1
|
Reedy JL, Jensen KN, Crossen AJ, Basham KJ, Ward RA, Reardon CM, Brown Harding H, Hepworth OW, Simaku P, Kwaku GN, Tone K, Willment JA, Reid DM, Stappers MHT, Brown GD, Rajagopal J, Vyas JM. Fungal melanin suppresses airway epithelial chemokine secretion through blockade of calcium fluxing. Nat Commun 2024; 15:5817. [PMID: 38987270 PMCID: PMC11237042 DOI: 10.1038/s41467-024-50100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Respiratory infections caused by the human fungal pathogen Aspergillus fumigatus are a major cause of mortality for immunocompromised patients. Exposure to these pathogens occurs through inhalation, although the role of the respiratory epithelium in disease pathogenesis has not been fully defined. Employing a primary human airway epithelial model, we demonstrate that fungal melanins potently block the post-translational secretion of the chemokines CXCL1 and CXCL8 independent of transcription or the requirement of melanin to be phagocytosed, leading to a significant reduction in neutrophil recruitment to the apical airway both in vitro and in vivo. Aspergillus-derived melanin, a major constituent of the fungal cell wall, dampened airway epithelial chemokine secretion in response to fungi, bacteria, and exogenous cytokines. Furthermore, melanin muted pathogen-mediated calcium fluxing and hindered actin filamentation. Taken together, our results reveal a critical role for melanin interaction with airway epithelium in shaping the host response to fungal and bacterial pathogens.
Collapse
Affiliation(s)
- Jennifer L Reedy
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kirstine Nolling Jensen
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Arianne J Crossen
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Kyle J Basham
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca A Ward
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher M Reardon
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Hannah Brown Harding
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Olivia W Hepworth
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patricia Simaku
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Geneva N Kwaku
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Kazuya Tone
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Janet A Willment
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Delyth M Reid
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Mark H T Stappers
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Gordon D Brown
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jatin M Vyas
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Reedy JL, Jensen KN, Crossen AJ, Basham KJ, Ward RA, Reardon CM, Harding HB, Hepworth OW, Simaku P, Kwaku GN, Tone K, Willment JA, Reid DM, Stappers MHT, Brown GD, Rajagopal J, Vyas JM. Fungal melanin suppresses airway epithelial chemokine secretion through blockade of calcium fluxing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.28.534632. [PMID: 37034634 PMCID: PMC10081279 DOI: 10.1101/2023.03.28.534632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Respiratory infections caused by the human fungal pathogen Aspergillus fumigatus are a major cause of mortality for immunocompromised patients. Exposure to these pathogens occurs through inhalation, although the role of the respiratory epithelium in disease pathogenesis has not been fully defined. Employing a primary human airway epithelial model, we demonstrate that fungal melanins potently block the post-translational secretion of the chemokines CXCL1 and CXCL8 independent of transcription or the requirement of melanin to be phagocytosed, leading to a significant reduction in neutrophil recruitment to the apical airway both in vitro and in vivo . Aspergillus -derived melanin, a major constituent of the fungal cell wall, dampened airway epithelial chemokine secretion in response to fungi, bacteria, and exogenous cytokines. Furthermore, melanin muted pathogen-mediated calcium fluxing and hindered actin filamentation. Taken together, our results reveal a critical role for melanin interaction with airway epithelium in shaping the host response to fungal and bacterial pathogens.
Collapse
|
3
|
Fang L, Zhou L, Kulić Ž, Lehner MD, Tamm M, Roth M. EPs ® 7630 Stimulates Tissue Repair Mechanisms and Modifies Tight Junction Protein Expression in Human Airway Epithelial Cells. Int J Mol Sci 2023; 24:11230. [PMID: 37446408 DOI: 10.3390/ijms241311230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Airway epithelium repair after infection consists of wound repair, re-synthesis of the extracellular matrix (ECM), and tight junction proteins. In humans, EPs® 7630 obtained from Pelargonium sidoides roots reduces the severity and duration of acute respiratory tract infections. The effect of EPs® 7630 on tissue repair of rhinovirus-16 (RV-16) infected and control human airway epithelial cells was assessed for: (i) epithelial cell proliferation by manual cell counts, (ii) epithelial wound repair by "scratch assay", (iii) ECM composition by Western-blotting and cell-based ELISA, and (iv) epithelial tight junction proteins by Western-blotting. EPs® 7630 stimulated cell proliferation through cAMP, CREB, and p38 MAPK. EPs® 7630 significantly improved wound repair. Pro-inflammatory collagen type-I expression was reduced by EPs® 7630, while fibronectin was increased. Virus-binding tight junction proteins desmoglein2, desmocollin2, ZO-1, claudin1, and claudin4 were downregulated by EPs® 7630. The RV16-induced shift of the ECM towards the pro-inflammatory type was prevented by EPs® 7630. Most of the effects of EPs® 7630 on tissue repair and regeneration were sensitive to inhibition of cAMP-induced signaling. The data suggest that EPs® 7630-dependent modification of epithelial cell metabolism and function might underlie the faster recovery time from viral infections, as reported by others in clinical studies.
Collapse
Affiliation(s)
- Lei Fang
- Pulmonary Cell Research, Department of Biomedicine & Clinic of Pneumology, University and University Hospital Basel, CH-4031 Basel, Switzerland
| | - Liang Zhou
- Pulmonary Cell Research, Department of Biomedicine & Clinic of Pneumology, University and University Hospital Basel, CH-4031 Basel, Switzerland
| | - Žarko Kulić
- Preclinical Research and Development, Dr. Willmar Schwabe GmbH & Co. KG, D-76227 Karlsruhe, Germany
| | - Martin D Lehner
- Preclinical Research and Development, Dr. Willmar Schwabe GmbH & Co. KG, D-76227 Karlsruhe, Germany
| | - Michael Tamm
- Pulmonary Cell Research, Department of Biomedicine & Clinic of Pneumology, University and University Hospital Basel, CH-4031 Basel, Switzerland
| | - Michael Roth
- Pulmonary Cell Research, Department of Biomedicine & Clinic of Pneumology, University and University Hospital Basel, CH-4031 Basel, Switzerland
| |
Collapse
|
4
|
Silva S, Bicker J, Falcão A, Fortuna A. Air-liquid interface (ALI) impact on different respiratory cell cultures. Eur J Pharm Biopharm 2023; 184:62-82. [PMID: 36696943 DOI: 10.1016/j.ejpb.2023.01.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/24/2022] [Accepted: 01/19/2023] [Indexed: 01/23/2023]
Abstract
The intranasal route has been receiving greater attention from the scientific community not only for systemic drug delivery but also for the treatment of pulmonary and neurological diseases. Along with it, drug transport and permeability studies across the nasal mucosa have exponentially increased. Nevertheless, the translation of data from in vitro cell lines to in vivo studies is not always reliable, due to the difficulty in generating an in vitro model that resembles respiratory human physiology. Among all currently available methodologies, the air-liquid interface (ALI) method is advantageous to promote cell differentiation and optimize the morphological and histological characteristics of airway epithelium cells. Cells grown under ALI conditions, in alternative to submerged conditions, appear to provide relevant input for inhalation and pulmonary toxicology and complement in vivo experiments. Different methodologies and a variety of materials have been used to induce ALI conditions in primary cells and numerous cell lines. Until this day, with only exploratory results, no consensus has been reached regarding the validation of the ALI method, hampering data comparison. The present review describes the most adequate cell models of airway epithelium and how these models are differently affected by ALI conditions. It includes the evaluation of cellular features before and after ALI, and the application of the method in primary cell cultures, commercial 3D primary cells, cell lines and stem-cell derived models. A variety of these models have been recently applied for pharmacological studies against severe acute respiratory syndrome-coronavirus(-2) SARS-CoV(-2), namely primary cultures with alveolar type II epithelium cells and organotypic 3D models. The herein compiled data suggest that ALI conditions must be optimized bearing in mind the type of cells (nasal, bronchial, alveolar), their origin and the objective of the study.
