1
|
Loureiro ZY, Samant A, Desai A, DeSouza T, Cirka H, Ceesay M, Kostyra D, Joyce S, Khair L, Solivan-Rivera J, Ziegler R, Carneiro NK, Tsai LT, Brehm M, Messina LM, Fitzgerald KA, Rosen ED, Corvera S, Nguyen TT. Human Bone Marrow Adipose Tissue is a Hematopoietic Niche for Leptin-Driven Monopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.08.29.555167. [PMID: 37693594 PMCID: PMC10491256 DOI: 10.1101/2023.08.29.555167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
During aging, adipose tissue within the bone marrow expands while the trabecular red marrow contracts. The impact of these changes on blood cell formation remains unclear. To address this question, we performed single-cell and single-nuclei transcriptomic analysis on adipose-rich yellow bone marrow (BMY) and adipose-poor trabecular red marrow (BMR) from human subjects undergoing lower limb amputations. Surprisingly, we discovered two distinct hematopoietic niches, in which BMY contains a higher number of monocytes and progenitor cells expressing genes associated with inflammation. To further investigate these niches, we developed an in-vitro organoid system that maintains features of the human bone marrow. We find cells from BMY are distinct in their expression of the leptin receptor, and respond to leptin stimulation with enhanced proliferation, leading to increased monocyte production. These findings suggest that the age-associated expansion of bone marrow adipose tissue drives a pro-inflammatory state by stimulating monocyte production from a spatially distinct, leptin-responsive hematopoietic stem/progenitor cell population. Significance This study reveals that adipose tissue within the human bone marrow is a niche for hematopoietic stem and progenitor cells that can give rise to pro-inflammatory monocytes through leptin signaling. Expansion of bone marrow adipose tissue with age and stress may thus underlie inflammageing.
Collapse
|
2
|
Alasmary FAS, Abdullah DA, Masand VH, Ben Bacha A, Omar Ebeid AM, El-Araby ME, Alafeefy AM. Synthesis, molecular modelling, and biological evaluation of novel quinoxaline derivatives for treating type II diabetes. J Enzyme Inhib Med Chem 2024; 39:2395985. [PMID: 39311475 PMCID: PMC11421147 DOI: 10.1080/14756366.2024.2395985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 09/26/2024] Open
Abstract
Quinoxalines are benzopyrazine derivatives with significant therapeutic impact in the pharmaceutical industry. They proved to be useful against inflammation, bacterial, fungal, viral infection, diabetes and other applications. Very recently, in January 2024, the FDA approved new quinoxaline containing drug, erdafitinib for treatment of certain carcinomas. Despite the diverse biological activities exhibited by quinoxaline derivatives and the role of secretory phospholipase A2 (sPLA2) in diabetes-related complications, the potential of sPLA2-targeting quinoxaline-based inhibitors to effectively address these complications remains unexplored. Therefore, we designed novel sPLA2- and α-glucosidase-targeting quinoxaline-based heterocyclic inhibitors to regulate elevated post-prandial blood glucose linked to patients with diabetes-related cardiovascular complications. Compounds 5a-d and 6a-d were synthesised by condensing quinoxaline hydrazides with various aryl sulphonyl chlorides. Biological screening revealed compound 6a as a potent sPLA2 inhibitor (IC50 = 0.0475 µM), whereas compound 6c most effectively inhibited α-glucosidase (IC50 = 0.0953 µM), outperforming the positive control acarbose. Moreover, compound 6a was the best inhibitor for both enzymes. Molecular docking revealed pharmacophoric features, highlighting the importance of a sulfonohydrazide moiety in the structural design of these compounds, leading to the development of potent sPLA2 and α-glucosidase inhibitors. Collectively, our findings helped identify promising candidates for developing novel therapeutic agents for treating diabetes mellitus.
Collapse
Affiliation(s)
| | - Dalal A. Abdullah
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vijay H. Masand
- Department of Chemistry, Vidya Bharati College, Amravati, Maharashtra, India
| | - Abir Ben Bacha
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Moustafa E. El-Araby
- Pharmaceutical Chemistry Department, College of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M Alafeefy
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Kampus, Malaysia
| |
Collapse
|
3
|
Sato H, Taketomi Y, Murase R, Park J, Hosomi K, Sanada TJ, Mizuguchi K, Arita M, Kunisawa J, Murakami M. Group X phospholipase A 2 links colonic lipid homeostasis to systemic metabolism via host-microbiota interaction. Cell Rep 2024; 43:114752. [PMID: 39298315 DOI: 10.1016/j.celrep.2024.114752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
The gut microbiota influences physiological functions of the host, ranging from the maintenance of local gut homeostasis to systemic immunity and metabolism. Secreted phospholipase A2 group X (sPLA2-X) is abundantly expressed in colonic epithelial cells but is barely detectable in metabolic and immune tissues. Despite this distribution, sPLA2-X-deficient (Pla2g10-/-) mice displayed variable obesity-related phenotypes that were abrogated after treatment with antibiotics or cohousing with Pla2g10+/+ mice, suggesting the involvement of the gut microbiota. Under housing conditions where Pla2g10-/- mice showed aggravation of diet-induced obesity and insulin resistance, they displayed increased colonic inflammation and epithelial damage, reduced production of polyunsaturated fatty acids (PUFAs) and lysophospholipids, decreased abundance of several Clostridium species, and reduced levels of short-chain fatty acids (SCFAs). These obesity-related phenotypes in Pla2g10-/- mice were reversed by dietary supplementation with ω3 PUFAs or SCFAs. Thus, colonic sPLA2-X orchestrates ω3 PUFA-SCFA interplay via modulation of the gut microbiota, thereby secondarily affecting systemic metabolism.
