1
|
Zhou Y, Chai Z, Pandeya A, Yang L, Zhang Y, Zhang G, Wu C, Li Z, Wei Y. Caspase-11 and NLRP3 exacerbate systemic Klebsiella infection through reducing mitochondrial ROS production. Front Immunol 2025; 16:1516120. [PMID: 40034692 PMCID: PMC11873083 DOI: 10.3389/fimmu.2025.1516120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Klebsiella pneumoniae is a Gram-negative bacterium and the third most commonly isolated microorganism in blood cultures from septic patients. Despite extensive research, the mechanisms underlying K. pneumoniae-induced sepsis and its pathogenesis remain unclear. Acute respiratory failure is a leading cause of mortality in systemic K. pneumoniae infections, highlighting the need to better understand the host immune response and bacterial clearance mechanisms. Method To investigate the impact of K. pneumoniae infection on organ function and immune response, we utilized a systemic infection model through intraperitoneal injection in mice. Bacterial loads in key organs were quantified, and lung injury was assessed. Survival analysis was performed in wild-type (WT) and gene deficient mice. Mitochondrial damage and reactive oxygen species (ROS) production, as well as cytokine levels were measured in macrophages isolated from these mice to evaluate their contribution to bacterial clearance capacity. Results Our findings demonstrate that K. pneumoniae systemic infection results in severe lung injury and significant bacterial accumulation in multiple organs, with the highest burden in the lungs. Deficiency of caspase-11 or NLRP3 led to prolonged survival, a reduction in pulmonary bacterial load, increased blood oxygen levels, and decreased IL-6 levels in the lungs compared to WT controls. Furthermore, caspase-11- and NLRP3-deficient macrophages exhibited elevated mitochondrial ROS production in response to K. pneumoniae, which correlated with more effective bacterial clearance. Discussion These results suggest that caspase-11 and NLRP3 contribute to K. pneumoniae-induced sepsis by impairing mitochondrial function and reducing ROS production in macrophages, thereby compromising bacterial clearance. The observed reduction in lung injury and increased survival in caspase-11- and NLRP3-deficient mice indicate that targeting these pathways may offer potential therapeutic strategies to improve host defense against systemic K. pneumoniae infection.
Collapse
Affiliation(s)
- Yuqi Zhou
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Zhuodong Chai
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Ankit Pandeya
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Ling Yang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Yan Zhang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Guoying Zhang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Congqing Wu
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Zhenyu Li
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Yinan Wei
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Weckler BC, Pott H, Race A, Jugkaeo N, Karki K, Ringshandl S, Seidemann C, Schöndorf I, Renz H, Fähndrich S, Jung AL, Bertrams W, Makoudjou A, Zöller D, Finotto S, Schild S, Seuchter SA, Rohde G, Trinkmann F, Greulich T, Vogelmeier CF, Schmeck B. Eosinopenia as Predictor of Disease Severity in Patients With Community-Acquired Pneumonia: An Observational Study. Chest 2024; 166:1329-1333. [PMID: 38972349 PMCID: PMC11638539 DOI: 10.1016/j.chest.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 07/09/2024] Open
Affiliation(s)
- Barbara Christine Weckler
- Department of Medicine, Pulmonary and Critical Care Medicine, Clinic for Airway Infections, University Medical Centre Marburg, Philipps-University Marburg, Marburg, Germany
| | - Hendrik Pott
- Department of Medicine, Pulmonary and Critical Care Medicine, Clinic for Airway Infections, University Medical Centre Marburg, Philipps-University Marburg, Marburg, Germany
| | - Alan Race
- Institute for medical bioinformatics and biostatistics), Philipps-University Marburg, Marburg, Germany
| | - Nattika Jugkaeo
- Department of Medicine, Data Integration Centre (DIC), Philipps-University Marburg, Marburg, Germany
| | - Kapil Karki
- Department of Medicine, Data Integration Centre (DIC), Philipps-University Marburg, Marburg, Germany
| | - Stephan Ringshandl
- Department of Medicine, Data Integration Centre (DIC), Philipps-University Marburg, Marburg, Germany
| | - Christian Seidemann
- Department of Medicine, Data Integration Centre (DIC), Philipps-University Marburg, Marburg, Germany; CALM-QE network
| | | | - Harald Renz
- CALM-QE network; Institute of Laboratory Medicine, Philipps University Marburg, Member of the German Centre for Lung Research (DZL), Member of Universities Giessen and Marburg Lung Centre, Marburg, Germany
| | - Sebastian Fähndrich
- Department of Pneumology, Faculty of Medicine, University Medical Centre, Freiburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Marburg, Germany; Core Facility Flow Cytometry-Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Marburg, Germany
| | - Adeline Makoudjou
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Centre, University of Freiburg, Freiburg, Germany
| | - Daniela Zöller
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Centre, University of Freiburg, Freiburg, Germany; Freiburg Centre for Data Analysis and Modelling, University of Freiburg, Freiburg, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg University of Erlangen, Erlangen, Germany
| | - Stefanie Schild
- Medical Centre for Information and Communication Technology, University Hospital Erlangen, Erlangen, Germany
| | - Susanne A Seuchter
- Medical Centre for Information and Communication Technology, University Hospital Erlangen, Erlangen, Germany
| | - Gernot Rohde
- CALM-QE network; Goethe University Frankfurt, University Hospital, Medical Clinic I, Department of Respiratory Medicine, Frankfurt/Main, Germany
| | - Frederik Trinkmann
- Department of Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany; Translational Lung Research Centre Heidelberg, German Centre for Lung Research, Heidelberg, Germany; Department of Biomedical Informatics, Heinrich-Lanz-Centre, University Medical Centre Mannheim, Mannheim, Germany
| | - Timm Greulich
- CALM-QE network; Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Centre Marburg, Philipps-University Marburg, Marburg, Germany; German Centre for Lung Research (DZL), Marburg, Germany
| | - Claus Franz Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Centre Marburg, Philipps-University Marburg, Marburg, Germany; German Centre for Lung Research (DZL), Marburg, Germany