Collapse
Affiliation(s)
- Soraia Silva
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Sahu SK, Ozantürk AN, Kulkarni DH, Ma L, Barve RA, Dannull L, Lu A, Starick M, McPhatter J, Garnica L, Sanfillipo-Burchman M, Kunen J, Wu X, Gelman AE, Brody SL, Atkinson JP, Kulkarni HS. Lung epithelial cell-derived C3 protects against pneumonia-induced lung injury. Sci Immunol 2023; 8:eabp9547. [PMID: 36735773 PMCID: PMC10023170 DOI: 10.1126/sciimmunol.abp9547] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
The complement component C3 is a fundamental plasma protein for host defense, produced largely by the liver. However, recent work has demonstrated the critical importance of tissue-specific C3 expression in cell survival. Here, we analyzed the effects of local versus peripheral sources of C3 expression in a model of acute bacterial pneumonia induced by Pseudomonas aeruginosa. Whereas mice with global C3 deficiency had severe pneumonia-induced lung injury, those deficient only in liver-derived C3 remained protected, comparable to wild-type mice. Human lung transcriptome analysis showed that secretory epithelial cells, such as club cells, express high levels of C3 mRNA. Mice with tamoxifen-induced C3 gene ablation from club cells in the lung had worse pulmonary injury compared with similarly treated controls, despite maintaining normal circulating C3 levels. Last, in both the mouse pneumonia model and cultured primary human airway epithelial cells, we showed that stress-induced death associated with C3 deficiency parallels that seen in Factor B deficiency rather than C3a receptor deficiency. Moreover, C3-mediated reduction in epithelial cell death requires alternative pathway component Factor B. Thus, our findings suggest that a pathway reliant on locally derived C3 and Factor B protects the lung mucosal barrier.
Collapse
Affiliation(s)
- Sanjaya K. Sahu
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Ayşe N. Ozantürk
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Devesha H. Kulkarni
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Lina Ma
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Ruteja A Barve
- Department of Genetics, Washington University School of Medicine; St. Louis, USA
| | - Linus Dannull
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Angel Lu
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Marick Starick
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Ja’Nia McPhatter
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Lorena Garnica
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Maxwell Sanfillipo-Burchman
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine; St. Louis, USA
| | - Jeremy Kunen
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Xiaobo Wu
- Division of Rheumatology, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine; St. Louis, USA
| | - Steven L. Brody
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - John P. Atkinson
- Division of Rheumatology, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Hrishikesh S. Kulkarni
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| |
Collapse
|
6
|
Tilston-Lunel AM, Varelas X. Polarity in respiratory development, homeostasis and disease. Curr Top Dev Biol 2023; 154:285-315. [PMID: 37100521 DOI: 10.1016/bs.ctdb.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The respiratory system is composed of a multitude of cells that organize to form complex branched airways that end in alveoli, which respectively function to guide air flow and mediate gas exchange with the bloodstream. The organization of the respiratory sytem relies on distinct forms of cell polarity, which guide lung morphogenesis and patterning in development and provide homeostatic barrier protection from microbes and toxins. The stability of lung alveoli, the luminal secretion of surfactants and mucus in the airways, and the coordinated motion of multiciliated cells that generate proximal fluid flow, are all critical functions regulated by cell polarity, with defects in polarity contributing to respiratory disease etiology. Here, we summarize the current knowledge of cell polarity in lung development and homeostasis, highlighting key roles for polarity in alveolar and airway epithelial function and outlining relationships with microbial infections and diseases, such as cancer.
Collapse
|
7
|
Poachanukoon O, Roytrakul S, Koontongkaew S. A shotgun proteomic approach reveals novel potential salivary protein biomarkers for asthma. J Asthma 2020; 59:243-254. [PMID: 33211619 DOI: 10.1080/02770903.2020.1850773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to determine if there is an association between the salivary protein profile and disease control in asthma. METHODS Thirty asthmatic patients (17 adults and 13 children) participated in this study. Saliva samples were collected from healthy subjects, controlled and uncontrolled asthmatics. Individual samples from each group were combined to form a pooled sample, from which proteomic analysis was performed using gel-based quantitative proteomics. RESULTS Fourteen out of thirty asthmatics were classified to be controlled asthma. Most of asthmatics received inhaled corticosteroids as the controller medications. SDS-PAGE showed predominant bands at high molecular weight in asthmatic saliva compared to that of the controls. Shotgun proteomic analyses indicated that 193 salivary proteins were expressed in both controlled and uncontrolled asthmatics. They were predicted to associate with proteins involved in pathogenesis of asthma including IL-5, IL-6, MCP-1, VEGF, and periostin and asthma medicines (Cromolyn, Nedocromil, and Theophylline). Nucleoside diphosphate kinase (NME1-NME2) only expressed in controlled asthmatics whereas polycystic kidney and hepatic disease 1 (PKHD1)/fibrocystin, zinc finger protein 263 (ZNF263), uncharacterized LOC101060047 (ENSG00000268865), desmoglein 2 (DSG2) and S100 calcium binding protein A2 (S100A2) were only found in uncontrolled asthma. Therefore, the six proteins were associated with disease control in children and adults with asthma. CONCLUSION Our findings suggest that NME1-NME2, PKHD1, ZNF 263, uncharacterized LOC101060047, DSG 2 and S100 A2 in saliva are associated with disease control in asthma.