Collapse
Affiliation(s)
- Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Remi Murase
- Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Jonguk Park
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, Osaka 567-0085, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Takayuki Jujo Sanada
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, Osaka 567-0085, Japan; Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan; Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
4
|
Dolla G, Nicolas S, Dos Santos LR, Bourgeois A, Pardossi-Piquard R, Bihl F, Zaghrini C, Justino J, Payré C, Mansuelle P, Garbers C, Ronco P, Checler F, Lambeau G, Petit-Paitel A. Ectodomain shedding of PLA2R1 is mediated by the metalloproteases ADAM10 and ADAM17. J Biol Chem 2024; 300:107480. [PMID: 38897568 PMCID: PMC11301074 DOI: 10.1016/j.jbc.2024.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Phospholipase A2 receptor 1 (PLA2R1) is a 180-kDa transmembrane protein that plays a role in inflammation and cancer and is the major autoantigen in membranous nephropathy, a rare but severe autoimmune kidney disease. A soluble form of PLA2R1 has been detected in mouse and human serum. It is likely produced by proteolytic shedding of membrane-bound PLA2R1 but the mechanism is unknown. Here, we show that human PLA2R1 is cleaved by A Disintegrin And Metalloprotease 10 (ADAM10) and ADAM17 in HEK293 cells, mouse embryonic fibroblasts, and human podocytes. By combining site-directed mutagenesis and sequencing, we determined the exact cleavage site within the extracellular juxtamembrane stalk of human PLA2R1. Orthologs and paralogs of PLA2R1 are also shed. By using pharmacological inhibitors and genetic approaches with RNA interference and knock-out cellular models, we identified a major role of ADAM10 in the constitutive shedding of PLA2R1 and a dual role of ADAM10 and ADAM17 in the stimulated shedding. We did not observe evidence for cleavage by β- or γ-secretase, suggesting that PLA2R1 may not be a substrate for regulated intramembrane proteolysis. PLA2R1 shedding occurs constitutively and can be triggered by the calcium ionophore ionomycin, the protein kinase C activator PMA, cytokines, and lipopolysaccharides, in vitro and in vivo. Altogether, our results show that PLA2R1 is a novel substrate for ADAM10 and ADAM17, producing a soluble form that is increased in inflammatory conditions and likely exerts various functions in physiological and pathophysiological conditions including inflammation, cancer, and membranous nephropathy.
Collapse
Affiliation(s)
- Guillaume Dolla
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Sarah Nicolas
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Ligia Ramos Dos Santos
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Laboratoire d'Excellence DistALZ, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Alexandre Bourgeois
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Laboratoire d'Excellence DistALZ, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Raphaëlle Pardossi-Piquard
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Laboratoire d'Excellence DistALZ, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Franck Bihl
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Christelle Zaghrini
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Joana Justino
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Christine Payré
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Pascal Mansuelle
- Plateforme de Protéomique de l'Institut de Microbiologie de la Méditerranée (IMM), Marseille Protéomique (MaP), Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS) FR3479, Marseille, France
| | - Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Pierre Ronco
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S1155, Paris, France; Sorbonne Université, Université Pierre et Marie Curie Paris 06, Paris, France
| | - Frédéric Checler
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Laboratoire d'Excellence DistALZ, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Gérard Lambeau
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France.
| | - Agnès Petit-Paitel
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France.
| |
Collapse
|
5
|
Koehler S, Hengel FE, Dumoulin B, Damashek L, Holzman LB, Susztak K, Huber TB. The 14th International Podocyte Conference 2023: from podocyte biology to glomerular medicine. Kidney Int 2024; 105:935-952. [PMID: 38447880 DOI: 10.1016/j.kint.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024]
Abstract
The 14th International Podocyte Conference took place in Philadelphia, Pennsylvania, USA from May 23 to 26, 2023. It commenced with an early-career researchers' meeting on May 23, providing young scientists with a platform to present and discuss their research findings. Throughout the main conference, 29 speakers across 9 sessions shared their insights on podocyte biology, glomerular medicine, novel technologic advancements, and translational approaches. Additionally, the event featured 3 keynote lectures addressing engineered chimeric antigen receptor T cell- and mRNA-based therapies and the use of biobanks for enhanced disease comprehension. Furthermore, 4 brief oral abstract sessions allowed scientists to present their findings to a broad audience. The program also included a panel discussion addressing the challenges of conducting human research within the American Black community. Remarkably, after a 5-year hiatus from in-person conferences, the 14th International Podocyte Conference successfully convened scientists from around the globe, fostering the presentation and discussion of crucial research findings, as summarized in this review. Furthermore, to ensure continuous and sustainable education, research, translation, and trial medicine related to podocyte and glomerular diseases for the benefit of patients, the International Society of Glomerular Disease was officially launched during the conference.
Collapse
Affiliation(s)
- Sybille Koehler
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Felicitas E Hengel
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bernhard Dumoulin
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laurel Damashek
- International Society of Glomerular Disease, Florence, Massachusetts, USA
| | - Lawrence B Holzman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tobias B Huber
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; International Society of Glomerular Disease, Florence, Massachusetts, USA.
| |
Collapse
|
6
|
Wu G, Fan Z, Li X. CENPA knockdown restrains cell progression and tumor growth in breast cancer by reducing PLA2R1 promoter methylation and modulating PLA2R1/HHEX axis. Cell Mol Life Sci 2024; 81:27. [PMID: 38212546 PMCID: PMC11072086 DOI: 10.1007/s00018-023-05063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Breast cancer is a lethal malignancy affecting females worldwide. It has been reported that upregulated centromere protein A (CENPA) expression might indicate unfortunate prognosis and can function as a prognostic biomarker in breast cancer. This study aimed to investigate the accurate roles and downstream mechanisms of CENPA in breast cancer progression. METHODS CENPA protein levels in breast cancer tissues and cell lines were analyzed by Western blot and immunohistochemistry assays. We used gain/loss-of-function experiments to determine the potential effects of CENPA and phospholipase A2 receptor (PLA2R1) on breast cancer cell proliferation, migration, and apoptosis. Co-IP assay was employed to validate the possible interaction between CENPA and DNA methyltransferase 1 (DNMT1), as well as PLA2R1 and hematopoietically expressed homeobox (HHEX). PLA2R1 promoter methylation was determined using methylation-specific PCR assay. The biological capabilities of CENPA/PLA2R1/HHEX axis in breast cancer cells was determined by rescue experiments. In addition, CENPA-silenced MCF-7 cells were injected into mice, followed by measurement of tumor growth. RESULTS CENPA level was prominently elevated in breast cancer tissues and cell lines. Interestingly, CENPA knockdown and PLA2R1 overexpression both restrained breast cancer cell proliferation and migration, and enhanced apoptosis. On the contrary, CENPA overexpression displayed the opposite results. Moreover, CENPA reduced PLA2R1 expression through promoting DNMT1-mediated PLA2R1 promoter methylation. PLA2R1 overexpression could effectively abrogate CENPA overexpression-mediated augment of breast cancer cell progression. Furthermore, PLA2R1 interacted with HHEX and promoted HHEX expression. PLA2R1 knockdown increased the rate of breast cancer cell proliferation and migration but restrained apoptosis, which was abrogated by HHEX overexpression. In addition, CENPA silencing suppressed tumor growth in vivo. CONCLUSION CENPA knockdown restrained breast cancer cell proliferation and migration and attenuated tumor growth in vivo through reducing PLA2R1 promoter methylation and increasing PLA2R1 and HHEX expression. We may provide a promising prognostic biomarker and novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Gang Wu
- Department of Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Zhongkai Fan
- Department of Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China.