| | - Bernd Schmeck
- Department of Medicine, Pulmonary and Critical Care Medicine, Clinic for Airway Infections, University Medical Centre Marburg, Philipps-University Marburg, Marburg, Germany; CALM-QE network; Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Marburg, Germany; German Centre for Lung Research (DZL) and Member of the German Centre of Infectious Disease Research, Marburg, Germany; Centre for Synthetic Microbiology (Synmikro), Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
3
|
Poole JA, England BR, Sayles H, Johnson TM, Duryee MJ, Hunter CD, Baker JF, Kerr GS, Kunkel G, Cannon GW, Sauer BC, Wysham KD, Joseph AM, Wallace BI, Thiele GM, Mikuls TR. Serum alarmins and the risk of incident interstitial lung disease in rheumatoid arthritis. Rheumatology (Oxford) 2024; 63:1998-2005. [PMID: 37812235 PMCID: PMC11215989 DOI: 10.1093/rheumatology/kead535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/25/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
OBJECTIVES To quantify associations of serum alarmins with risk of rheumatoid arthritis-associated interstitial lung disease (RA-ILD). METHODS Using serum collected at enrolment, three alarmins (IL-33, thymic stromal lymphopoietin [TSLP] and IL-25) were measured in a multicentre prospective RA cohort. ILD was classified using systematic medical record review. Cross-sectional associations of log-transformed (IL-33, TSLP) or quartile (IL-25) values with RA-ILD at enrolment (prevalent RA-ILD) were examined using logistic regression, while associations with incident RA-ILD developing after enrolment were examined using Cox proportional hazards. Covariates in multivariate models included age, sex, race, smoking status, RA disease activity score and anti-cyclic citrullinated antibody positivity. RESULTS Of 2835 study participants, 115 participants (4.1%) had prevalent RA-ILD at baseline and an additional 146 (5.1%) developed incident ILD. There were no associations between serum alarmin concentrations and prevalent ILD in unadjusted or adjusted logistic regression models. In contrast, there was a significant inverse association between IL-33 concentration and the risk of developing incident RA-ILD in unadjusted (hazard ratio [HR] 0.73 per log-fold increase; 95% CI: 0.57, 0.95; P = 0.018) and adjusted (HR 0.77; 95% CI: 0.59, 1.00; P = 0.047) models. No significant associations of TSLP or IL-25 with incident ILD were observed. CONCLUSION In this study, we observed a significant inverse association between serum IL-33 concentration and the risk of developing incident RA-ILD, but no associations with prevalent ILD. Additional investigation is required to better understand the mechanisms driving this relationship and how serum alarmin IL-33 assessment might contribute to clinical risk stratification in patients with RA.
Collapse
Affiliation(s)
- Jill A Poole
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bryant R England
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Harlan Sayles
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tate M Johnson
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Michael J Duryee
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Carlos D Hunter
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Joshua F Baker
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, School of Medicine and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Gail S Kerr
- Washington, D.C. VA, Georgetown and Howard University, Washington, DC, USA
| | - Gary Kunkel
- George E. Wahlen Veterans Affairs Medical Center, University of Utah, Salt Lake City, UT, USA
| | - Grant W Cannon
- George E. Wahlen Veterans Affairs Medical Center, University of Utah, Salt Lake City, UT, USA
| | - Brian C Sauer
- George E. Wahlen Veterans Affairs Medical Center, University of Utah, Salt Lake City, UT, USA
| | - Katherine D Wysham
- VA Puget Sound Health Care System, University of Washington, Seattle, WA, USA
| | - Amy M Joseph
- VA St. Louis Health Care System, Washington University School of Medicine, St Louis, MO, USA
| | - Beth I Wallace
- VA Ann Arbor Healthcare System, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Geoffrey M Thiele
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Ted R Mikuls
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
4
|
Verhoef PA. S1PR2: A Fulcrum in the Balance of Type 1 and Type 2 Responses during Sepsis-induced Acute Lung Injury. Am J Respir Cell Mol Biol 2024; 70:157-158. [PMID: 38226863 PMCID: PMC10914765 DOI: 10.1165/rcmb.2023-0433ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024] Open
Affiliation(s)
- Philip A Verhoef
- John A. Burns School of Medicine University of Hawaii Honolulu, Hawaii and Hawaii Permanente Medical Group Honolulu, Hawaii
| |
Collapse
|
5
|
Gong C, Jin Y, Wang X, Mao J, Wang D, Yu X, Chen S, Wang Y, Ma D, Fang X, Zhang K, Shu Q. Lack of S1PR2 in Macrophage Ameliorates Sepsis-associated Lung Injury through Inducing IL-33-mediated Type 2 Immunity. Am J Respir Cell Mol Biol 2024; 70:215-225. [PMID: 38061028 DOI: 10.1165/rcmb.2023-0075oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/07/2023] [Indexed: 03/02/2024] Open
Abstract
The function of type 2 immunity and mechanisms underlying the initiation of type 2 immunity after sepsis-induced lung injury remain unclear. Sphingosine-1-phosphate receptor 2 (S1PR2) has been demonstrated to modulate type 2 immunity in the context of asthma and pulmonary fibrosis. Thus, this study aims to investigate the role of type 2 immunity and whether and how S1PR2 regulates type 2 immunity in sepsis. Peripheral type 2 immune responses in patients with sepsis and healthy control subjects were assessed. The impact of S1PR2 on type 2 immunity in patients with sepsis and in a murine model of sepsis was further investigated. The type 2 innate immune responses were significantly increased in the circulation of patients 24 hours after sepsis, which was positively related to clinical complications and negatively correlated with S1PR2 mRNA expression. Animal studies showed that genetic deletion or pharmacological inhibition of S1PR2 induced type 2 innate immunity accumulation in the post-septic lungs. Mechanistically, S1PR2 deficiency promoted macrophage-derived interleukin (IL)-33 increase and the associated type 2 response in the lung. Furthermore, S1PR2-regulated IL-33 from macrophages mitigated lung injury after sepsis in mice. In conclusion, a lack of S1PR2 modulates the type 2 immune response by upregulating IL-33 release from macrophages and alleviates sepsis-induced lung injury. Targeting S1PR2 may have potential therapeutic value for sepsis treatment.