Collapse
Affiliation(s)
- Orapan Poachanukoon
- Department of Pediatrics, Faculty of Medicine, Thammasat University, Klong Luang, Prathumthani, Thailand.,Center of Excellence for Allergy, Asthma and Pulmonary Diseases, Thammasat University Hospital, Klong Luang, Pathumtani, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani, Thailand
| | - Sittichai Koontongkaew
- Department of Oral Biology, Faculty of Dentistry, Thammasat University (Rangsit Campus), Klong Luang, Prathumthani, Thailand.,International College of Dentistry, Walailak University, Bangkok, Thailand
| |
Collapse
|
8
|
Leni Z, Cassagnes LE, Daellenbach KR, El Haddad I, Vlachou A, Uzu G, Prévôt ASH, Jaffrezo JL, Baumlin N, Salathe M, Baltensperger U, Dommen J, Geiser M. Oxidative stress-induced inflammation in susceptible airways by anthropogenic aerosol. PLoS One 2020; 15:e0233425. [PMID: 33206642 PMCID: PMC7673561 DOI: 10.1371/journal.pone.0233425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
Ambient air pollution is one of the leading five health risks worldwide. One of the most harmful air pollutants is particulate matter (PM), which has different physical characteristics (particle size and number, surface area and morphology) and a highly complex and variable chemical composition. Our goal was first to comparatively assess the effects of exposure to PM regarding cytotoxicity, release of pro-inflammatory mediators and gene expression in human bronchial epithelia (HBE) reflecting normal and compromised health status. Second, we aimed at evaluating the impact of various PM components from anthropogenic and biogenic sources on the cellular responses. Air-liquid interface (ALI) cultures of fully differentiated HBE derived from normal and cystic fibrosis (CF) donor lungs were exposed at the apical cell surface to water-soluble PM filter extracts for 4 h. The particle dose deposited on cells was 0.9-2.5 and 8.8-25.4 μg per cm2 of cell culture area for low and high PM doses, respectively. Both normal and CF HBE show a clear dose-response relationship with increasing cytotoxicity at higher PM concentrations. The concurrently enhanced release of pro-inflammatory mediators at higher PM exposure levels links cytotoxicity to inflammatory processes. Further, the PM exposure deregulates genes involved in oxidative stress and inflammatory pathways leading to an imbalance of the antioxidant system. Moreover, we identify compromised defense against PM in CF epithelia promoting exacerbation and aggravation of disease. We also demonstrate that the adverse health outcome induced by PM exposure in normal and particularly in susceptible bronchial epithelia is magnified by anthropogenic PM components. Thus, including health-relevant PM components in regulatory guidelines will result in substantial human health benefits and improve protection of the vulnerable population.
Collapse
Affiliation(s)
- Zaira Leni
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | | | - Imad El Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Athanasia Vlachou
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Gaelle Uzu
- Univ. Grenoble Alpes, CNRS, IRD, INP, IGE, Grenoble, France
| | - André S. H. Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | | | - Nathalie Baumlin
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Josef Dommen
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | | |
Collapse
|
9
|
Annexin A5 prevents amyloid-β-induced toxicity in choroid plexus: implication for Alzheimer's disease. Sci Rep 2020; 10:9391. [PMID: 32523019 PMCID: PMC7286910 DOI: 10.1038/s41598-020-66177-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022] Open
Abstract
In Alzheimer’s disease (AD) amyloid-β (Aβ) deposits may cause impairments in choroid plexus, a specialised brain structure which forms the blood–cerebrospinal fluid (CSF) barrier. We previously carried out a mass proteomic-based study in choroid plexus from AD patients and we found several differentially regulated proteins compared with healthy subjects. One of these proteins, annexin A5, was previously demonstrated implicated in blocking Aβ-induced cytotoxicity in neuronal cell cultures. Here, we investigated the effects of annexin A5 on Aβ toxicity in choroid plexus. We used choroid plexus tissue samples and CSF from mild cognitive impairment (MCI) and AD patients to analyse Aβ accumulation, cell death and annexin A5 levels compared with control subjects. Choroid plexus cell cultures from rats were used to analyse annexin A5 effects on Aβ-induced cytotoxicity. AD choroid plexus exhibited progressive reduction of annexin A5 levels along with progressive increased Aβ accumulation and cell death as disease stage was higher. On the other hand, annexin A5 levels in CSF from patients were found progressively increased as the disease stage increased in severity. In choroid plexus primary cultures, Aβ administration reduced endogenous annexin A5 levels in a time-course dependent manner and simultaneously increased annexin A5 levels in extracellular medium. Annexin A5 addition to choroid plexus cell cultures restored the Aβ-induced impairments on autophagy flux and apoptosis in a calcium-dependent manner. We propose that annexin A5 would exert a protective role in choroid plexus and this protection is lost as Aβ accumulates with the disease progression. Then, brain protection against further toxic insults would be jeopardised.
Collapse
|
10
|
Chung YW, Cha J, Han S, Chen Y, Gucek M, Cho HJ, Nakahira K, Choi AMK, Ryu JH, Yoon JH. Apolipoprotein E and Periostin Are Potential Biomarkers of Nasal Mucosal Inflammation. A Parallel Approach of In Vitro and In Vivo Secretomes. Am J Respir Cell Mol Biol 2020; 62:23-34. [PMID: 31194918 DOI: 10.1165/rcmb.2018-0248oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
No previously suggested biomarkers of nasal mucosal inflammation have been practically applied in clinical fields, and nasal epithelium-derived secreted proteins as biomarkers have not specifically been investigated. The goal of this study was to identify secreted proteins that dynamically change during the differentiation from basal cells to fully differentiated cells and examine whether nasal epithelium-derived proteins can be used as biomarkers of nasal mucosal inflammation, such as chronic rhinosinusitis. To achieve this goal, we analyzed two secretomes using the isobaric tag for relative and absolute quantification technique. From in vitro secretomes, we identified the proteins altered in apical secretions of primary human nasal epithelial cells according to the degree of differentiation; from in vivo secretomes, we identified the increased proteins in nasal lavage fluids obtained from patients 2 weeks after endoscopic sinus surgery for chronic sinusitis. We then used a parallel approach to identify specific biomarkers of nasal mucosal inflammation; first, we selected apolipoprotein E as a nasal epithelial cell-derived biomarker through screening proteins that were upregulated in both in vitro and in vivo secretomes, and verified highly secreted apolipoprotein E in nasal lavage fluids of the patients by Western blotting. Next, we selected periostin as an inflammatory mediator-inducible biomarker from in vivo secretomes, the secretion of which was not induced under in vitro culture conditions. We demonstrated that those two nasal epithelium-derived proteins are possible biomarkers of nasal mucosal inflammation.