| | - Xin Li
- Department of Rheumatology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China.
| |
Collapse
|
7
|
Sadhu S, Dalal R, Dandotiya J, Binayke A, Singh V, Tripathy MR, Das V, Goswami S, Kumar S, Rizvi ZA, Awasthi A. IL-9 aggravates SARS-CoV-2 infection and exacerbates associated airway inflammation. Nat Commun 2023; 14:4060. [PMID: 37429848 DOI: 10.1038/s41467-023-39815-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
SARS-CoV-2 infection is known for causing broncho-alveolar inflammation. Interleukin 9 (IL-9) induces airway inflammation and bronchial hyper responsiveness in respiratory viral illnesses and allergic inflammation, however, IL-9 has not been assigned a pathologic role in COVID-19. Here we show, in a K18-hACE2 transgenic (ACE2.Tg) mouse model, that IL-9 contributes to and exacerbates viral spread and airway inflammation caused by SARS-CoV-2 infection. ACE2.Tg mice with CD4+ T cell-specific deficiency of the transcription factor Forkhead Box Protein O1 (Foxo1) produce significantly less IL-9 upon SARS-CoV-2 infection than the wild type controls and they are resistant to the severe inflammatory disease that characterises the control mice. Exogenous IL-9 increases airway inflammation in Foxo1-deficient mice, while IL-9 blockade reduces and suppresses airway inflammation in SARS-CoV-2 infection, providing further evidence for a Foxo1-Il-9 mediated Th cell-specific pathway playing a role in COVID-19. Collectively, our study provides mechanistic insight into an important inflammatory pathway in SARS-CoV-2 infection, and thus represents proof of principle for the development of host-directed therapeutics to mitigate disease severity.
Collapse
Affiliation(s)
- Srikanth Sadhu
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
- Immunology-Core Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Rajdeep Dalal
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Jyotsna Dandotiya
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Akshay Binayke
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Virendra Singh
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Manas Ranjan Tripathy
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
- Immunology-Core Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Vinayaka Das
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Sandeep Goswami
- Immunology-Core Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Shakti Kumar
- Centre for Human Microbiome and Anti-Microbial Resistance, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Zaigham Abbas Rizvi
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
- Immunology-Core Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Amit Awasthi
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India.
- Immunology-Core Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India.
| |
Collapse
|
8
|
Brandsma J, Schofield JPR, Yang X, Strazzeri F, Barber C, Goss VM, Koster G, Bakke PS, Caruso M, Chanez P, Dahlén SE, Fowler SJ, Horváth I, Krug N, Montuschi P, Sanak M, Sandström T, Shaw DE, Chung KF, Singer F, Fleming LJ, Adcock IM, Pandis I, Bansal AT, Corfield J, Sousa AR, Sterk PJ, Sánchez-García RJ, Skipp PJ, Postle AD, Djukanović R. Stratification of asthma by lipidomic profiling of induced sputum supernatant. J Allergy Clin Immunol 2023; 152:117-125. [PMID: 36918039 DOI: 10.1016/j.jaci.2023.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Asthma is a chronic respiratory disease with significant heterogeneity in its clinical presentation and pathobiology. There is need for improved understanding of respiratory lipid metabolism in asthma patients and its relation to observable clinical features. OBJECTIVE We performed a comprehensive, prospective, cross-sectional analysis of the lipid composition of induced sputum supernatant obtained from asthma patients with a range of disease severities, as well as from healthy controls. METHODS Induced sputum supernatant was collected from 211 adults with asthma and 41 healthy individuals enrolled onto the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) study. Sputum lipidomes were characterized by semiquantitative shotgun mass spectrometry and clustered using topologic data analysis to identify lipid phenotypes. RESULTS Shotgun lipidomics of induced sputum supernatant revealed a spectrum of 9 molecular phenotypes, highlighting not just significant differences between the sputum lipidomes of asthma patients and healthy controls, but also within the asthma patient population. Matching clinical, pathobiologic, proteomic, and transcriptomic data helped inform the underlying disease processes. Sputum lipid phenotypes with higher levels of nonendogenous, cell-derived lipids were associated with significantly worse asthma severity, worse lung function, and elevated granulocyte counts. CONCLUSION We propose a novel mechanism of increased lipid loading in the epithelial lining fluid of asthma patients resulting from the secretion of extracellular vesicles by granulocytic inflammatory cells, which could reduce the ability of pulmonary surfactant to lower surface tension in asthmatic small airways, as well as compromise its role as an immune regulator.
Collapse
Affiliation(s)
- Joost Brandsma
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom.
| | - James P R Schofield
- National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom; Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Xian Yang
- Data Science Institute, Imperial College, London, United Kingdom
| | - Fabio Strazzeri
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Clair Barber
- National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Victoria M Goss
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Grielof Koster
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Per S Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pascal Chanez
- Department of Respiratory Diseases, Aix-Marseille University, Marseille, France
| | - Sven-Erik Dahlén
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom; Manchester Academic Health Centre and NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Ildikó Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Paolo Montuschi
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy; National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Marek Sanak
- Department of Medicine, Jagiellonian University, Krakow, Poland
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Dominick E Shaw
- National Institute for Health Research Biomedical Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Florian Singer
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Paediatrics and Adolescent Medicine, Division of Paediatric Pulmonology and Allergology, Medical University of Graz, Graz, Austria
| | - Louise J Fleming
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ioannis Pandis
- Data Science Institute, Imperial College, London, United Kingdom
| | - Aruna T Bansal
- Acclarogen Ltd, St John's Innovation Centre, Cambridge, United Kingdom
| | | | - Ana R Sousa
- Respiratory Therapy Unit, GlaxoSmithKline, London, United Kingdom
| | - Peter J Sterk
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Paul J Skipp
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Anthony D Postle
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ratko Djukanović
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| |
Collapse
|
9
|
New-Onset and Relapsed Membranous Nephropathy post SARS-CoV-2 and COVID-19 Vaccination. Viruses 2022; 14:v14102143. [PMID: 36298697 PMCID: PMC9611660 DOI: 10.3390/v14102143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 12/02/2022] Open
Abstract
Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak and COVID-19 vaccination, new-onset and relapsed clinical cases of membranous nephropathy (MN) have been reported. However, their clinical characteristics and pathogenesis remained unclear. In this article, we collected five cases of MN associated with SARS-CoV-2 infection and 37 related to COVID-19 vaccination. Of these five cases, four (4/5, 80%) had acute kidney injury (AKI) at disease onset. Phospholipase A2 receptor (PLA2R) in kidney tissue was negative in three (3/5, 60%) patients, and no deposition of virus particles was measured among all patients. Conventional immunosuppressive drugs could induce disease remission. The underlying pathogenesis included the subepithelial deposition of viral antigens and aberrant immune response. New-onset and relapsed MN after COVID-19 vaccination generally occurred within two weeks after the second dose of vaccine. Almost 27% of patients (10/37) suffered from AKI. In total, 11 of 14 cases showed positive for PLA2R, and 20 of 26 (76.9%) presented with an elevated serum phospholipase A2 receptor antibody (PLA2R-Ab), in which 8 cases exceeded 50 RU/mL. Conventional immunosuppressive medications combined with rituximab were found more beneficial to disease remission for relapsed patients. In contrast, new-onset patients responded to conservative treatment. Overall, most patients (24/37, 64.9%) had a favorable prognosis. Cross immunity and enhanced immune response might contribute to explaining the mechanisms of MN post COVID-19 vaccination.
