1
|
Hay WW. Amino acids and protein for preterm infants: How much and for what? Semin Fetal Neonatal Med 2025:101633. [PMID: 40234181 DOI: 10.1016/j.siny.2025.101633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Protein and amino acids derived from protein digestion in the gastrointestinal tract or from intravenous infusions are fundamental for normal metabolism, growth, and neurodevelopmental outcomes in the fetus and the preterm infant of the same gestational age. Many studies support that at least 3.0-3.5 g/kg/day of protein or amino acids are needed to achieve normal nitrogen/protein balance and growth rates and the large fractional increase of lean mass in later gestation, either in the fetus or the preterm infant; this relationship is direct and linear. Faster growth rates in earlier gestation require more amino acids and protein than the late preterm or term infant. Protein synthesis and accretion also require sufficient energy, but above ∼120 kcal/kg/day, energy is largely diverted to fat production but not lean mass growth. Optimal IV amino acid solutions remain to be developed, and mature maternal milk and donor human milk require protein supplements to achieve appropriate protein balance and growth. Additional supplements of growth factors might augment increased protein intakes and fortifiers. While excess amino acid and/or protein intakes do not promote growth or development and might even be harmful, providing less than the amounts required guarantees poorer outcomes and should be avoided.
Collapse
|
2
|
Mascarenhas D, Mohammadi A, Higazy R, Ivanovska J, Gauda E, Jasani B. L-Citrulline in Neonates: From Bench to Bed Side. CHILDREN (BASEL, SWITZERLAND) 2024; 12:42. [PMID: 39857873 PMCID: PMC11763423 DOI: 10.3390/children12010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
L-citrulline (L-CIT), a precursor to L-arginine (L-ARG), is a key contributor to the nitric oxide (NO) signaling pathway. Endothelial dysfunction, characterized by deficient nitric oxide synthesis, is implicated in the pathogenesis of various neonatal conditions such as necrotizing enterocolitis (NEC) and bronchopulmonary dysplasia (BPD) associated pulmonary hypertension (PH). This review summarizes the current evidence around the possible role of L-CIT supplementation in the treatment of these conditions. Detoxification of endogenously produced superoxide radicals is inadequate in preterm infants due to immature antioxidants that leads to the production of peroxynitrite, a reactive oxygen-free radical that is cytotoxic and causes damage to organelles and cellular membranes, further disrupting the coupling of endothelial NO synthase enzyme and the generation of high levels of reactive nitrogen and oxygen species. Animal studies in lipopolysaccharide-induced models of chorioamnionitis and hyperoxia- and inflammation-induced BPD-PH in rodent lung models revealed that L-CIT supplementation significantly mitigated structural changes in the pulmonary vasculature, preserved alveolar growth, and increased vascular endothelial growth factor gene expression, highlighting the anti-inflammatory and antioxidant effects of L-CIT supplementation. Similar benefits were noted in newborn piglet models of chronic hypoxia-induced PH and NEC. Pharmacokinetic studies in neonates have shown doses of 100-300 mg/kg/day to be safe and well tolerated. A few studies have shown the beneficial effects of L-CIT supplementation in pulmonary hypertension secondary to congenital heart disease, but evidence of efficacy in the neonatal population is lacking. While L-CIT shows promise in the treatment of various neonatal conditions, adequately powered studies to evaluate the safety and efficacy of L-CIT supplementation post-surgical NEC and BPD ± PH in the extremely preterm population are needed to translate this novel therapy to clinical practice.
Collapse
Affiliation(s)
- Dwayne Mascarenhas
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (D.M.); (E.G.)
| | - Atefeh Mohammadi
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; (A.M.); (J.I.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3K3, Canada;
| | - Randa Higazy
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3K3, Canada;
| | - Julijana Ivanovska
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; (A.M.); (J.I.)
| | - Estelle Gauda
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (D.M.); (E.G.)
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; (A.M.); (J.I.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3K3, Canada;
| | - Bonny Jasani
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (D.M.); (E.G.)
| |
Collapse
|
3
|
Pharande P, Sehgal A, Menahem S. Cardiovascular Sequelae of Bronchopulmonary Dysplasia in Preterm Neonates Born before 32 Weeks of Gestational Age: Impact of Associated Pulmonary and Systemic Hypertension. J Cardiovasc Dev Dis 2024; 11:233. [PMID: 39195141 DOI: 10.3390/jcdd11080233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains the most common respiratory disorder of prematurity for infants born before 32 weeks of gestational age (GA). Early and prolonged exposure to chronic hypoxia and inflammation induces pulmonary hypertension (PH) with the characteristic features of a reduced number and increased muscularisation of the pulmonary arteries resulting in an increase in the pulmonary vascular resistance (PVR) and a fall in their compliance. BPD and BPD-associated pulmonary hypertension (BPD-PH) together with systemic hypertension (sHTN) are chronic cardiopulmonary disorders which result in an increased mortality and long-term problems for these infants. Previous studies have predominantly focused on the pulmonary circulation (right ventricle and its function) and developing management strategies accordingly for BPD-PH. However, recent work has drawn attention to the importance of the left-sided cardiac function and its impact on BPD in a subset of infants arising from a unique pathophysiology termed postcapillary PH. BPD infants may have a mechanistic link arising from chronic inflammation, cytokines, oxidative stress, catecholamines, and renin-angiotensin system activation along with systemic arterial stiffness, all of which contribute to the development of BPD-sHTN. The focus for the treatment of BPD-PH has been improvement of the right heart function through pulmonary vasodilators. BPD-sHTN and a subset of postcapillary PH may benefit from afterload reducing agents such as angiotensin converting enzyme inhibitors. Preterm infants with BPD-PH are at risk of later cardiac and respiratory morbidities as young adults. This paper reviews the current knowledge of the pathophysiology, diagnosis, and treatment of BPD-PH and BPD-sHTN. Current knowledge gaps and emerging new therapies will also be discussed.
Collapse
Affiliation(s)
- Pramod Pharande
- Monash Newborn, Monash Children's Hospital, 246 Clayton Road, Clayton, Melbourne, VIC 3168, Australia
- Department of Pediatrics, Monash University, Melbourne, VIC 3800, Australia
| | - Arvind Sehgal
- Monash Newborn, Monash Children's Hospital, 246 Clayton Road, Clayton, Melbourne, VIC 3168, Australia
- Department of Pediatrics, Monash University, Melbourne, VIC 3800, Australia
| | - Samuel Menahem
- Department of Pediatrics, Monash University, Melbourne, VIC 3800, Australia
- Paediatric and Foetal Cardiac Units, Monash Medical Centre, Melbourne, VIC 3168, Australia
- Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
4
|
Frank BS, Niemiec S, Khailova L, Mancuso CA, Lehmann T, Mitchell MB, Morgan GJ, Twite M, DiMaria MV, Klawitter J, Davidson JA. Arginine-NO metabolites are associated with morbidity in single ventricle infants undergoing stage 2 palliation. Pediatr Res 2024; 96:347-355. [PMID: 38565916 PMCID: PMC11610193 DOI: 10.1038/s41390-024-03162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/01/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Infants with single ventricle heart disease (SVHD) suffer morbidity from insufficient pulmonary blood flow, which may be related to impaired arginine metabolism. No prior study has reported quantitative mapping of arginine metabolites to evaluate the relationship between circulating metabolite levels and outcomes. METHODS Prospective cohort study of 75 SVHD cases peri-Stage 2 and 50 healthy controls. We targeted pre- and post-op absolute serum quantification of 9 key members of the arginine metabolism pathway by tandem mass spectrometry. Primary outcomes were length of stay (LOS) and post-Stage 2 hypoxemia. RESULTS Pre-op cases showed alteration in 6 metabolites including decreased arginine and increased asymmetric dimethyl arginine (ADMA) levels compared to controls. Post-op cases demonstrated decreased arginine and citrulline levels persisting through 48 h. Adjusting for clinical variables, lower pre-op and 2 h post-op concentrations of multiple metabolites, including arginine and citrulline, were associated with longer post-op LOS (p < 0.01). Increased ADMA at 24 h was associated with greater post-op hypoxemia burden (p < 0.05). CONCLUSION Arginine metabolism is impaired in interstage SVHD infants and is further deranged following Stage 2 palliation. Patients with greater metabolite alterations experience greater post-op morbidity. Decreased arginine metabolism may be an important driver of pathology in SVHD. IMPACT Interstage infants with SVHD have significantly altered arginine-nitric oxide metabolism compared to healthy children with deficiency of multiple pathway intermediates persisting through 48 h post-Stage 2 palliation. After controlling for clinical covariates and classic catheterization-derived predictors of Stage 2 readiness, both lower pre-operation and lower post-operation circulating metabolite levels were associated with longer post-Stage 2 LOS while increased post-Stage 2 ADMA concentration was associated with greater post-op hypoxemia. Arginine metabolism mapping offers potential for development using personalized medicine strategies as a biomarker of Stage 2 readiness and therapeutic target to improve pulmonary vascular health in infants with SVHD.
Collapse
Affiliation(s)
- Benjamin S Frank
- University of Colorado Department of Pediatrics, Section of Cardiology, Denver, CO, USA.
| | - Sierra Niemiec
- University of Colorado Department of Biostatistics and Informatics, Denver, CO, USA
| | - Ludmila Khailova
- University of Colorado Department of Pediatrics, Section of Cardiology, Denver, CO, USA
| | | | - Tanner Lehmann
- University of Colorado Department of Pediatrics, Section of Cardiology, Denver, CO, USA
| | - Max B Mitchell
- University of Colorado Department of Surgery, Denver, CO, USA
| | - Gareth J Morgan
- University of Colorado Department of Pediatrics, Section of Cardiology, Denver, CO, USA
| | - Mark Twite
- University of Colorado Department of Anesthesiology, Denver, CO, USA
| | - Michael V DiMaria
- University of Colorado Department of Pediatrics, Section of Cardiology, Denver, CO, USA
| | - Jelena Klawitter
- University of Colorado Department of Anesthesiology, Denver, CO, USA
| | - Jesse A Davidson
- University of Colorado Department of Pediatrics, Section of Cardiology, Denver, CO, USA
| |
Collapse
|
5
|
Qasim A, Mehdi MQ, Bhatia S, Franco-Fuenmayor ME, Jain SK. Enteral L-citrulline supplementation in preterm infants is safe and effective in increasing plasma arginine and citrulline levels-a pilot randomized trial. J Perinatol 2024; 44:702-708. [PMID: 37640809 DOI: 10.1038/s41372-023-01761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/18/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE Deficiencies of citrulline and arginine have been associated with adverse outcomes in preterm-infants and data regarding enteral supplementation in preterm infants is limited. STUDY DESIGN This randomized -trial [NCT03649932] included 42 preterm infants (gestational age ≤33 weeks) randomized to receive enteral L-citrulline in low (100 mg/kg/day), medium (200 mg/kg/day) and high-dose (300 mg/kg/day) groups for 7 days. Plasma citrulline and arginine levels were obtained pre-and-post supplementation and efficacy was determined by a significant increase in levels after supplementation. A p < 0.05 was considered significant. Safety monitoring included blood-pressure-monitoring as well as complications and death during hospitalization. RESULTS A total of 40/42 (95%) of the recruits completed the 7-day supplementation with no adverse events. Plasma-citrulline levels increased significantly in all three groups while plasma-arginine levels increased significantly in the high-dose group. CONCLUSION Enteral L-citrulline supplementation in preterm infants is safe and effective in increasing plasma citrulline and arginine levels. CLINICAL TRIAL REGISTRATION NCT03649932 https://clinicaltrials.gov/ct2/show/NCT03649932 .
Collapse
Affiliation(s)
- Amna Qasim
- Department of Neonatology, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pediatrics, Section of Pediatric Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mohammad Q Mehdi
- Department of Neonatology, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pediatric Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Snigdha Bhatia
- Department of Neonatology, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
- Division of Pediatric Cardiology, Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI, USA
| | - Maria E Franco-Fuenmayor
- Department of Neonatology, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Sunil K Jain
- Department of Neonatology, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
6
|
Carroll J, Rao R, Steinhorn RH. Targeted Therapies for Neonatal Pulmonary Hypertension: Beyond Nitric Oxide. Clin Perinatol 2024; 51:113-126. [PMID: 38325937 DOI: 10.1016/j.clp.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pulmonary hypertension in the neonatal population can be acute or chronic and carries significant risk for morbidity and mortality. It can be idiopathic but more often is associated with comorbid pulmonary and heart disease. There are several pharmacotherapeutics aimed at pulmonary vasodilation. This review highlights the most common agents as well as those on the horizon for the treatment of pulmonary hypertension in the neonate.