Collapse
Affiliation(s)
| | - Yue Jin
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Xi Wang
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Jiali Mao
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Dongdong Wang
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Xiangyang Yu
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Shiyu Chen
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Yang Wang
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; and
| | - Daqing Ma
- Perioperative and Systems Medicine Laboratory, Children's Hospital, National Clinical Research Center for Child Health
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Xiangming Fang
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Kai Zhang
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery
| |
Collapse
|
6
|
Cao Q, Wang R, Niu Z, Chen T, Azmi F, Read SA, Chen J, Lee VW, Zhou C, Julovi S, Huang Q, Wang YM, Starkey MR, Zheng G, Alexander SI, George J, Wang Y, Harris DC. Type 2 innate lymphoid cells are protective against hepatic ischaemia/reperfusion injury. JHEP Rep 2023; 5:100837. [PMID: 37691688 PMCID: PMC10482753 DOI: 10.1016/j.jhepr.2023.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND AND AIMS Although type 2 innate lymphoid cells (ILC2s) were originally found to be liver-resident lymphocytes, the role and importance of ILC2 in liver injury remains poorly understood. In the current study, we sought to determine whether ILC2 is an important regulator of hepatic ischaemia/reperfusion injury (IRI). METHODS ILC2-deficient mice (ICOS-T or NSG) and genetically modified ILC2s were used to investigate the role of ILC2s in murine hepatic IRI. Interactions between ILC2s and eosinophils or macrophages were studied in coculture. The role of human ILC2s was assessed in an immunocompromised mouse model of hepatic IRI. RESULTS Administration of IL-33 prevented hepatic IRI in association with reduction of neutrophil infiltration and inflammatory mediators in the liver. IL-33-treated mice had elevated numbers of ILC2s, eosinophils, and regulatory T cells. Eosinophils, but not regulatory T cells, were required for IL-33-mediated hepatoprotection in IRI mice. Depletion of ILC2s substantially abolished the protective effect of IL-33 in hepatic IRI, indicating that ILC2s play critical roles in IL-33-mediated liver protection. Adoptive transfer of ex vivo-expanded ILC2s improved liver function and attenuated histologic damage in mice subjected to IRI. Mechanistic studies combining genetic and adoptive transfer approaches identified a protective role of ILC2s through promoting IL-13-dependent induction of anti-inflammatory macrophages and IL-5-dependent elevation of eosinophils in IRI. Furthermore, in vivo expansion of human ILC2s by IL-33 or transfer of ex vivo-expanded human ILC2s ameliorated hepatic IRI in an immunocompromised mouse model of hepatic IRI. CONCLUSIONS This study provides insight into the mechanisms of ILC2-mediated liver protection that could serve as therapeutic targets to treat acute liver injury. IMPACT AND IMPLICATIONS We report that type 2 innate lymphoid cells (ILC2s) are important regulators in a mouse model of liver ischaemia/reperfusion injury (IRI). Through manipulation of macrophage and eosinophil phenotypes, ILC2s mitigate liver inflammation and injury during liver IRI. We propose that ILC2s have the potential to serve as a therapeutic tool for protecting against acute liver injury and lay the foundation for translation of ILC2 therapy to human liver disease.
