1
|
Jeitner TM, Azcona JA, Ables GP, Cooke D, Horowitz MC, Singh P, Kelly JM, Cooper AJL. Cystine rather than cysteine is the preferred substrate for β-elimination by cystathionine γ-lyase: implications for dietary methionine restriction. GeroScience 2024; 46:3617-3634. [PMID: 37217633 PMCID: PMC11229439 DOI: 10.1007/s11357-023-00788-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/31/2023] [Indexed: 05/24/2023] Open
Abstract
Dietary methionine restriction (MR) increases longevity by improving health. In experimental models, MR is accompanied by decreased cystathionine β-synthase activity and increased cystathionine γ-lyase activity. These enzymes are parts of the transsulfuration pathway which produces cysteine and 2-oxobutanoate. Thus, the decrease in cystathionine β-synthase activity is likely to account for the loss of tissue cysteine observed in MR animals. Despite this decrease in cysteine levels, these tissues exhibit increased H2S production which is thought to be generated by β-elimination of the thiol moiety of cysteine, as catalyzed by cystathionine β-synthase or cystathionine γ-lyase. Another possibility for this H2S production is the cystathionine γ-lyase-catalyzed β-elimination of cysteine persulfide from cystine, which upon reduction yields H2S and cysteine. Here, we demonstrate that MR increases cystathionine γ-lyase production and activities in the liver and kidneys, and that cystine is a superior substrate for cystathionine γ-lyase catalyzed β-elimination as compared to cysteine. Moreover, cystine and cystathionine exhibit comparable Kcat/Km values (6000 M-1 s-1) as substrates for cystathionine γ-lyase-catalyzed β-elimination. By contrast, cysteine inhibits cystathionine γ-lyase in a non-competitive manner (Ki ~ 0.5 mM), which limits its ability to function as a substrate for β-elimination by this enzyme. Cysteine inhibits the enzyme by reacting with its pyridoxal 5'-phosphate cofactor to form a thiazolidine and in so doing prevents further catalysis. These enzymological observations are consistent with the notion that during MR cystathionine γ-lyase is repurposed to catabolize cystine and thereby form cysteine persulfide, which upon reduction produces cysteine.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA.
| | - Juan A Azcona
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Gene P Ables
- Orentreich Foundation for the Advancement of Science, Inc, 855 Route 301, Cold Spring, NY, 10516, USA
| | - Diana Cooke
- Orentreich Foundation for the Advancement of Science, Inc, 855 Route 301, Cold Spring, NY, 10516, USA
| | - Mark C Horowitz
- Department of Orthopedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Pradeep Singh
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - James M Kelly
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, 516 East 72Nd St, New York, NY, 10021, USA
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
2
|
Kurihara Y, Tashiro H, Konomi Y, Sadamatsu H, Ihara S, Takamori A, Kimura S, Sueoka-Aragane N, Takahashi K. Thymic stromal lymphopoietin contributes to ozone-induced exacerbations of eosinophilic airway inflammation via granulocyte colony-stimulating factor in mice. Allergol Int 2024; 73:313-322. [PMID: 38145912 DOI: 10.1016/j.alit.2023.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Ozone is one of the triggers of asthma, but its impact on the pathophysiology of asthma, such as via airway inflammation and airway hyperresponsiveness (AHR), is not fully understood. Thymic stromal lymphopoietin (TSLP) is increasingly seen as a crucial molecule associated with asthma severity, such as corticosteroid resistance. METHODS Female BALB/c mice sensitized and challenged with house dust mite (HDM) were exposed to ozone at 2 ppm for 3 h. Airway inflammation was assessed by the presence of inflammatory cells in bronchoalveolar lavage fluid and concentrations of cytokines including TSLP in lung. Anti-TSLP antibody was administered to mice to block the signal. Survival and adhesion of bone marrow-derived eosinophils in response to granulocyte colony-stimulating factor (G-CSF) were evaluated. RESULTS Ozone exposure increased eosinophilic airway inflammation and AHR in mice sensitized and challenged with HDM. In addition, TSLP, but not IL-33 and IL-25, was increased in lung by ozone exposure. To confirm whether TSLP signaling is associated with airway responses to ozone, an anti-TSLP antibody was administered, and it significantly attenuated eosinophilic airway inflammation, but not AHR. Interestingly, G-CSF, but not type 2 cytokines such as IL-4, IL-5, and IL-13, was regulated by TSLP signaling associated with eosinophilic airway inflammation, and G-CSF prolonged survival and activated eosinophil adhesion. CONCLUSIONS The present data show that TSLP contributes to ozone-induced exacerbations of eosinophilic airway inflammation and provide greater understanding of ozone-induced severity mechanisms in the pathophysiology of asthma related to TSLP and G-CSF.
Collapse
Affiliation(s)
- Yuki Kurihara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University Hospital, Saga, Japan
| | - Hiroki Tashiro
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University Hospital, Saga, Japan.
| | - Yoshie Konomi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University Hospital, Saga, Japan
| | - Hironori Sadamatsu
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University Hospital, Saga, Japan
| | - Satoshi Ihara
- Department of Graduate School of Science and Engineering, Saga University, Saga, Japan
| | - Ayako Takamori
- Clinical Research Center, Saga University Hospital, Saga, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University Hospital, Saga, Japan
| | - Naoko Sueoka-Aragane
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University Hospital, Saga, Japan
| | - Koichiro Takahashi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University Hospital, Saga, Japan
| |
Collapse
|
3
|
Karaman Y, Kaya-Yasar Y, Eylem CC, Onder SC, Nemutlu E, Bozkurt TE, Sahin-Erdemli I. The effect of mitochondria-targeted slow hydrogen sulfide releasing donor AP39-treatment on airway inflammation. Eur J Pharmacol 2023; 946:175619. [PMID: 36828102 DOI: 10.1016/j.ejphar.2023.175619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Mitochondrial dysfunction has been shown to contribute to the pathophysiology of airway diseases. Therefore, mitochondria are targeted in the development of new therapeutic approaches. Hydrogen sulfide (H2S) has been shown to be involved in the pathophysiological processes of airway inflammation. We aimed to evaluate the effect of mitochondria-targeted slow H2S releasing donor AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol5yl)phenoxy)decyl)triphenylphosphoniumbromide)] on lipopolysaccharide (LPS)-induced airway inflammation in mice. LPS was applied to female Balb/c mice by intranasal (i.n.) route to induce airway inflammation and the subgroups of mice were treated with i.n. AP39 (250-1000 nmol/kg). 48 h after LPS administration airway reactivity was evaluated in vivo, then bronchoalveolar lavage (BAL) fluid and lungs were collected. LPS application led to bronchial hyperreactivity and neutrophil infiltration into the lung tissues along with increased TNF-α, IL-1β and IL-6 levels in BAL fluid. LPS also induced an increase in the rate of glycolysis, glycogenolysis and Krebs-cycle. AP39 treatment prevented the LPS-induced bronchial hyperreactivity and reversed the increase in TNF-α and IL-6 levels in BAL fluid. The increase in neutrophil numbers in BAL fluid was also prevented by AP39 treatment at the highest dose. Our results indicate that AP39 can prevent bronchial hyperreactivity and decrease airway inflammation. Targeting H2S to the mitochondria may be a new therapeutic approach in airway inflammation.