Collapse
Affiliation(s)
- Jeanne Carroll
- Division of Neonatology, Department of Pediatrics, University of California, San Diego, Rady Children's Hospital-San Diego, 3030 Children's Way, San Diego, CA 92123, USA
| | - Rohit Rao
- Division of Cardiothoracic Critical Care, Department of Pediatrics, University of California, San Diego, Rady Children's Hospital-San Diego, 3030 Children's Way, San Diego, CA 92123, USA
| | - Robin H Steinhorn
- Department of Pediatrics, University of California, San Diego, Rady Children's Hospital-San Diego, 3020 Children's Way, San Diego, CA 92123, USA.
| |
Collapse
|
7
|
Young KC, Schmidt AF, Tan AW, Sbragia L, Elsaie A, Shivanna B. Pathogenesis and Physiologic Mechanisms of Neonatal Pulmonary Hypertension: Preclinical Studies. Clin Perinatol 2024; 51:21-43. [PMID: 38325942 DOI: 10.1016/j.clp.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Neonatal pulmonary hypertension (PH) is a devastating disorder of the pulmonary vasculature characterized by elevated pulmonary vascular resistance and mean pulmonary arterial pressure. Occurring predominantly because of maldevelopment or maladaptation of the pulmonary vasculature, PH in neonates is associated with suboptimal short-term and long-term outcomes because its pathobiology is unclear in most circumstances, and it responds poorly to conventional pulmonary vasodilators. Understanding the pathogenesis and pathophysiology of neonatal PH can lead to novel strategies and precise therapies. The review is designed to achieve this goal by summarizing pulmonary vascular development and the pathogenesis and pathophysiology of PH associated with maladaptation, bronchopulmonary dysplasia, and congenital diaphragmatic hernia based on evidence predominantly from preclinical studies. We also discuss the pros and cons of and provide future directions for preclinical studies in neonatal PH.
Collapse
Affiliation(s)
- Karen C Young
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine, Batchelor Children's Research Institute, 1580 North West 10th Avenue, RM-345, Miami, Fl 33136, USA.
| | - Augusto F Schmidt
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine, Batchelor Children's Research Institute, 1580 North West 10th Avenue, RM-345, Miami, Fl 33136, USA
| | - April W Tan
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine, Batchelor Children's Research Institute, 1580 North West 10th Avenue, RM-345, Miami, Fl 33136, USA
| | - Lourenco Sbragia
- Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, 10th Floor, Monte Alegre14049-900, Ribeirao Preto SP, Brazil
| | - Ahmed Elsaie
- Ascension Via Christi St.Joseph Hospital, 3rd Floor, section of Neonatology, 3600 East Harry StreetWichita, KS 67218, USA; Department of Pediatrics, Cairo University, Cairo 11956, Egypt
| | - Binoy Shivanna
- Division of Neonatology, Department of Pediatrics, 6621 Fannin Street, MC: WT 6-104, Houston, TX 77030, USA
| |
Collapse
|
8
|
Fike CD, Aschner JL, Avachat C, Birnbaum AK, Sherwin CMT. Multi-dose enteral L-citrulline administration in premature infants at risk of developing pulmonary hypertension associated with bronchopulmonary dysplasia. J Perinatol 2024; 44:280-287. [PMID: 37907796 PMCID: PMC10844094 DOI: 10.1038/s41372-023-01809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVE Information is needed to guide the design of randomized controlled trials (RCTs) evaluating L-citrulline therapy for premature infants with pulmonary hypertension associated with bronchopulmonary dysplasia (BPD-PH). Based on our single-dose pharmacokinetic study, we evaluated the ability of a multi-dose enteral L-citrulline strategy to achieve a target trough steady-state L-citrulline plasma concentration and its tolerability in premature infants. STUDY DESIGN Plasma L-citrulline concentrations were measured in six premature infants receiving 60 mg/kg L-citrulline every 6 h for 72 h before the first and last L-citrulline doses. L-citrulline concentrations were compared to concentration-time profiles from our previous study. RESULTS Target trough plasma L-citrulline concentrations were achieved in 2/6 subjects. No serious adverse events occurred. CONCLUSIONS Multi-dose L-citrulline was well tolerated. These results will assist in the design of phase II RCTs evaluating L-citrulline dosage strategies to achieve target plasma L-citrulline concentrations in infants at risk for BPD-PH. CLINICAL TRIALS gov ID: NCT03542812.
Collapse
Affiliation(s)
- Candice D Fike
- Department of Pediatrics, the University of Utah Health, Salt Lake City, UT, USA.
| | - Judy L Aschner
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Charul Avachat
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Angela K Birnbaum
- Department of Pediatrics, the University of Utah Health, Salt Lake City, UT, USA
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Catherine M T Sherwin
- Department of Pediatrics, the University of Utah Health, Salt Lake City, UT, USA
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
- Dayton Children's Hospital, Dayton, OH, USA
- Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton, OH, USA
| |
Collapse
|
9
|
Kvidera SK, Mayorga EJ, McCarthy CS, Horst EA, Abeyta MA, Baumgard LH. Effects of supplemental citrulline on thermal and intestinal morphology parameters during heat stress and feed restriction in growing pigs. J Anim Sci 2024; 102:skae120. [PMID: 38812469 PMCID: PMC11143481 DOI: 10.1093/jas/skae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/29/2024] [Indexed: 05/31/2024] Open
Abstract
Study objectives were to characterize the effects of citrulline (CIT) on physiological and intestinal morphology metrics during heat stress (HS) and feed restriction. Forty crossbred gilts (30 ± 2 kg body weight [BW]) were assigned to one of five treatments: (1) thermoneutral (TN) fed ad libitum (AL) with control (CON) supplement (TNAL; n = 8), (2) TN pair-fed (PF) with CON (PF-CON; n = 8), (3) TN PF with CIT (PF-CIT; n = 8), (4) HS AL with CON (HS-CON; n = 8), and (5) HS AL with CIT (HS-CIT; n = 8). During the period (P) 1 (7 d), pigs were in TN conditions (23.6 °C) and fed AL their respective supplemental treatments. During P2 (2.5 d), HS-CON and HS-CIT pigs were fed AL and exposed to cyclical HS (33.6 to 38.3 °C), while TNAL, PF-CON, and PF-CIT remained in TN and were fed either AL or PF to their HS counterparts. Citrulline (0.13 g/kg BW) was orally administered twice daily during P1 and P2. HS increased rectal temperature (Tr), skin temperature (Ts), and respiration rate (RR) relative to TN pigs (0.8 °C, 4.7 °C, and 47 breaths/min, respectively; P < 0.01). However, HS-CIT had decreased RR (7 breaths/min, P = 0.04) and a tendency for decreased Tr (0.1 °C, P = 0.07) relative to HS-CON pigs. During P2, HS pigs had decreased feed intake (22%; P < 0.01) and a tendency for decreased average daily gain (P = 0.08) relative to TNAL pigs, and by experimental design, PF pigs followed this same pattern. Circulating lipopolysaccharide-binding protein tended to be decreased (29%; P = 0.08) in PF relative to TNAL pigs and was increased (41%; P = 0.03) in HS compared to PF pigs. Jejunum villus height was decreased in PF relative to TNAL pigs (15%; P = 0.03); however, CIT supplementation improved this metric during feed restriction (16%; P = 0.10). Jejunum mucosal surface area decreased in PF (16%; P = 0.02) and tended to decrease in HS (11%; P = 0.10) compared to TNAL pigs. Ileum villus height and mucosal surface area decreased in HS compared to TNAL pigs (10 and 14%, respectively; P ≤ 0.04), but both parameters were rescued by CIT supplementation (P ≤ 0.08). Intestinal myeloperoxidase and goblet cell area remained similar among treatments and intestinal segments (P > 0.24). In summary, CIT supplementation slightly improved RR and Tr during HS. Feed restriction and HS differentially affected jejunum and ileum morphology and while CIT ameliorated some of these effects, the benefit appeared dependent on intestinal section and stressor type.
Collapse
Affiliation(s)
- Sara K Kvidera
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Carrie S McCarthy
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Erin A Horst
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Megan A Abeyta
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
10
|
Ivanovski N, Wang H, Tran H, Ivanovska J, Pan J, Miraglia E, Leung S, Posiewko M, Li D, Mohammadi A, Higazy R, Nagy A, Kim P, Santyr G, Belik J, Palaniyar N, Gauda EB. L-citrulline attenuates lipopolysaccharide-induced inflammatory lung injury in neonatal rats. Pediatr Res 2023; 94:1684-1695. [PMID: 37349511 DOI: 10.1038/s41390-023-02684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Prenatal or postnatal lung inflammation and oxidative stress disrupt alveolo-vascular development leading to bronchopulmonary dysplasia (BPD) with and without pulmonary hypertension. L-citrulline (L-CIT), a nonessential amino acid, alleviates inflammatory and hyperoxic lung injury in preclinical models of BPD. L-CIT modulates signaling pathways mediating inflammation, oxidative stress, and mitochondrial biogenesis-processes operative in the development of BPD. We hypothesize that L-CIT will attenuate lipopolysaccharide (LPS)-induced inflammation and oxidative stress in our rat model of neonatal lung injury. METHODS Newborn rats during the saccular stage of lung development were used to investigate the effect of L-CIT on LPS-induced lung histopathology and pathways involved in inflammatory, antioxidative processes, and mitochondrial biogenesis in lungs in vivo, and in primary culture of pulmonary artery smooth muscle cells, in vitro. RESULTS L-CIT protected the newborn rat lung from LPS-induced: lung histopathology, ROS production, NFκB nuclear translocation, and upregulation of gene and protein expression of inflammatory cytokines (IL-1β, IL-8, MCP-1α, and TNF-α). L-CIT maintained mitochondrial morphology, increased protein levels of PGC-1α, NRF1, and TFAM (transcription factors involved in mitochondrial biogenesis), and induced SIRT1, SIRT3, and superoxide dismutases protein expression. CONCLUSION L-CIT may be efficacious in decreasing early lung inflammation and oxidative stress mitigating progression to BPD. IMPACT The nonessential amino acid L-citrulline (L-CIT) mitigated lipopolysaccharide (LPS)-induced lung injury in the early stage of lung development in the newborn rat. This is the first study describing the effect of L-CIT on the signaling pathways operative in bronchopulmonary dysplasia (BPD) in a preclinical inflammatory model of newborn lung injury. If our findings translate to premature infants, L-CIT could decrease inflammation, oxidative stress and preserve mitochondrial health in the lung of premature infants at risk for BPD.
Collapse
Affiliation(s)
- Nikola Ivanovski
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Huanhuan Wang
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Harvard Tran
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Julijana Ivanovska
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jingyi Pan
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Emily Miraglia
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sharon Leung
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Melanie Posiewko
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Daniel Li
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Atefeh Mohammadi
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Randa Higazy
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Anita Nagy
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Anatomical Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peter Kim
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Giles Santyr
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jaques Belik
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Estelle B Gauda
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
11
|
Li W, Zeng W, Zhang Y, Ma Z, Fang X, Han Y, Sun Y, Jin X, Ma L. A comparative metabolomics analysis of domestic yak ( Bos grunniens) milk with human breast milk. Front Vet Sci 2023; 10:1207950. [PMID: 37841471 PMCID: PMC10570732 DOI: 10.3389/fvets.2023.1207950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Yaks are tough animals living in Tibet's hypoxic stress environment. However, the metabolite composition of yak milk and its role in hypoxic stress tolerance remains largely unexplored. The similarities and differences between yak and human milk in hypoxic stress tolerance are also unclear. This study explored yak colostrum (YC) and yak mature milk (YMM) using GC-MS, and 354 metabolites were identified in yak milk. A comparative metabolomic analysis of yak and human milk metabolites showed that over 70% of metabolites were species-specific. Yak milk relies mainly on essential amino acids- arginine and essential branched-chain amino acids (BCAAs): L-isoleucine, L-leucine, and L-valine tolerate hypoxic stress. To slow hypoxic stress, human breast milk relies primarily on the neuroprotective effects of non-essential amino acids or derivates, such as citrulline, sarcosine, and creatine. In addition, metabolites related to hypoxic stress were significantly enriched in YC than in YMM. These results reveal the unique metabolite composition of yak and human milk and provide practical information for applying yak and human milk to hypoxic stress tolerance.