Collapse
Affiliation(s)
- Qi Cao
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Ruifeng Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhiguo Niu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Titi Chen
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Farhana Azmi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Scott A. Read
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Jianwei Chen
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Vincent W.S. Lee
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Chunze Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Sohel Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Qingsong Huang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yuan Min Wang
- Centre for Kidney Research, Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Malcolm R. Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Guoping Zheng
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Stephen I. Alexander
- Centre for Kidney Research, Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - David C.H. Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Kong M, Dong W, Kang A, Kuai Y, Xu T, Fan Z, Shi L, Sun D, Lu Y, Li Z, Xu Y. Regulatory role and translational potential of CCL11 in liver fibrosis. Hepatology 2023; 78:120-135. [PMID: 36651177 DOI: 10.1097/hep.0000000000000287] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Myofibroblasts are considered the major effector cell type of liver fibrosis and primarily derived from hepatic stellate cells (HSCs). In the present study, we investigated the contribution of C-C motif chemokine (CCL11) to HSC-myofibroblast trans -differentiation and its implication in liver fibrosis. APPROACH AND RESULTS We report that CCL11 levels were elevated in HSCs, but not in hepatocytes or Kupffer cells, isolated from mice with liver fibrosis compared with the control mice. CCL11 levels were also up-regulated by 2 pro-fibrogenic growth factors TGF-β and platelet derived growth factor in cultured HSCs. Mechanistically, zinc finger factor 281 bound to the CCL11 promoter and mediated CCL11 trans -activation in HSCs. Depletion of CCL11 attenuated whereas treatment with recombinant CCL11 promoted HSC activation. Further, global CCL11 deletion ( CCL11-/- ) or HSC/myofibroblast-specific CCL11 knockdown mitigated fibrogenesis in mice. RNA-sequencing revealed that CCL11 might regulate HSC activation by stimulating the transcription of Jagged 1. Reconstitution of Jagged 1 restored the fibrogenic response in CCL11-/- mice. Finally, several targeting strategies that aimed at blockading CCL11 signaling, either by administration of an antagonist to its receptor C-C motif chemokine receptor 3 or neutralizing antibodies against CCL11/C-C motif chemokine receptor 3, ameliorated liver fibrosis in mice. CONCLUSIONS Our data unveil a previously unrecognized role for CCL11 in liver fibrosis and provide proof-of-concept evidence that targeting CCL11 can be considered as an effective therapeutic approach.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Aoqi Kang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yameng Kuai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tongchang Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital Affiliated With Nanjing University, Nanjing, China
| | - Longqing Shi
- Department of Hepatobiliary Surgery, the First People's Hospital of Changzhou, The Third Hospital Affiliated With Soochow University, Changzhou, China
| | - Donglin Sun
- Department of Hepatobiliary Surgery, the First People's Hospital of Changzhou, The Third Hospital Affiliated With Soochow University, Changzhou, China
| | - Yunjie Lu
- Department of Hepatobiliary Surgery, the First People's Hospital of Changzhou, The Third Hospital Affiliated With Soochow University, Changzhou, China
| | - Zilong Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
8
|
Korkmaz FT, Traber KE. Innate immune responses in pneumonia. Pneumonia (Nathan) 2023; 15:4. [PMID: 36829255 PMCID: PMC9957695 DOI: 10.1186/s41479-023-00106-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/05/2023] [Indexed: 02/26/2023] Open
Abstract
The lungs are an immunologically unique environment; they are exposed to innumerable pathogens and particulate matter daily. Appropriate clearance of pathogens and response to pollutants is required to prevent overwhelming infection, while preventing tissue damage and maintaining efficient gas exchange. Broadly, the innate immune system is the collection of immediate, intrinsic immune responses to pathogen or tissue injury. In this review, we will examine the innate immune responses of the lung, with a particular focus on their role in pneumonia. We will discuss the anatomic barriers and antimicrobial proteins of the lung, pathogen and injury recognition, and the role of leukocytes (macrophages, neutrophils, and innate lymphocytes) and lung stromal cells in innate immunity. Throughout the review, we will focus on new findings in innate immunity as well as features that are unique to the lung.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology & Infectious Disease, University of Massachusetts, Worcester, MA, USA
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
9
|
Xu L, Yang Y, Jiang J, Wen Y, Jeong JM, Emontzpohl C, Atkins CL, Kim K, Jacobsen EA, Wang H, Ju C. Eosinophils protect against acetaminophen-induced liver injury through cyclooxygenase-mediated IL-4/IL-13 production. Hepatology 2023; 77:456-465. [PMID: 35714036 PMCID: PMC9758273 DOI: 10.1002/hep.32609] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS A better understanding of the underlying mechanism of acetaminophen (APAP)-induced liver injury (AILI) remains an important endeavor to develop therapeutic approaches. Eosinophils have been detected in liver biopsies of patients with APAP overdose. We recently demonstrated a profound protective role of eosinophils against AILI; however, the molecular mechanism had not been elucidated. APPROACH AND RESULTS In agreement with our previous data from experiments using genetic deletion of eosinophils, we found that depletion of eosinophils in wild-type (WT) mice by an anti-IL-15 antibody resulted in exacerbated AILI. Moreover, adoptive transfer of eosinophils significantly reduced liver injury and mortality rate in WT mice. Mechanistic studies using eosinophil-specific IL-4/IL-13 knockout mice demonstrated that these cytokines, through inhibiting interferon-γ, mediated the hepatoprotective function of eosinophils. Reverse phase protein array analyses and in vitro experiments using various inhibitors demonstrated that IL-33 stimulation of eosinophils activated p38 mitogen-activated protein kinase (MAPK), and in turn, cyclooxygenases (COX), which triggered NF-κB-mediated IL-4/IL-13 production. In vivo adoptive transfer experiments showed that in contrast to naive eosinophils, those pretreated with COX inhibitors failed to attenuate AILI. CONCLUSIONS The current study revealed that eosinophil-derived IL-4/IL-13 accounted for the hepatoprotective effect of eosinophils during AILI. The data demonstrated that the p38 MAPK/COX/NF-κB signaling cascade played a critical role in inducing IL-4/IL-13 production by eosinophils in response to IL-33.
Collapse
Affiliation(s)
- Long Xu
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Yang Yang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jiali Jiang
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jong-Min Jeong
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christoph Emontzpohl
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Constance L. Atkins
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kangho Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elizabeth A. Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
10
|
Zhu W, Zhang Y, Wang Y. Immunotherapy strategies and prospects for acute lung injury: Focus on immune cells and cytokines. Front Pharmacol 2022; 13:1103309. [PMID: 36618910 PMCID: PMC9815466 DOI: 10.3389/fphar.2022.1103309] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a disastrous condition, which can be caused by a wide range of diseases, such as pneumonia, sepsis, traumas, and the most recent, COVID-19. Even though we have gained an improved understanding of acute lung injury/acute respiratory distress syndrome pathogenesis and treatment mechanism, there is still no effective treatment for acute lung injury/acute respiratory distress syndrome, which is partly responsible for the unacceptable mortality rate. In the pathogenesis of acute lung injury, the inflammatory storm is the main pathological feature. More and more evidences show that immune cells and cytokines secreted by immune cells play an irreplaceable role in the pathogenesis of acute lung injury. Therefore, here we mainly reviewed the role of various immune cells in acute lung injury from the perspective of immunotherapy, and elaborated the crosstalk of immune cells and cytokines, aiming to provide novel ideas and targets for the treatment of acute lung injury.
