1
|
Gong X, Xu L, Cai P. Friend or foe of tripartite motif-containing protein 21 in cardiovascular disease: A review. Int J Biol Macromol 2025; 308:142682. [PMID: 40164260 DOI: 10.1016/j.ijbiomac.2025.142682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
As an E3 ubiquitin ligase and an Fc receptor, tripartite motif-containing protein 21 (TRIM21) plays a crucial role in immune defense, signal transduction, and cellular regulation. TRIM21 is widely expressed in various tissues, but it is particularly abundant in cardiovascular tissues and is involved in the pathogenesis of various cardiovascular diseases (CVDs). However, although TRIM21 is involved in the regulation of several key molecular pathways in the immune system, its specific role in CVD remains unclear. In this review, we comprehensively summarize the regulatory role of TRIM21 in signaling pathways and discuss the function of TRIM21 in CVD, to provide a systematic understanding of this important protein in CVD and offer insights for further research into the pathogenesis of CVD and its potential applications.
Collapse
Affiliation(s)
- Xiangmei Gong
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Xu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Morales AE, Dong Y, Brown T, Baid K, Kontopoulos DG, Gonzalez V, Huang Z, Ahmed AW, Bhuinya A, Hilgers L, Winkler S, Hughes G, Li X, Lu P, Yang Y, Kirilenko BM, Devanna P, Lama TM, Nissan Y, Pippel M, Dávalos LM, Vernes SC, Puechmaille SJ, Rossiter SJ, Yovel Y, Prescott JB, Kurth A, Ray DA, Lim BK, Myers E, Teeling EC, Banerjee A, Irving AT, Hiller M. Bat genomes illuminate adaptations to viral tolerance and disease resistance. Nature 2025; 638:449-458. [PMID: 39880942 PMCID: PMC11821529 DOI: 10.1038/s41586-024-08471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/28/2024] [Indexed: 01/31/2025]
Abstract
Zoonoses are infectious diseases transmitted from animals to humans. Bats have been suggested to harbour more zoonotic viruses than any other mammalian order1. Infections in bats are largely asymptomatic2,3, indicating limited tissue-damaging inflammation and immunopathology. To investigate the genomic basis of disease resistance, the Bat1K project generated reference-quality genomes of ten bat species, including potential viral reservoirs. Here we describe a systematic analysis covering 115 mammalian genomes that revealed that signatures of selection in immune genes are more prevalent in bats than in other mammalian orders. We found an excess of immune gene adaptations in the ancestral chiropteran branch and in many descending bat lineages, highlighting viral entry and detection factors, and regulators of antiviral and inflammatory responses. ISG15, which is an antiviral gene contributing to hyperinflammation during COVID-19 (refs. 4,5), exhibits key residue changes in rhinolophid and hipposiderid bats. Cellular infection experiments show species-specific antiviral differences and an essential role of protein conjugation in antiviral function of bat ISG15, separate from its role in secretion and inflammation in humans. Furthermore, in contrast to humans, ISG15 in most rhinolophid and hipposiderid bats has strong anti-SARS-CoV-2 activity. Our work reveals molecular mechanisms that contribute to viral tolerance and disease resistance in bats.
Collapse
Affiliation(s)
- Ariadna E Morales
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Yue Dong
- Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Kaushal Baid
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Dimitrios -Georgios Kontopoulos
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Victoria Gonzalez
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Alexis-Walid Ahmed
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Arkadeb Bhuinya
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Leon Hilgers
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Graham Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Xiaomeng Li
- Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Ping Lu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yixin Yang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Bogdan M Kirilenko
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Tanya M Lama
- Department of Ecology and Evolution, SUNY Stony Brook, Stony Brook, NY, USA
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| | - Yomiran Nissan
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Liliana M Dávalos
- Department of Ecology and Evolution, SUNY Stony Brook, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, SUNY Stony Brook, Stony Brook, NY, USA
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- School of Biology, University of St Andrews, St Andrews, UK
| | - Sebastien J Puechmaille
- Institut Universitaire de France, Paris, France
- ISEM, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Yossi Yovel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Consortium for Inter-Disciplinary Environmental Research, SUNY Stony Brook, Stony Brook, NY, USA
| | - Joseph B Prescott
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andreas Kurth
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| | - Eugene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron T Irving
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Center for Infection, Immunity and Cancer, Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China.