Collapse
Affiliation(s)
- Wenhao Li
- Institute of Animal Husbandry and Veterinary Science, Qinghai University, Xining, China
| | - Weike Zeng
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanping Zhang
- Institute of Animal Husbandry and Veterinary Science, Qinghai University, Xining, China
| | - Zhijie Ma
- Institute of Animal Husbandry and Veterinary Science, Qinghai University, Xining, China
| | - Xingyan Fang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingcang Han
- Institute of Animal Husbandry and Veterinary Science, Qinghai University, Xining, China
| | - Yonggang Sun
- Institute of Animal Husbandry and Veterinary Science, Qinghai University, Xining, China
| | - Xiayang Jin
- Institute of Animal Husbandry and Veterinary Science, Qinghai University, Xining, China
| | - Liuyin Ma
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Aschner J, Avachat C, Birnbaum A, Sherwin C, Fike C. Multi-dose enteral L-citrulline administration in premature infants at risk of developing pulmonary hypertension associated with bronchopulmonary dysplasia. RESEARCH SQUARE 2023:rs.3.rs-3006963. [PMID: 37333204 PMCID: PMC10275028 DOI: 10.21203/rs.3.rs-3006963/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Objective Information is needed to guide the design of randomized controlled trials (RCTs) evaluating L-citrulline as a therapy for premature infants with pulmonary hypertension associated with bronchopulmonary dysplasia (BPD-PH). Our goal was to evaluate the tolerability and ability to achieve a target steady-state L-citrulline plasma concentration in prematures treated enterally with a multi-dose L-citrulline strategy based on our single-dose pharmacokinetic study. Study Design Six prematures received 60 mg/kg of L-citrulline every 6 hours for 72 hours. Plasma L-citrulline concentrations were measured before the first and last L-citrulline doses. L-citrulline concentrations were compared to concentration-time profiles from our previous study. Results Plasma L-citrulline concentrations agreed with the simulated concentration-time profiles. No serious adverse events occurred. Conclusions Simulations based on single-doses can be used to predict target multi-dose plasma L-citrulline concentrations. These results assist the design of RCTs evaluating the safety and effectiveness of L-citrulline therapy for BPD-PH. Clinical trials.gov ID: NCT03542812.
Collapse
|
13
|
Douglass MS, Kaplowitz MR, Zhang Y, Fike CD. Impact of l-citrulline on nitric oxide signaling and arginase activity in hypoxic human pulmonary artery endothelial cells. Pulm Circ 2023; 13:e12221. [PMID: 37063746 PMCID: PMC10091859 DOI: 10.1002/pul2.12221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
Impaired nitric oxide (NO) signaling contributes to the development of pulmonary hypertension (PH). The l-arginine precursor, l-citrulline, improves NO signaling and has therapeutic potential in PH. However, there is evidence that l-citrulline might increase arginase activity, which in turn, has been shown to contribute to PH. Our major purpose was to determine if l-citrulline increases arginase activity in hypoxic human pulmonary artery endothelial cells (PAECs). In addition, to avoid potential adverse effects from high dose l-citrulline monotherapy, we evaluated whether the effect on NO signaling is greater using co-treatment with l-citrulline and another agent that improves NO signaling, folic acid, than either alone. Arginase activity was measured in human PAECs cultured under hypoxic conditions in the presence of l-citrulline (0-1 mM). NO production and endothelial nitric oxide synthase (eNOS) coupling, as assessed by eNOS dimer-to-monomer ratios, were measured in PAECs treated with l-citrulline and/or folic acid (0.2 μM). Arginase activity increased in hypoxic PAECs treated with 1 mM but not with either 0.05 or 0.1 mM l-citrulline. Co-treatment with folic acid and 0.1 mM l-citrulline increased NO production and eNOS dimer-to-monomer ratios more than treatment with either alone. The potential to increase arginase activity suggests that there might be plasma l-citrulline concentrations that should not be exceeded when using l-citrulline to treat PH. Rather than progressively increasing the dose of l-citrulline as a monotherapy, co-therapy with l-citrulline and folic acid merits consideration, due to the possibility of achieving efficacy at lower doses and minimizing side effects.
Collapse
Affiliation(s)
| | | | - Yongmei Zhang
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Candice D. Fike
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
14
|
Fike CD, Aschner JL. Pharmacotherapy for Pulmonary Hypertension in Infants with Bronchopulmonary Dysplasia: Past, Present, and Future. Pharmaceuticals (Basel) 2023; 16:503. [PMID: 37111262 PMCID: PMC10141152 DOI: 10.3390/ph16040503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
Approximately 8-42% of premature infants with chronic lung disease of prematurity, bronchopulmonary dysplasia (BPD), develop pulmonary hypertension (PH). Infants with BPD-PH carry alarmingly high mortality rates of up to 47%. Effective PH-targeted pharmacotherapies are desperately needed for these infants. Although many PH-targeted pharmacotherapies are commonly used to treat BPD-PH, all current use is off-label. Moreover, all current recommendations for the use of any PH-targeted therapy in infants with BPD-PH are based on expert opinion and consensus statements. Randomized Control Trials (RCTs) are needed to determine the efficacy of PH-targeted treatments in premature infants with or at risk of BPD-PH. Prior to performing efficacy RCTs, studies need to be conducted to obtain pharmacokinetic, pharmacodynamic, and safety data for any pharmacotherapy used in this understudied and fragile patient population. This review will discuss current and needed treatment strategies, identify knowledge deficits, and delineate both challenges to be overcome and approaches to be taken to develop effective PH-targeted pharmacotherapies that will improve outcomes for premature infants with or at risk of developing BPD-PH.
Collapse
Affiliation(s)
- Candice D. Fike
- Department of Pediatrics, University of Utah Health, Salt Lake City, UT 84108, USA
| | - Judy L. Aschner
- Department of Pediatrics, Joseph M. Sanzari Children’s Hospital at Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Department of Pediatrics, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| |
Collapse
|
15
|
Fike CD, Avachat C, Birnbaum AK, Aschner JL, Sherwin CM. Pharmacokinetics of L-Citrulline in Neonates at Risk of Developing Bronchopulmonary Dysplasia-Associated Pulmonary Hypertension. Paediatr Drugs 2023; 25:87-96. [PMID: 36316628 PMCID: PMC10039462 DOI: 10.1007/s40272-022-00542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Options to treat pulmonary hypertension (PH) in neonates with bronchopulmonary dysplasia (BPD) are few and largely ineffective. Improving the bioavailability of nitric oxide (NO) might be an efficacious treatment for BPD-PH. When administered orally, the NO-L-arginine precursor, L-citrulline, increases NO production in children and adults, however, pharmacokinetic (PK) studies of oral L-citrulline have not been performed in infants and children. OBJECTIVES This study characterized the PK of enterally administered L-citrulline in neonates at risk of developing BPD-PH to devise a model-informed dosing strategy. METHODS AND RESULTS Ten premature neonates (≤ 28 weeks gestation) were administered a single dose of 150 mg/kg (powder form solubilized in sterile water) oral L-citrulline at 32 ± 1 weeks postmenstrual age. Due to the need to limit blood draws, time windows were used to maximize the sampling over the dosing interval by assigning neonates to one of two groups (ii) samples collected pre-dose and at 1- and 2.5-h post-dose, and (ii) pre-dose and 0.25- and 3-h post-dose. The L-arginine concentrations (µmol/L) and the L-citrulline (µmol/L) plasma concentration-time data were evaluated using non-compartmental analysis (Phoenix WinNonlin version 8.1). Optimal dosage strategies were derived using a simulation-based methodology. Simulated doses of 51.5 mg or 37.5 mg/kg given four times a day produced steady-state concentrations close to a target of 50 µmol/L. The volume of distribution (V/F) and clearance (CL/F) were 302.89 ml and 774.96 ml/h, respectively, with the drug exhibiting a half-life of 16 minutes. The AUC from the time of dosing to the time of last concentration was 1473.3 h*μmol/L, with Cmax and Tmax of 799 μmol/L and 1.55 h, respectively. CONCLUSION This is the first PK study in neonates presenting data that can be used to inform dosing strategies in future randomized controlled trials evaluating enteral L-citrulline as a potential treatment to reduce PH associated with BPD in premature neonates. REGISTRATION Clinical trials.gov Identifier: NCT03542812.
Collapse
Affiliation(s)
- Candice D Fike
- Department of Pediatrics, The University of Utah Health, Salt Lake City, UT, USA
| | - Charul Avachat
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Angela K Birnbaum
- Department of Pediatrics, The University of Utah Health, Salt Lake City, UT, USA
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Judy L Aschner
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Catherine M Sherwin
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.
- Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton, OH, USA.
- Dayton Children's Hospital, Dayton, OH, USA.
| |
Collapse
|
16
|
L-Citrulline Supplementation Reduces Blood Pressure and Myocardial Infarct Size under Chronic Intermittent Hypoxia, a Major Feature of Sleep Apnea Syndrome. Antioxidants (Basel) 2022; 11:antiox11122326. [PMID: 36552534 PMCID: PMC9774116 DOI: 10.3390/antiox11122326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Intermittent hypoxia (IH) is a landmark of obstructive sleep apnea (OSA) at the core of the cardiovascular consequences of OSA. IH triggers oxidative stress, a major underlying mechanism for elevated blood pressure (BP) and increased infarct size. L-citrulline is an amino acid that has been demonstrated to be protective of the cardiovascular system and exert pleiotropic effects. Therefore, we tested the impact of citrulline supplementation on IH-induced increase in BP and infarct size. Four groups of rats exposed to normoxia (N) or IH [14 days (d), 8 h/day, 30 s-O2 21%/30 s-O2 5%] and were supplemented or not with citrulline (1 g·kg-1·d-1). After 14 d, BP was measured, and hearts were submitted to global ischemia-reperfusion to measure infarct size. Histological and biochemical analyses were conducted on hearts and aorta to assess oxidative stress. Citrulline significantly reduced BP (-9.92%) and infarct size (-18.22%) under IH only. In the aorta, citrulline supplementation significantly decreased superoxide anion and nitrotyrosine levels under IH and abolished the IH-induced decrease in nitrite. Citrulline supplementation significantly decreased myocardial superoxide anion levels and xanthine oxidase enzyme activity under IH. Citrulline shows a cardioprotective capacity by limiting IH-induced pro-oxidant activity. Our results suggest that citrulline might represent a new pharmacological strategy in OSA patients with high cardiovascular risk.
Collapse
|
17
|
Ohlstrom DJ, Sul C, Vohwinkel CU, Hernandez-Lagunas L, Karimpour-Fard A, Mourani PM, Carpenter TC, Nozik ES, Sucharov CC. Plasma microRNA and metabolic changes associated with pediatric acute respiratory distress syndrome: a prospective cohort study. Sci Rep 2022; 12:14560. [PMID: 36028738 PMCID: PMC9418138 DOI: 10.1038/s41598-022-15476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/24/2022] [Indexed: 11/09/2022] Open
Abstract
Acute respiratory distress syndrome is a heterogeneous pathophysiological process responsible for significant morbidity and mortality in pediatric intensive care patients. Diagnosis is defined by clinical characteristics that identify the syndrome after development. Subphenotyping patients at risk of progression to ARDS could provide the opportunity for therapeutic intervention. microRNAs, non-coding RNAs stable in circulation, are a promising biomarker candidate. We conducted a single-center prospective cohort study to evaluate random forest classification of microarray-quantified circulating microRNAs in critically ill pediatric patients. We additionally selected a sub-cohort for parallel metabolomics profiling as a pilot study for concurrent use of miRNAs and metabolites as circulating biomarkers. In 35 patients (n = 21 acute respiratory distress, n = 14 control) 15 microRNAs were differentially expressed. Unsupervised random forest classification accurately grouped ARDS and control patients with an area under the curve of 0.762, which was improved to 0.839 when subset to only patients with bacterial infection. Nine metabolites were differentially abundant between acute respiratory distress and control patients (n = 4, both groups) and abundance was highly correlated with miRNA expression. Random forest classification of microRNAs differentiated critically ill pediatric patients who developed acute respiratory distress relative to those who do not. The differential expression of microRNAs and metabolites provides a strong foundation for further work to validate their use as a prognostic biomarker.