Collapse
Affiliation(s)
- Youn Wook Chung
- The Airway Mucus Institute.,Global Research Laboratory for Allergic Airway Disease.,Severance Biomedical Science Institute
| | - Jimin Cha
- Severance Biomedical Science Institute.,Brain Korea 21 PLUS Project for Medical Science, and
| | - Seunghan Han
- Severance Biomedical Science Institute.,Brain Korea 21 PLUS Project for Medical Science, and
| | - Yong Chen
- Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Marjan Gucek
- Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Hyung-Ju Cho
- The Airway Mucus Institute.,Global Research Laboratory for Allergic Airway Disease.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Ji-Hwan Ryu
- Severance Biomedical Science Institute.,Brain Korea 21 PLUS Project for Medical Science, and
| | - Joo-Heon Yoon
- The Airway Mucus Institute.,Global Research Laboratory for Allergic Airway Disease.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Touzelet O, Broadbent L, Armstrong SD, Aljabr W, Cloutman-Green E, Power UF, Hiscox JA. The Secretome Profiling of a Pediatric Airway Epithelium Infected with hRSV Identified Aberrant Apical/Basolateral Trafficking and Novel Immune Modulating (CXCL6, CXCL16, CSF3) and Antiviral (CEACAM1) Proteins. Mol Cell Proteomics 2020; 19:793-807. [PMID: 32075873 PMCID: PMC7196588 DOI: 10.1074/mcp.ra119.001546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 02/13/2020] [Indexed: 11/19/2022] Open
Abstract
The respiratory epithelium comprises polarized cells at the interface between the environment and airway tissues. Polarized apical and basolateral protein secretions are a feature of airway epithelium homeostasis. Human respiratory syncytial virus (hRSV) is a major human pathogen that primarily targets the respiratory epithelium. However, the consequences of hRSV infection on epithelium secretome polarity and content remain poorly understood. To investigate the hRSV-associated apical and basolateral secretomes, a proteomics approach was combined with an ex vivo pediatric human airway epithelial (HAE) model of hRSV infection (data are available via ProteomeXchange and can be accessed at https://www.ebi.ac.uk/pride/ with identifier PXD013661). Following infection, a skewing of apical/basolateral abundance ratios was identified for several individual proteins. Novel modulators of neutrophil and lymphocyte activation (CXCL6, CSF3, SECTM1 or CXCL16), and antiviral proteins (BST2 or CEACAM1) were detected in infected, but not in uninfected cultures. Importantly, CXCL6, CXCL16, CSF3 were also detected in nasopharyngeal aspirates (NPA) from hRSV-infected infants but not healthy controls. Furthermore, the antiviral activity of CEACAM1 against RSV was confirmed in vitro using BEAS-2B cells. hRSV infection disrupted the polarity of the pediatric respiratory epithelial secretome and was associated with immune modulating proteins (CXCL6, CXCL16, CSF3) never linked with this virus before. In addition, the antiviral activity of CEACAM1 against hRSV had also never been previously characterized. This study, therefore, provides novel insights into RSV pathogenesis and endogenous antiviral responses in pediatric airway epithelium.
Collapse
Affiliation(s)
- Olivier Touzelet
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK; Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7BL, UK
| | - Lindsay Broadbent
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7BL, UK
| | - Stuart D Armstrong
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, L69 7BE, UK
| | - Waleed Aljabr
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK; Biomedical Research Administration, Research Centre, King Fahad Medical City, P.O. Box 59046 Riyadh 11252, Saudi Arabia
| | - Elaine Cloutman-Green
- Microbiology, Virology and Infection Control, Level 4 Camelia Botnar Laboratory, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Ultan F Power
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7BL, UK.
| | - Julian A Hiscox
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, L69 7BE, UK; Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore.
| |
Collapse
|
12
|
Kulkarni HS, Elvington ML, Perng YC, Liszewski MK, Byers DE, Farkouh C, Yusen RD, Lenschow DJ, Brody SL, Atkinson JP. Intracellular C3 Protects Human Airway Epithelial Cells from Stress-associated Cell Death. Am J Respir Cell Mol Biol 2019; 60:144-157. [PMID: 30156437 DOI: 10.1165/rcmb.2017-0405oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The complement system provides host defense against pathogens and environmental stress. C3, the central component of complement, is present in the blood and increases in BAL fluid after injury. We recently discovered that C3 is taken up by certain cell types and cleaved intracellularly to C3a and C3b. C3a is required for CD4+ T-cell survival. These observations made us question whether complement operates at environmental interfaces, particularly in the respiratory tract. We found that airway epithelial cells (AECs, represented by both primary human tracheobronchial cells and BEAS-2B [cell line]) cultured in C3-free media were unique from other cell types in that they contained large intracellular stores of de novo synthesized C3. A fraction of this protein reduced ("storage form") but the remainder did not, consistent with it being pro-C3 ("precursor form"). These two forms of intracellular C3 were absent in CRISPR knockout-induced C3-deficient AECs and decreased with the use of C3 siRNA, indicating endogenous generation. Proinflammatory cytokine exposure increased both stored and secreted forms of C3. Furthermore, AECs took up C3 from exogenous sources, which mitigated stress-associated cell death (e.g., from oxidative stress or starvation). C3 stores were notably increased within AECs in lung tissues from individuals with different end-stage lung diseases. Thus, at-risk cells furnish C3 through biosynthesis and/or uptake to increase locally available C3 during inflammation, while intracellularly, these stores protect against certain inducers of cell death. These results establish the relevance of intracellular C3 to airway epithelial biology and suggest novel pathways for complement-mediated host protection in the airway.