Collapse
Affiliation(s)
- Wenfang Zhu
- Department of Respiratory Medicine, Anhui Chest Hospital, Hefei, China
| | - Yiwen Zhang
- Department of Respiratory Medicine, Anhui Chest Hospital, Hefei, China,*Correspondence: Yiwen Zhang, ; Yinghong Wang,
| | - Yinghong Wang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,*Correspondence: Yiwen Zhang, ; Yinghong Wang,
| |
Collapse
|
11
|
IL-33 Deficiency Attenuates Lung Inflammation by Inducing Th17 Response and Impacting the Th17/Treg Balance in LPS-Induced ARDS Mice via Dendritic Cells. J Immunol Res 2022; 2022:9543083. [PMID: 36570798 PMCID: PMC9788894 DOI: 10.1155/2022/9543083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives The characteristic pathophysiological feature of acute respiratory distress syndrome (ARDS) is a dysregulated inflammatory response. T helper 17 (Th17) cells in the lung are inflammatory cells that contribute to pulmonary inflammatory cascades. In addition, Th17/regulatory T cells (Treg cells) also play an important role in the inflammatory process. Dendritic cells (DCs) can regulate the differentiation of CD4+ T cells, including Th17 and Treg cells. Recent evidence revealed that interleukin-33 (IL-33) signaling could activate and mature DCs. Therefore, the aim of this study was to investigate the effects of IL-33 on inflammation and immunoregulation by inducing the Th17 response and influencing the Th17/Treg balance in LPS-induced ARDS. Methods IL-33 gene knockout mice and the administration of recombinant mouse IL-33 (rmIL-33) were used to investigate the role of IL-33 and the underlying mechanisms in an LPS-induced ARDS model. Hematoxylin and eosin (H&E) staining, wet/dry (W/D) weight ratios, cell counts, and the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-17 (IL-17), and interleukin-10 (IL-10) in bronchoalveolar lavage fluid (BALF) were investigated. The levels of IL-33, orphan nuclear receptor gamma t (RORγt), and forkhead transcription factor protein 3 (FOXP3) protein in lung tissue were evaluated by Western blotting. The mRNA expression levels of IL-33 and RORγt were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Th17 and Treg cell frequencies were determined by flow cytometry. The levels of IL-6 in the supernatant in a dendritic cell culture system were examined by ELISA. Results Increased expression of IL-33 was observed in mice with LPS-induced ARDS. IL-33 deficiency significantly inhibited inflammation and attenuated LPS-induced ARDS, whereas pretreatment with rmIL-33 aggravated pulmonary inflammatory response. Furthermore, depletion of IL-33 inhibited Th17 cells, significantly decreased RORγt mRNA and protein expression and IL-17 levels in BALF, and led to less differentiation of T cells into Th17 cells than Treg cells. Moreover, IL-33-/- DCs secreted less IL-6 and IL-23 than normal control DCs. Conclusion IL-33 deficiency alleviated lung injury in the LPS-induced ARDS model, which was closely related to suppressing Th17 responses and regulating the Th17/Treg balance. The expansion of Th17 cells and imbalance in Th17/Treg cells may be associated with IL-6 and IL-23 secreted from IL-33-activated DCs.
Collapse
|
12
|
Li Q, Chen F, Wang F. The immunological mechanisms and therapeutic potential in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Cell Biosci 2022; 12:187. [PMID: 36414987 PMCID: PMC9682794 DOI: 10.1186/s13578-022-00921-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Acute liver failure caused by drug overdose is a significant clinical problem in developed countries. Acetaminophen (APAP), a widely used analgesic and antipyretic drug, but its overdose can cause acute liver failure. In addition to APAP-induced direct hepatotoxicity, the intracellular signaling mechanisms of APAP-induced liver injury (AILI) including metabolic activation, mitochondrial oxidant stress and proinflammatory response further affect progression and severity of AILI. Liver inflammation is a result of multiple interactions of cell death molecules, immune cell-derived cytokines and chemokines, as well as damaged cell-released signals which orchestrate hepatic immune cell infiltration. The immunoregulatory interplay of these inflammatory mediators and switching of immune responses during AILI lead to different fate of liver pathology. Thus, better understanding the complex interplay of immune cell subsets in experimental models and defining their functional involvement in disease progression are essential to identify novel therapeutic targets for the treatment of AILI. Here, this present review aims to systematically elaborate on the underlying immunological mechanisms of AILI, its relevance to immune cells and their effector molecules, and briefly discuss great therapeutic potential based on inflammatory mediators.
Collapse
Affiliation(s)
- Qianhui Li
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Feng Chen
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Fei Wang
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| |
Collapse
|
13
|
Yin Z, Zhou Y, Turnquist HR, Liu Q. Neuro-epithelial-ILC2 crosstalk in barrier tissues. Trends Immunol 2022; 43:901-916. [PMID: 36253275 DOI: 10.1016/j.it.2022.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) contribute to the maintenance of mammalian barrier tissue homeostasis. We review how ILC2s integrate epithelial signals and neurogenic components to preserve the tissue microenvironment and modulate inflammation. The epithelium that overlies barrier tissues, including the skin, lungs, and gut, generates epithelial cytokines that elicit ILC2 activation. Sympathetic, parasympathetic, sensory, and enteric fibers release neural signals to modulate ILC2 functions. We also highlight recent findings suggesting neuro-epithelial-ILC2 crosstalk and its implications in immunity, inflammation and resolution, tissue repair, and restoring homeostasis. We further discuss the pathogenic effects of disturbed ILC2-centered neuro-epithelial-immune cell interactions and putative areas for therapeutic targeting.