Collapse
Affiliation(s)
- Denis J Ohlstrom
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Christina Sul
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Division of Pediatric Critical Care, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Christine U Vohwinkel
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Division of Pediatric Critical Care, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Laura Hernandez-Lagunas
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Division of Pediatric Critical Care, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Anis Karimpour-Fard
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Peter M Mourani
- Division of Pediatric Critical Care, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Section of Pediatric Critical Care, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Todd C Carpenter
- Division of Pediatric Critical Care, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Eva S Nozik
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Division of Pediatric Critical Care, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Carmen C Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado, Anschutz Medical Campus, 12700 E 19th Ave B139, Aurora, CO, 80045, USA.
| |
Collapse
|
18
|
Douglass M, Dikalova A, Kaplowitz MR, Zhang Y, Cunningham G, Summar M, Fike CD. Folic acid, either solely or combined with L-citrulline, improves NO signaling and ameliorates chronic hypoxia-induced pulmonary hypertension in newborn pigs. Physiol Rep 2021; 9:e15096. [PMID: 34762361 PMCID: PMC8582293 DOI: 10.14814/phy2.15096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/24/2022] Open
Abstract
Concomitant with developing pulmonary hypertension (PH), newborn piglets exposed to chronic hypoxia develop pulmonary vascular NO signaling impairments. PH is reduced and NO signaling is improved in chronically hypoxic piglets treated with the NO-arginine precursor, L-citrulline. Folic acid positively impacts NO signaling. We evaluated whether the effect on NO signaling and PH is greater using co-treatment with folic acid and L-citrulline than either alone. From day 3 to day 10 of hypoxia, piglets were treated solely with folic acid, solely with L-citrulline, or co-treated with both. Catheters were placed to measure in vivo hemodynamics. NO production was measured in vitro in dissected pulmonary arteries. Compared to normoxic piglets, pulmonary vascular resistance (PVR) was elevated and NO production was reduced in untreated hypoxic piglets. Regardless of treatment strategy, PVR was less in all three treated groups of hypoxic piglets when compared to the untreated hypoxic group. In addition, for all three groups of treated hypoxic piglets, NO production was higher than the untreated group. Improvements in PVR and NO production did not differ between piglets co-treated with folic acid and L-citrulline and those treated solely with either. Thus, the impact on NO production and PVR was not augmented by combining folic acid and L-citrulline treatments. Nonetheless, treatment with folic acid, either singly or when combined with L-citrulline, increases NO production and inhibits PH in chronically hypoxic newborn piglets. Folic acid merits consideration as a therapy for PH in human infants with chronic heart and lung conditions that are associated with chronic hypoxia.
Collapse
Affiliation(s)
- Matthew Douglass
- Department of PediatricsUniversity of Utah HealthSalt Lake CityUtahUSA
| | - Anna Dikalova
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Mark R. Kaplowitz
- Department of PediatricsUniversity of Utah HealthSalt Lake CityUtahUSA
| | - Yongmei Zhang
- Department of PediatricsUniversity of Utah HealthSalt Lake CityUtahUSA
| | - Gary Cunningham
- Division of Genetics and MetabolismChildren’s National Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Marshall Summar
- Division of Genetics and MetabolismChildren’s National Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Candice D. Fike
- Department of PediatricsUniversity of Utah HealthSalt Lake CityUtahUSA
| |
Collapse
|
19
|
Douglass MS, Zhang Y, Kaplowitz MR, Fike CD. L-citrulline increases arginase II protein levels and arginase activity in hypoxic piglet pulmonary artery endothelial cells. Pulm Circ 2021; 11:20458940211006289. [PMID: 33948161 PMCID: PMC8053766 DOI: 10.1177/20458940211006289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/08/2021] [Indexed: 11/15/2022] Open
Abstract
The L-arginine precursor, L-citrulline, re-couples endothelial nitric oxide synthase, increases nitric oxide production, and ameliorates chronic hypoxia-induced pulmonary hypertension in newborn pigs. L-arginine can induce arginase, which, in turn, may diminish nitric oxide production. Our major purpose was to determine if L-citrulline increases arginase activity in hypoxic piglet pulmonary arterial endothelial cells, and if so, concomitantly impacts the ability to increase endothelial nitric oxide synthase re-coupling and nitric oxide production. Piglet pulmonary arterial endothelial cells were cultured in hypoxic conditions with L-citrulline (0-3 mM) and/or the arginase inhibitor S-(2-boronoethyl)-L-cysteine. We measured arginase activity and nitric oxide production. We assessed endothelial nitric oxide synthase coupling by measuring endothelial nitric oxide synthase dimers and monomers. L-citrulline concentrations ≥0.5 mM increased arginase activity in hypoxic pulmonary arterial endothelial cells. L-citrulline concentrations ≥0.1 mM increased nitric oxide production and concentrations ≥0.5 mM elevated endothelial nitric oxide synthase dimer-to-monomer ratios. Co-treatment with L-citrulline and S-(2-boronoethyl)-L-cysteine elevated endothelial nitric oxide synthase dimer-to-monomer ratios more than sole treatment. Despite inducing arginase, L-citrulline increased nitric oxide production and endothelial nitric oxide synthase coupling in hypoxic piglet pulmonary arterial endothelial cells. However, these dose-dependent findings raise the possibility that there could be L-citrulline concentrations that elevate arginase to levels that negate improvements in endothelial nitric oxide synthase dysfunction. Moreover, our findings suggest that combining an arginase inhibitor with L-citrulline merits evaluation as a treatment for chronic hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
| | - Yongmei Zhang
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Mark R Kaplowitz
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Candice D Fike
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
20
|
Roberts K, Stepanovich G, Bhatt-Mehta V, Donn SM. New Pharmacologic Approaches to Bronchopulmonary Dysplasia. J Exp Pharmacol 2021; 13:377-396. [PMID: 33790663 PMCID: PMC8006962 DOI: 10.2147/jep.s262350] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Bronchopulmonary Dysplasia is the most common long-term respiratory morbidity of preterm infants, with the risk of development proportional to the degree of prematurity. While its pathophysiologic and histologic features have changed over time as neonatal demographics and respiratory therapies have evolved, it is now thought to be characterized by impaired distal lung growth and abnormal pulmonary microvascular development. Though the exact sequence of events leading to the development of BPD has not been fully elucidated and likely varies among patients, it is thought to result from inflammatory and mechanical/oxidative injury from chronic ventilatory support in fragile, premature lungs susceptible to injury from surfactant deficiency, structural abnormalities, inadequate antioxidant defenses, and a chest wall that is more compliant than the lung. In addition, non-pulmonary issues may adversely affect lung development, including systemic infections and insufficient nutrition. Once BPD has developed, its management focuses on providing adequate gas exchange while promoting optimal lung growth. Pharmacologic strategies to ameliorate or prevent BPD continue to be investigated. A variety of agents, to be reviewed henceforth, have been developed or re-purposed to target different points in the pathways that lead to BPD, including anti-inflammatories, diuretics, steroids, pulmonary vasodilators, antioxidants, and a number of molecules involved in the cell signaling cascade thought to be involved in the pathogenesis of BPD.
Collapse
Affiliation(s)
- Katelyn Roberts
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Gretchen Stepanovich
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Varsha Bhatt-Mehta
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- College of Pharmacy, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Steven M Donn
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Citrulline supplementation attenuates the development of non-alcoholic steatohepatitis in female mice through mechanisms involving intestinal arginase. Redox Biol 2021; 41:101879. [PMID: 33550112 PMCID: PMC7868995 DOI: 10.1016/j.redox.2021.101879] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is by now the most prevalent liver disease worldwide. The non-proteogenic amino acid l-citrulline (L-Cit) has been shown to protect mice from the development of NAFLD. Here, we aimed to further assess if L-Cit also attenuates the progression of a pre-existing diet-induced NAFLD and to determine molecular mechanisms involved. Female C57BL/6J mice were either fed a liquid fat-, fructose- and cholesterol-rich diet (FFC) or control diet (C) for 8 weeks to induce early stages of NASH followed by 5 more weeks with either FFC-feeding +/- 2.5 g L-Cit/kg bw or C-feeding. In addition, female C57BL/6J mice were either pair-fed a FFC +/- 2.5 g L-Cit/kg bw +/- 0.01 g/kg bw i.p. N(ω)-hydroxy-nor-l-arginine (NOHA) or C diet for 8 weeks. The protective effects of supplementing L-Cit on the progression of a pre-existing NAFLD were associated with an attenuation of 1) the increased translocation of bacterial endotoxin and 2) the loss of tight junction proteins as well as 3) arginase activity in small intestinal tissue, while no marked changes in intestinal microbiota composition were prevalent in small intestine. Treatment of mice with the arginase inhibitor NOHA abolished the protective effects of L-Cit on diet-induced NAFLD. Our results suggest that the protective effects of L-Cit on the development and progression of NAFLD are related to alterations of intestinal arginase activity and intestinal permeability. l-citrulline diminished progression of non-alcoholic fatty liver disease (NAFLD). l-citrulline protects from fructose-induced small intestinal barrier dysfunction. NASH development is associated with a loss of arginase activity in small intestine. l-citrulline improves intestinal arginase activity in diet-induced NAFLD. Arginase inhibitor attenuates effects of l-citrulline on NAFLD development.
Collapse
|
22
|
Mohammad MA, Didelija IC, Stoll B, Burrin DG, Marini JC. Modeling age-dependent developmental changes in the expression of genes involved in citrulline synthesis using pig enteroids. Physiol Rep 2020; 8:e14565. [PMID: 33181004 PMCID: PMC7660678 DOI: 10.14814/phy2.14565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Age-dependent changes in the intestinal gene expression of enzymes involved in the metabolism of citrulline and arginine are well characterized. Enteroids, a novel ex-vivo model that recreates the three-dimensional structure of the intestinal crypt-villus unit, have shown to replicate molecular and physiological profiles of the intestinal segment from where they originated ("location memory"). OBJECTIVE The present study tested the hypothesis that enteroids recapitulate the developmental changes observed in vivo regarding citrulline production in pigs ("developmental memory"). METHODS Preterm (10- and 5-d preterm) and term pigs at birth, together with 7- and 35-d-old pigs were studied. Gene expression was measured in jejunal samples and in enteroids derived from this segment. Whole body citrulline production was measured by isotope dilution and enteroid citrulline production by accumulation in the media. RESULTS With the exception of arginase I and inducible nitric oxide synthase, all the genes investigated expressed in jejunum were expressed by enteroids. In the jejunum, established markers of development (lactase and sucrase-isomaltase), as well as genes that code for enzymes involved in the production and utilization of citrulline and arginine, underwent the ontogenic changes described in the literature. However, enteroid expression of these genes, as well as citrulline production, failed to recapitulate the changes observed in vivo. CONCLUSIONS Under culture conditions used in our study, enteroids derived from jejunal crypts of pigs at different ages failed to replicate the gene expression observed in whole tissue and whole body citrulline production. Additional extracellular cues may be needed to reproduce the age-dependent phenotype.
Collapse
Affiliation(s)
- Mahmoud A. Mohammad
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
- Food Science and Nutrition DepartmentNational Research CentreDokki, GizaEgypt
| | - Inka C. Didelija
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
| | - Barbara Stoll
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
| | - Douglas G. Burrin
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
| | - Juan C. Marini
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
- Pediatric Critical Care MedicineDepartment of PediatricsBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
23
|
Treatment of Obstructive Sleep Apnea-Hypopnea Syndrome With a Mandible Advanced Device Increases Nitric Oxide Release and Ameliorates Pulmonary Hypertension in Rabbits. J Oral Maxillofac Surg 2020; 79:694.e1-694.e12. [PMID: 33259783 DOI: 10.1016/j.joms.2020.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 11/21/2022]
Abstract
PURPOSE To investigate the effects of mandible advanced device (MAD) therapy for obstructive sleep apnea-hypopnea syndrome (OSAHS) on nitric oxide (NO) release and changes in pulmonary artery pressure and structure. METHODS Thirty male New Zealand white rabbits were randomly divided into OSAHS, MAD, and control groups (n = 10 per group). The soft palate of rabbits in the OSAHS and MAD groups was injected with hydrophilic polyacrylamide gel to induce OSAHS. The MAD group wore a MAD, and the control group was not treated. Cone-beam computed tomography scans and polysomnography recordings were performed to confirm successful model establishment. All rabbits slept in a supine position for 4 to 6 hours daily and were observed for 8 consecutive weeks. The pulmonary artery pressure was measured by right heart catheterization. Pulmonary artery morphometry was analyzed by hematoxylin and eosin staining. NO levels in plasma and lung homogenate supernatants were detected by Griess reaction assay kits. RESULTS The OSAHS group exhibited higher pulmonary artery pressure (57.74 ± 1.79 mm Hg) than the MAD (19.99 ± 2.04 mm Hg) and control (14.49 ± 0.54 mm Hg) groups. The media thickness percentage of the pulmonary artery was higher in the OSAHS group (46.89 ± 2.72%) than the control group (15.87 ± 1.18%) and was markedly reduced by MAD (21.64 ± 1.45%). Blood oxygen saturation was positively correlated with the NO concentration in both the lung and plasma, and the NO concentration was negatively correlated with the media thickness percentage and media section percentage. CONCLUSIONS OSAHS induced a decrease in NO and pulmonary hypertension, which was relieved by MAD therapy.