- Department of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany.
- Senckenberg Research Institute, Frankfurt, Germany.
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany.
| |
Collapse
|
3
|
McKenna S, Jung KI, Wolf JJ, Seo YJ, Hahm B. Multiple sphingolipid-metabolizing enzymes modulate influenza virus replication. Virology 2025; 603:110367. [PMID: 39754863 PMCID: PMC11793951 DOI: 10.1016/j.virol.2024.110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025]
Abstract
The sphingolipid network is sustained principally by the balance of bioactive sphingolipid molecules and their regulation by sphingolipid-metabolizing enzymes. The components in the lipid system display key functions in numerous cellular and disease conditions including virus infections. During the COVID-19 pandemic, there was a fruitful effort to use an inhibitor that blocks the activity of sphingosine kinase (SphK) 2 to cure the devastating disease. Support for the inhibitor came from pre-clinical research on influenza where the inhibitor demonstrated effective protection of mice from influenza-induced morbidity and mortality. This highlights the importance of basic and translational research on the sphingolipid system for improving human health. Multiple sphingolipid-metabolizing enzymes have been reported to regulate influenza virus replication and propagation. In this review, the emphasis is placed on the roles of these enzymes that impact influenza virus life cycle and the conceivable mechanisms for the interplay between influenza virus and the sphingolipid pathway.
Collapse
Affiliation(s)
- Savannah McKenna
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA
| | - Kwang Il Jung
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA
| | - Jennifer J Wolf
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Bumsuk Hahm
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
4
|
Luo W, Cai W, Cheng A, Wang M, Chen S, Huang J, Yang Q, Wu Y, Sun D, Zhu D, Liu M, Zhao X, Zhang S, Ou X, Tian B, Yin Z, Jia R. N-myc and STAT interactor degrades interferon regulatory factor 7 mediated type I interferon signaling to promote duck Tembusu virus replication. Poult Sci 2024; 103:104269. [PMID: 39270481 PMCID: PMC11416583 DOI: 10.1016/j.psj.2024.104269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/04/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
N-myc and STAT interactor (NMI) is an interferon-induced protein, which plays a variety of biological functions by participating in signal transduction and transcriptional activation, it has been reported to regulate antiviral response of different viruses in many species. However, the role of NMI in ducks during Duck Tembusu Virus (DTMUV) infection is completely unknown. In order to reveal whether duck NMI (duNMI) is involved in the antiviral response in the process of DTMUV infection and its role, we cloned and identified duNMI gene, and conducted sequence analysis of duNMI, the open reading frame region of duNMI gene is 1,137 bp, encoding 378 amino acid residues (aa), including 3 domains, Coiled-coil domain (22-126aa), NMI/IFP 35 domain 1 (NID1) domain (174-261aa) and NMI/IFP 35 domain 2 (NID2) domain (272-360aa). Analysis of tissue distribution of duNMI in 7-day-old ducks shows that the expression of duNMI is the highest in harderian gland, followed by small intestine and pancreas. Subsequently, we found that mRNA level of duNMI increases significantly after DTMUV stimulation, and overexpression of duNMI inhibits DTMUV replication in a dose-dependent manner. Besides, duNMI inhibits the transcriptional activity of IFN-I related cytokines. Specifically, we confirmed that duNMI interacts with duck regulatory factor 7 (duIRF7) through NID1 and NID2 domains and inhibit its expression and activated-IFN-β. These results support that duNMI is an inhibitor of antiviral innate immune response in the process of DTMUV infection, which will provide a theoretical basis for the prevention of DTMUV infection.