Collapse
Affiliation(s)
- Ziyi Yin
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Shenzhen, Guangdong Province 518055, China
| | - Yawen Zhou
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Shenzhen, Guangdong Province 518055, China
| | - Hēth R Turnquist
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Quan Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Shenzhen, Guangdong Province 518055, China.
| |
Collapse
|
14
|
Grousd JA, Dresden BP, Riesmeyer AM, Cooper VS, Bomberger JM, Richardson AR, Alcorn JF. Novel Requirement for Staphylococcal Cell Wall-Anchored Protein SasD in Pulmonary Infection. Microbiol Spectr 2022; 10:e0164522. [PMID: 36040164 PMCID: PMC9603976 DOI: 10.1128/spectrum.01645-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/16/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus can complicate preceding viral infections, including influenza virus. A bacterial infection combined with a preceding viral infection, known as superinfection, leads to worse outcomes than a single infection. Most of the pulmonary infection literature focuses on the changes in immune responses to bacteria between homeostatic and virally infected lungs. However, it is unclear how much of an influence bacterial virulence factors have in single or superinfection. Staphylococcal species express a broad range of cell wall-anchored proteins (CWAs) that have roles in host adhesion, nutrient acquisition, and immune evasion. We screened the importance of these CWAs using mutants lacking individual CWAs in vivo in both bacterial pneumonia and influenza superinfection. In bacterial pneumonia, the lack of individual CWAs leads to various decreases in bacterial burden, lung damage, and immune infiltration into the lung. However, the presence of a preceding influenza infection partially abrogates the requirement for CWAs. In the screen, we found that the uncharacterized CWA S. aureus surface protein D (SasD) induced changes in both inflammatory and homeostatic lung markers. We further characterized a SasD mutant (sasD A50.1) in the context of pneumonia. Mice infected with sasD A50.1 have decreased bacterial burden, inflammatory responses, and mortality compared to wild-type S. aureus. Mice also have reduced levels of interleukin-1β (IL-1β), likely derived from macrophages. Reductions in IL-1β transcript levels as well as increased macrophage viability point at differences in cell death pathways. These data identify a novel virulence factor for S. aureus that influences inflammatory signaling within the lung. IMPORTANCE Staphylococcus aureus is a common commensal bacterium that can cause severe infections, such as pneumonia. In the lung, viral infections increase the risk of staphylococcal pneumonia, leading to combined infections known as superinfections. The most common virus associated with S. aureus pneumonia is influenza, and superinfections lead to worse patient outcomes than either infection alone. While there is much known about how the immune system differs between healthy and virally infected lungs, the role of bacterial virulence factors in single and superinfection is less understood. The significance of our research is identifying bacterial components that play a role in the initiation of lung injury, which could lead to future therapies to prevent pulmonary single or superinfection with S. aureus.
Collapse
Affiliation(s)
- Jennifer A. Grousd
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brooke P. Dresden
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Abigail M. Riesmeyer
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vaughn S. Cooper
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jennifer M. Bomberger
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony R. Richardson
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John F. Alcorn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Pulmonary Fibrosis and Hypereosinophilia in TLR9-/- Mice Infected by Cryptococcus gattii. Pathogens 2022; 11:pathogens11090987. [PMID: 36145419 PMCID: PMC9505093 DOI: 10.3390/pathogens11090987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 11/20/2022] Open
Abstract
Cryptococcus gattii is a worldwide-distributed basidiomycetous yeast that can infect immunocompetent hosts. However, little is known about the mechanisms involved in the disease. The innate immune response is essential to the control of infections by microorganisms. Toll-like receptor 9 (TLR9) is an innate immune receptor, classically described as a non-methylated DNA recognizer and associated with bacteria, protozoa and opportunistic mycosis infection models. Previously, our group showed that TLR9-/- mice were more susceptible to C. gattii after 21 days of infection. However, some questions about the innate immunity involving TLR9 response against C. gattii remain unknown. In order to investigate the systemic cryptococcal infection, we evaluated C57BL/6 mice and C57BL/6 TLR9-/- after intratracheal infection with 104C. gattii yeasts for 21 days. Our data evidenced that TLR9-/- was more susceptible to C. gattii. TLR9-/- mice had hypereosinophilia in pulmonary mixed cellular infiltrate, severe bronchiolitis and vasculitis and type 2 alveolar cell hyperplasia. In addition, TLR9-/- mice developed severe pulmonary fibrosis and areas with strongly birefringent fibers. Together, our results corroborate the hypothesis that TLR9 is important to support the Th1/Th17 response against C. gattii infection in the murine experimental model.