Collapse
|
24
|
McClellan EB, Wang Z, Albertine KH, Kaplowitz MR, Zhang Y, Fike CD. l-Citrulline treatment alters the structure of the pulmonary circulation in hypoxic newborn pigs. Pediatr Pulmonol 2020; 55:2762-2772. [PMID: 32662946 PMCID: PMC7719608 DOI: 10.1002/ppul.24960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/12/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Dysregulated nitric oxide (NO) signaling contributes to chronic hypoxia (CH)-induced pulmonary hypertension (PH). NO signaling is improved and pulmonary vascular resistance (PVR) is reduced in CH piglets treated with the l-arginine-NO precursor, l-citrulline. We hypothesized that l-citrulline might cause structural changes in the pulmonary circulation that would contribute to the reduction in PVR and that the l-citrulline-induced structural changes would be accompanied by alterations in vascular endothelial growth factor (VEGF) signaling. METHODS We evaluated small pulmonary arterial (PA) wall thickness, lung capillary density, and protein abundances of VEGF, VEGFR2, and phospho (p)-VEGFR2 in PA and peripheral lung samples of piglets raised in the lab in CH (10%-12% O2 ) from the day of life (DOL) 2 until DOL 11 to 12 or raised in room air (normoxia) by the vendor and studied on arrival to the lab on DOL 11 to 12. Some CH piglets were treated with oral l-citrulline (1-1.5 g/kg/d) starting on the third day of hypoxia. RESULTS PA wall thickness was 32% less and lung capillary formation was nearly doubled in l-citrulline treated than untreated CH piglets. Both of these l-citrulline-induced structural changes in the pulmonary circulation were accompanied by altered amounts of VEGF protein but not by altered amounts of either VEGFR2 or p-VEGFR2 proteins. CONCLUSIONS Alterations in the structure of the pulmonary circulation in CH piglets by l-citrulline are unlikely to be mediated by overall VEGF signaling. Nonetheless, l-citrulline- induced structural changes should reduce PVR and thereby contribute to the amelioration of CH-induced PH.
Collapse
Affiliation(s)
- Eric B McClellan
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| | - Zhengming Wang
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| | - Kurt H Albertine
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| | - Mark R Kaplowitz
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| | - Yongmei Zhang
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| | - Candice D Fike
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| |
Collapse
|
25
|
Sehgal A, Steenhorst JJ, Mclennan DI, Merkus D, Ivy D, McNamara PJ. The Left Heart, Systemic Circulation, and Bronchopulmonary Dysplasia: Relevance to Pathophysiology and Therapeutics. J Pediatr 2020; 225:13-22.e2. [PMID: 32553872 DOI: 10.1016/j.jpeds.2020.06.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Arvind Sehgal
- Monash Children's Hospital, Monash University, Melbourne, Australia; Department of Pediatrics, Monash University, Melbourne, Australia.
| | - Jarno J Steenhorst
- Department of Cardiology, Erasmus MC, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, Rotterdam, the Netherlands
| | - Daniel I Mclennan
- Department of Pediatrics, University of Iowa Children's Hospital, Dr, Iowa City, IA; Internal Medicine, University of Iowa Children's Hospital, Dr, Iowa City, IA
| | - Daphne Merkus
- Department of Cardiology, Erasmus MC, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, Rotterdam, the Netherlands; Institut für Chirurgische Forschung, Klinikum Universität München, Ludwig Maximillian Universität München, München, Germany
| | - Dunbar Ivy
- Pediatric Cardiology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| | - Patrick J McNamara
- Department of Pediatrics, University of Iowa Children's Hospital, Dr, Iowa City, IA; Internal Medicine, University of Iowa Children's Hospital, Dr, Iowa City, IA
| |
Collapse
|
26
|
Amino Acids in Health and Endocrine Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:97-109. [PMID: 32761572 DOI: 10.1007/978-3-030-45328-2_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Dietary amino acids play an important role in maintaining health. Branched chain amino acids can adversely increase blood pressure whereas arginine and citrulline can reduce it. D-amino acids play important roles in several cell types including testis, the nervous system and adrenal glands. Several amino acids also can have dramatic effects on diabetes; branched chain amino acids, phenylalanine and tyrosine have been implicated while others, namely arginine and citrulline can improve outcomes. Leucine has been shown to play important roles in muscle primarily through the mTOR pathway though this effect does not translate across every population. Glutamine, arginine and D-aspartate also exert their muscle effects through mTOR. Relationships between amino acids and endocrine function include that of glucocorticoids, thyroid function, glucagon-like peptide 1 (GLP-1), ghrelin, insulin-like growth factor-1 (IGF-1) and leptin. Leucine, for example, can alleviate the effect of dexamethasone on muscle protein accretion. Interestingly, amino acid transporters play an important role in thyroid function. Several amino acids have been shown to increase GLP-1 levels in non-diabetics when administered orally. Similarly, several amino acids increase ghrelin levels in different species while cysteine can decrease it in mice. There is evidence to suggest that the arginine/NO pathway may be involved in modulating some of the effects of ghrelin on cells. In regard to IGF-1, branched chain amino acids can increase levels in adults while tryptophan and phenylalanine have been shown to increase levels in infants. Finally, leptin levels can be elevated by branched chain amino acids while restricting leucine in high fat diets can increase leptin sensitivity.
Collapse
|
27
|
Sánchez-Gloria JL, Osorio-Alonso H, Arellano-Buendía AS, Carbó R, Hernández-Díazcouder A, Guzmán-Martín CA, Rubio-Gayosso I, Sánchez-Muñoz F. Nutraceuticals in the Treatment of Pulmonary Arterial Hypertension. Int J Mol Sci 2020; 21:E4827. [PMID: 32650586 PMCID: PMC7402298 DOI: 10.3390/ijms21144827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/13/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease characterized by the loss and obstructive remodeling of the pulmonary arterial wall, causing a rise in pulmonary arterial pressure and pulmonary vascular resistance, which is responsible for right heart failure, functional decline, and death. Although many drugs are available for the treatment of this condition, it continues to be life-threatening, and its long-term treatment is expensive. On the other hand, many natural compounds present in food have beneficial effects on several cardiovascular conditions. Several studies have explored many of the potential beneficial effects of natural plant products on PAH. However, the mechanisms by which natural products, such as nutraceuticals, exert protective and therapeutic effects on PAH are not fully understood. In this review, we analyze the current knowledge on nutraceuticals and their potential use in the protection and treatment of PAH, as well as whether nutraceuticals could enhance the effects of drugs used in PAH through similar mechanisms.
Collapse
Affiliation(s)
- José L. Sánchez-Gloria
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (H.O.-A.); (A.S.A.-B.)
| | - Abraham S. Arellano-Buendía
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (H.O.-A.); (A.S.A.-B.)
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Adrián Hernández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Carlos A. Guzmán-Martín
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ivan Rubio-Gayosso
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
| | - Fausto Sánchez-Muñoz
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| |
Collapse
|
28
|
Abstract
Supplemental arginine has shown promise as a safe therapeutic option to improve endogenous nitric oxide (NO) regulation in cardiovascular diseases associated with endothelial dysfunction. In clinical studies in adults, L-arginine, an endogenous amino acid, was reported to improve cardiovascular function in hypertension, pulmonary hypertension, preeclampsia, angina, and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) syndrome. L-citrulline, a natural precursor of L-arginine, is more bioavailable than L-arginine because it avoids hepatic first-pass metabolism and has a longer circulation time. Although not yet well-studied, arginine/citrulline has immense therapeutic potential in some life-threatening diseases in children. However, the optimal clinical development of arginine or citrulline in children requires more information about pharmacokinetics and exposure-response relationships at appropriate ages and under relevant disease states. This article summarizes the preclinical and clinical studies of arginine/citrulline in both adults and children, including currently available pharmacokinetic information. The pharmacology of arginine/citrulline is confounded by several patient-specific factors such as variations in baseline arginine/citrulline due to developmental ages and disease states. Currently available pharmacokinetic studies are insufficient to inform the optimal design of clinical studies, especially in children. Successful bench-to-bedside clinical translation of arginine supplementation awaits information from well-designed pharmacokinetic/pharmacodynamic studies, along with pharmacometric approaches.
Collapse
|
29
|
Dikalova A, Aschner JL, Kaplowitz MR, Cunningham G, Summar M, Fike CD. Combined l-citrulline and tetrahydrobiopterin therapy improves NO signaling and ameliorates chronic hypoxia-induced pulmonary hypertension in newborn pigs. Am J Physiol Lung Cell Mol Physiol 2020; 318:L762-L772. [PMID: 32073878 PMCID: PMC7191483 DOI: 10.1152/ajplung.00280.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 01/21/2023] Open
Abstract
Newborn pigs with chronic hypoxia-induced pulmonary hypertension (PH) have evidence of endothelial nitric oxide synthase (eNOS) uncoupling. In this model, we showed that therapies that promote eNOS coupling, either tetrahydrobiopterin (BH4), a NOS cofactor, or l-citrulline, a NO-l-arginine precursor, inhibit PH. We wanted to determine whether cotreatment with l-citrulline and a BH4 compound, sapropterin dihydrochloride, improves NO signaling and chronic hypoxia-induced PH more markedly than either alone. Normoxic (control) and hypoxic piglets were studied. Some hypoxic piglets received sole treatment with l-citrulline or BH4, or were cotreated with l-citrulline and BH4, from day 3 through day 10 of hypoxia. Catheters were placed for hemodynamic measurements, and pulmonary arteries were dissected to assess eNOS dimer-to-monomer ratios and NO production. In untreated hypoxic piglets, pulmonary vascular resistance (PVR) was higher and NO production and eNOS dimer-to-monomer ratios were lower than in normoxic piglets. Compared with the untreated hypoxic group, PVR was lower in hypoxic piglets cotreated with l-citrulline and BH4 and in those treated with l-citrulline alone but not for those treated solely with BH4. NO production and eNOS dimer-to-monomer ratios were greater for all three treated hypoxic groups compared with the untreated group. Notably, greater improvements in PVR, eNOS dimer-to-monomer ratios, and NO production were found in hypoxic piglets cotreated with l-citrulline and BH4 than in piglets treated with either alone. Cotreatment with l-citrulline and BH4 more effectively improves NO signaling and inhibits chronic hypoxia-induced PH than either treatment alone. Combination therapies may offer enhanced therapeutic capacity for challenging clinical conditions, such as chronic neonatal PH.
Collapse
Affiliation(s)
- Anna Dikalova
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Judy L Aschner
- Department of Pediatrics, Albert Einstein College of Medicine, New York, New York
- Department of Pediatrics, Hackensack Meridian Health School of Medicine at Seton Hall University, Nutley, New Jersey
| | - Mark R Kaplowitz
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| | - Gary Cunningham
- Division of Genetics and Metabolism, Children's National Medical Center, Washington, District of Columbia
| | - Marshall Summar
- Division of Genetics and Metabolism, Children's National Medical Center, Washington, District of Columbia
| | - Candice D Fike
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| |
Collapse
|
30
|
Martinho S, Adão R, Leite-Moreira AF, Brás-Silva C. Persistent Pulmonary Hypertension of the Newborn: Pathophysiological Mechanisms and Novel Therapeutic Approaches. Front Pediatr 2020; 8:342. [PMID: 32850518 PMCID: PMC7396717 DOI: 10.3389/fped.2020.00342] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is one of the main causes of neonatal morbidity and mortality. It is characterized by sustained elevation of pulmonary vascular resistance (PVR), preventing an increase in pulmonary blood flow after birth. The affected neonates fail to establish blood oxygenation, precipitating severe respiratory distress, hypoxemia, and eventually death. Inhaled nitric oxide (iNO), the only approved pulmonary vasodilator for PPHN, constitutes, alongside supportive therapy, the basis of its treatment. However, nearly 40% of infants are iNO resistant. The cornerstones of increased PVR in PPHN are pulmonary vasoconstriction and vascular remodeling. A better understanding of PPHN pathophysiology may enlighten targeted and more effective therapies. Sildenafil, prostaglandins, milrinone, and bosentan, acting as vasodilators, besides glucocorticoids, playing a role on reducing inflammation, have all shown potential beneficial effects on newborns with PPHN. Furthermore, experimental evidence in PPHN animal models supports prospective use of emergent therapies, such as soluble guanylyl cyclase (sGC) activators/stimulators, l-citrulline, Rho-kinase inhibitors, peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists, recombinant superoxide dismutase (rhSOD), tetrahydrobiopterin (BH4) analogs, ω-3 long-chain polyunsaturated fatty acids (LC-PUFAs), 5-HT2A receptor antagonists, and recombinant human vascular endothelial growth factor (rhVEGF). This review focuses on current knowledge on alternative and novel pathways involved in PPHN pathogenesis, as well as recent progress regarding experimental and clinical evidence on potential therapeutic approaches for PPHN.