Collapse
|
10
|
Zhou X, Dai H, Jiang H, Rui H, Liu W, Dong Z, Zhang N, Zhao Q, Feng Z, Hu Y, Hou F, Zheng Y, Liu B. MicroRNAs: Potential mediators between particulate matter 2.5 and Th17/Treg immune disorder in primary membranous nephropathy. Front Pharmacol 2022; 13:968256. [PMID: 36210816 PMCID: PMC9532747 DOI: 10.3389/fphar.2022.968256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Primary membranous nephropathy (PMN), is an autoimmune glomerular disease and the main reason of nephrotic syndrome in adults. Studies have confirmed that the incidence of PMN increases yearly and is related to fine air pollutants particulate matter 2.5 (PM2.5) exposure. These imply that PM2.5 may be associated with exposure to PMN-specific autoantigens, such as the M-type receptor for secretory phospholipase A2 (PLA2R1). Emerging evidence indicates that Th17/Treg turns to imbalance under PM2.5 exposure, but the molecular mechanism of this process in PMN has not been elucidated. As an important indicator of immune activity in multiple diseases, Th17/Treg immune balance is sensitive to antigens and cellular microenvironment changes. These immune pathways play an essential role in the disease progression of PMN. Also, microRNAs (miRNAs) are susceptible to external environmental stimulation and play link role between the environment and immunity. The contribution of PM2.5 to PMN may induce Th17/Treg imbalance through miRNAs and then produce epigenetic affection. We summarize the pathways by which PM2.5 interferes with Th17/Treg immune balance and attempt to explore the intermediary roles of miRNAs, with a particular focus on the changes in PMN. Meanwhile, the mechanism of PM2.5 promoting PLA2R1 exposure is discussed. This review aims to clarify the potential mechanism of PM2.5 on the pathogenesis and progression of PMN and provide new insights for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Xiaoshan Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Dai
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Chinese Medicine, Beijing, China
| | - Wenbin Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaocheng Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Na Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhendong Feng
- Pinggu Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Yuehong Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Fanyu Hou
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Zheng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Liu W, Huang G, Rui H, Geng J, Hu H, Huang Y, Huo G, Liu B, Xu A. Course monitoring of membranous nephropathy: Both autoantibodies and podocytes require multidimensional attention. Autoimmun Rev 2021; 21:102976. [PMID: 34757091 DOI: 10.1016/j.autrev.2021.102976] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/18/2021] [Accepted: 10/24/2021] [Indexed: 01/15/2023]
Abstract
A variety of podocyte antigens have been identified in human membranous nephropathy (MN), which is divided into various antigen-dominated subtypes, confirming the concept that MN is the common pattern of glomerular injury in multiple autoimmune responses. The detection of autoantibodies has been widely used, which promoted the clinical practice of MN toward personalized precision medicine. However, given the potential risks of immunosuppressive therapy, more autoantibodies and biomarkers need to be identified to predict the prognosis and therapeutic response of MN more accurately. In this review, we attempted to summarize the autoantigens/autoantibodies and autoimmune mechanisms that can predict disease states based on the current understanding of MN pathogenesis, especially the podocyte injury manifestations. In conclusion, both the autoimmune response and podocyte injury require multidimensional attention in the disease course of MN.
Collapse
Affiliation(s)
- Wenbin Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jie Geng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haikun Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yujiao Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyang Huo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
12
|
Abstract
The identification of the phospholipase A2 receptor 1 (PLA2R) and thrombospondin type-1 domain-containing protein 7A (THSD7A) as podocyte antigens in adult patients with membranous nephropathy (MN) has strongly impacted both experimental and clinical research on this disease. Evidence has been furnished that podocyte-directed autoantibodies can cause MN, and novel PLA2R- and THSD7A-specific animal models have been developed. Today, measurement of serum autoantibody levels and staining of kidney biopsies for the target antigens guides MN diagnosis and treatment worldwide. Additionally, anti-PLA2R antibodies have been proven to be valuable prognostic biomarkers in MN. Despite these impressive advances, a variety of questions regarding the disease pathomechanisms, clinical use of antibody measurement, and future treatments remain unanswered. In this review, we will outline recent advances made in the field of MN and discuss open questions and perspectives with a focus on novel antigen identification, mechanisms of podocyte injury, clinical use of antibody measurement to guide diagnosis and treatment, and the potential of innovative, pathogenesis-based treatment strategies.