Collapse
Affiliation(s)
- Yasemin Karaman
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey.
| | - Yesim Kaya-Yasar
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacology, Trabzon, Turkey
| | - Cemil Can Eylem
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Sevgen Celik Onder
- Hacettepe University, Faculty of Medicine, Department of Pathology, Ankara, Turkey
| | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey; Hacettepe University, Faculty of Pharmacy, Bioanalytic and Omics Laboratory, Ankara, Turkey
| | - Turgut Emrah Bozkurt
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| | - Inci Sahin-Erdemli
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| |
Collapse
|
4
|
Duan J, Xiang L, Yang Z, Chen L, Gu J, Lu K, Ma D, Zhao H, Yi B, Zhao H, Ning J. Methionine Restriction Prevents Lipopolysaccharide-Induced Acute Lung Injury via Modulating CSE/H 2S Pathway. Nutrients 2022; 14:322. [PMID: 35057502 PMCID: PMC8777780 DOI: 10.3390/nu14020322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) result in high mortality, whereas effective treatments are limited. Methionine restriction (MR) has been reported to offer various benefits against multiple pathological processes of organ injuries. However, it remains unknown whether MR has any potential therapeutic value for ALI/ARDS. The current study was set to investigate the therapeutic potential of MR on lipopolysaccharide (LPS)-induced ALI and its underlying mechanisms. We found that MR attenuated LPS-induced pulmonary edema, hemorrhage, atelectasis, and alveolar epithelial cell injuries in mice. MR upregulated cystathionine-gamma-lyase (CSE) expression and enhanced the production of hydrogen sulfide (H2S). MR also inhibited the activation of Toll-like receptors 4 (TLR4)/NF-κB/NOD-like receptor protein 3 (NLRP3), then reduced IL-1β, IL-6, and TNF-α release and immune cell infiltration. Moreover, the protective effects of MR on LPS-induced ALI were abrogated by inhibiting CSE, whereas exogenous H2S treatment alone mimicked the protective effects of MR in Cse-/- mice after LPS administration. In conclusion, our findings showed that MR attenuated LPS-induced lung injury through CSE and H2S modulation. This work suggests that developing MR towards clinical use for ALI/ARDS patients may be a valuable strategy.
Collapse
Affiliation(s)
- Jiaxiang Duan
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Lunli Xiang
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China;
| | - Zhen Yang
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Li Chen
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China;
| | - Jianteng Gu
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Kaizhi Lu
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, UK; (D.M.); (H.Z.)
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, UK; (D.M.); (H.Z.)
| | - Bin Yi
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Hongwen Zhao
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China;
| | - Jiaolin Ning
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| |
Collapse
|
5
|
The Role of Hydrogen Sulfide in Respiratory Diseases. Biomolecules 2021; 11:biom11050682. [PMID: 34062820 PMCID: PMC8147381 DOI: 10.3390/biom11050682] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability around the globe, with a diverse range of health problems. Treatment of respiratory diseases and infections has been verified to be thought-provoking because of the increasing incidence and mortality rate. Hydrogen sulfide (H2S) is one of the recognized gaseous transmitters involved in an extensive range of cellular functions, and physiological and pathological processes in a variety of diseases, including respiratory diseases. Recently, the therapeutic potential of H2S for respiratory diseases has been widely investigated. H2S plays a vital therapeutic role in obstructive respiratory disease, pulmonary fibrosis, emphysema, pancreatic inflammatory/respiratory lung injury, pulmonary inflammation, bronchial asthma and bronchiectasis. Although the therapeutic role of H2S has been extensively studied in various respiratory diseases, a concrete literature review will have an extraordinary impact on future therapeutics. This review provides a comprehensive overview of the effective role of H2S in respiratory diseases. Besides, we also summarized H2S production in the lung and its metabolism processes in respiratory diseases.
Collapse
|
6
|
Shrestha D, Bhat SM, Massey N, Santana Maldonado C, Rumbeiha WK, Charavaryamath C. Pre-exposure to hydrogen sulfide modulates the innate inflammatory response to organic dust. Cell Tissue Res 2021; 384:129-148. [PMID: 33409657 DOI: 10.1007/s00441-020-03333-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/29/2020] [Indexed: 01/31/2023]
Abstract
Animal production units produce and store many contaminants on-site, including organic dust (OD) and hydrogen sulfide (H2S). Workers in these settings report various respiratory disease symptoms. Both OD and H2S have shown to induce lung inflammation. However, impact of co-exposure to both H2S and OD has not been investigated. Therefore, we tested a hypothesis that pre-exposure to H2S modulates the innate inflammatory response of the lungs to organic dust. In a mouse model of H2S and organic dust extract (ODE) exposure, we assessed lung inflammation quantitatively. We exposed human airway epithelial and monocytic cells to medium or H2S alone or H2S followed by ODE and measured cell viability, oxidative stress, and other markers of inflammation. Exposure to 10 ppm H2S followed by ODE increased the lavage fluid leukocytes. However, exposure to 10 ppm H2S alone resulted in changes in tight junction proteins, an increase in mRNA levels of tlr2 and tlr4 as well as ncf1, ncf4, hif1α, and nrf2. H2S alone or H2S and ODE exposure decreased cell viability and increased reactive nitrogen species production. ODE exposure increased the transcripts of tlr2 and tlr4 in both in vitro and in vivo models, whereas increased nfkbp65 transcripts following exposure to ODE and H2S was seen only in in vitro model. H2S alone and H2S followed by ODE exposure increased the levels of IL-1β. We conclude that pre-exposure to H2S modulates lung innate inflammatory response to ODE.
Collapse
Affiliation(s)
- Denusha Shrestha
- Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Sanjana Mahadev Bhat
- Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA.,Immunobiology Interdepartmental Graduate Program, Iowa State University, Ames, IA, 50011, USA
| | - Nyzil Massey
- Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | | | - Wilson K Rumbeiha
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | |
Collapse
|
7
|
Karaman Y, Kaya-Yasar Y, Bozkurt TE, Sahin-Erdemli I. Hydrogen sulfide donors prevent lipopolysaccharide-induced airway hyperreactivity in an in vitro model of chronic inflammation in mice. Basic Clin Pharmacol Toxicol 2020; 128:652-660. [PMID: 33369105 DOI: 10.1111/bcpt.13551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 11/24/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
We aimed to investigate and compare the effects of rapid (NaHS) and slow (GYY4137 and AP39) hydrogen sulfide (H2 S) releasing donors on LPS-induced tracheal hyperreactivity and pro-inflammatory cytokine levels in lung tissues of mice. Tissues were isolated from male BALB/c mice and incubated with LPS (10 µg/mL) in tissue culture. The subgroups were incubated with NaHS, GYY4137 and mitochondria-targeted donor AP39. LPS incubation did not alter contraction response to carbachol, but enhanced 5-HT and bradykinin-induced contractions in tracheal rings, and elevated IL-1β, IL-6 and TNF-α levels in lung homogenates. NaHS at 300 µmol/L and 1000 µmol/L, GYY4137 at 30 µmol/L and 100 µmol/L, and AP39 at 30 nmol/L concentrations inhibited the tracheal hyperreactivity to 5-HT, whereas none of these donors affected the enhanced contraction to bradykinin. GYY4137 was also effective to inhibit 5-HT hyperreactivity acutely. In lung tissues, NaHS prevented the elevation of IL-1β level at 1000 μmol/L, and IL-6 and TNF-α levels at 100 μmol/L concentrations. Incubation with GYY4137 (100 µmol/L) and AP39 (30 nmol/L and 300 nmol/L) inhibited the increase in IL-6 and TNF-α levels, but not IL-1β at concentrations that they affected tracheal hyperreactivity. These results indicate that H2 S donors can decrease inflammation and prevent airway hyperreactivity.