Collapse
Affiliation(s)
- Sofia Martinho
- Department of Surgery and Physiology, Cardiovascular Research and Development Center-UnIC, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rui Adão
- Department of Surgery and Physiology, Cardiovascular Research and Development Center-UnIC, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adelino F Leite-Moreira
- Department of Surgery and Physiology, Cardiovascular Research and Development Center-UnIC, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carmen Brás-Silva
- Department of Surgery and Physiology, Cardiovascular Research and Development Center-UnIC, Faculty of Medicine, University of Porto, Porto, Portugal.,Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
31
|
Dillard J, Perez M, Chen B. Therapies that enhance pulmonary vascular NO-signaling in the neonate. Nitric Oxide 2019; 95:45-54. [PMID: 31870967 DOI: 10.1016/j.niox.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/25/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
There are several pulmonary hypertensive diseases that affect the neonatal population, including persistent pulmonary hypertension of the newborn (PPHN) and bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH). While the indication for inhaled nitric oxide (iNO) use is for late-preterm and term neonates with PPHN, there is a suboptimal response to this pulmonary vasodilator in ~40% of patients. Additionally, there are no FDA-approved treatments for BPD-associated PH or for preterm infants with PH. Therefore, investigating mechanisms that alter the nitric oxide-signaling pathway has been at the forefront of pulmonary vascular biology research. In this review, we will discuss the various mechanistic pathways that have been targets in neonatal PH, including NO precursors, soluble guanylate cyclase modulators, phosphodiesterase inhibitors and antioxidants. We will review their role in enhancing NO-signaling at the bench, in animal models, as well as highlight their role in the treatment of neonates with PH.
Collapse
Affiliation(s)
- Julie Dillard
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| | - Marta Perez
- Division of Neonatology, Stanley Manne Children's Research Institute, Ann and Robert H Lurie Children's Hospital, Chicago, IL, USA; Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
32
|
Che D, Adams S, Zhao B, Qin G, Jiang H. Effects of Dietary L-arginine Supplementation from Conception to Post- Weaning in Piglets. Curr Protein Pept Sci 2019; 20:736-749. [PMID: 30678624 DOI: 10.2174/1389203720666190125104959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
Abstract
Weaned piglets experience sudden changes in their dietary patterns such as withdrawal from the easily digestible watery milk to a coarse cereal diet with both systemic and intestinal disruptions coupling with the expression of pro-inflammatory proteins which affects the immune system and the concentrations of haptoglobin including both positive and negative acute-phase proteins in the plasma. L-arginine is an important protein amino acid for piglets, but its inadequate synthesis is a nutritional problem for both sows and piglets. Recent studies indicated that dietary supplementation of L-arginine increased feed intake, uterine growth, placental growth and nutrient transport, maternal growth and health, embryonic survival, piglets birth weight, piglet's growth, and productivity, and decreased stillbirths. L-arginine is essential in several important pathways involved in the growth and development of piglets such as nitric oxide synthesis, energy metabolism, polyamine synthesis, cellular protein production and muscle accretion, and the synthesis of other functional amino acids. However, the underlying molecular mechanism in these key pathways remains largely unresolved. This review was conducted on the general hypothesis that L-arginine increased the growth and survival of post-weaning piglets. We discussed the effects of dietary L-arginine supplementation during gestation, parturition, lactation, weaning, and post-weaning in pigs as each of these stages influences the health and survival of sows and their progenies. Therefore, the aim of this review was to discuss through a logical approach the effects of L-arginine supplementation on piglet's growth and survival from conception to postweaning.
Collapse
Affiliation(s)
- Dongsheng Che
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| | - Seidu Adams
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Bao Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| | - Guixin Qin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| | - Hailong Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| |
Collapse
|
33
|
Barnes JW, Patel RP. Things We "kNOw" and Do Not "kNOw" about Pulmonary Hypertension. Am J Respir Crit Care Med 2019; 198:151-152. [PMID: 29590535 DOI: 10.1164/rccm.201803-0424ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Jarrod W Barnes
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine University of Alabama at Birmingham Birmingham, Alabama.,2 Lerner Research Institute Cleveland Clinic Cleveland, Ohio and
| | - Rakesh P Patel
- 3 Department of Pathology University of Alabama at Birmingham Birmingham, Alabama
| |
Collapse
|
34
|
Dikalova AE, Aschner JL, Zhang Y, Kaplowitz MR, Fike CD. Reactive oxygen species modulate Na +-coupled neutral amino acid transporter 1 expression in piglet pulmonary arterial endothelial cells. Am J Physiol Heart Circ Physiol 2019; 316:H911-H919. [PMID: 30794434 DOI: 10.1152/ajpheart.00674.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have previously shown that Na+-coupled neutral amino acid transporter 1 (SNAT1) modulates nitric oxide (NO) production in pulmonary arterial endothelial cells (PAECs) from newborn piglets. Specifically, the ability to increase NO production in response to the l-arginine-NO precursor l-citrulline is dependent on SNAT1 expression. Elucidating factors that regulate SNAT1 expression in PAECs could provide new insights and therapeutic targets relevant to NO production. Our major goals were to determine if reactive oxygen species (ROS) modulate SNAT1 expression in PAECs from newborn piglets and to evaluate the role of NADPH oxidase 1 (NOX1) and uncoupled endothelial NO synthase, enzymatic sources of ROS, in hypoxia-induced increases in SNAT1 expression. Treatment with either H2O2 or xanthine plus xanthine oxidase increased SNAT1 expression in PAECs from newborn piglets cultured under normoxic conditions. Hypoxia-induced increases in SNAT1 expression were inhibited by treatments with the ROS-removing agents catalase and superoxide dismutase, NOX1 siRNA, and the NO synthase inhibitor NG-nitro-l-arginine methyl ester. Both tetrahydropbiopterin (BH4) and l-citrulline, two therapies that decrease ROS by recoupling endothelial NO synthase, reduced the hypoxia-induced increase in SNAT1 expression. BH4 and l-citrulline treatment improved NO production in hypoxic PAECs despite a reduction in SNAT1 expression. In conclusion, SNAT1 expression is modulated by ROS in PAECs from newborn piglets. However, ROS-mediated decreases in SNAT1 expression per se do not implicate a reduction in NO production. Although SNAT1 may be critical to l-citrulline-induced increases in NO production, therapies designed to alter SNAT1 expression may not lead to a concordant change in NO production. NEW & NOTEWORTHY Na+-coupled neutral amino acid transporter 1 (SNAT1) modulates nitric oxide (NO) production in piglet pulmonary arterial endothelial cells. Factors that regulate SNAT1 expression in pulmonary arterial endothelial cells are unclear. Here, we show that ROS-reducing strategies inhibit hypoxia-induced increases in SNAT1 expression. l-Citrulline and tetrahydropbiopterin decrease SNAT1 expression but increase NO production. Although SNAT1 is modulated by ROS, changes in SNAT1 expression may not cause a concordant change in NO production.
Collapse
Affiliation(s)
- Anna E Dikalova
- Department of Pediatrics, Vanderbilt University Medical Center , Nashville, Tennessee.,Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Judy L Aschner
- Department of Pediatrics, Albert Einstein College of Medicine, The Bronx, New York
| | - Yongmei Zhang
- Department of Pediatrics, Vanderbilt University Medical Center , Nashville, Tennessee.,Department of Pediatrics, University of Utah Health , Salt Lake City, Utah
| | - Mark R Kaplowitz
- Department of Pediatrics, Vanderbilt University Medical Center , Nashville, Tennessee.,Department of Pediatrics, University of Utah Health , Salt Lake City, Utah
| | - Candice D Fike
- Department of Pediatrics, Vanderbilt University Medical Center , Nashville, Tennessee.,Department of Pediatrics, University of Utah Health , Salt Lake City, Utah
| |
Collapse
|
35
|
Piersigilli F, Lam TT, Vernocchi P, Quagliariello A, Putignani L, Aghai ZH, Bhandari V. Identification of new biomarkers of bronchopulmonary dysplasia using metabolomics. Metabolomics 2019; 15:20. [PMID: 30830433 DOI: 10.1007/s11306-019-1482-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/21/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To identify new biomarkers of bronchopulmonary dysplasia (BPD) in preterm neonates. STUDY DESIGN Metabolomic study of prospectively collected tracheal aspirate (TA) samples from preterm neonates admitted in 2 neonatal intensive care units measured by a mass spectroscopy-based assay and analysed using partial least squares-discriminant analysis. RESULTS We evaluated 160 TA samples from 68 neonates, 44 with BPD and 24 without BPD in the first week of life. A cluster of 53 metabolites was identified as characteristic of BPD, with 18 select metabolites being highly significant in the separation of BPD versus No BPD. To control for the gestational age (GA) differences, we did a sub-group analyses, and noted that the amino acids histidine, glutamic acid, citrulline, glycine and isoleucine levels were higher in neonates with BPD. In addition, acylcarnitines C16-OH and C18:1-OH were also higher in neonates who developed BPD, but especially in the most preterm infants (neonates with GA < 27 weeks). CONCLUSION Metabolomics is a promising approach to identify novel specific biomarkers for BPD.
Collapse
Affiliation(s)
- Fiammetta Piersigilli
- Division of Perinatal Medicine, and Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Division of Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - TuKiet T Lam
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Pamela Vernocchi
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Quagliariello
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, Rome, Italy
- Unit of Parasitology, Department of Laboratory and Immunological Diagnostics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Zubair H Aghai
- Section of Neonatology, Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vineet Bhandari
- Division of Perinatal Medicine, and Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA.
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, 160 East Erie Avenue, 19134, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Daiber A, Xia N, Steven S, Oelze M, Hanf A, Kröller-Schön S, Münzel T, Li H. New Therapeutic Implications of Endothelial Nitric Oxide Synthase (eNOS) Function/Dysfunction in Cardiovascular Disease. Int J Mol Sci 2019; 20:ijms20010187. [PMID: 30621010 PMCID: PMC6337296 DOI: 10.3390/ijms20010187] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023] Open
Abstract
The Global Burden of Disease Study identified cardiovascular risk factors as leading causes of global deaths and life years lost. Endothelial dysfunction represents a pathomechanism that is associated with most of these risk factors and stressors, and represents an early (subclinical) marker/predictor of atherosclerosis. Oxidative stress is a trigger of endothelial dysfunction and it is a hall-mark of cardiovascular diseases and of the risk factors/stressors that are responsible for their initiation. Endothelial function is largely based on endothelial nitric oxide synthase (eNOS) function and activity. Likewise, oxidative stress can lead to the loss of eNOS activity or even “uncoupling” of the enzyme by adverse regulation of well-defined “redox switches” in eNOS itself or up-/down-stream signaling molecules. Of note, not only eNOS function and activity in the endothelium are essential for vascular integrity and homeostasis, but also eNOS in perivascular adipose tissue plays an important role for these processes. Accordingly, eNOS protein represents an attractive therapeutic target that, so far, was not pharmacologically exploited. With our present work, we want to provide an overview on recent advances and future therapeutic strategies that could be used to target eNOS activity and function in cardiovascular (and other) diseases, including life style changes and epigenetic modulations. We highlight the redox-regulatory mechanisms in eNOS function and up- and down-stream signaling pathways (e.g., tetrahydrobiopterin metabolism and soluble guanylyl cyclase/cGMP pathway) and their potential pharmacological exploitation.