Collapse
|
13
|
Dong Z, Liu Z, Dai H, Liu W, Feng Z, Zhao Q, Gao Y, Liu F, Zhang N, Dong X, Zhou X, Du J, Huang G, Tian X, Liu B. The Potential Role of Regulatory B Cells in Idiopathic Membranous Nephropathy. J Immunol Res 2020; 2020:7638365. [PMID: 33426094 PMCID: PMC7772048 DOI: 10.1155/2020/7638365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/22/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Regulatory B cells (Breg) are widely regarded as immunomodulatory cells which play an immunosuppressive role. Breg inhibits pathological autoimmune response by secreting interleukin-10 (IL-10), transforming growth factor-β (TGF-β), and adenosine and through other ways to prevent T cells and other immune cells from expanding. Recent studies have shown that different inflammatory environments induce different types of Breg cells, and these different Breg cells have different functions. For example, Br1 cells can secrete IgG4 to block autoantigens. Idiopathic membranous nephropathy (IMN) is an autoimmune disease in which the humoral immune response is dominant and the cellular immune response is impaired. However, only a handful of studies have been done on the role of Bregs in this regard. In this review, we provide a brief overview of the types and functions of Breg found in human body, as well as the abnormal pathological and immunological phenomena in IMN, and propose the hypothesis that Breg is activated in IMN patients and the proportion of Br1 can be increased. Our review aims at highlighting the correlation between Breg and IMN and proposes potential mechanisms, which can provide a new direction for the discovery of the pathogenesis of IMN, thus providing a new strategy for the prevention and early treatment of IMN.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Zhiyuan Liu
- Shandong First Medical University, No. 619 Changcheng Road, Tai'an City, Shandong 271016, China
| | - Haoran Dai
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Station East 5, Shunyi District, Beijing 101300, China
| | - Wenbin Liu
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Zhendong Feng
- Beijing Chinese Medicine Hospital Pinggu Hospital, No. 6, Pingxiang Road, Pinggu District, Beijing 101200, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Yu Gao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Fei Liu
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Na Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Xuan Dong
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Xiaoshan Zhou
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Jieli Du
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Guangrui Huang
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| |
Collapse
|
14
|
Dang H, Polineni D, Pace RG, Stonebraker JR, Corvol H, Cutting GR, Drumm ML, Strug LJ, O’Neal WK, Knowles MR. Mining GWAS and eQTL data for CF lung disease modifiers by gene expression imputation. PLoS One 2020; 15:e0239189. [PMID: 33253230 PMCID: PMC7703903 DOI: 10.1371/journal.pone.0239189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Genome wide association studies (GWAS) have identified several genomic loci with candidate modifiers of cystic fibrosis (CF) lung disease, but only a small proportion of the expected genetic contribution is accounted for at these loci. We leveraged expression data from CF cohorts, and Genotype-Tissue Expression (GTEx) reference data sets from multiple human tissues to generate predictive models, which were used to impute transcriptional regulation from genetic variance in our GWAS population. The imputed gene expression was tested for association with CF lung disease severity. By comparing and combining results from alternative approaches, we identified 379 candidate modifier genes. We delved into 52 modifier candidates that showed consensus between approaches, and 28 of them were near known GWAS loci. A number of these genes are implicated in the pathophysiology of CF lung disease (e.g., immunity, infection, inflammation, HLA pathways, glycosylation, and mucociliary clearance) and the CFTR protein biology (e.g., cytoskeleton, microtubule, mitochondrial function, lipid metabolism, endoplasmic reticulum/Golgi, and ubiquitination). Gene set enrichment results are consistent with current knowledge of CF lung disease pathogenesis. HLA Class II genes on chr6, and CEP72, EXOC3, and TPPP near the GWAS peak on chr5 are most consistently associated with CF lung disease severity across the tissues tested. The results help to prioritize genes in the GWAS regions, predict direction of gene expression regulation, and identify new candidate modifiers throughout the genome for potential therapeutic development.
Collapse
Affiliation(s)
- Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Deepika Polineni
- University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Rhonda G. Pace
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Jaclyn R. Stonebraker
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Harriet Corvol
- Pediatric Pulmonary Department, Assistance Publique-Hôpitaux sde Paris (AP-HP), Hôpital Trousseau, Institut National de la Santé et la Recherche Médicale (INSERM) U938, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris 6, Paris, France
| | - Garry R. Cutting
- McKusick-Nathans Institute of Genetic Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mitchell L. Drumm
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lisa J. Strug
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Wanda K. O’Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Michael R. Knowles
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
15
|
Liu W, Gao C, Liu Z, Dai H, Feng Z, Dong Z, Zheng Y, Gao Y, Tian X, Liu B. Idiopathic Membranous Nephropathy: Glomerular Pathological Pattern Caused by Extrarenal Immunity Activity. Front Immunol 2020; 11:1846. [PMID: 33042109 PMCID: PMC7524879 DOI: 10.3389/fimmu.2020.01846] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Idiopathic membranous nephropathy (IMN) is a pathological pattern of glomerular damage caused by an autoimmune response. Immune complex deposition, thickness of glomerular basement membrane, and changes in the podocyte morphology are responsible for the development of proteinuria, which is caused by the targeted binding of auto-antibodies to podocytes. Several auto-antigens have recently been identified in IMN, including M-type receptor for secretory phospholipase A2 (PLA2R1), thrombospondin type-1 domain-containing 7A (THSD7A), and neural epidermal growth factor-like 1 protein (NELL-1). The measurement of peripheral circulating antibodies has become an important clinical reference index. However, some clinical features of IMN remain elusive and need to be further investigated, such as the autoimmunity initiation, IgG4 predominance, spontaneous remission, and the unique glomerular lesion. As these unresolved issues are closely related to clinical practice, we have proposed a hypothetical pathogenesis model of IMN. Induced by environmental stimuli or other causes, the PLA2R1 antigen and/or THSD7A antigen exposed to extrarenal tissues, such as lungs, then produce the auto-antibodies that target and cause damage to the podocytes in circulation. In this review, we highlighted the potential association between environmental stimuli, immune activity, and glomerular lesions, the underlying basis for spontaneous immune and proteinuria remission.
Collapse
Affiliation(s)
- Wenbin Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chang Gao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhiyuan Liu
- Basic Medical College, Taishan Medical University, Tai'an, China
| | - Haoran Dai
- Beijing Chinese Medicine Hospital PingGu Hospital, Beijing, China
| | - Zhendong Feng
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Zhaocheng Dong
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yang Zheng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yu Gao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Generation of a conditional transgenic mouse model expressing human Phospholipase A2 Receptor 1. Sci Rep 2020; 10:8190. [PMID: 32424163 PMCID: PMC7235081 DOI: 10.1038/s41598-020-64863-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/22/2020] [Indexed: 11/09/2022] Open
Abstract
The Phospholipase A2 Receptor 1 (PLA2R1) was first identified for its ability to bind some secreted PLA2s (sPLA2s). It belongs to the C-type lectin superfamily and it binds different types of proteins. It is likely a multifunctional protein that plays a role i) in inflammation and inflammatory diseases, ii) in cellular senescence, a mechanism participating in aging and age-related diseases including cancer, and iii) in membranous nephropathy (MN), a rare autoimmune kidney disease where PLA2R1 is the major autoantigen. To help study the role of PLA2R1 in these pathophysiological conditions, we have generated a versatile NeoR-hPLA2R1 conditional transgenic mice which will allow the specific expression of human PLA2R1 (hPLA2R1) in relevant organs and cells following Cre recombinase-driven excision of the NeoR-stop cassette flanked by LoxP sites. Proof-of-concept breeding of NeoR-hPLA2R1 mice with the ubiquitous adenoviral EIIa promoter-driven Cre mouse line resulted in the expected excision of the NeoR-stop cassette and the expression of hPLA2R1 in all tested tissues. These Tg-hPLA2R1 animals breed normally, with no reproduction or apparent growth defect. These models, especially the NeoR-hPLA2R1 conditional transgenic mouse line, will facilitate the future investigation of PLA2R1 functions in relevant pathophysiological contexts, including inflammatory diseases, age-related diseases and MN.