Collapse
Affiliation(s)
- Yasemin Karaman
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Ankara, Turkey
| | - Yesim Kaya-Yasar
- Faculty of Pharmacy, Department of Pharmacology, Karadeniz Technical University, Trabzon, Turkey
| | - T Emrah Bozkurt
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Ankara, Turkey
| | - Inci Sahin-Erdemli
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
8
|
Abstract
This review addresses the plausibility of hydrogen sulfide (H2S) therapy for acute lung injury (ALI) and circulatory shock, by contrasting the promising preclinical results to the present clinical reality. The review discusses how the narrow therapeutic window and width, and potentially toxic effects, the route, dosing, and timing of administration all have to be balanced out very carefully. The development of standardized methods to determine in vitro and in vivo H2S concentrations, and the pharmacokinetics and pharmacodynamics of H2S-releasing compounds is a necessity to facilitate the safety of H2S-based therapies. We suggest the potential of exploiting already clinically approved compounds, which are known or unknown H2S donors, as a surrogate strategy.
Collapse
|
9
|
Fuschillo S, Palomba L, Capparelli R, Motta A, Maniscalco M. Nitric Oxide and Hydrogen Sulfide: A Nice Pair in the Respiratory System. Curr Med Chem 2020; 27:7136-7148. [DOI: 10.2174/0929867327666200310120550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/25/2020] [Accepted: 02/05/2020] [Indexed: 01/15/2023]
Abstract
Nitric Oxide (NO) is internationally regarded as a signal molecule involved in several
functions in the respiratory tract under physiological and pathogenic conditions. Hydrogen Sulfide
(H2S) has also recently been recognized as a new gasotransmitter with a diverse range of functions
similar to those of NO.
Depending on their respective concentrations, both these molecules act synergistically or antagonistically
as signals or damage promoters. Nevertheless, available evidence shows that the complex
biological connections between NO and H2S involve multiple pathways and depend on the site of
action in the respiratory tract, as well as on experimental conditions. This review will provide an
update on these two gasotransmitters in physiological and pathological processes.
Collapse
Affiliation(s)
- Salvatore Fuschillo
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, 82037 Telese Terme (BN), Italy
| | - Letizia Palomba
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy
| | - Rosanna Capparelli
- Department of Agriculture, University of Naples “Federico II”, 80055 Portici, (NA), Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli (NA), Italy
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, 82037 Telese Terme (BN), Italy
| |
Collapse
|
10
|
Wiegman CH, Li F, Ryffel B, Togbe D, Chung KF. Oxidative Stress in Ozone-Induced Chronic Lung Inflammation and Emphysema: A Facet of Chronic Obstructive Pulmonary Disease. Front Immunol 2020; 11:1957. [PMID: 32983127 PMCID: PMC7492639 DOI: 10.3389/fimmu.2020.01957] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD) caused by cigarette smoke and characterized by chronic inflammation, alveolar destruction (emphysema) and bronchiolar obstruction. Ozone is a gaseous constituent of urban air pollution resulting from photochemical interaction of air pollutants such as nitrogen oxide and organic compounds. While acute exposure to ozone induces airway hyperreactivity and neutrophilic inflammation, chronic ozone exposure in mice causes activation of oxidative pathways resulting in cell death and a chronic bronchial inflammation with emphysema, mimicking cigarette smoke-induced COPD. Therefore, the chronic exposure to ozone has become a model for studying COPD. We review recent data on mechanisms of ozone induced lung disease focusing on pathways causing chronic respiratory epithelial cell injury, cell death, alveolar destruction, and tissue remodeling associated with the development of chronic inflammation and AHR. The initial oxidant insult may result from direct effects on the integrity of membranes and organelles of exposed epithelial cells in the airways causing a stress response with the release of mitochondrial reactive oxygen species (ROS), DNA, and proteases. Mitochondrial ROS and mitochondrial DNA activate NLRP3 inflammasome and the DNA sensors cGAS and STING accelerating cell death pathways including caspases with inflammation enhancing alveolar septa destruction, remodeling, and fibrosis. Inhibitors of mitochondrial ROS, NLRP3 inflammasome, DNA sensor, cell death pathways, and IL-1 represent novel therapeutic targets for chronic airways diseases underlined by oxidative stress.
Collapse
Affiliation(s)
- Coen H. Wiegman
- Section of Airways Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Feng Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France
| | - Dieudonnée Togbe
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France
- ArtImmune SAS, Orléans, France
| | - Kian Fan Chung
- Section of Airways Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Shao H, Huang L, Duan S, Gao M, Zhu J, Chen X, Zhu Y, Wang W, Yang Z, Wang X, Wang Z, Wang Z, Ba Y, Zhang R, Li C, Zhang Q, Wang J, Liu H, Wu W, Feng F. Glyburide attenuates ozone-induced pulmonary inflammation and injury by blocking the NLRP3 inflammasome. ENVIRONMENTAL TOXICOLOGY 2020; 35:831-839. [PMID: 32167222 DOI: 10.1002/tox.22919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/23/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Glyburide is a classic antidiabetic drug that is dominant in inflammation regulation, but its specific role in ozone-induced lung inflammation and injury remains unclear. In order to investigate whether glyburide prevents ozone-induced pulmonary inflammation and its mechanism, C57BL/6 mice were intratracheally pre-instilled with glyburide or the vehicle 1 hour before ozone (1 ppm, 3 hours) or filtered air exposure. After 24 hours, the total inflammatory cells and total protein in bronchoalveolar lavage fluid (BALF) were detected. The pathological alternations in lung tissues were evaluated by HE staining. The expression of NLRP3, interleukin-1β (IL-1β), and IL-18 protein in lung tissues was detected by immunohistochemistry. Western blotting was used to examine the levels of caspase-1 p10 and active IL-1β protein. Levels of IL-1β and IL-18 in BALF were measured using ELISA kits. Glyburide treatment decreased the total cells in BALF, the inflammatory score, and the mean linear intercept induced by ozone in lung tissues. In addition, glyburide inhibited the expression of NLRP3, IL-18, and IL-1β protein in lung tissues, and also suppressed NLRP3 inflammasome activation, including caspase-1 p10, active IL-1β protein in lung tissues, IL-1β, and IL-18 in BALF. These results demonstrate that glyburide effectively attenuates ozone-induced pulmonary inflammation and injury via blocking the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hua Shao
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Li Huang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuyin Duan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Min Gao
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiacheng Zhu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohui Chen
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yajuan Zhu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenhan Wang
- College of Medical Laboratory Technology, Zhengzhou University, Zhengzhou, Henan, China
| | - Zengwen Yang
- College of Medical Laboratory Technology, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinyu Wang
- College of Medical Laboratory Technology, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Wang
- College of Medical Laboratory Technology, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhimin Wang
- College of Medical Laboratory Technology, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Ba
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruiqin Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyang Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Wang
- Department of Pulmonary Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Liu
- Department of Pulmonary Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Jiang T, Yang W, Zhang H, Song Z, Liu T, Lv X. Hydrogen Sulfide Ameliorates Lung Ischemia-Reperfusion Injury Through SIRT1 Signaling Pathway in Type 2 Diabetic Rats. Front Physiol 2020; 11:596. [PMID: 32695008 PMCID: PMC7338566 DOI: 10.3389/fphys.2020.00596] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