Collapse
|
16
|
Xu L, Yang Y, Wen Y, Jeong JM, Emontzpohl C, Atkins CL, Sun Z, Poulsen KL, Hall DR, Steve Bynon J, Gao B, Lee WM, Rule J, Jacobsen EA, Wang H, Ju C. Hepatic recruitment of eosinophils and their protective function during acute liver injury. J Hepatol 2022; 77:344-352. [PMID: 35259470 PMCID: PMC9308653 DOI: 10.1016/j.jhep.2022.02.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Beyond the classical description of eosinophil functions in parasite infections and allergic diseases, emerging evidence supports a critical role of eosinophils in resolving inflammation and promoting tissue remodeling. However, the role of eosinophils in liver injury and the underlying mechanism of their recruitment into the liver remain unclear. METHODS Hepatic eosinophils were detected and quantified using flow cytometry and immunohistochemical staining. Eosinophil-deficient (ΔdblGata1) mice were used to investigate the role of eosinophils in 3 models of acute liver injury. In vivo experiments using Il33-/- mice and macrophage-depleted mice, as well as in vitro cultures of eosinophils and macrophages, were performed to interrogate the mechanism of eotaxin-2 (CCL24) production. RESULTS Hepatic accumulation of eosinophils was observed in patients with acetaminophen (APAP)-induced liver failure, whereas few eosinophils were detectable in healthy liver tissues. In mice treated with APAP, carbon tetrachloride or concanavalin A, eosinophils were recruited into the liver and played a profound protective role. Mice deficient of macrophages or IL-33 exhibited impaired hepatic eosinophil recruitment during acute liver injury. CCL24, but not CCL11, was increased after treatment of each hepatotoxin in an IL-33 and macrophage-dependent manner. In vitro experiments demonstrated that IL-33, by stimulating IL-4 release from eosinophils, promoted the production of CCL24 by macrophages. CONCLUSIONS This is the first study to demonstrate that hepatic recruitment of and protection by eosinophils occur commonly in various models of acute liver injury. Our findings support further exploration of eosinophils as a therapeutic target to treat APAP-induced acute liver injury. LAY SUMMARY The current study unveils that eosinophils are recruited into the liver and play a protective function during acute liver injury caused by acetaminophen overdose. The data demonstrate that IL-33-activated eosinophils trigger macrophages to release high amounts of CCL24, which promotes hepatic eosinophil recruitment. Our findings suggest that eosinophils could be an effective cell-based therapy for the treatment of acetaminophen-induced acute liver injury.
Collapse
Affiliation(s)
- Long Xu
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Yang Yang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jong-Min Jeong
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christoph Emontzpohl
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Constance L Atkins
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyle L Poulsen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David R Hall
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - J Steve Bynon
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bin Gao
- Laboratory of Liver Disease, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - William M Lee
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Jody Rule
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
17
|
Fan Z, Kong M, Dong W, Dong C, Miao X, Guo Y, Liu X, Miao S, Li L, Chen T, Qu Y, Yu F, Duan Y, Lu Y, Zou X. Trans-activation of eotaxin-1 by Brg1 contributes to liver regeneration. Cell Death Dis 2022; 13:495. [PMID: 35614068 PMCID: PMC9132924 DOI: 10.1038/s41419-022-04944-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Infiltration of eosinophils is associated with and contributes to liver regeneration. Chemotaxis of eosinophils is orchestrated by the eotaxin family of chemoattractants. We report here that expression of eotaxin-1 (referred to as eotaxin hereafter), but not that of either eotaxin-2 or eotaxin-3, were elevated, as measured by quantitative PCR and ELISA, in the proliferating murine livers compared to the quiescent livers. Similarly, exposure of primary murine hepatocytes to hepatocyte growth factor (HGF) stimulated eotaxin expression. Liver specific deletion of Brahma-related gene 1 (Brg1), a chromatin remodeling protein, attenuated eosinophil infiltration and down-regulated eotaxin expression in mice. Brg1 deficiency also blocked HGF-induced eotaxin expression in cultured hepatocytes. Further analysis revealed that Brg1 could directly bind to the proximal eotaxin promoter to activate its transcription. Mechanistically, Brg1 interacted with nuclear factor kappa B (NF-κB)/RelA to activate eotaxin transcription. NF-κB knockdown or pharmaceutical inhibition disrupted Brg1 recruitment to the eotaxin promoter and blocked eotaxin induction in hepatocytes. Adenoviral mediated over-expression of eotaxin overcame Brg1 deficiency caused delay in liver regeneration in mice. On the contrary, eotaxin depletion with RNAi or neutralizing antibodies retarded liver regeneration in mice. More important, Brg1 expression was detected to be correlated with eotaxin expression and eosinophil infiltration in human liver specimens. In conclusion, our data unveil a novel role of Brg1 as a regulator of eosinophil trafficking by activating eotaxin transcription.