Collapse
Affiliation(s)
- Wanshuang Luo
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
5
|
Ma W, Zheng J, Wu B, Wang M, Kang Z. Regulatory mechanism of TRIM21 in sepsis-induced acute lung injury by promoting IRF1 ubiquitination. Clin Exp Pharmacol Physiol 2024; 51:e13911. [PMID: 39360626 DOI: 10.1111/1440-1681.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024]
Abstract
Sepsis-induced acute lung injury (ALI) is characterized by inflammatory damage to pulmonary endothelial and epithelial cells. The aim of this study is to probe the significance and mechanism of tripartite motif-containing protein 21 (TRIM21) in sepsis-induced ALI. The sepsis-induced ALI mouse model was established by cecum ligation and puncture. The mice were infected with lentivirus and treated with proteasome inhibitor MG132. The lung respiratory damage, levels of interleukin-6 (IL-6), tumour necrosis factor α (TNF-α), IL-10 and pathological changes were observed. The expression levels of TRIM21, interferon regulatory factors 1 (IRF1) and triggering receptor expressed on myeloid cells 2 (TREM2) were measured and their interactions were analysed. The ubiquitination level of IRF1 was detected. TRIM21 and TREM2 were downregulated and IRF1 was upregulated in sepsis-induced ALI mice. TRIM21 overexpression eased inflammation and lung injury. TRIM21 promoted IRF1 degradation via ubiquitination modification. IRF1 bonded to the TREM2 promoter to inhibit its transcription. Overexpression of IRF1 or silencing TREM2 reversed the improvement of TRIM21 overexpression on lung injury in mice. In conclusion, TRIM21 reduced IRF1 expression by ubiquitination to improve TREM2 expression and ameliorate sepsis-induced ALI.
Collapse
Affiliation(s)
- Wenjie Ma
- Department of Emergency, Changhai Hospital Affiliated to Navy Medical University, Shanghai, China
| | - Jie Zheng
- Department of Laboratory, Changhai Hospital Affiliated to Navy Medical University, Shanghai, China
| | - Bin Wu
- Department of Emergency, Changhai Hospital Affiliated to Navy Medical University, Shanghai, China
| | - Meitang Wang
- Department of Emergency, Changhai Hospital Affiliated to Navy Medical University, Shanghai, China
| | - Zhoujun Kang
- Department of Emergency, Changhai Hospital Affiliated to Navy Medical University, Shanghai, China
| |
Collapse
|
6
|
Su G, Chen Y, Li X, Shao JW. Virus versus host: influenza A virus circumvents the immune responses. Front Microbiol 2024; 15:1394510. [PMID: 38817972 PMCID: PMC11137263 DOI: 10.3389/fmicb.2024.1394510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Influenza A virus (IAV) is a highly contagious pathogen causing dreadful losses to humans and animals around the globe. As is known, immune escape is a strategy that benefits the proliferation of IAVs by antagonizing, blocking, and suppressing immune surveillance. The HA protein binds to the sialic acid (SA) receptor to enter the cytoplasm and initiate viral infection. The conserved components of the viral genome produced during replication, known as the pathogen-associated molecular patterns (PAMPs), are thought to be critical factors for the activation of effective innate immunity by triggering dependent signaling pathways after recognition by pattern recognition receptors (PRRs), followed by a cascade of adaptive immunity. Viral infection-induced immune responses establish an antiviral state in the host to effectively inhibit virus replication and enhance viral clearance. However, IAV has evolved multiple mechanisms that allow it to synthesize and transport viral components by "playing games" with the host. At its heart, this review will describe how host and viral factors interact to facilitate the viral evasion of host immune responses.
Collapse
Affiliation(s)
- Guanming Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, China
| | - Yiqun Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jian-Wei Shao
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
7
|
Xia C, Wang T, Hahm B. Triggering Degradation of Host Cellular Proteins for Robust Propagation of Influenza Viruses. Int J Mol Sci 2024; 25:4677. [PMID: 38731896 PMCID: PMC11083682 DOI: 10.3390/ijms25094677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Following infection, influenza viruses strive to establish a new host cellular environment optimized for efficient viral replication and propagation. Influenza viruses use or hijack numerous host factors and machinery not only to fulfill their own replication process but also to constantly evade the host's antiviral and immune response. For this purpose, influenza viruses appear to have formulated diverse strategies to manipulate the host proteins or signaling pathways. One of the most effective tactics is to specifically induce the degradation of the cellular proteins that are detrimental to the virus life cycle. Here, we summarize the cellular factors that are deemed to have been purposefully degraded by influenza virus infection. The focus is laid on the mechanisms for the protein ubiquitination and degradation in association with facilitated viral amplification. The fate of influenza viral infection of hosts is heavily reliant on the outcomes of the interplay between the virus and the host antiviral immunity. Understanding the processes of how influenza viruses instigate the protein destruction pathways could provide a foundation for the development of advanced therapeutics to target host proteins and conquer influenza.