Lung ischemia-reperfusion (IR) injury remains a significant factor for the early mortality of lung transplantations. Diabetes mellitus (DM) is an independent risk factor for 5-year mortality following lung transplantation. Our previous study showed that DM aggravated lung IR injury and that oxidative stress played a key role in this process. Previously, we demonstrated that hydrogen sulfide (H2S) protected against diabetic lung IR injury by suppressing oxidative damage. This study aimed to examine the mechanism by which H2S affects diabetic lung IR injury. High-fat-diet-fed streptozotocin-induced type 2 diabetic rats were exposed to GYY4137, a slow-releasing H2S donor with or without administration of EX527 (a SIRT1 inhibitor), and then subjected to a surgical model of IR injury of the lung. Lung function, oxidative stress, cell apoptosis, and inflammation were assessed. We found that impairment of lung SIRT1 signaling under type 2 diabetic conditions was further exacerbated by IR injury. GYY4137 treatment markedly activated SIRT1 signaling and ameliorated lung IR injury in type 2 DM animals by improving lung functional recovery, diminishing oxidative damage, reducing inflammation, and suppressing cell apoptosis. However, these effects were largely compromised by EX527. Additionally, treatment with GYY4137 significantly activated the Nrf2/HO-1 antioxidant signaling pathway and increased eNOS phosphorylation. However, these effects were largely abolished by EX527. Together, our results indicate that GYY4137 treatment effectively attenuated lung IR injury under type 2 diabetic conditions via activation of lung SIRT1 signaling. SIRT1 activation upregulated Nrf2/HO-1 and activated the eNOS-mediated antioxidant signaling pathway, thus reducing cell apoptosis and inflammation and eventually preserving lung function.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Weiwei Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Hongli Zhang
- Department of Ophthalmology, Daqing Fifth Hospital, Daqing, China
| | - Zhiqiang Song
- Department of Geriatrics, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tianhua Liu
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiangqi Lv
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Sokolowska M, Quesniaux VFJ, Akdis CA, Chung KF, Ryffel B, Togbe D. Acute Respiratory Barrier Disruption by Ozone Exposure in Mice. Front Immunol 2019; 10:2169. [PMID: 31608051 PMCID: PMC6758598 DOI: 10.3389/fimmu.2019.02169] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Ozone exposure causes irritation, airway hyperreactivity (AHR), inflammation of the airways, and destruction of alveoli (emphysema), the gas exchange area of the lung in human and mice. This review focuses on the acute disruption of the respiratory epithelial barrier in mice. A single high dose ozone exposure (1 ppm for 1 h) causes first a break of the bronchiolar epithelium within 2 h with leak of serum proteins in the broncho-alveolar space, disruption of epithelial tight junctions and cell death, which is followed at 6 h by ROS activation, AHR, myeloid cell recruitment, and remodeling. High ROS levels activate a novel PGAM5 phosphatase dependent cell-death pathway, called oxeiptosis. Bronchiolar cell wall damage and inflammation upon a single ozone exposure are reversible. However, chronic ozone exposure leads to progressive and irreversible loss of alveolar epithelial cells and alveoli with reduced gas exchange space known as emphysema. It is further associated with chronic inflammation and fibrosis of the lung, resembling other environmental pollutants and cigarette smoke in pathogenesis of asthma, and chronic obstructive pulmonary disease (COPD). Here, we review recent data on the mechanisms of ozone induced injury on the different cell types and pathways with a focus on the role of the IL-1 family cytokines and the related IL-33. The relation of chronic ozone exposure induced lung disease with asthma and COPD and the fact that ozone exacerbates asthma and COPD is emphasized.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Valerie F J Quesniaux
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Kian Fan Chung
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France
| | - Dieudonnée Togbe
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France.,ArtImmune SAS, Artinem, Orléans, France
| |
Collapse
|
14
|
Kasahara DI, Wilkinson JE, Cho Y, Cardoso AP, Huttenhower C, Shore SA. The interleukin-33 receptor contributes to pulmonary responses to ozone in male mice: role of the microbiome. Respir Res 2019; 20:197. [PMID: 31455422 PMCID: PMC6712741 DOI: 10.1186/s12931-019-1168-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/19/2019] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Interleukin-33 is released in the airways following acute ozone exposure and has the ability to cause airway hyperresponsiveness, a defining feature of asthma. Ozone causes greater airway hyperresponsiveness in male than female mice. Moreover, sex differences in the gut microbiome account for sex differences in this response to ozone. The purpose of this study was to determine whether there were sex differences in the role of interleukin-33 in ozone-induced airway hyperresponsiveness and to examine the role of the microbiome in these events. METHODS Wildtype mice and mice genetically deficient in ST2, the interleukin-33 receptor, were housed from weaning with either other mice of the same genotype and sex, or with mice of the same sex but opposite genotype. At 15 weeks of age, fecal pellets were harvested for 16S rRNA sequencing and the mice were then exposed to air or ozone. Airway responsiveness was measured and a bronchoalveolar lavage was performed 24 h after exposure. RESULTS In same-housed mice, ozone-induced airway hyperresponsiveness was greater in male than female wildtype mice. ST2 deficiency reduced ozone-induced airway hyperresponsiveness in male but not female mice and abolished sex differences in the response to ozone. However, sex differences in the role of interleukin-33 were unrelated to type 2 cytokine release: ozone-induced increases in bronchoalveolar lavage interleukin-5 were greater in females than males and ST2 deficiency virtually abolished interleukin-5 in both sexes. Since gut microbiota contribute to sex differences in ozone-induced airway hyperresponsiveness, we examined the role of the microbiome in these ST2-dependent sex differences. To do so, we cohoused wildtype and ST2 deficient mice, a situation that allows for transfer of microbiota among cage-mates. Cohousing altered the gut microbial community structure, as indicated by 16S rRNA gene sequencing of fecal DNA and reversed the effect of ST2 deficiency on pulmonary responses to ozone in male mice. CONCLUSIONS The data indicate that the interleukin-33 /ST2 pathway contributes to ozone-induced airway hyperresponsiveness in male mice and suggest that the role of interleukin-33 is mediated at the level of the gut microbiome.
Collapse
Affiliation(s)
- David I. Kasahara
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Av Bld1 room 319, Boston, MA 02115 USA
| | - Jeremy E. Wilkinson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115 USA
| | - Youngji Cho
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Av Bld1 room 319, Boston, MA 02115 USA
| | - Aline P. Cardoso
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Av Bld1 room 319, Boston, MA 02115 USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115 USA
| | - Stephanie A. Shore
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Av Bld1 room 319, Boston, MA 02115 USA
| |
Collapse
|
15
|
Mumby S, Chung KF, Adcock IM. Transcriptional Effects of Ozone and Impact on Airway Inflammation. Front Immunol 2019; 10:1610. [PMID: 31354743 PMCID: PMC6635463 DOI: 10.3389/fimmu.2019.01610] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/27/2019] [Indexed: 12/24/2022] Open
Abstract
Epidemiological and challenge studies in healthy subjects and in individuals with asthma highlight the health impact of environmental ozone even at levels considered safe. Acute ozone exposure in man results in sputum neutrophilia in 30% of subjects particularly young children, females, and those with ongoing cardiopulmonary disease. This may be associated with systemic inflammation although not in all cases. Chronic exposure amplifies these effects and can result in the formation of asthma-like symptoms and immunopathology. Asthmatic patients who respond to ozone (responders) induce a greater number of genes in bronchoalveolar (BAL) macrophages than healthy responders with up-regulation of inflammatory and immune pathways under the control of cytokines and chemokines and the enhanced expression of remodeling and repair programmes including those associated with protease imbalances and cell-cell adhesion. These pathways are under the control of several key transcription regulatory factors including nuclear factor (NF)-κB, anti-oxidant factors such as nuclear factor (erythroid-derived 2)-like 2 NRF2, the p38 mitogen activated protein kinase (MAPK), and priming of the immune system by up-regulating toll-like receptor (TLR) expression. Murine and cellular models of acute and chronic ozone exposure recapitulate the inflammatory effects seen in humans and enable the elucidation of key transcriptional pathways. These studies emphasize the importance of distinct transcriptional networks in driving the detrimental effects of ozone. Studies indicate the critical role of mediators including IL-1, IL-17, and IL-33 in driving ozone effects on airway inflammation, remodeling and hyperresponsiveness. Transcription analysis and proof of mechanisms studies will enable the development of drugs to ameliorate the effects of ozone exposure in susceptible individuals.
