of the most aggressive malignancies with dismal prognosis. Recently, aspirin has been found to be an effective chemopreventive agent for many solid tumors. However, the function of aspirin use in pancreatic cancer largely remains unknown. We herein argued that aspirin could also lower the risk of pancreatic cancer. Importantly, aspirin assumes pleiotropic effects by targeting multiple molecules. It could further target the unique tumor biology of pancreatic cancer and modify the cancer microenvironment, thus showing remarkable therapeutic potentials. Besides, aspirin could reverse the chemoradiation resistance by repressing tumor repopulation and exert synergistic potentials with metformin on pancreatic cancer chemoprevention. Moreover, aspirin secondarily benefits pancreatic cancer patients through modestly reducing cancer pain and the risk of venous thromboembolism. Furthermore, new aspirin derivatives and delivery systems might help to improve risk-to-benefit ratio. In brief, aspirin is a promising chemopreventive agent and exerts significant therapeutic potentials in pancreatic cancer.
Collapse
Affiliation(s)
- Ming-Jie Jiang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Juan-Juan Dai
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Dian-Na Gu
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Qian Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Comprehensive Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ling Tian
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| |
Collapse
|
27
|
Abstract
The immune response comprises not only pro-inflammatory and anti-inflammatory pathways but also pro-resolution mechanisms that serve to balance the need of the host to target microbial pathogens while preventing excess inflammation and bystander tissue damage. Specialized pro-resolving mediators (SPMs) are enzymatically derived from essential fatty acids to serve as a novel class of immunoresolvents that limit acute responses and orchestrate the clearance of tissue pathogens, dying cells and debris from the battlefield of infectious inflammation. SPMs are composed of lipoxins, E-series and D-series resolvins, protectins and maresins. Individual members of the SPM family serve as agonists at cognate receptors to induce cell-type specific responses. Important regulatory roles for SPMs have been uncovered in host responses to several microorganisms, including bacterial, viral, fungal and parasitic pathogens. SPMs also promote the resolution of non-infectious inflammation and tissue injury. Defects in host SPM pathways contribute to the development of chronic inflammatory diseases. With the capacity to enhance host defence and modulate inflammation, SPMs represent a promising translational approach to enlist host resolution programmes for the treatment of infection and excess inflammation.
Here, the authors detail our current understanding of specialized pro-resolving mediators (SPMs), a family of endogenous mediators that have important roles in promoting the resolution of inflammation. With a focus on the lungs, they discuss the contribution of SPMs to infectious and chronic inflammatory diseases and their emerging therapeutic potential. Specialized pro-resolving mediators (SPMs) are enzymatically derived from essential fatty acids and have important roles in orchestrating the resolution of tissue inflammation — that is, catabasis. Host responses to tissue infection elicit acute inflammation in an attempt to control invading pathogens. SPMs are lipid mediators that are part of a larger family of pro-resolving molecules, which includes proteins and gases, that together restrain inflammation and resolve the infection. These immunoresolvents are distinct from immunosuppressive molecules as they not only dampen inflammation but also promote host defence. Here, we focus primarily on SPMs and their roles in lung infection and inflammation to illustrate the potent actions these mediators play in restoring tissue homeostasis after an infection.
Collapse
|
28
|
Adhyatmika A, Putri KSS, Beljaars L, Melgert BN. The Elusive Antifibrotic Macrophage. Front Med (Lausanne) 2015; 2:81. [PMID: 26618160 PMCID: PMC4643133 DOI: 10.3389/fmed.2015.00081] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/29/2015] [Indexed: 12/23/2022] Open
Abstract
Fibrotic diseases, especially of the liver, the cardiovascular system, the kidneys, and the lungs, account for approximately 45% of deaths in Western societies. Fibrosis is a serious complication associated with aging and/or chronic inflammation or injury and cannot be treated effectively yet. It is characterized by excessive deposition of extracellular matrix (ECM) proteins by myofibroblasts and impaired degradation by macrophages. This ultimately destroys the normal structure of an organ, which leads to loss of function. Most efforts to develop drugs have focused on inhibiting ECM production by myofibroblasts and have not yielded many effective drugs yet. Another option is to stimulate the cells that are responsible for degradation and uptake of excess ECM, i.e., antifibrotic macrophages. However, macrophages are plastic cells that have many faces in fibrosis, including profibrotic behavior-stimulating ECM production. This can be dependent on their origin, as the different organs have tissue-resident macrophages with different origins and a various influx of incoming monocytes in steady-state conditions and during fibrosis. To be able to pharmacologically stimulate the right kind of behavior in fibrosis, a thorough characterization of antifibrotic macrophages is necessary, as well as an understanding of the signals they need to degrade ECM. In this review, we will summarize the current state of the art regarding the antifibrotic macrophage phenotype and the signals that stimulate its behavior.