Collapse
|
17
|
Ogden HL, Lai Y, Nolin JD, An D, Frevert CW, Gelb MH, Altemeier WA, Hallstrand TS. Secreted Phospholipase A 2 Group X Acts as an Adjuvant for Type 2 Inflammation, Leading to an Allergen-Specific Immune Response in the Lung. THE JOURNAL OF IMMUNOLOGY 2020; 204:3097-3107. [PMID: 32341057 DOI: 10.4049/jimmunol.2000102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/05/2020] [Indexed: 11/19/2022]
Abstract
Secreted phospholipase A2 (sPLA2) enzymes release free fatty acids, including arachidonic acid, and generate lysophospholipids from phospholipids, including membrane phospholipids from cells and bacteria and surfactant phospholipids. We have shown that an endogenous enzyme sPLA2 group X (sPLA2-X) is elevated in the airways of asthmatics and that mice lacking the sPLA2-X gene (Pla2g10) display attenuated airway hyperresponsiveness, innate and adaptive immune responses, and type 2 cytokine production in a model of airway sensitization and challenge using a complete allergen that induces endogenous adjuvant activity. This complete allergen also induces the expression of sPLA2-X/Pla2g10 In the periphery, an sPLA2 found in bee venom (bee venom PLA2) administered with the incomplete Ag OVA leads to an Ag-specific immune response. In this study, we demonstrate that both bee venom PLA2 and murine sPLA2-X have adjuvant activity, leading to a type 2 immune response in the lung with features of airway hyperresponsiveness and Ag-specific type 2 airway inflammation following peripheral sensitization and subsequent airway challenge with OVA. Further, the adjuvant effects of sPLA2-X that result in the type 2-biased OVA-specific adaptive immune response in the lung were dependent upon the catalytic activity of the enzyme, as a catalytically inactive mutant form of sPLA2-X does not elicit the adaptive component of the immune response, although other components of the immune response were induced by the inactive enzyme, suggesting receptor-mediated effects. Our results demonstrate that exogenous and endogenous sPLA2s play an important role in peripheral sensitization, resulting in airway responses to inhaled Ags.
Collapse
Affiliation(s)
- Herbert Luke Ogden
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Ying Lai
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109
| | - James D Nolin
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Dowon An
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Charles W Frevert
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109.,Department of Comparative Medicine, University of Washington, Seattle, WA 98109
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA 98195; and.,Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - William A Altemeier
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Teal S Hallstrand
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109;
| |
Collapse
|
18
|
Szymczak-Pajor I, Kleniewska P, Wieczfinska J, Pawliczak R. Wide-Range Effects of 1,25(OH)2D3 on Group 4A Phospholipases Is Related to Nuclear Factor κ-B and Phospholipase-A2 Activating Protein Activity in Mast Cells. Int Arch Allergy Immunol 2019; 181:56-70. [PMID: 31707382 DOI: 10.1159/000503628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Phospholipases are enzymes that occur in many types of human cells, including mast cells, and play an important role in the molecular background of asthma pathogenesis, and the development of inflammation NF-κB activities that affect numerous biological processes has been reported in many inflammatory diseases including asthma. Vitamin D is a widely studied factor that affects many diseases, including asthma. The aim of this study is to assess the influence of 1,25-(OH)2D3 on regulation of chosen phospholipase-A2 (PLA2) expression-selected inflammation mediators. METHODS LUVA mast cells were stimulated with 1,25(OH)2D3, and inhibitors of NF-κB p65 and ubiquitination. Expression analysis of phospholipases (PLA2G5, PLA2G10, PLA2G12, PLA2G15, PLA2G4A, PLA2G4B, PLA2G4C, PLAA, NF-κB p65, and UBC) was done utilizing real-time PCR and Western blot. Eicosanoid (LTC4, LXA4, 15[S]-HETE, and PGE2) levels and sPLA2 were also measured. RESULTS We found that 1,25(OH)2D3 decreased the expression of PLA2G5, PLA2G15, PLA2G5,UBC, and NF-κB p65 but increased expression of PLAA and PLA2G4C (p < 0.05). Moreover, the expression of PLA2G5 and PLA2G15 decreased after inhibition of NF-κB p65 and UBC. Increased levels of released LXA4 and 15(S)-HETE, decreased levels of LTC4, and sPLA2s enzymatic activity in response to 1,25(OH)2D3 were also observed. Additionally, NF-κB p65 inhibition led to an increase in the LXA4 concentration. CONCLUSION Future investigations will be needed to further clarify the role of 1,25(OH)2D3 in the context of asthma and the inflammatory process; however, these results confirm a variety of effects which can be caused by this vitamin. 1,25(OH)2D3-mediated action may result in the development of new therapeutic strategies for asthma treatment.
Collapse
Affiliation(s)
- Izabela Szymczak-Pajor
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Paulina Kleniewska
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Joanna Wieczfinska
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Rafal Pawliczak
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland,
| |
Collapse
|
19
|
Liu W, Gao C, Dai H, Zheng Y, Dong Z, Gao Y, Liu F, Zhang Z, Liu Z, Liu W, Liu B, Liu Q, Shi J. Immunological Pathogenesis of Membranous Nephropathy: Focus on PLA2R1 and Its Role. Front Immunol 2019; 10:1809. [PMID: 31447839 PMCID: PMC6691064 DOI: 10.3389/fimmu.2019.01809] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
Membranous nephropathy (MN) is the major cause of nephrotic syndrome with special pathological features, caused by the formation of immune complexes in the space between podocytes and the glomerular basement membrane. In idiopathic membranous nephropathy (IMN) the immune complexes are formed by circulating antibodies binding mainly to one of two naturally-expressed podocyte antigens: the M-type receptor for secretory phospholipase A2 (PLA2R1) and the Thrombospondin type-1 domain-containing 7A (THSD7A). Formation of antibodies against PLA2R1 is much more common, accounting for 70-80% of IMN. However, the mechanism of anti-podocyte antibody production in IMN is still unclear. In this review, we emphasize that the exposure of PLA2R1 is critical for triggering the pathogenesis of PLA2R1-associated MN, and propose the potential association between inflammation, pollution and PLA2R1. Our review aims to clarify the current research of these precipitating factors in a way that may suggest future directions for discovering the pathogenesis of MN, leading to additional therapeutic targets and strategies for the prevention and early treatment of MN.