Collapse
Affiliation(s)
- Sharon Mumby
- Respiratory Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kian Fan Chung
- Respiratory Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- Respiratory Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Xu M, Wang L, Wang M, Wang H, Zhang H, Chen Y, Wang X, Gong J, Zhang JJ, Adcock IM, Chung KF, Li F. Mitochondrial ROS and NLRP3 inflammasome in acute ozone-induced murine model of airway inflammation and bronchial hyperresponsiveness. Free Radic Res 2019; 53:780-790. [PMID: 31185753 DOI: 10.1080/10715762.2019.1630735] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidative stress is a key mechanism underlying ozone-induced lung injury. Mitochondria can release mitochondrial reactive oxidative species (mtROS), which may lead to the activation of NLRP3 inflammasome. The goal of this study was to examine the roles of mtROS and NLRP3 inflammasome in acute ozone-induced airway inflammation and bronchial hyperresponsiveness (BHR). C57/BL6 mice (n = 8/group) were intraperitoneally treated with vehicle (phosphate buffered saline, PBS) or mitoTEMPO (mtROS inhibitor, 20 mg/kg), or orally treated with VX-765 (caspse-1 inhibitor, 100 mg/kg) 1 h before the ozone exposure (2.5 ppm, 3 h). Compared to the PBS-treated ozone-exposed mice, mitoTEMPO reduced the level of total malondialdehyde in bronchoalveolar lavage (BAL) fluid and increased the expression of mitochondrial complexes II and IV in the lung 24 h after single ozone exposure. VX-765 inhibited ozone-induced BHR, BAL total cells including neutrophils and eosinophils, and BAL inflammatory cytokines including IL-1α, IL-1β, KC, and IL-6. Both mitoTEMPO and VX-765 reduced ozone-induced mtROS and inhibited capase-1 activity in lung tissue whilst VX-765 further inhibited DRP1 and MFF expression, increased MFN2 expression, and down-regulated caspase-1 expression in the lung tissue. These results indicate that acute ozone exposure induces mitochondrial dysfunction and NLRP3 inflammasome activation, while the latter has a critical role in the pathogenesis of ozone-induced airway inflammation and BHR.
Collapse
Affiliation(s)
- Mengmeng Xu
- a Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Lei Wang
- b Department of Otorhinolaryngology and Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Muyun Wang
- a Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Hanying Wang
- b Department of Otorhinolaryngology and Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Hai Zhang
- a Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Yuqing Chen
- a Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Xiaohui Wang
- a Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| | - Jicheng Gong
- c Duke Global Health Institute and Nicholas School of the Environment, Duke University , Durham , NC , USA.,d College of Environmental Sciences and Engineering and BIC-ESAT, Peking University , Beijing , PR China
| | - Junfeng Jim Zhang
- d College of Environmental Sciences and Engineering and BIC-ESAT, Peking University , Beijing , PR China.,e Global Health Research Center, Duke Kun Shan University , Kunshan , PR China
| | - Ian M Adcock
- f Airway Disease Section, National Heart and Lung Institute, Imperial College London , London , UK.,g Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle , Newcastle , Australia
| | - Kian Fan Chung
- f Airway Disease Section, National Heart and Lung Institute, Imperial College London , London , UK
| | - Feng Li
- a Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai , PR China
| |
Collapse
|
17
|
Qiu H, Chen X, Luo Z, Zhao L, Zhang T, Yang N, Long X, Xie H, Liu J, Xu W. Inhibition of endogenous hydrogen sulfide production exacerbates the inflammatory response during urine-derived sepsis-induced kidney injury. Exp Ther Med 2018; 16:2851-2858. [PMID: 30214506 PMCID: PMC6125834 DOI: 10.3892/etm.2018.6520] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 06/22/2017] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to investigate the effects of endogenous H2S on the inflammatory response in kidneys following urine-derived sepsis-induced injury. A rabbit model of urine-derived sepsis was established by injecting Escherichia coli into the ligated ureter. Rabbits were randomly divided into the, control, sham, sepsis and DL-propargylglycine (PAG)-treated sepsis groups. The same surgical procedure except for the bacteria injection was performed for the sham group, while the control group was fed on normal diet without any additional treatments. The monitoring of vital signs, routine blood examinations and kidney function tests were performed prior to surgery and at 12, 24, 36 and 48 h following surgery. The serum H2S concentration and kidney cystathionine-γ-lyase (CSE) activity were determined following surgery. Pathological alterations were assessed by hematoxylin and eosin (H&E) staining, and the expression levels of inflammation-associated cytokines were detected by western blot analysis. The results demonstrated that rabbits in the sepsis and PAG groups exhibited a significant increase in rectal temperature, heart rate and respiratory rate following surgery when compared with the sham group; with the PAG group demonstrating the greatest increase. In addition, white cell counts and creatinine and urea nitrogen levels were significantly elevated following surgery in the sepsis and PAG groups when compared with the sham group. The serum H2S concentration and kidney CSE activity were significantly reduced in the sepsis group compared with the sham group, and a significant decrease in the levels of these factors were observed in the PAG group compared with the sepsis group. H&E staining indicated obvious structural abnormalities in kidney tissues in the sepsis group, which were exacerbated by PAG treatment. In addition, PAG treatment significantly increased the expression levels of nuclear factor-κB and interleukin-6, and decreased transforming growth factor-β1 expression when compared with the sepsis group. In conclusion, PAG significantly exacerbated urine-derived sepsis-induced kidney injury potentially via altering the expression of inflammation-associated cytokines.
Collapse
Affiliation(s)
- Huili Qiu
- School of Nursing, Changsha Medical University, Changsha, Hunan 410219, P.R. China
| | - Xian Chen
- Department of Urology, Second Affiliated Hospital of The University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhigang Luo
- Department of Urology, Second Affiliated Hospital of The University of South China, Hengyang, Hunan 421001, P.R. China
| | - Liwen Zhao
- Department of Urology, Second Affiliated Hospital of The University of South China, Hengyang, Hunan 421001, P.R. China
| | - Tao Zhang
- Department of Urology, Second Affiliated Hospital of The University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ning Yang
- Department of Urology, Second Affiliated Hospital of The University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiangyang Long
- Department of Urology, Second Affiliated Hospital of The University of South China, Hengyang, Hunan 421001, P.R. China
| | - Huang Xie
- Department of Urology, Second Affiliated Hospital of The University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jun Liu
- Department of Urology, Second Affiliated Hospital of The University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wujun Xu
- Department of Urology, Second Affiliated Hospital of The University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
18
|
Abstract
Cyclosporine A (CsA) induces hypertension after transplantation. Hydrogen sulfide (H2S) was found to have hypotensive/vasoprotective effects in the cardiovascular system. The present study aims to investigate the role of H2S on CsA-induced vascular function disorder in rats. Rats were subcutaneously injected with CsA 25 mg/kg for 21 days. Blood pressure was measured by the tail-cuff method. Vasomotion was determined using a sensitive myograph. Western blotting and immunohistochemistry were used to quantify the protein expression of endothelin type A (ETA) receptor and essential MAPK pathway molecules. Vascular superoxide anion production and serum contents of malondialdehyde were determined. The results showed that sodium hydrosulfide (NaHS), a H2S donor, significantly attenuated the increase of blood pressure and contractile responses, and the upregulation of ETA receptor induced by CsA. In addition, NaHS could restore the CsA decreased acetylcholine-induced vasodilatation. Furthermore, NaHS blocked the CsA-induced elevation of reactive oxygen species level, extracellular signal-regulated kinase and p38 MAPK activities. In conclusion, H2S prevents CsA-induced vasomotor dysfunction. H2S attenuates CsA-induced ETA receptor upregulation, which may be associated with MAPK signal pathways. H2S ameliorates endothelial-dependent relaxation, which may be through antioxidant activity.