Collapse
Affiliation(s)
- Adhyatmika Adhyatmika
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy (GRIP), University of Groningen , Groningen , Netherlands
| | - Kurnia S S Putri
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy (GRIP), University of Groningen , Groningen , Netherlands ; Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy (GRIP), University of Groningen , Groningen , Netherlands ; Faculty of Pharmacy, University of Indonesia , Depok , Indonesia
| | - Leonie Beljaars
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy (GRIP), University of Groningen , Groningen , Netherlands
| | - Barbro N Melgert
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy (GRIP), University of Groningen , Groningen , Netherlands ; GRIAC Research Institute, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
29
|
Mühlfeld C, Hegermann J, Wrede C, Ochs M. A review of recent developments and applications of morphometry/stereology in lung research. Am J Physiol Lung Cell Mol Physiol 2015; 309:L526-36. [DOI: 10.1152/ajplung.00047.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/09/2015] [Indexed: 11/22/2022] Open
Abstract
Design-based stereology is the gold standard of morphometry in lung research. Here, we analyze the current use of morphometric and stereological methods in lung research and provide an overview on recent methodological developments and biological observations made by the use of stereology. Based on this analysis we hope to provide useful recommendations for a good stereological practice to further the use of advanced and unbiased stereological methods.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| |
Collapse
|
30
|
Romano M, Cianci E, Simiele F, Recchiuti A. Lipoxins and aspirin-triggered lipoxins in resolution of inflammation. Eur J Pharmacol 2015; 760:49-63. [DOI: 10.1016/j.ejphar.2015.03.083] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 02/08/2023]
|
31
|
Molinaro R, Pecli C, Guilherme RF, Alves-Filho JC, Cunha FQ, Canetti C, Kunkel SL, Bozza MT, Benjamim CF. CCR4 Controls the Suppressive Effects of Regulatory T Cells on Early and Late Events during Severe Sepsis. PLoS One 2015. [PMID: 26197455 PMCID: PMC4511514 DOI: 10.1371/journal.pone.0133227] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sepsis is a deadly disease characterized by an overwhelming release of inflammatory mediators and the activation of different types of cells. This altered state of cell activation, termed leukocyte reprogramming, contributes to patient outcome. However, the understanding of the process underlying sepsis and the role of regulatory T cells (Tregs) in sepsis remains to be elucidated. In this study, we investigated the role of CCR4, the CCL17/CCL22 chemokine receptor, in the innate and acquired immune responses during severe sepsis and the role of Tregs in effecting the outcome. In contrast with wild-type (WT) mice subjected to cecal ligation and puncture (CLP) sepsis, CCR4-deficient (CCR4-/-) septic mice presented an increased survival rate, significant neutrophil migration toward the infection site, a low bacterial count in the peritoneum, and reduced lung inflammation and serum cytokine levels. Thus, a better early host response may favor an adequate long-term response. Consequently, the CCR4-/- septic mice were not susceptible to secondary fungal infection, in contrast with the WT septic mice. Furthermore, Tregs cells from the CCR4-/- septic mice showed reduced suppressive effects on neutrophil migration (both in vivo and in vitro), lymphocyte proliferation and ROS production from activated neutrophils, in contrast with what was observed for Tregs from the WT septic mice. These data show that CCR4 is involved in immunosuppression after severe sepsis and suggest that CCR4+ Tregs negatively modulate the short and long-term immune responses.