Collapse
Affiliation(s)
- Hrishikesh S Kulkarni
- 1 Division of Pulmonary and Critical Care Medicine, and.,2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Michelle L Elvington
- 2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Yi-Chieh Perng
- 2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - M Kathryn Liszewski
- 2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Derek E Byers
- 1 Division of Pulmonary and Critical Care Medicine, and
| | - Christopher Farkouh
- 2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Roger D Yusen
- 1 Division of Pulmonary and Critical Care Medicine, and
| | - Deborah J Lenschow
- 2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | | - John P Atkinson
- 2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
13
|
Sotty J, Garçon G, Denayer FO, Alleman LY, Saleh Y, Perdrix E, Riffault V, Dubot P, Lo-Guidice JM, Canivet L. Toxicological effects of ambient fine (PM 2.5-0.18) and ultrafine (PM 0.18) particles in healthy and diseased 3D organo-typic mucocilary-phenotype models. ENVIRONMENTAL RESEARCH 2019; 176:108538. [PMID: 31344532 DOI: 10.1016/j.envres.2019.108538] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/17/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
The knowledge of the underlying mechanisms by which particulate matter (PM) exerts its health effects is still incomplete since it may trigger various symptoms as some persons may be more susceptible than others. Detailed studies realized in more relevant in vitro models are highly needed. Healthy normal human bronchial epithelial (NHBE), asthma-diseased human bronchial epithelial (DHBE), and COPD-DHBE cells, differentiated at the air-liquid interface, were acutely or repeatedly exposed to fine (i.e., PM2.5-0.18, also called FP) and quasi-ultrafine (i.e., PM0.18, also called UFP) particles. Immunofluorescence labelling of pan-cytokeratin, MUC5AC, and ZO-1 confirmed their specific cell-types. Baselines of the inflammatory mediators secreted by all the cells were quite similar. Slight changes of TNFα, IL-1β, IL-6, IL-8, GM-CSF, MCP-1, and/or TGFα, and of H3K9 histone acetylation supported a higher inflammatory response of asthma- and especially COPD-DHBE cells, after exposure to FP and especially UFP. At baseline, 35 differentially expressed genes (DEG) in asthma-DHBE, and 23 DEG in COPD-DHBE, compared to NHBE cells, were reported. They were involved in biological processes implicated in the development of asthma and COPD diseases, such as cellular process (e.g., PLA2G4C, NLRP1, S100A5, MUC1), biological regulation (e.g., CCNE1), developmental process (e.g., WNT10B), and cell component organization and synthesis (e.g., KRT34, COL6A1, COL6A2). In all the FP or UFP-exposed cell models, DEG were also functionally annotated to the chemical metabolic process (e.g., CYP1A1, CYP1B1, CYP1A2) and inflammatory response (e.g., EREG). Another DEG, FGF-1, was only down-regulated in asthma and specially COPD-DHBE cells repeatedly exposed. While RAB37 could help to counteract the down-regulation of FGF-1 in asthma-DHBE cells, the deregulation of FGR, WNT7B, VIPR1, and PPARGC1A could dramatically contribute to make it worse in COPD-DHBE cells. Taken together, these data contributed to support the highest effects of UFP versus FP and highest sensitivity of asthma- and notably COPD-DHBE versus NHBE cells.
Collapse
Affiliation(s)
- J Sotty
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - G Garçon
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - F-O Denayer
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - L-Y Alleman
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - Y Saleh
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - E Perdrix
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - V Riffault
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - P Dubot
- MCMC - ICMPE UMR 7182, Rue H. Dunant, 94320 Thiais, France
| | - J-M Lo-Guidice
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - L Canivet
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| |
Collapse
|
14
|
Abstract
Epithelial abnormalities underpin the development of the middle ear disease, otitis media (OM). Until now, a well-characterized in vitro model of the middle ear (ME) epithelium that replicates the complex cellular composition of the middle ear has not been available. This chapter describes the development of a novel in vitro model of mouse middle ear epithelial cells (mMECs), cultured at the air-liquid interface (ALI). This system enables recapitulation of the characteristics of the native murine ME epithelium. We demonstrate that mMECs undergo differentiation into the varied cell populations seen within the native middle ear. Overall, our mMEC culture system can help better understand the cell biology of the middle ear and improve our understanding of the pathophysiology of OM. The model also has the potential to serve as a platform for validation of treatments designed to reverse aspects of epithelial remodeling underpinning OM development.
Collapse
|
15
|
Lehmann R, Müller MM, Klassert TE, Driesch D, Stock M, Heinrich A, Conrad T, Moore C, Schier UK, Guthke R, Slevogt H. Differential regulation of the transcriptomic and secretomic landscape of sensor and effector functions of human airway epithelial cells. Mucosal Immunol 2018; 11:627-642. [PMID: 29297499 DOI: 10.1038/mi.2017.100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 10/17/2017] [Indexed: 02/04/2023]
Abstract
Protein secretion upon TLR, TNFR1, and IFNGR ligation in the human airways is considered to be central for the orchestration of pulmonary inflammatory and immune responses. In this study, we compared the gene expression and protein secretion profiles in response to specific stimulation of all expressed TLRs and in further comparison to TNFR1 and IFNGR in primary human airway epithelial cells. In addition to 22 cytokines, we observed the receptor-induced regulation of 571 genes and 1,012 secreted proteins. Further analysis revealed high similarities between the transcriptional TLR sensor and TNFR1 effector responses. However, secretome to transcriptome comparisons showed a broad receptor stimulation-dependent release of proteins that were not transcriptionally regulated. Many of these proteins are annotated to exosomes with associations to, for example, antigen presentation and wound-healing, or were identified as secretable proteins related to immune responses. Thus, we show a hitherto unrecognized scope of receptor-induced responses in airway epithelium, involving several additional functions for the immune response, exosomal communication and tissue homeostasis.
Collapse
Affiliation(s)
- Roland Lehmann
- Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - Mario M Müller
- Septomics Research Centre, Jena University Hospital, Jena, Germany
- Integrated Research and Treatment Centre - Centre for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | | | | | - Magdalena Stock
- Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - Anina Heinrich
- Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - Theresia Conrad
- Septomics Research Centre, Jena University Hospital, Jena, Germany
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Christoph Moore
- Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - Uta K Schier
- Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - Reinhard Guthke
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Hortense Slevogt
- Septomics Research Centre, Jena University Hospital, Jena, Germany
| |
Collapse
|
16
|
Tan HW, Xu YM, Wu DD, Lau ATY. Recent insights into human bronchial proteomics - how are we progressing and what is next? Expert Rev Proteomics 2018; 15:113-130. [PMID: 29260600 DOI: 10.1080/14789450.2017.1417847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The human respiratory system is highly prone to diseases and complications. Many lung diseases, including lung cancer (LC), tuberculosis (TB), and chronic obstructive pulmonary disease (COPD) have been among the most common causes of death worldwide. Cystic fibrosis (CF), the most common genetic disease in Caucasians, has adverse impacts on the lungs. Bronchial proteomics plays a significant role in understanding the underlying mechanisms and pathogenicity of lung diseases and provides insights for biomarker and therapeutic target discoveries. Areas covered: We overview the recent achievements and discoveries in human bronchial proteomics by outlining how some of the different proteomic techniques/strategies are developed and applied in LC, TB, COPD, and CF. Also, the future roles of bronchial proteomics in predictive proteomics and precision medicine are discussed. Expert commentary: Much progress has been made in bronchial proteomics. Owing to the advances in proteomics, we now have better ability to isolate proteins from desired cellular compartments, greater protein separation methods, more powerful protein detection technologies, and more sophisticated bioinformatic techniques. These all contributed to our further understanding of lung diseases and for biomarker and therapeutic target discoveries.