Collapse
|
19
|
Effects of ozone repeated short exposures on the airway/lung inflammation, airway hyperresponsiveness and mucus production in a mouse model of ovalbumin-induced asthma. Biomed Pharmacother 2018; 101:293-303. [PMID: 29499403 DOI: 10.1016/j.biopha.2018.02.079] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The purpose of this study is to explore the influence of ozone repeated short exposures on airway/lung inflammation, airway hyperresponsiveness (AHR) and airway hypersecretion in ovalbumin (OVA) sensitized/challenged asthmatic mouse model. METHODS OVA sensitization was performing by intraperitoneal injection. Ozone exposures (3ppm for 3hours) were given one hour after aerosolized OVA challenges (once every other day, 4 times totally). Methacholine (MCH) bronchial provocation tests, Liu's staining of BALF cell smears, hematoxylin-eosin (HE) staining and Periodic Acid-Schiff (PAS) staining of lung tissue were performed. Interleukins (ILs; IL-4, IL-13, IL-1β, and IL-18) protein (ELISA) and mRNA expression levels (RT-qPCR) in murine lung, 8-hydroxy-2'-deoxyguanosine (8-OHdG, ELISA), malondialdehyde (MDA, thiobarbituric acid assay), reduced glutathione (GSH, spectrophotometric method) in bronchoalveolar lavage fluid (BALF), and GSH1 mRNA relative expression levels (RT-qPCR) in lung tissue were analyzed. RESULT Repeated ozone exposures down-regulated the AHR to MCH in mice undergoing OVA sensitization and challenge, however not all parameters associated with asthma were decreased since obvious mucus hypersecretion was induced and airway inflammation increased slightly, especially around small airways. Following ozone co-exposure, the increase of IL-4 and IL-13 levels in murine lung caused by OVA sensitization/challenge were reversed. Instead, levels of IL-1β in BALF remained, higher than negative control group. Ozone repeated short exposures also induced significant increase of 8-OHdG in BALF in OVA sensitized and challenged mice. CONCLUSION For asthmatic mice undergoing ozone exposures, AHR is not an accurate indicator of the severity of asthma. Repeated short ozone exposures increase mucus hypersecretion, possibly via an increase in oxidative stress and immune dysregulation.
Collapse
|
20
|
Lu M, Jiang X, Tong L, Zhang F, Ma L, Dong X, Sun X. MicroRNA-21-Regulated Activation of the Akt Pathway Participates in the Protective Effects of H 2S against Liver Ischemia-Reperfusion Injury. Biol Pharm Bull 2018; 41:229-238. [PMID: 29187695 DOI: 10.1248/bpb.b17-00769] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Maintaining a certain level of hydrogen sulfide (H2S) in ischemia-reperfusion (I/R) is essential for limiting injury to the liver. Exogenous H2S exerts protective effects against this injury, but the mechanisms remain unclear. Liver injury was induced in Wistar rats undergoing hepatic I/R for 30 min, followed by a 3-h reperfusion. Administration of GYY4137 (a slow-releasing H2S donor) significantly attenuated the severity of liver injury and was reflected by reduced inflammatory cytokine production and cell apoptosis, the levels of which were elevated by I/R, while DL-propargylglycine (PAG, an inhibitor of cystathionine γ-lyase [CSE]) aggravated liver injury. Delivery of GYY4137 significantly elevated the plasma levels of H2S and upregulated the expression of microRNA-21 (miR-21), leading to the activation of the Akt pathway, in rat livers subjected to I/R. To further investigate the protective mechanisms of H2S during liver I/R injury, we established a cell model of hypoxia/reoxygenation (H/R) by incubating Buffalo rat liver (BRL) cells under hypoxia for 4 h followed by normoxia for 10 h. The regulatory effect of miR-21 on the Akt pathway by downregulating phosphatase and tensin homolog (PTEN) was validated by luciferase assays. Incubation of sodium hydrosulfide (NaHS), an H2S donor, increased the expression of miR-21, attenuated the reduced cell viability and the increased apoptosis by H/R, in BRL cells. Anti-miR-21 abolished the protective effects of NaHS by inactivating the Akt pathway. In conclusion, the present results indicate the activation of the Akt pathway regulated by miR-21 participates in the protective effects of H2S against I/R-induced liver injury.
Collapse
Affiliation(s)
- Meng Lu
- Department of Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Xian Jiang
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University
| | - Liquan Tong
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University
| | - Feng Zhang
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University
| | - Lin Ma
- Department of Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Xuesong Dong
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University
| | - Xueying Sun
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University
| |
Collapse
|
21
|
Kaya-Yasar Y, Karaman Y, Bozkurt TE, Onder SC, Sahin-Erdemli I. Effects of intranasal treatment with slow (GYY4137) and rapid (NaHS) donors of hydrogen sulfide in lipopolysaccharide-induced airway inflammation in mice. Pulm Pharmacol Ther 2017. [DOI: 10.1016/j.pupt.2017.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Li F, Zhang P, Zhang M, Liang L, Sun X, Li M, Tang Y, Bao A, Gong J, Zhang J, Adcock I, Chung KF, Zhou X. Hydrogen Sulfide Prevents and Partially Reverses Ozone-Induced Features of Lung Inflammation and Emphysema in Mice. Am J Respir Cell Mol Biol 2017; 55:72-81. [PMID: 26731380 DOI: 10.1165/rcmb.2015-0014oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hydrogen sulfide (H2S), a novel signaling gasotransmitter in the respiratory system, may have antiinflammatory properties in the lung. We examined the preventive and therapeutic effects of H2S on ozone-induced features of lung inflammation and emphysema. C57/BL6 mice were exposed to ozone or filtered air over 6 weeks. Sodium hydrogen sulfide (NaHS), an H2S donor, was administered to the mice either before ozone exposure (preventive effect) or after completion of 6 weeks of ozone exposure (therapeutic effect). The ozone-exposed mice developed emphysema, measured by micro-computed tomography and histology, airflow limitation, measured by the forced maneuver system, and increased lung inflammation with augmented IL-1β, IL-18, and matrix metalloproteinase-9 (MMP-9) gene expression. Ozone-induced changes were associated with increased Nod-like receptor pyrin domain containing 3 (NLRP3)-caspase-1 activation and p38 mitogen-activated protein kinase phosphorylation and decreased Akt phosphorylation. NaHS both prevented and reversed lung inflammation and emphysematous changes in alveolar space. In contrast, NaHS prevented, but did not reverse, ozone-induced airflow limitation and bronchial structural remodeling. In conclusion, NaHS administration prevented and partially reversed ozone-induced features of lung inflammation and emphysema via regulation of the NLRP3-caspase-1, p38 mitogen-activated protein kinase, and Akt pathways.