Collapse
Affiliation(s)
- Andreas Daiber
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany.
| | - Ning Xia
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Sebastian Steven
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Matthias Oelze
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Alina Hanf
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Swenja Kröller-Schön
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Thomas Münzel
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany.
| | - Huige Li
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| |
Collapse
|
37
|
de Wijs‐Meijler DPM, Duncker DJ, Danser AHJ, Reiss IKM, Merkus D. Changes in the nitric oxide pathway of the pulmonary vasculature after exposure to hypoxia in swine model of neonatal pulmonary vascular disease. Physiol Rep 2018; 6:e13889. [PMID: 30375198 PMCID: PMC6205946 DOI: 10.14814/phy2.13889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 11/24/2022] Open
Abstract
Neonatal pulmonary vascular disease (PVD) is increasingly recognized as a disease that complicates the cardiopulmonary adaptations after birth and predisposes to long-term cardiopulmonary disease. There is growing evidence that PVD is associated with disruptions in the nitric oxide (NO)-cGMP-phosphodiesterase 5 (PDE5) pathway. Examination of the functionality of different parts of this pathway is required for better understanding of the pathogenesis of neonatal PVD. For this purpose, the role of the NO-cGMP-PDE5 pathway in regulation of pulmonary vascular function was investigated in vivo, both at rest and during exercise, and in isolated pulmonary small arteries in vitro, in a neonatal swine model with hypoxia-induced PVD. Endothelium-dependent vasodilatation was impaired in piglets with hypoxia-induced PVD both in vivo at rest and in vitro. Moreover, the responsiveness to the NO-donor SNP was reduced in hypoxia-exposed piglets in vivo, while the relaxation to SNP and 8-bromo-cyclicGMP in vitro were unaltered. Finally, PDE5 inhibition-induced pulmonary vasodilatation was impaired in hypoxia-exposed piglets both in vitro and in vivo at rest. During exercise, however, the pulmonary vasodilator effect of PDE5 inhibition was significantly larger in hypoxia-exposed as compared to normoxia-exposed piglets. In conclusion, the impaired endothelium-dependent vasodilatation in piglets with hypoxia-induced PVD was accompanied by reduced responsiveness to NO, potentially caused by altered sensitivity and/or activity of soluble guanylyl cyclase (sGC), resulting in an impaired cGMP production. Our findings in a newborn animal model for neonatal PVD suggests that sGC stimulators/activators may be a novel treatment strategy to alleviate neonatal PVD.
Collapse
Affiliation(s)
- Daphne P. M. de Wijs‐Meijler
- Division of Experimental CardiologyDepartment of CardiologyUniversity Medical Center RotterdamErasmus MCRotterdamThe Netherlands
- Division of NeonatologyDepartment of PediatricsSophia Children's HospitalErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Dirk J. Duncker
- Division of Experimental CardiologyDepartment of CardiologyUniversity Medical Center RotterdamErasmus MCRotterdamThe Netherlands
| | - A. H. Jan Danser
- Division of PharmacologyDepartment of Internal MedicineErasmus MC University Medical Center RotterdamRotterdamThe Netherlands
| | - Irwin K. M. Reiss
- Division of NeonatologyDepartment of PediatricsSophia Children's HospitalErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Daphne Merkus
- Division of Experimental CardiologyDepartment of CardiologyUniversity Medical Center RotterdamErasmus MCRotterdamThe Netherlands
| |
Collapse
|
38
|
Pedersen J, Hedegaard ER, Simonsen U, Krüger M, Infanger M, Grimm D. Current and Future Treatments for Persistent Pulmonary Hypertension in the Newborn. Basic Clin Pharmacol Toxicol 2018; 123:392-406. [PMID: 29855164 DOI: 10.1111/bcpt.13051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/27/2018] [Indexed: 01/18/2023]
Abstract
Persistent pulmonary hypertension in newborn (PPHN) is a serious and possibly fatal syndrome characterized by sustained foetal elevation of pulmonary vascular resistance at birth. PPHN may manifest secondary to other conditions as meconium aspiration syndrome, infection and congenital diaphragmatic hernia. This MiniReview provides the reader with an overview of current and future treatment options for patients with PPHN without congenital diaphragmatic hernia. The study is based on systematic searches in the databases PubMed and Cochrane Library and registered studies on Clinicaltrials.gov investigating PPHN. Inhaled nitric oxide (iNO) is well documented for treatment of PPHN, but 30% fail to respond to iNO. Other current treatment options could be sildenafil, milrinone, prostaglandin analogues and bosentan. There are several ongoing trials with sildenafil, but evidence is lacking for the other treatments and/or for the combination with iNO. Currently, there is no evidence for effect in PPHN of other treatments, for example tadalafil, macitentan, ambrisentan, riociguat and selexipag used for pulmonary arterial hypertension in adults. Experimental studies in animal models for PPHN suggest effect of a series of approaches including recombinant human superoxide dismutase, L-citrulline, Rho-kinase inhibitors and peroxisome proliferator-activated receptor-γ agonists. We conclude that iNO is the most investigated and the only approved pulmonary vasodilator for infants with PPHN. In the iNO non-responders, sildenafil currently seems to be the best alternative either alone or in combination with iNO. Systematic and larger clinical studies are required for testing the other potential treatments of PPHN.
Collapse
Affiliation(s)
- Jonas Pedersen
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| | - Elise R Hedegaard
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark.,Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
39
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
40
|
de Wijs-Meijler DPM, van Duin RWB, Duncker DJ, Scherrer U, Sartori C, Reiss IKM, Merkus D. Structural and functional changes of the pulmonary vasculature after hypoxia exposure in the neonatal period: a new swine model of pulmonary vascular disease. Am J Physiol Heart Circ Physiol 2017; 314:H603-H615. [PMID: 29127236 DOI: 10.1152/ajpheart.00362.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary vascular disease (PVD) represents an underestimated and increasing clinical burden not only in the neonatal period but also later in life, when exercise tolerance is decreased. Animal models performing long-term followup after a perinatal insult are lacking. This study aimed to develop and characterize a neonatal swine model with hypoxia-induced PVD during long-term followup after reexposure to normoxia and to investigate the exercise response in this model. Piglets were exposed to a normoxic ( n = 10) or hypoxic environment ( n = 9) for 4 wk. Neonatal hypoxia exposure resulted in pulmonary hypertension. Mean pulmonary artery pressure was elevated 1 day after reexposure to normoxia (30.2 ± 3.3 vs. 14.3 ± 0.9 mmHg) and remained significantly higher in the second week (32.8 ± 3.8 vs. 21.4 ± 1.2 mmHg), accompanied by decreased exercise tolerance. Exercise resulted in a trend toward an exaggerated increase of pulmonary artery pressure in hypoxia-exposed animals ( week 6, P = 0.086). Although pulmonary hypertension was transient, thickening of pulmonary arterioles was found at the end of followup. Furthermore, right ventricular dilation, lower right ventricular fractional area change ( week 8, 40.0 ± 2.7% vs. 29.5 ± 4.7%), and tricuspid annular plane systolic excursion ( week 8, 27.0 ± 2.5 vs. 22.9 ± 2.1 mm) persisted during followup. Male animals showed more severe PVD than female animals. In conclusion, we developed a neonatal swine model that allows examination of the long-term sequelae of damage to the developing neonatal lung, the course of the disease and the effect of therapy on long-term outcome. NEW & NOTEWORTHY The swine model of neonatal pulmonary vascular disease developed in the present study is the first that allows exercise testing and examination of long-term sequelae of a perinatal hypoxic insult, the course of the disease, and the effect of therapy on long-term outcome.
Collapse
Affiliation(s)
- Daphne P M de Wijs-Meijler
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands.,Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Richard W B van Duin
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Urs Scherrer
- Departments of Cardiology and Clinical Research, University Hospital Bern, Bern, Switzerland, and Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá , Arica , Chile
| | - Claudio Sartori
- Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois , Lausanne , Switzerland
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| |
Collapse
|
41
|
Liu C, Chen J, Liu B, Liao WT, Liu J, Xu G, Sun BD, Zhang EL, Gao YQ. Activated corticosterone synthetic pathway is involved in poor responses to re-oxygenation after prolonged hypoxia. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8414-8423. [PMID: 31966693 PMCID: PMC6965453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/20/2017] [Indexed: 06/10/2023]
Abstract
Diverse response patterns to re-oxygenation lead to various physiological or pathological phenotypes, but now lack of systematic research models in vivo. High-altitude de-acclimatization syndrome (HADAS) describes systematic alterations of re-oxygenation returning to plain after a long living in high altitude. In this study, we aim at employing a comprehensive metabolomics to explore the mechanisms for different reactions to re-oxygenation based on systematic quantitation scoring methods of HADAS model. Plasma samples were collected from 22 subjects when they finished their stay in high altitude for 1 year (5300 m), returning plain for 30th day and 180th day. These participants were divided into HADAS-S or HADAS-R group based on HADAS model on the 30th day after their reaching. Metabolic profiling was performed by ultra-performance liquid chromatography-quadrupole time-of-light mass spectrometry (UPLC-QTOFMS) in conjunction with univariate and multivariate statistical analysis. A total of 20 differential metabolites were identified by the comparison between HADAS-S and HADAS-R group. Pathway analysis suggested that the most potential disturbed pathway is sterol synthesis pathway, especially corticosterone synthetic sub-pathway. These molecules detected in this pathway are detailed that they showed a rapid and significant increasing manner in HADAS-S subjects comparing to HADAS-R group in the process of re-oxygenation. In conclusion, we identified that excessive stress responses to re-oxygenation might contribute to the distinctions between HADAS-S and HADAS-R group. These findings provide novel insights for further understanding of the pathogenesis for metabolic abnormalities in re-oxygenation after prolonged hypoxia.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
- Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China
- Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Jian Chen
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
- Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China
- Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Bao Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
- Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China
- Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Wen-Ting Liao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
- Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China
- Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Jie Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
- Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China
- Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Gang Xu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
- Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China
- Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Bing-Da Sun
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
- Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China
- Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Er-Long Zhang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
- Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China
- Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Yu-Qi Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
- Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China
- Key Laboratory of High Altitude Medicine, PLAChongqing, China
| |
Collapse
|
42
|
MiR-125a regulates mitochondrial homeostasis through targeting mitofusin 1 to control hypoxic pulmonary vascular remodeling. J Mol Med (Berl) 2017; 95:977-993. [PMID: 28593577 DOI: 10.1007/s00109-017-1541-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/14/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
Abnormal pulmonary arterial smooth muscle cells (PASMCs) proliferation is an important pathological process in hypoxic pulmonary arterial hypertension. Mitochondrial dynamics and quality control have a central role in the maintenance of the cell proliferation-apoptosis balance. However, the molecular mechanism is still unknown. We used hypoxic animal models, cell biology, and molecular biology to determine the effect of mitofusin 1 (Mfn1) on hypoxia-mediated PASMCs mitochondrial homeostasis. We found that Mfn1 expression was increased in hypoxia, which was crucial for hypoxia-induced mitochondrial dysfunction and smooth muscle cell proliferation as well as hypoxia-stimulated cell-cycle transition from the G0/G1 phase to S phase. Subsequently, we studied the role of microRNAs in mitochondrial function associated with PASMC proliferation under hypoxic conditions. The promotive effect of Mfn1 on pulmonary vascular remodeling was alleviated in the presence of miR-125a agomir, and miR-125a antagomir mimicked the hypoxic damage effects to mitochondrial homeostasis. Moreover, in vivo and in vitro treatment with miR-125a agomir protected the pulmonary vessels from mitochondrial dysfunction and abnormal remodeling. In the present study, we determined that mitochondrial homeostasis, particularly Mfn1, played an important role in PASMCs proliferation. MiR-125a, an important underlying factor, which inhibited Mfn1 expression and decreased PASMCs disordered growth during hypoxia. These results provide a theoretical basis for the prevention and treatment of pulmonary vascular remodeling. KEY MESSAGES Hypoxia leads to upregulation of mitofusin 1 (Mfn1) both in vivo and in vitro. Mfn1 is involved in hypoxia-induced PASMCs proliferation. Mfn1-mediated mitochondrial homeostasis is regulated by miR-125a. MiR-125a plays a role in PASMCs oxidative phosphorylation and glycolysis.
Collapse
|
43
|
Luecke C, McPherson C. Treatment of Persistent Pulmonary Hypertension of the Newborn: Use of Pulmonary Vasodilators in Term Neonates. Neonatal Netw 2017; 36:160-168. [PMID: 28494828 DOI: 10.1891/0730-0832.36.3.160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) represents a challenging condition associated with significant morbidity. A successful transition from intrauterine to extrauterine life is contingent on adequate pulmonary vasodilation. Several pathophysiologies contribute to the failure of this cascade and may result in life-threatening hypoxia and acidosis in the newborn. Management includes optimal respiratory support, adequate sedation and analgesia, and support of vascular tone and cardiac function. Pulmonary vasodilation has the potential to overcome the cycle of hypoxia and acidosis, improving outcome in these infants. Oxygen and inhaled nitric oxide represent the foundation of therapy. Tertiary pulmonary vasodilators represent a greater challenge, selecting between therapies that include prostanoids, sildenafil, and milrinone. Variable levels of evidence exist for each agent. Thorough review of available data informing efficacy and adverse effects contributes to the development of an informed approach to neonates with refractory PPHN.