Collapse
Affiliation(s)
- Heng Wee Tan
- a Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics , Shantou University Medical College , Shantou , People's Republic of China
| | - Yan-Ming Xu
- a Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics , Shantou University Medical College , Shantou , People's Republic of China
| | - Dan-Dan Wu
- a Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics , Shantou University Medical College , Shantou , People's Republic of China
| | - Andy T Y Lau
- a Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics , Shantou University Medical College , Shantou , People's Republic of China
| |
Collapse
|
17
|
Kulkarni HS, Liszewski MK, Brody SL, Atkinson JP. The complement system in the airway epithelium: An overlooked host defense mechanism and therapeutic target? J Allergy Clin Immunol 2018; 141:1582-1586.e1. [PMID: 29339260 DOI: 10.1016/j.jaci.2017.11.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/02/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in St Louis, St Louis, Mo; Division of Rheumatology, Department of Medicine, Washington University in St Louis, St Louis, Mo
| | - M Kathryn Liszewski
- Division of Rheumatology, Department of Medicine, Washington University in St Louis, St Louis, Mo
| | - Steven L Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in St Louis, St Louis, Mo
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University in St Louis, St Louis, Mo.
| |
Collapse
|
18
|
Bowler RP, Wendt CH, Fessler MB, Foster MW, Kelly RS, Lasky-Su J, Rogers AJ, Stringer KA, Winston BW. New Strategies and Challenges in Lung Proteomics and Metabolomics. An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2017; 14:1721-1743. [PMID: 29192815 PMCID: PMC5946579 DOI: 10.1513/annalsats.201710-770ws] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This document presents the proceedings from the workshop entitled, "New Strategies and Challenges in Lung Proteomics and Metabolomics" held February 4th-5th, 2016, in Denver, Colorado. It was sponsored by the National Heart Lung Blood Institute, the American Thoracic Society, the Colorado Biological Mass Spectrometry Society, and National Jewish Health. The goal of this workshop was to convene, for the first time, relevant experts in lung proteomics and metabolomics to discuss and overcome specific challenges in these fields that are unique to the lung. The main objectives of this workshop were to identify, review, and/or understand: (1) emerging technologies in metabolomics and proteomics as applied to the study of the lung; (2) the unique composition and challenges of lung-specific biological specimens for metabolomic and proteomic analysis; (3) the diverse informatics approaches and databases unique to metabolomics and proteomics, with special emphasis on the lung; (4) integrative platforms across genetic and genomic databases that can be applied to lung-related metabolomic and proteomic studies; and (5) the clinical applications of proteomics and metabolomics. The major findings and conclusions of this workshop are summarized at the end of the report, and outline the progress and challenges that face these rapidly advancing fields.
Collapse
|
19
|
Brass DM, Gwinn WM, Valente AM, Kelly FL, Brinkley CD, Nagler AE, Moseley MA, Morgan DL, Palmer SM, Foster MW. The Diacetyl-Exposed Human Airway Epithelial Secretome: New Insights into Flavoring-Induced Airways Disease. Am J Respir Cell Mol Biol 2017; 56:784-795. [PMID: 28248570 DOI: 10.1165/rcmb.2016-0372oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bronchiolitis obliterans (BO) is an increasingly important lung disease characterized by fibroproliferative airway lesions and decrements in lung function. Occupational exposure to the artificial food flavoring ingredient diacetyl, commonly used to impart a buttery flavor to microwave popcorn, has been associated with BO development. In the occupational setting, diacetyl vapor is first encountered by the airway epithelium. To better understand the effects of diacetyl vapor on the airway epithelium, we used an unbiased proteomic approach to characterize both the apical and basolateral secretomes of air-liquid interface cultures of primary human airway epithelial cells from four unique donors after exposure to an occupationally relevant concentration (∼1,100 ppm) of diacetyl vapor or phosphate-buffered saline as a control on alternating days. Basolateral and apical supernatants collected 48 h after the third exposure were analyzed using one-dimensional liquid chromatography tandem mass spectrometry. Paired t tests adjusted for multiple comparisons were used to assess differential expression between diacetyl and phosphate-buffered saline exposure. Of the significantly differentially expressed proteins identified, 61 were unique to the apical secretome, 81 were unique to the basolateral secretome, and 11 were present in both. Pathway enrichment analysis using publicly available databases revealed that proteins associated with matrix remodeling, including degradation, assembly, and new matrix organization, were overrepresented in the data sets. Similarly, protein modifiers of epidermal growth factor receptor signaling were significantly altered. The ordered changes in protein expression suggest that the airway epithelial response to diacetyl may contribute to BO pathogenesis.
Collapse
Affiliation(s)
- David M Brass
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine
| | - William M Gwinn
- 2 National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | | | | | - Andrew E Nagler
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine
| | - M Arthur Moseley
- 4 Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, North Carolina; and
| | - Daniel L Morgan
- 2 National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Scott M Palmer
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Matthew W Foster
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine.,4 Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, North Carolina; and
| |
Collapse
|
20
|
Krapf M, Künzi L, Allenbach S, Bruns EA, Gavarini I, El-Haddad I, Slowik JG, Prévôt ASH, Drinovec L, Močnik G, Dümbgen L, Salathe M, Baumlin N, Sioutas C, Baltensperger U, Dommen J, Geiser M. Wood combustion particles induce adverse effects to normal and diseased airway epithelia. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:538-548. [PMID: 28239691 DOI: 10.1039/c6em00586a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Residential wood burning is a major source of poorly characterized, deleterious particulate matter, whose composition and toxicity may vary with wood type, burning condition and photochemical age. The causative link between ambient wood particle constituents and observed adverse health effects is currently lacking. Here we investigate the relationship between chemical properties of primary and atmospherically aged wood combustion particles and acute toxicity in human airway epithelial cells. Emissions from a log wood burner were diluted and injected into a smog chamber for photochemical aging. After concentration-enrichment and removal of oxidizing gases, directly emitted and atmospherically aged particles were deposited on cell cultures at the air-liquid interface for 2 hours in an aerosol deposition chamber mimicking physiological conditions in lungs. Cell models were fully differentiated normal and diseased (cystic fibrosis and asthma) human bronchial epithelia (HBE) and the bronchial epithelial cell line BEAS-2B. Cell responses were assessed at 24 hours after aerosol exposure. Atmospherically relevant doses of wood combustion particles significantly increased cell death in all but the asthma cell model. Expression of oxidative stress markers increased in HBE from all donors. Increased cell death and inflammatory responses could not be assigned to a single chemical fraction of the particles. Exposure to primary and aged wood combustion particles caused adverse effects to airway epithelia, apparently induced by several interacting components.