Collapse
Affiliation(s)
- Feng Li
- 1 Department of Respiratory Medicine and
| | | | - Min Zhang
- 1 Department of Respiratory Medicine and
| | - Li Liang
- 2 Department of Respiratory Medicine, Shanghai Third People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | - Min Li
- 3 Experimental Research Center, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yueqin Tang
- 3 Experimental Research Center, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Aihua Bao
- 1 Department of Respiratory Medicine and
| | - Jicheng Gong
- 4 Division of Environmental Sciences and Policy, Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, North Carolina; and
| | - Junfeng Zhang
- 4 Division of Environmental Sciences and Policy, Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, North Carolina; and
| | - Ian Adcock
- 5 Airway Diseases Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kian Fan Chung
- 5 Airway Diseases Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Xin Zhou
- 1 Department of Respiratory Medicine and
| |
Collapse
|
23
|
Hydrogen sulfide in paraventricular nucleus attenuates blood pressure by regulating oxidative stress and inflammatory cytokines in high salt-induced hypertension. Toxicol Lett 2017; 270:62-71. [DOI: 10.1016/j.toxlet.2017.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/22/2017] [Accepted: 02/05/2017] [Indexed: 11/21/2022]
|
24
|
Tang B, Ma L, Yao X, Tan G, Han P, Yu T, Liu B, Sun X. Hydrogen sulfide ameliorates acute lung injury induced by infrarenal aortic cross-clamping by inhibiting inflammation and angiopoietin 2 release. J Vasc Surg 2017; 65:501-508.e1. [PMID: 26781077 DOI: 10.1016/j.jvs.2015.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/03/2015] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Infrarenal aortic cross-clamping (IAC) is a common procedure during infrarenal vascular operations. It often causes ischemia-reperfusion injury to lower limbs, resulting in systemic inflammation response and damage to remote organs (particularly lungs). Hydrogen sulfide (H2S) is a gaseous mediator that has been shown to have a protective effect against lung injury. METHODS Wistar rats underwent IAC for 2 hours, followed by 4 hours of reperfusion. GYY4137 (a slow-releasing H2S donor) and dl-propargylglycine (PAG, an inhibitor of cystathionine γ-lyase) were preadministered to rats 1 hour before IAC, and their effects on severity of lung injury and related mechanisms were investigated. RESULTS IAC induced a significant increase in plasma levels of H2S, H2S-synthesizing activity, and cystathionine γ-lyase expression in lung tissues compared with sham operation. Administration of GYY4137 significantly increased the levels of H2S but had little effect on H2S-synthesizing activity, whereas PAG reduced H2S levels and H2S-synthesizing activity. Preadministration of GYY4137 significantly attenuated acute lung injury induced by IAC, evidenced by reduced histologic scores and wet lung contents; improved blood gas parameters; reduced cell counts and protein amounts in bronchoalveolar lavage fluids; and reduced myeloperoxidase activity in lung tissues and plasma levels of tumor necrosis factor α, interleukin 6, and interleukin 1β. However, PAG further aggravated the severity of lung injury and displayed opposite effects to GYY4137. In exploration of the mechanisms, we found that IAC increased the release of angiopoietin 2 (Ang2) and its expression in lung tissues. GYY4137 attenuated the increase of Ang2 release and expression and increased the phosphorylation of Akt and the activation of its downstream factors, glycogen synthase kinase 3β and ribosomal protein S6 kinase; PAG showed opposite effects. CONCLUSIONS The study indicates that H2S may play a protective role in IAC-induced acute lung injury in rats by inhibiting inflammation and Ang2 release.
Collapse
Affiliation(s)
- Bo Tang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lan Ma
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyi Yao
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Tan
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Han
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianchi Yu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueying Sun
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
25
|
Chen X, Liu XS. Hydrogen sulfide from a NaHS source attenuates dextran sulfate sodium (DSS)-induced inflammation via inhibiting nuclear factor-κB. J Zhejiang Univ Sci B 2016; 17:209-17. [PMID: 26984841 DOI: 10.1631/jzus.b1500248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study investigated the alleviating effects of hydrogen sulfide (H2S), derived from sodium hydrosulfide (NaHS), on inflammation induced by dextran sulfate sodium (DSS) in both in vivo and in vitro models. We found that NaHS injection markedly decreased rectal bleeding, diarrhea, and histological injury in DSS-challenged mice. NaHS (20 μmol/L) reversed DSS-induced inhibition in cell viability in Caco-2 cells and alleviated pro-inflammation cytokine expression in vivo and in vitro, indicating an anti-inflammatory function for H2S. It was also found that H2S may regulate cytokine expression by inhibiting the nuclear factor-κB (NF-κB) signaling pathway. In conclusion, our results demonstrated that H2S alleviated DSS-induced inflammation in vivo and in vitro and that the signal mechanism might be associated with the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xi Chen
- Medical College, Qingdao University, Qingdao 266021, China.,Department of Gastroenterology, Yantai Municipal Laiyang Central Hospital, Yantai 265200, China
| | - Xi-shuang Liu
- Medical College, Qingdao University, Qingdao 266021, China.,Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao 266071, China
| |
Collapse
|
26
|
Wang DZ, Yan L, Ma L. Facile Preparation of 4-Substituted Quinazoline Derivatives. J Vis Exp 2016:53662. [PMID: 26967553 DOI: 10.3791/53662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Reported in this paper is a very simple method for direct preparation of 4-substituted quinazoline derivatives from a reaction between substituted 2-aminobenzophenones and thiourea in the presence of dimethyl sulfoxide (DMSO). This is a unique complementary reaction system in which thiourea undergoes thermal decomposition to form carbodiimide and hydrogen sulfide, where the former reacts with 2-aminobenzophenone to form 4-phenylquinazolin-2(1H)-imine intermediate, whilst hydrogen sulfide reacts with DMSO to give methanethiol or other sulfur-containing molecule which then functions as a complementary reducing agent to reduce 4-phenylquinazolin-2(1H)-imine intermediate into 4-phenyl-1,2-dihydroquinazolin-2-amine. Subsequently, the elimination of ammonia from 4-phenyl-1,2-dihydroquinazolin-2-amine affords substituted quinazoline derivative. This reaction usually gives quinazoline derivative as a single product arising from 2-aminobenzophenone as monitored by GC/MS analysis, along with small amount of sulfur-containing molecules such as dimethyl disulfide, dimethyl trisulfide, etc. The reaction usually completes in 4-6 hr at 160 ºC in small scale but may last over 24 hr when carried out in large scale. The reaction product can be easily purified by means of washing off DMSO with water followed by column chromatography or thin layer chromatography.
Collapse
Affiliation(s)
- Daniel Z Wang
- School of Science and Computer Engineering, University of Houston-Clear Lake;
| | | | - Lingmei Ma
- School of Science and Computer Engineering, University of Houston-Clear Lake
| |
Collapse
|
27
|
Zhu Y, Li J, Wu Z, Lu Y, You H, Li R, Li B, Yang X, Duan L. Acute exposure of ozone induced pulmonary injury and the protective role of vitamin E through the Nrf2 pathway in Balb/c mice. Toxicol Res (Camb) 2015; 5:268-277. [PMID: 30090343 DOI: 10.1039/c5tx00259a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/05/2015] [Indexed: 11/21/2022] Open
Abstract
Ozone (O3) in the lower atmosphere is generally derived from various sources of human activity. It has become a major air pollutant in China and has been shown to adversely affect the health of humans and animals. We undertook a study to ascertain the molecular mechanism of ozone induced lung injury in mice and tried to demonstrate the protective mechanism of vitamin E. In this study, mice were exposed to clean air and three different concentrations of ozone. Oxidative stress (reactive oxygen species and malondialdehyde) and Th cytokines in the lung, serum IgE, as well as histopathological examination and the airway hyper-responsiveness (AHR) test were used to reflect inflammation and damage to the lungs of ozone-exposed mice. We then chose an effective concentration of ozone and combined treatment with vitamin E (VE) to explore the underlying mechanism of ozone-induced lung damage. The results of immunological and inflammatory biomarkers (total-immunoglobulin (Ig) E and Th cytokines) as well as histopathological examination and AHR assessment supported the notion that high doses of ozone (>0.5 ppm) could induce inflammation and lung injury in mice and that this induction was counteracted by concurrent administration of VE. The elimination of oxidative stress, the reduced Th2 responses and Ig production, and the relief of lung damage were proposed to explain the molecular mechanism of ozone induced lung injury. We also showed that VE, an antioxidant that enhanced the expression of Nrf2 and up-regulated the antioxidant genes HO-1 and NQO1, could decrease the levels of oxidative stress and alleviate ozone-induced lung injury.