Collapse
Affiliation(s)
- Wenbin Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Capital Medical University, Beijing, China
| | - Chang Gao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Dai
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Yang Zheng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhaocheng Dong
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yu Gao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Capital Medical University, Beijing, China
| | - Fei Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Weijing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jialan Shi
- Departments of Medicine, VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Sukocheva O, Menschikowski M, Hagelgans A, Yarla NS, Siegert G, Reddanna P, Bishayee A. Current insights into functions of phospholipase A2 receptor in normal and cancer cells: More questions than answers. Semin Cancer Biol 2019; 56:116-127. [PMID: 29104026 DOI: 10.1016/j.semcancer.2017.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/18/2017] [Accepted: 11/01/2017] [Indexed: 02/08/2023]
Abstract
Lipid signaling network was proposed as a potential target for cancer prevention and treatment. Several recent studies revealed that phospholipid metabolising enzyme, phospholipase A2 (PLA2), is a critical regulator of cancer accelerating pathologies and apoptosis in several types of cancers. In addition to functioning as an enzyme, PLA2 can activate a phospholipase A2 receptor (PLA2R1) in plasma membrane. While the list of PLA2 targets extends to glucose homeostasis, intracellular energy balance, adipocyte development, and hepatic lipogenesis, the PLA2R1 downstream effectors are few and scarcely investigated. Among the most addressed PLA2R1 effects are regulation of pro-inflammatory signaling, autoimmunity, apoptosis, and senescence. Localized in glomeruli podocytes, the receptor can be identified by circulating anti-PLA2R1 autoantibodies leading to development of membranous nephropathy, a strong autoimmune inflammatory cascade. PLA2R1 was shown to induce activation of Janus-kinase 2 (JAK2) and estrogen-related receptor α (ERRα)-controlled mitochondrial proteins, as well as increasing the accumulation of reactive oxygen species, thus leading to apoptosis and senescence. These findings indicate the potential role of PLA2R1 as tumor suppressor. Epigenetic investigations addressed the role of DNA methylation, histone modifications, and specific microRNAs in the regulation of PLA2R1 expression. However, involvement of PLA2R1 in suppression of malignant growth and metastasis remains controversial. In this review, we summarize the recent findings that highlight the role of PLA2R1 in the regulation of carcinogenesis-related intracellular signaling.
Collapse
Affiliation(s)
- Olga Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, South Australia 5042, Australia.
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Nagendra Sastry Yarla
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Gabriele Siegert
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
21
|
Scoville DK, Nolin JD, Ogden HL, An D, Afsharinejad Z, Johnson BW, Bammler TK, Gao X, Frevert CW, Altemeier WA, Hallstrand TS, Kavanagh TJ. Quantum dots and mouse strain influence house dust mite-induced allergic airway disease. Toxicol Appl Pharmacol 2019; 368:55-62. [PMID: 30682383 DOI: 10.1016/j.taap.2019.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 01/19/2023]
Abstract
Quantum dot nanoparticles (QDs) are engineered nanomaterials (ENMs) that have utility in many industries due to unique optical properties not available in small molecules or bulk materials. QD-induced acute lung inflammation and toxicity in rodent models raise concerns about potential human health risks. Recent studies have also shown that some ENMs can exacerbate allergic airway disease (AAD). In this study, C57BL/6J and A/J mice were exposed to saline, house dust mite (HDM), or a combination of HDM and QDs on day 1 of the sensitization protocol. Mice were then challenged on days 8, 9 and 10 with HDM or saline only. Significant differences in cellular and molecular markers of AAD induced by both HDM and HDM + QD were observed between C57BL/6J and A/J mice. Among A/J mice, HDM + QD co-exposure, but not HDM exposure alone, significantly increased levels of bronchoalveolar lavage fluid (BALF). IL-33 compared to saline controls. BALF total protein levels in both mouse strains were also only significantly increased by HDM + QD co-exposure. In addition, A/J mice had significantly more lung type 2 innate lymphoid cells (ILC2s) cells than C57BL/6J mice. A/J lung ILC2s were inversely correlated with lung glutathione and MHC-IIhigh resident macrophages, and positively correlated with MHC-IIlow resident macrophages. The results from this study suggest that 1) QDs influence HDM-induced AAD by potentiating and/or enhancing select cytokine production; 2) that genetic background modulates the impact of QDs on HDM sensitization; and 3) that potential ILC2 contributions to HDM induced AAD are also likely to be modulated by genetic background.
Collapse
Affiliation(s)
- David K Scoville
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - James D Nolin
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - H Luke Ogden
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Dowon An
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Zahra Afsharinejad
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Brian W Johnson
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | | | - Teal S Hallstrand
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
22
|
Scoville DK, White CC, Botta D, An D, Afsharinejad Z, Bammler TK, Gao X, Altemeier WA, Kavanagh TJ. Quantum dot induced acute changes in lung mechanics are mouse strain dependent. Inhal Toxicol 2018; 30:397-403. [DOI: 10.1080/08958378.2018.1542046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- David K. Scoville
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Collin C. White
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Dianne Botta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Dowon An
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Zahra Afsharinejad
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Terrance J. Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
23
|
Nolin JD, Murphy RC, Gelb MH, Altemeier WA, Henderson WR, Hallstrand TS. Function of secreted phospholipase A 2 group-X in asthma and allergic disease. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:827-837. [PMID: 30529275 DOI: 10.1016/j.bbalip.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Elevated secreted phospholipase A2 (sPLA2) activity in the airways has been implicated in the pathogenesis of asthma and allergic disease for some time. The identity and function of these enzymes in asthma is becoming clear from work in our lab and others. We focused on sPLA2 group X (sPLA2-X) after identifying increased levels of this enzyme in asthma, and that it is responsible for a large portion of sPLA2 activity in the airways and that the levels are strongly associated with features of airway hyperresponsiveness (AHR). In this review, we discuss studies that implicated sPLA2-X in human asthma, and murine models that demonstrate a critical role of this enzyme as a regulator of type-2 inflammation, AHR and production of eicosanoids. We discuss the mechanism by which sPLA2-X acts to regulate eicosanoids in leukocytes, as well as effects that are mediated through the generation of lysophospholipids and through receptor-mediated functions. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- James D Nolin
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - Ryan C Murphy
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA, United States of America; Department of Biochemistry, University of Washington, Seattle, WA, United States of America
| | - William A Altemeier
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - William R Henderson
- Division of Allergy and Infectious DIseases, University of Washington, Seattle, WA, United States of America
| | - Teal S Hallstrand
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America.