Collapse
Affiliation(s)
- Manuel Krapf
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mossina A, Lukas C, Merl-Pham J, Uhl FE, Mutze K, Schamberger A, Staab-Weijnitz C, Jia J, Yildirim AÖ, Königshoff M, Hauck SM, Eickelberg O, Meiners S. Cigarette smoke alters the secretome of lung epithelial cells. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Alessandra Mossina
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| | - Christina Lukas
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science; Helmholtz Zentrum München; Munich Germany
| | - Franziska E. Uhl
- Department of Medicine; Vermont Lung Center (VLC); University of Vermont; Burlington VT USA
| | - Kathrin Mutze
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| | - Andrea Schamberger
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| | - Claudia Staab-Weijnitz
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| | - Jie Jia
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), Institute of Lung Biology and Disease; Helmholtz Zentrum München; Munich Germany
| | - Ali Ö. Yildirim
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), Institute of Lung Biology and Disease; Helmholtz Zentrum München; Munich Germany
| | - Melanie Königshoff
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science; Helmholtz Zentrum München; Munich Germany
| | - Oliver Eickelberg
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), Institute of Lung Biology and Disease; Helmholtz Zentrum München; Munich Germany
| | - Silke Meiners
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| |
Collapse
|
22
|
Mulay A, Akram KM, Williams D, Armes H, Russell C, Hood D, Armstrong S, Stewart JP, Brown SDM, Bingle L, Bingle CD. An in vitro model of murine middle ear epithelium. Dis Model Mech 2016; 9:1405-1417. [PMID: 27660200 PMCID: PMC5117233 DOI: 10.1242/dmm.026658] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/15/2016] [Indexed: 01/01/2023] Open
Abstract
Otitis media (OM), or middle ear inflammation, is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology it is clear that epithelial abnormalities underpin the disease. There is currently a lack of a well-characterised in vitro model of the middle ear (ME) epithelium that replicates the complex cellular composition of the middle ear. Here, we report the development of a novel in vitro model of mouse middle ear epithelial cells (mMECs) at an air–liquid interface (ALI) that recapitulates the characteristics of the native murine ME epithelium. We demonstrate that mMECs undergo differentiation into the varied cell populations seen within the native middle ear. Proteomic analysis confirmed that the cultures secrete a multitude of innate defence proteins from their apical surface. We showed that the mMECs supported the growth of the otopathogen, nontypeable Haemophilus influenzae (NTHi), suggesting that the model can be successfully utilised to study host–pathogen interactions in the middle ear. Overall, our mMEC culture system can help to better understand the cell biology of the middle ear and improve our understanding of the pathophysiology of OM. The model also has the potential to serve as a platform for validation of treatments designed to reverse aspects of epithelial remodelling that underpin OM development. Summary: Development and systematic characterisation of an in vitro otopathogenic infection model of the murine middle ear epithelium as a tool to better understand the complex pathophysiology of Otitis media.
Collapse
Affiliation(s)
- Apoorva Mulay
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2JF, UK
| | - Khondoker M Akram
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2JF, UK
| | | | - Hannah Armes
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2JF, UK.,Oral and Maxillofacial Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Catherine Russell
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2JF, UK
| | - Derek Hood
- MRC Mammalian Genetics Unit, Harwell OX11 0RD, UK
| | - Stuart Armstrong
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - James P Stewart
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | | | - Lynne Bingle
- Oral and Maxillofacial Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Colin D Bingle
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2JF, UK
| |
Collapse
|
23
|
Gutierrez MJ, Gomez JL, Perez GF, Pancham K, Val S, Pillai DK, Giri M, Ferrante S, Freishtat R, Rose MC, Preciado D, Nino G. Airway Secretory microRNAome Changes during Rhinovirus Infection in Early Childhood. PLoS One 2016; 11:e0162244. [PMID: 27643599 PMCID: PMC5028059 DOI: 10.1371/journal.pone.0162244] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/21/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Innate immune responses are fine-tuned by small noncoding RNA molecules termed microRNAs (miRs) that modify gene expression in response to the environment. During acute infections, miRs can be secreted in extracellular vesicles (EV) to facilitate cell-to-cell genetic communication. The purpose of this study was to characterize the baseline population of miRs secreted in EVs in the airways of young children (airway secretory microRNAome) and examine the changes during rhinovirus (RV) infection, the most common cause of asthma exacerbations and the most important early risk factor for the development of asthma beyond childhood. METHODS Nasal airway secretions were obtained from children (≤3 yrs. old) during PCR-confirmed RV infections (n = 10) and age-matched controls (n = 10). Nasal EVs were isolated with polymer-based precipitation and global miR profiles generated using NanoString microarrays. We validated our in vivo airway secretory miR data in an in vitro airway epithelium model using apical secretions from primary human bronchial epithelial cells (HBEC) differentiated at air-liquid interface (ALI). Bioinformatics tools were used to determine the unified (nasal and bronchial) signature airway secretory miRNAome and changes during RV infection in children. RESULTS Multiscale analysis identified four signature miRs comprising the baseline airway secretory miRNAome: hsa-miR-630, hsa-miR-302d-3p, hsa- miR-320e, hsa-miR-612. We identified hsa-miR-155 as the main change in the baseline miRNAome during RV infection in young children. We investigated the potential biological relevance of the airway secretion of hsa-mir-155 using in silico models derived from gene datasets of experimental in vivo human RV infection. These analyses confirmed that hsa-miR-155 targetome is an overrepresented pathway in the upper airways of individuals infected with RV. CONCLUSIONS Comparative analysis of the airway secretory microRNAome in children indicates that RV infection is associated with airway secretion of EVs containing miR-155, which is predicted in silico to regulate antiviral immunity. Further characterization of the airway secretory microRNAome during health and disease may lead to completely new strategies to treat and monitor respiratory conditions in all ages.
Collapse
Affiliation(s)
- Maria J. Gutierrez
- Division of Pediatric Allergy Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jose L. Gomez
- Division of Pediatric Pulmonology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Geovanny F. Perez
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC, United States of America
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology and Center for Genetic Medicine Research, George Washington University, Washington, DC, United States of America
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
| | - Krishna Pancham
- Division of Pediatric Pulmonology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stephanie Val
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Children’s National Medical Center, Washington, DC, United States of America
| | - Dinesh K. Pillai
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC, United States of America
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology and Center for Genetic Medicine Research, George Washington University, Washington, DC, United States of America
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
| | - Mamta Giri
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
| | - Sarah Ferrante
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
| | - Robert Freishtat
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology and Center for Genetic Medicine Research, George Washington University, Washington, DC, United States of America
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
- Division of Emergency Medicine, Children’s National Medical Center, Washington, DC, United States of America
| | - Mary C. Rose
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC, United States of America
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology and Center for Genetic Medicine Research, George Washington University, Washington, DC, United States of America
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
| | - Diego Preciado
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Children’s National Medical Center, Washington, DC, United States of America
| | - Gustavo Nino
- Division of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC, United States of America
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology and Center for Genetic Medicine Research, George Washington University, Washington, DC, United States of America
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
24
|
Perez GF, Rodriguez-Martinez CE, Nino G. Rhinovirus-Induced Airway Disease: A Model to Understand the Antiviral and Th2 Epithelial Immune Dysregulation in Childhood Asthma. J Investig Med 2015; 63:792-5. [PMID: 26057561 PMCID: PMC4512841 DOI: 10.1097/jim.0000000000000209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rhinovirus (RV) infections account for most asthma exacerbations among children and adults, yet the fundamental mechanism responsible for why asthmatics are more susceptible to RV than otherwise healthy individuals remains largely unknown. Nonetheless, the use of models to understand the mechanisms of RV-induced airway disease in asthma has dramatically expanded our knowledge about the cellular and molecular pathogenesis of the disease. For instance, ground-breaking studies have recently established that the susceptibility to RV in asthmatic subjects is associated with a dysfunctional airway epithelial inflammatory response generated after innate recognition of viral-related molecules, such as double-stranded RNA. This review summarizes the novel cardinal features of the asthmatic condition identified in the past few years through translational and experimental RV-based approaches. Specifically, we discuss the evidence demonstrating the presence of an abnormal innate antiviral immunity (airway epithelial secretion of types I and III interferons), exaggerated production of the master Th2 molecule thymic stromal lymphopoietin, and altered antimicrobial host defense in the airways of asthmatic individuals with acute RV infection.