Collapse
Affiliation(s)
- Zhiwen Fan
- grid.428392.60000 0004 1800 1685Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China ,grid.428392.60000 0004 1800 1685Department of Gastroenterology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Ming Kong
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Chunlong Dong
- grid.410745.30000 0004 1765 1045Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiulian Miao
- grid.411351.30000 0001 1119 5892College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yan Guo
- grid.411351.30000 0001 1119 5892College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Xingyu Liu
- grid.411351.30000 0001 1119 5892College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Shuying Miao
- grid.428392.60000 0004 1800 1685Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Lin Li
- grid.428392.60000 0004 1800 1685Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Tingting Chen
- grid.428392.60000 0004 1800 1685Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Yeqing Qu
- grid.428392.60000 0004 1800 1685Experimental Animal Center, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Fei Yu
- grid.428392.60000 0004 1800 1685Experimental Animal Center, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Yunfei Duan
- grid.490563.d0000000417578685Department of Hepatobiliary Surgery, the First People’s Hospital of Changzhou, the Third Hospital Affiliated with Soochow University, Changzhou, China
| | - Yunjie Lu
- grid.490563.d0000000417578685Department of Hepatobiliary Surgery, the First People’s Hospital of Changzhou, the Third Hospital Affiliated with Soochow University, Changzhou, China
| | - Xiaoping Zou
- grid.428392.60000 0004 1800 1685Department of Gastroenterology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
18
|
Jiang W, Wang X, Su Y, Cai L, Li J, Liang J, Gu Q, Sun M, Shi L. Intranasal Immunization With a c-di-GMP-Adjuvanted Acellular Pertussis Vaccine Provides Superior Immunity Against Bordetella pertussis in a Mouse Model. Front Immunol 2022; 13:878832. [PMID: 35493458 PMCID: PMC9043693 DOI: 10.3389/fimmu.2022.878832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
Pertussis, caused by the gram-negative bacterium Bordetella pertussis, is a highly contagious respiratory disease. Intranasal vaccination is an ideal strategy to prevent pertussis, as the nasal mucosa represents the first-line barrier to B. pertussis infection. The current intramuscular acellular pertussis (aP) vaccines elicit strong antibody and Th2-biased responses but not necessary cellular and mucosal immunity. Here, we formulated two cyclic dinucleotide (CDN)-adjuvanted aP subunit vaccines, a mammalian 2’,3’-cGAMP-adjuvanted aP vaccine and a bacterial-derived c-di-GMP-adjuvanted aP vaccine, and evaluated their immunogenicity in a mouse model. We found that the aP vaccine alone delivered intranasally (IN) induced moderate systemic and mucosal humoral immunity but weak cellular immunity, whereas the alum-adjuvanted aP vaccine administered intraperitoneally elicited higher Th2 and systemic humoral immune responses but weaker Th1 and Th17 and mucosal immune responses. In contrast, both CDN-adjuvanted aP vaccines administered via the IN route induced robust humoral and cellular immunity systemically and mucosally. Furthermore, the c-di-GMP-adjuvanted aP vaccine generated better antibody production and stronger Th1 and Th17 responses than the 2′,3′-cGAMP-adjuvanted aP vaccine. In addition, following B. pertussis challenge, the group of mice that received IN immunization with the c-di-GMP-adjuvanted aP vaccine showed better protection than all other groups of vaccinated mice, with decreased inflammatory cell infiltration in the lung and reduced bacterial burden in both the upper and lower respiratory tracts. In summary, the c-di-GMP-adjuvanted aP vaccine can elicit a multifaceted potent immune response resulting in robust bacterial clearance in the respiratory tract, which indicates that c-di-GMP can serve as a potential mucosal adjuvant for the pertussis vaccine.
Collapse
Affiliation(s)
- Wenwen Jiang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Xiaoyu Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Yuhao Su
- Laboratory of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Lukui Cai
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Jingyan Li
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Jiangli Liang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Qin Gu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Mingbo Sun
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China.,Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Li Shi
- Laboratory of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| |
Collapse
|
19
|
Peng J, Tang R, Qi D, Yu Q, Hu H, Tang W, He J, Wang D. Predictive Value of the Baseline and Early Changes in Blood Eosinophils for Short-Term Mortality in Patients with Acute Respiratory Distress Syndrome. J Inflamm Res 2022; 15:1845-1858. [PMID: 35313672 PMCID: PMC8933624 DOI: 10.2147/jir.s350856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background Eosinophils play an essential role in the pathogenesis of acute respiratory distress syndrome (ARDS). We aimed to assess the association between the baseline blood eosinophils, eosinophil changes during the first week in the intensive care unit (ICU) and short-term patient outcomes. Methods All patients meeting the Berlin definition of ARDS from the Medical Information Mart for Intensive Care IV database were retrospectively analyzed. We used logistic regression, Kaplan–Meier survival and random forest analysis to determine the association between the baseline eosinophils and short-term mortality. Then the trends in eosinophils over time were compared between the survivors and non-survivors using a generalized additive mixed model (GAMM), which is a common approach used for analysis of repeated measurement data. Area under the receiver-operating characteristic curve (AUC) was used to evaluate the predictive value. Results A total of 1685 patients were included, and the 30-day mortality was 25.1%. Kaplan–Meier analysis showed that patients with high baseline eosinophils (>0.3%) had lower 30-day mortality (p < 0.001). Random forest model selected the baseline eosinophils as an important factor associated with 30-day mortality. Multivariable logistic regression analysis identified high baseline eosinophils as an independent factor for 30-day mortality (OR 0.743, 95% CI 0.568–0.970). The GAMM result showed that the levels of eosinophils were increased in both survival and non-survival groups, and the between-group differences increased over time, with an average of 0.154 daily after adjusting for confounders. The AUC of changes in eosinophils within the first week was significantly higher than that of baseline eosinophils. Conclusion There is a negative association between the baseline eosinophils and short-term mortality in ARDS patients, and the differences in eosinophils increased over time between the survivors and non-survivors. Higher increase in eosinophils is associated with decreased short-term mortality, and dynamic monitoring of eosinophils could better predict the survival of ARDS patients. Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: ![]()
https://youtu.be/Xe5dqxVxw_M
Collapse
Affiliation(s)
- Junnan Peng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Rui Tang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Di Qi
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Qian Yu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hao Hu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Wen Tang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jing He
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Daoxin Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Correspondence: Daoxin Wang; Jing He, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing, 400010, People’s Republic of China, Email ;
| |
Collapse
|
20
|
Evans CM, McCubbrey AL. Can Eosinophils Prevent Lung Injury? Ask PHIL. Am J Respir Cell Mol Biol 2021; 64:523-524. [PMID: 33651669 PMCID: PMC8086048 DOI: 10.1165/rcmb.2021-0083ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Christopher M Evans
- Department of Medicine University of Colorado Denver-Anschutz Medical Campus Aurora, Colorado and
| | - Alexandra L McCubbrey
- Department of Medicine University of Colorado Denver-Anschutz Medical Campus Aurora, Colorado and.,Department of Medicine National Jewish Health Denver, Colorado
| |
Collapse
|