| |
Collapse
|
24
|
Watanabe K, Watanabe K, Watanabe Y, Fujioka D, Nakamura T, Nakamura K, Obata JE, Kugiyama K. Human soluble phospholipase A2 receptor is an inhibitor of the integrin-mediated cell migratory response to collagen-I. Am J Physiol Cell Physiol 2018; 315:C398-C408. [DOI: 10.1152/ajpcell.00239.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Murine membrane-bound phospholipase A2 receptor 1 (PLA2R) is shed and released into plasma in a soluble form that retains all of the extracellular domains. Relatively little is known about human PLA2R. This study examined whether human soluble PLA2R has biological functions and whether soluble PLA2R exists in human plasma. Here, we showed that human recombinant soluble PLA2R (rsPLA2R) bound to collagen-I and inhibited interaction of collagen-I with the extracellular domain of integrin β1 on the cell surface of human embryonic kidney 293 (HEK293) cells. As a result, rsPLA2R suppressed integrin β1-mediated migratory responses of HEK293 cells to collagen-I in Boyden chamber experiments. Inhibition of phosphorylation of FAK Tyr397 was also observed. Similar results were obtained with experiments using soluble PLA2R released from HEK293 cells transfected with a construct encoding human soluble PLA2R. rsPLA2R lacking the fibronectin-like type II (FNII) domain had no inhibitory effects on cell responses to collagen-I, suggesting an important role of the FNII domain in the interaction of rsPLA2R with collagen-I. In addition, rsPLA2R suppressed the migratory response to collagen-IV and binding of collagen-IV to the cell surface of human podocytes that endogenously express membrane-bound, full-length PLA2R. Immunoprecipitation and Western blotting showed the existence of immunoreactive PLA2R in human plasma. In conclusion, human recombinant soluble PLA2R inhibits integrin β1-mediated cell responses to collagens. Further studies are warranted to elucidate whether immunoreactive PLA2R in human plasma has the same properties as rsPLA2R.
Collapse
Affiliation(s)
- Kazunori Watanabe
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Kazuhiro Watanabe
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Yosuke Watanabe
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Daisuke Fujioka
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Takamitsu Nakamura
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Kazuto Nakamura
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Jun-ei Obata
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Kiyotaka Kugiyama
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
25
|
Structure of Human M-type Phospholipase A2 Receptor Revealed by Cryo-Electron Microscopy. J Mol Biol 2017; 429:3825-3835. [DOI: 10.1016/j.jmb.2017.10.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 01/29/2023]
|
26
|
Nolin JD, Lai Y, Ogden HL, Manicone AM, Murphy RC, An D, Frevert CW, Ghomashchi F, Naika GS, Gelb MH, Gauvreau GM, Piliponsky AM, Altemeier WA, Hallstrand TS. Secreted PLA2 group X orchestrates innate and adaptive immune responses to inhaled allergen. JCI Insight 2017; 2:94929. [PMID: 29093264 PMCID: PMC5752296 DOI: 10.1172/jci.insight.94929] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/26/2017] [Indexed: 01/15/2023] Open
Abstract
Phospholipase A2 (PLA2) enzymes regulate the formation of eicosanoids and lysophospholipids that contribute to allergic airway inflammation. Secreted PLA2 group X (sPLA2-X) was recently found to be increased in the airways of asthmatics and is highly expressed in airway epithelial cells and macrophages. In the current study, we show that allergen exposure increases sPLA2-X in humans and in mice, and that global deletion of Pla2g10 results in a marked reduction in airway hyperresponsiveness (AHR), eosinophil and T cell trafficking to the airways, airway occlusion, generation of type-2 cytokines by antigen-stimulated leukocytes, and antigen-specific immunoglobulins. Further, we found that Pla2g10-/- mice had reduced IL-33 levels in BALF, fewer type-2 innate lymphoid cells (ILC2s) in the lung, less IL-33-induced IL-13 expression in mast cells, and a marked reduction in both the number of newly recruited macrophages and the M2 polarization of these macrophages in the lung. These results indicate that sPLA2-X serves as a central regulator of both innate and adaptive immune response to proteolytic allergen.
Collapse
Affiliation(s)
- James D. Nolin
- Department of Medicine, Division of Pulmonary and Critical Care
| | - Ying Lai
- Department of Medicine, Division of Pulmonary and Critical Care
| | | | | | - Ryan C. Murphy
- Department of Medicine, Division of Pulmonary and Critical Care
| | - Dowon An
- Department of Medicine, Division of Pulmonary and Critical Care
| | - Charles W. Frevert
- Department of Medicine, Division of Pulmonary and Critical Care
- Department of Comparative Medicine
| | | | | | - Michael H. Gelb
- Department of Chemistry, and
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Gail M. Gauvreau
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Adrian M. Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | | | | |
Collapse
|
27
|
Abstract
The phospholipase A2 receptor (PLA2R) and thrombospondin type-1 domain-containing 7A (THSD7A) are the two major autoantigens in primary membranous nephropathy (MN), and define two molecular subclasses of this disease. Both proteins are large transmembrane glycoproteins expressed by the podocyte, and both induce IgG4-predominant humoral immune responses that produce circulating autoantibodies that can be used clinically for diagnostic and monitoring purposes. The biologic roles of these proteins remain speculative, although several features of THSD7A suggest a role in adhesion. PLA2R-associated MN was initially found to associate with risk alleles within HLA-DQA1, but subsequent studies have shifted the focus to the HLA-DRB locus. Three distinct humoral epitope-containing regions have been defined within the extracellular portion of PLA2R, and it appears that the number of targeted epitopes may determine disease severity. Although similar information is not yet available for THSD7A-associated MN, this form of MN may have a unique association with malignancy. Finally, it appears likely that other autoantigens in primary MN exist. Although protocols similar to those that identified PLA2R and THSD7A may be successful in the identification of novel antigenic targets in MN, newer techniques such as laser-capture mass spectrometry or protein arrays may be helpful as well.
Collapse
Affiliation(s)
- Laurence H Beck
- Renal Section, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
28
|
Cote R, Lynn Eggink L, Kenneth Hoober J. CLEC receptors, endocytosis and calcium signaling. AIMS ALLERGY AND IMMUNOLOGY 2017. [DOI: 10.3934/allergy.2017.4.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|