Collapse
Affiliation(s)
- Geovanny F. Perez
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC
- Departments of Pediatrics and Integrative Systems Biology, George Washington University, Washington, DC
- Center for Genetic Research Medicine, Children’s National Medical Center, Washington, DC
| | - Carlos E. Rodriguez-Martinez
- Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogota, Colombia
- Department of Pediatric Pulmonology and Pediatric Critical Care Medicine, School of Medicine, Universidad El Bosque, Bogota, Colombia
- Research Unit, Military Hospital of Colombia, Bogota, Colombia
| | - Gustavo Nino
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC
- Departments of Pediatrics and Integrative Systems Biology, George Washington University, Washington, DC
- Center for Genetic Research Medicine, Children’s National Medical Center, Washington, DC
| |
Collapse
|
25
|
Peters-Hall JR, Brown KJ, Pillai DK, Tomney A, Garvin LM, Wu X, Rose MC. Quantitative proteomics reveals an altered cystic fibrosis in vitro bronchial epithelial secretome. Am J Respir Cell Mol Biol 2015; 53:22-32. [PMID: 25692303 PMCID: PMC4566109 DOI: 10.1165/rcmb.2014-0256rc] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/05/2015] [Indexed: 12/25/2022] Open
Abstract
Alterations in epithelial secretions and mucociliary clearance contribute to chronic bacterial infection in cystic fibrosis (CF) lung disease, but whether CF lungs are unchanged in the absence of infection remains controversial. A proteomic comparison of airway secretions from subjects with CF and control subjects shows alterations in key biological processes, including immune response and proteolytic activity, but it is unclear if these are due to mutant CF transmembrane conductance regulator (CFTR) and/or chronic infection. We hypothesized that the CF lung apical secretome is altered under constitutive conditions in the absence of inflammatory cells and pathogens. To test this, we performed quantitative proteomics of in vitro apical secretions from air-liquid interface cultures of three life-extended CF (ΔF508/ΔF508) and three non-CF human bronchial epithelial cells after labeling of CF cells by stable isotope labeling with amino acids in cell culture. Mass spectrometry analysis identified and quantitated 666 proteins across samples, of which 70 exhibited differential enrichment or depletion in CF secretions (±1.5-fold change; P < 0.05). The key molecular functions were innate immunity (24%), cytoskeleton/extracellular matrix organization (24%), and protease/antiprotease activity (17%). Oxidative proteins and classical complement pathway proteins that are altered in CF secretions in vivo were not altered in vitro. Specific differentially increased proteins-MUC5AC and MUC5B mucins, fibronectin, and matrix metalloproteinase-9-were validated by antibody-based assays. Overall, the in vitro CF secretome data are indicative of a constitutive airway epithelium with altered innate immunity, suggesting that downstream consequences of mutant CFTR set the stage for chronic inflammation and infection in CF airways.
Collapse
Affiliation(s)
| | - Kristy J. Brown
- Departments of Integrative Systems Biology and
- Pediatrics, George Washington University School of Medicine, Washington, DC; and
- Research Center for Genetic Medicine and
| | - Dinesh K. Pillai
- Departments of Integrative Systems Biology and
- Pediatrics, George Washington University School of Medicine, Washington, DC; and
- Research Center for Genetic Medicine and
- Division of Pulmonary and Sleep Medicine, Children's National, Washington, DC
| | | | - Lindsay M. Garvin
- Departments of Integrative Systems Biology and
- Research Center for Genetic Medicine and
| | - Xiaofang Wu
- Departments of Integrative Systems Biology and
- Pediatrics, George Washington University School of Medicine, Washington, DC; and
- Research Center for Genetic Medicine and
| | - Mary C. Rose
- Departments of Integrative Systems Biology and
- Pediatrics, George Washington University School of Medicine, Washington, DC; and
- Research Center for Genetic Medicine and
| |
Collapse
|
26
|
Nino G, Huseni S, Perez GF, Pancham K, Mubeen H, Abbasi A, Wang J, Eng S, Colberg-Poley AM, Pillai DK, Rose MC. Directional secretory response of double stranded RNA-induced thymic stromal lymphopoetin (TSLP) and CCL11/eotaxin-1 in human asthmatic airways. PLoS One 2014; 9:e115398. [PMID: 25546419 PMCID: PMC4278901 DOI: 10.1371/journal.pone.0115398] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/21/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. METHODS Primary human bronchial epithelial cells (HBEC) from control (n = 3) and asthmatic (n = 3) donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI) conditions and treated apically with dsRNA (viral surrogate) or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC) from normal (n = 3) and asthmatic (n = 3) donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20) vs. non-asthmatic uninfected controls (n = 20). Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. RESULTS Our data demonstrate that: 1) Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2) TSLP exposure induces unidirectional (apical) secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3) Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. CONCLUSIONS There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations.
Collapse
Affiliation(s)
- Gustavo Nino
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, United States of America
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology, George Washington University, Washington, DC, United States of America
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, United States of America
- * E-mail:
| | - Shehlanoor Huseni
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, United States of America
| | - Geovanny F. Perez
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, United States of America
| | - Krishna Pancham
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, United States of America
| | - Humaira Mubeen
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, United States of America
| | - Aleeza Abbasi
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Justin Wang
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, United States of America
| | - Stephen Eng
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, United States of America
| | - Anamaris M. Colberg-Poley
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology, George Washington University, Washington, DC, United States of America
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, United States of America
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, United States of America
| | - Dinesh K. Pillai
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology, George Washington University, Washington, DC, United States of America
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, United States of America
| | - Mary C. Rose
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, United States of America
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology, George Washington University, Washington, DC, United States of America
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, United States of America
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, United States of America
| |
Collapse
|