Collapse
Affiliation(s)
- Yuqing Zhu
- College of Public Health , Zhengzhou University , Zhengzhou , China.,Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954
| | - Jinquan Li
- Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954.,Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment , Ministry of Education , Chongqing University , Chongqing 400045 , China
| | - Zhuo Wu
- Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954
| | - Yu Lu
- Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954
| | - Huihui You
- Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954
| | - Rui Li
- Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954
| | - Baizhan Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment , Ministry of Education , Chongqing University , Chongqing 400045 , China
| | - Xu Yang
- Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954
| | - Liju Duan
- College of Public Health , Zhengzhou University , Zhengzhou , China.,College of Public Health , Huazhong University of Science and Technology , Wuhan , China . ; Tel: +86-18768869690
| |
Collapse
|
28
|
|
29
|
Hatziefthimiou A, Stamatiou R. Role of hydrogen sulphide in airways. World J Respirol 2015; 5:152-159. [DOI: 10.5320/wjr.v5.i2.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/04/2015] [Accepted: 03/09/2015] [Indexed: 02/06/2023] Open
Abstract
The toxicity of hydrogen sulfide (H2S) has been known for a long time, as it is prevalent in the atmosphere. However accumulative data suggest that H2S is also endogenously produced in mammals, including man, and is the third important gas signaling molecule, besides nitric oxide and carbon monoxide. H2S can be produced via non enzymatic pathways, but is mainly synthesized from L-cysteine by the enzymes cystathionine-γ-lyase, cystathionine-β-synthetase, cysteine amino transferase and 3-mercaptopyruvate sulfurtransferase (3MTS). The formation of H2S from D-cysteine via the enzyme D-amino acid oxidase and 3MTS has also been described. Endogenous H2S not only participates in the regulation of physiological functions of the respiratory system, but also seems to contribute to the pathophysiology of airway diseases such as chronic obstructive pulmonary disease, asthma and pulmonary fibrosis, as well as in inflammation, suggesting its possible use as a biomarker for these diseases. This review summarizes the different implications of hydrogen sulfide in the physiology of airways and the pathophysiology of airway diseases.
Collapse
|
30
|
Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:754670. [PMID: 26078816 PMCID: PMC4442413 DOI: 10.1155/2015/754670] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/25/2014] [Accepted: 12/26/2014] [Indexed: 11/17/2022]
Abstract
Background. The study aimed to investigate whether endogenous H2S pathway was involved in high-salt-stimulated mitochondria-related vascular endothelial cell (VEC) apoptosis. Methods. Cultured human umbilical vein endothelial cells (HUVECs) were used in the study. H2S content in the supernatant was detected. Western blot was used to detect expression of cystathionine gamma-lyase (CSE), cleaved-caspase-3, and mitochondrial and cytosolic cytochrome c (cytc). Fluorescent probes were used to quantitatively detect superoxide anion generation and measure the in situ superoxide anion generation in HUVEC. Mitochondrial membrane pore opening, mitochondrial membrane potential, and caspase-9 activities were measured. The cell apoptosis was detected by cell death ELISA and TdT-mediated dUTP nick end labeling (TUNEL) methods. Results. High-salt treatment downregulated the endogenous VEC H2S/CSE pathway, in association with increased generation of oxygen free radicals, decreased mitochondrial membrane potential, enhanced the opening of mitochondrial membrane permeability transition pore and leakage of mitochondrial cytc, activated cytoplasmic caspase-9 and caspase-3 and subsequently induced VEC apoptosis. However, supplementation of H2S donor markedly inhibited VEC oxidative stress and mitochondria-related VEC apoptosis induced by high salt. Conclusion. H2S/CSE pathway is an important endogenous defensive system in endothelial cells antagonizing high-salt insult. The protective mechanisms for VEC damage might involve inhibiting oxidative stress and protecting mitochondrial injury.
Collapse
|
31
|
Williams AS, Mathews JA, Kasahara DI, Wurmbrand AP, Chen L, Shore SA. Innate and ozone-induced airway hyperresponsiveness in obese mice: role of TNF-α. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1168-77. [PMID: 25840999 DOI: 10.1152/ajplung.00393.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/01/2015] [Indexed: 01/06/2023] Open
Abstract
Innate airway hyperresponsiveness (AHR) and augmented responses to ozone, an asthma trigger, are characteristics of obese mice. Systemic inflammation, a condition of increased circulating concentrations of inflammatory moieties, occurs in obesity. We hypothesized that TNF-α, via its effects as a master effector of this systemic inflammation, regulates innate AHR and augmented responses to ozone in obese mice. Therefore, we examined pulmonary inflammation and airway responsiveness in unexposed or ozone-exposed (2 ppm for 3 h) lean wild-type and obese Cpe(fat) mice that were TNF-α sufficient or deficient. Cpe(fat) mice lack carboxypeptidase E, which regulates satiety. Compared with wild type, Cpe(fat) mice had elevated serum IL-17A, G-CSF, KC, MCP-1, IL-9, MIG, and leptin, indicating systemic inflammation. Despite reductions in most of these moieties in TNF-α-deficient vs. -sufficient Cpe(fat) mice, we observed no substantial difference in airway responsiveness in these two groups of mice. Ozone-induced increases in bronchoalveolar lavage (BAL) neutrophils and macrophages were lower, but ozone-induced AHR and increases in BAL hyaluronan, osteopontin, IL-13, and protein carbonyls, a marker of oxidative stress, were augmented in TNF-α-deficient vs. -sufficient Cpe(fat) mice. Our data indicate that TNF-α has an important role in promoting the systemic inflammation but not the innate AHR of obesity, suggesting that the systemic inflammation of obesity is not the major driver of this AHR. TNF-α is required for the augmented effects of acute ozone exposure on pulmonary inflammatory cell recruitment in obese mice, whereas TNF-α protects against ozone-induced AHR in obese mice, possibly by suppressing ozone-induced oxidative stress.
Collapse
Affiliation(s)
| | - Joel Andrew Mathews
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - David Itiro Kasahara
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | | | - Lucas Chen
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Stephanie Ann Shore
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| |
Collapse
|
32
|
Yuan S, Patel RP, Kevil CG. Working with nitric oxide and hydrogen sulfide in biological systems. Am J Physiol Lung Cell Mol Physiol 2014; 308:L403-15. [PMID: 25550314 DOI: 10.1152/ajplung.00327.2014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are gasotransmitter molecules important in numerous physiological and pathological processes. Although these molecules were first known as environmental toxicants, it is now evident that that they are intricately involved in diverse cellular functions with impact on numerous physiological and pathogenic processes. NO and H2S share some common characteristics but also have unique chemical properties that suggest potential complementary interactions between the two in affecting cellular biochemistry and metabolism. Central among these is the interactions between NO, H2S, and thiols that constitute new ways to regulate protein function, signaling, and cellular responses. In this review, we discuss fundamental biochemical principals, molecular functions, measurement methods, and the pathophysiological relevance of NO and H2S.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana; and
| | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana; and
| |
Collapse
|