Collapse
Affiliation(s)
- Raphael Molinaro
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Cyntia Pecli
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rafael F. Guilherme
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José Carlos Alves-Filho
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernando Q. Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Claudio Canetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Steven L. Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, 48109, United States of America
| | - Marcelo T. Bozza
- Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudia F. Benjamim
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
32
|
Wermuth PJ, Jimenez SA. The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases. Clin Transl Med 2015; 4:2. [PMID: 25852818 PMCID: PMC4384891 DOI: 10.1186/s40169-015-0047-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/20/2015] [Indexed: 12/15/2022] Open
Abstract
The systemic and organ-specific human fibrotic disorders collectively represent one of the most serious health problems world-wide causing a large proportion of the total world population mortality. The molecular pathways involved in their pathogenesis are complex and despite intensive investigations have not been fully elucidated. Whereas chronic inflammatory cell infiltration is universally present in fibrotic lesions, the central role of monocytes and macrophages as regulators of inflammation and fibrosis has only recently become apparent. However, the precise mechanisms involved in the contribution of monocytes/macrophages to the initiation, establishment, or progression of the fibrotic process remain largely unknown. Several monocyte and macrophage subpopulations have been identified, with certain phenotypes promoting inflammation whereas others display profibrotic effects. Given the unmet need for effective treatments for fibroproliferative diseases and the crucial regulatory role of monocyte/macrophage subpopulations in fibrogenesis, the development of therapeutic strategies that target specific monocyte/macrophage subpopulations has become increasingly attractive. We will provide here an overview of the current understanding of the role of monocyte/macrophage phenotype subpopulations in animal models of tissue fibrosis and in various systemic and organ-specific human fibrotic diseases. Furthermore, we will discuss recent approaches to the design of effective anti-fibrotic therapeutic interventions by targeting the phenotypic differences identified between the various monocyte and macrophage subpopulations.
Collapse
Affiliation(s)
- Peter J Wermuth
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Bluemle Life Science Building Suite 509, 233 South 10th Street, Philadelphia, PA 19107-5541 USA
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Bluemle Life Science Building Suite 509, 233 South 10th Street, Philadelphia, PA 19107-5541 USA
| |
Collapse
|
33
|
Rinaldi SF, Catalano RD, Wade J, Rossi AG, Norman JE. 15-epi-lipoxin A4 reduces the mortality of prematurely born pups in a mouse model of infection-induced preterm birth. Mol Hum Reprod 2015; 21:359-68. [PMID: 25567326 PMCID: PMC4381035 DOI: 10.1093/molehr/gau117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/29/2014] [Indexed: 02/06/2023] Open
Abstract
Preterm birth remains the leading cause of neonatal mortality and morbidity worldwide. There are currently few effective therapies and therefore an urgent need for novel treatments. Although there is much focus on trying to alter gestation of delivery, the primary aim of preterm birth prevention therapies should be to reduce prematurity related mortality and morbidity. Given the link between intrauterine infection and inflammation and preterm labour (PTL), we hypothesized that administration of lipoxins, key anti-inflammatory and pro-resolution mediators, could be a useful novel treatment for PTL. Using a mouse model of infection-induced PTL, we investigated whether 15-epi-lipoxin A4 could delay lipopolysaccharide (LPS)-induced PTL and reduce pup mortality. On D17 of gestation mice (n = 9–12) were pretreated with vehicle or 15-epi-lipoxin A4 prior to intrauterine administration of LPS or PBS. Although pretreatment with 15-epi-lipoxin A4 did not delay LPS-induced PTL, there was a significant reduction in the mortality amongst prematurely delivered pups (defined as delivery within 36 h of surgery) in mice treated with 15-epi-lipoxin A4 prior to LPS treatment, compared with those receiving LPS alone (P < 0.05). Quantitative real-time (QRT)-PCR analysis of utero-placental tissues harvested 6 h post-treatment demonstrated that 15-epi-lipoxin A4 treatment increased Ptgs2 expression in the uterus, placenta and fetal membranes (P < 0.05) and decreased 15-Hpgd expression (P < 0.05) in the placenta and uterus, suggesting that 15-epi-lipoxin A4 may regulate the local production and activity of prostaglandins. These data suggest that augmenting lipoxin levels could be a useful novel therapeutic option in the treatment of PTL, protecting the fetus from the adverse effects of infection-induced preterm birth.
Collapse
Affiliation(s)
- S F Rinaldi
- MRC Centre for Reproductive Health and Tommy's Centre for Maternal and Fetal Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - R D Catalano
- MRC Centre for Reproductive Health and Tommy's Centre for Maternal and Fetal Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - J Wade
- MRC Centre for Reproductive Health and Tommy's Centre for Maternal and Fetal Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - A G Rossi
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - J E Norman
- MRC Centre for Reproductive Health and Tommy's Centre for Maternal and Fetal Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|