Collapse
|
44
|
Segura-Ibarra V, Amione-Guerra J, Cruz-Solbes AS, Cara FE, Iruegas-Nunez DA, Wu S, Youker KA, Bhimaraj A, Torre-Amione G, Ferrari M, Karmouty-Quintana H, Guha A, Blanco E. Rapamycin nanoparticles localize in diseased lung vasculature and prevent pulmonary arterial hypertension. Int J Pharm 2017; 524:257-267. [PMID: 28359821 DOI: 10.1016/j.ijpharm.2017.03.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/22/2017] [Accepted: 03/26/2017] [Indexed: 12/24/2022]
Abstract
Vascular remodeling resulting from pulmonary arterial hypertension (PAH) leads to endothelial fenestrations. This feature can be exploited by nanoparticles (NP), allowing them to extravasate from circulation and accumulate in remodeled pulmonary vessels. Hyperactivation of the mTOR pathway in PAH drives pulmonary arterial smooth muscle cell proliferation. We hypothesized that rapamycin (RAP)-loaded NPs, an mTOR inhibitor, would accumulate in diseased lungs, selectively targeting vascular mTOR and preventing PAH progression. RAP poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL) NPs were fabricated. NP accumulation and efficacy were examined in a rat monocrotaline model of PAH. Following intravenous (IV) administration, NP accumulation in diseased lungs was verified via LC/MS analysis and confocal imaging. Pulmonary arteriole thickness, right ventricular systolic pressures, and ventricular remodeling were determined to assess the therapeutic potential of RAP NPs. Monocrotaline-exposed rats showed increased NP accumulation within lungs compared to healthy controls, with NPs present to a high extent within pulmonary perivascular regions. RAP, in both free and NP form, attenuated PAH development, with histological analysis revealing minimal changes in pulmonary arteriole thickness and no ventricular remodeling. Importantly, NP-treated rats showed reduced systemic side effects compared to free RAP. This study demonstrates the potential for nanoparticles to significantly impact PAH through site-specific delivery of therapeutics.
Collapse
Affiliation(s)
- Victor Segura-Ibarra
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL 64710, Mexico.
| | - Javier Amione-Guerra
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA.
| | - Ana S Cruz-Solbes
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA.
| | - Francisca E Cara
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - David A Iruegas-Nunez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL 64710, Mexico.
| | - Suhong Wu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Keith A Youker
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA.
| | - Arvind Bhimaraj
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA.
| | - Guillermo Torre-Amione
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA; Catedra de Cardiología y Medicina Vascular, Tecnológico de Monterrey, Monterrey, NL 66278, Mexico.
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Ashrith Guha
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA.
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
45
|
Huetsch JC, Suresh K, Bernier M, Shimoda LA. Update on novel targets and potential treatment avenues in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2016; 311:L811-L831. [PMID: 27591245 PMCID: PMC5130539 DOI: 10.1152/ajplung.00302.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/29/2016] [Indexed: 02/08/2023] Open
Abstract
Pulmonary hypertension (PH) is a condition marked by a combination of constriction and remodeling within the pulmonary vasculature. It remains a disease without a cure, as current treatments were developed with a focus on vasodilatory properties but do not reverse the remodeling component. Numerous recent advances have been made in the understanding of cellular processes that drive pathologic remodeling in each layer of the vessel wall as well as the accompanying maladaptive changes in the right ventricle. In particular, the past few years have yielded much improved insight into the pathways that contribute to altered metabolism, mitochondrial function, and reactive oxygen species signaling and how these pathways promote the proproliferative, promigratory, and antiapoptotic phenotype of the vasculature during PH. Additionally, there have been significant advances in numerous other pathways linked to PH pathogenesis, such as sex hormones and perivascular inflammation. Novel insights into cellular pathology have suggested new avenues for the development of both biomarkers and therapies that will hopefully bring us closer to the elusive goal: a therapy leading to reversal of disease.
Collapse
Affiliation(s)
- John C Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| | - Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| | - Meghan Bernier
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
46
|
Dikalova A, Aschner JL, Kaplowitz MR, Summar M, Fike CD. Tetrahydrobiopterin oral therapy recouples eNOS and ameliorates chronic hypoxia-induced pulmonary hypertension in newborn pigs. Am J Physiol Lung Cell Mol Physiol 2016; 311:L743-L753. [PMID: 27542807 PMCID: PMC5142125 DOI: 10.1152/ajplung.00238.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/14/2016] [Indexed: 01/21/2023] Open
Abstract
We previously showed that newborn piglets who develop pulmonary hypertension during exposure to chronic hypoxia have diminished pulmonary vascular nitric oxide (NO) production and evidence of endothelial NO synthase (eNOS) uncoupling (Fike CD, Dikalova A, Kaplowitz MR, Cunningham G, Summar M, Aschner JL. Am J Respir Cell Mol Biol 53: 255-264, 2015). Tetrahydrobiopterin (BH4) is a cofactor that promotes eNOS coupling. Current clinical strategies typically invoke initiating treatment after the diagnosis of pulmonary hypertension, rather than prophylactically. The major purpose of this study was to determine whether starting treatment with an oral BH4 compound, sapropterin dihydrochloride (sapropterin), after the onset of pulmonary hypertension would recouple eNOS in the pulmonary vasculature and ameliorate disease progression in chronically hypoxic piglets. Normoxic (control) and hypoxic piglets were studied. Some hypoxic piglets received oral sapropterin starting on day 3 of hypoxia and continued throughout an additional 7 days of hypoxic exposure. Catheters were placed for hemodynamic measurements, and pulmonary arteries were dissected to assess eNOS dimer-to-monomer ratios (a measure of eNOS coupling), NO production, and superoxide (O2·-) generation. Although higher than in normoxic controls, pulmonary vascular resistance was lower in sapropterin-treated hypoxic piglets than in untreated hypoxic piglets. Consistent with eNOS recoupling, eNOS dimer-to-monomer ratios and NO production were greater and O2·- generation was less in pulmonary arteries from sapropterin-treated than untreated hypoxic animals. When started after disease onset, oral sapropterin treatment inhibits chronic hypoxia-induced pulmonary hypertension at least in part by recoupling eNOS in the pulmonary vasculature of newborn piglets. Rescue treatment with sapropterin may be an effective strategy to inhibit further development of pulmonary hypertension in newborn infants suffering from chronic cardiopulmonary conditions associated with episodes of prolonged hypoxia.
Collapse
Affiliation(s)
- Anna Dikalova
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Judy L Aschner
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, New York, New York
| | - Mark R Kaplowitz
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pediatrics, the University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Marshall Summar
- Division of Genetics and Metabolism, Children's National Medical Center, Washington, District of Columbia
| | - Candice D Fike
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pediatrics, the University of Utah School of Medicine, Salt Lake City, Utah; and
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW The high worldwide prevalence of nonalcoholic fatty liver disease (NAFLD) makes it a major public health issue. Amino acids offer a promising approach for its prevention, and several experimental studies highlight the nutritional importance of citrulline in this setting. The purpose of this review is to discuss the potential interest of citrulline in the prevention and treatment of NAFLD. RECENT FINDINGS Current findings shed light on the role of the gut-liver, adipose tissue-liver, and muscle-liver axes in NAFLD progression. Recent experimental studies have produced evidence for a role of citrulline in controlling the pathophysiological mechanisms involved in NAFLD through its action on these three axes. Data are needed to distinguish between direct and indirect effects of citrulline on the liver and between a specific effect and a nitrogen supply-related effect. SUMMARY Good level of experimental evidence suggests that citrulline supply may be associated with an attenuation of NAFLD development, but further human studies are now needed to support these findings. This review may help define novel strategies to control fatty liver diseases.
Collapse
Affiliation(s)
- Prasanthi Jegatheesan
- aEA4466 PRETRAM, Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité bDepartment of Clinical Chemistry, Hôpitaux Universitaires Paris Centre, APHP, Paris, France
| | | |
Collapse
|
48
|
Challenges, priorities and novel therapies for hypoxemic respiratory failure and pulmonary hypertension in the neonate. J Perinatol 2016; 36 Suppl 2:S32-6. [PMID: 27225964 DOI: 10.1038/jp.2016.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 01/31/2023]
Abstract
Future priorities for the management of hypoxemic respiratory failure (HRF) and pulmonary hypertension include primary prevention of neonatal lung diseases, 'precision medicine' and translating promising clinical and preclinical research into novel therapies. Promising areas of investigation include noninvasive ventilation strategies, emerging pulmonary vasodilators (for example, cinaciguat, intravenous bosentan, rho-kinase inhibitors, peroxisome proliferator-activated receptor-γ agonists) and hemodynamic support (arginine vasopressin). Research challenges include the optimal timing for primary prevention interventions and development of validated biomarkers that predict later disease or serve as surrogates for long-term respiratory outcomes. Differentiating respiratory disease endotypes using biomarkers and experimental therapies tailored to the underlying pathobiology are central to the concept of 'precision medicine' (that is, prevention and treatment strategies that take individual variability into account). The ideal biomarker should be expressed early in the neonatal course to offer an opportunity for effective and targeted interventions to modify outcomes. The feasibility of this approach will depend on the identification and validation of accurate, rapid and affordable point-of-care biomarker tests. Trials targeting patient-specific pathobiology may involve less risk than traditional randomized controlled trials that enroll all at-risk neonates. Such approaches would reduce trial costs, potentially with fewer negative trials and improved health outcomes. Initiatives such as the Prematurity and Respiratory Outcomes Program, supported by the National Heart, Lung, and Blood Institute, provide a framework to develop refined outcome measures and early biomarkers that will enhance our understanding of novel, mechanistic therapeutic targets that can be tested in clinical trials in neonates with HRF.
Collapse
|
49
|
Abstract
Inhaled nitric oxide (iNO) is approved for use in persistent pulmonary hypertension of the newborn (PPHN) but does not lead to sustained improvement in oxygenation in one-third of patients with PPHN. Inhaled NO is less effective in the management of PPHN secondary to congenital diaphragmatic hernia (CDH), extreme prematurity, and bronchopulmonary dysplasia (BPD). Intravenous pulmonary vasodilators such as prostacyclin, alprostadil, sildenafil, and milrinone have been successfully used in PPHN resistant to iNO. Oral pulmonary vasodilators such as endothelin receptor antagonist bosentan and phosphodiesterase-5 inhibitors such as sildenafil and tadalafil are used both during acute and chronic phases of PPHN. In the absence of infection, glucocorticoids may also be effective in PPHN. Many of these pharmacologic agents are not approved for use in PPHN and our knowledge is based on case reports and small trials. Large multicenter randomized controlled trials with long-term follow-up are required to evaluate alternate pharmacologic strategies in PPHN.
Collapse
Affiliation(s)
| | - Bobby Mathew
- Department of Pediatrics, University at Buffalo, Buffalo, NY
| | - Corinne L Leach
- Department of Pediatrics, University at Buffalo, Buffalo, NY
| |
Collapse
|
50
|
Glucocorticoid-induced fetal origins of adult hypertension: Association with epigenetic events. Vascul Pharmacol 2016; 82:41-50. [PMID: 26903240 DOI: 10.1016/j.vph.2016.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 02/05/2023]
Abstract
Hypertension is a predominant risk factor for cardiovascular diseases and a major health care burden. Accumulating epidemiological and experimental evidence suggest that adult-onset hypertension may have its origins during early development. Upon exposure to glucocorticoids, the fetus develops hypertension, and the offspring may be programmed to continue the hypertensive trajectory into adulthood. Elevated oxidative stress and deranged nitric oxide system are not only hallmarks of adult hypertension but are also observed earlier in life. Endothelial dysfunction and remodeling of the vasculature, which are robustly associated with increased incidence of hypertension, are likely to have been pre-programmed during fetal life. Apparently, genomic, non-genomic, and epigenomic factors play a significant role in the development of hypertension, including glucocorticoid-driven effects on blood pressure. In this review, we discuss the involvement of the aforementioned participants in the pathophysiology of hypertension and suggest therapeutic opportunities for targeting epigenome modifiers, potentially for personalized medicine.
Collapse
|