Collapse
Affiliation(s)
- Chuan Xia
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ting Wang
- Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Bumsuk Hahm
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
8
|
Li ZA, Bajpai AK, Wang R, Liu Y, Webby RJ, Wilk E, Gu W, Schughart K, Li K, Lu L. Systems genetics of influenza A virus-infected mice identifies TRIM21 as a critical regulator of pulmonary innate immune response. Virus Res 2024; 342:199335. [PMID: 38331257 PMCID: PMC10882161 DOI: 10.1016/j.virusres.2024.199335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Tripartite motif 21 (TRIM21) is a cytosolic Fc receptor that targets antibody-bound, internalized pathogens for destruction. Apart from this intrinsic defense role, TRIM21 is implicated in autoimmune diseases, inflammation, and autophagy. Whether TRIM21 participates in host interactions with influenza A virus (IAV), however, is unknown. By computational modeling of body weight and lung transcriptome data from the BXD parents (C57BL/6 J (B6) and DBA/2 J (D2)) and 41 BXD mouse strains challenged by IAV, we reveal that a Trim21-associated gene network modulates the early host responses to IAV infection. Trim21 transcripts were significantly upregulated in infected mice of both B6 and D2 backgrounds. Its expression was significantly higher in infected D2 than in infected B6 early after infection and significantly correlated with body weight loss. We identified significant trans-eQTL on chromosome 14 that regulates Trim21 expression. Nr1d2 and Il3ra were among the strongest candidate genes. Pathway analysis found Trim21 to be involved in inflammation and immunity related pathways, such as inflammation signaling pathways (TNF, IL-17, and NF-κB), viral detection signaling pathways (NOD-like and RIG-I-like), influenza, and other respiratory viral infections. Knockdown of TRIM21 in human lung epithelial A549 cells significantly augmented IAV-induced expression of IFNB1, IFNL1, CCL5, CXCL10, and IFN-stimulated genes including DDX58 and IFIH1, among others. Our data suggest that a TRIM21-associated gene network is involved in several aspects of inflammation and viral detection mechanisms during IAV infection. We identify and validate TRIM21 as a critical regulator of innate immune responses to IAV in human lung epithelial cells.
Collapse
Affiliation(s)
- Zhuoyuan Alex Li
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Akhilesh Kumar Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ruixue Wang
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yaxin Liu
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Esther Wilk
- Rochus Mummert Healthcare Consulting GmbH, Hannover, Germany
| | - Weikuan Gu
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Klaus Schughart
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA; Institute of Virology Münster, University of Münster, Münster, Germany
| | - Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
9
|
Wei Y, Gu Y, Zhou Z, Wu C, Liu Y, Sun H. TRIM21 Promotes Oxidative Stress and Ferroptosis through the SQSTM1-NRF2-KEAP1 Axis to Increase the Titers of H5N1 Highly Pathogenic Avian Influenza Virus. Int J Mol Sci 2024; 25:3315. [PMID: 38542289 PMCID: PMC10970474 DOI: 10.3390/ijms25063315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 04/04/2024] Open
Abstract
Tripartite motif-containing protein 21 (TRIM21) is involved in signal transduction and antiviral responses through the ubiquitination of protein targets. TRIM21 was reported to be related to the imbalance of host cell homeostasis caused by viral infection. Our studies indicated that H5N1 highly pathogenic avian influenza virus (HPAIV) infection up-regulated TRIM21 expression in A549 cells. Western blot and qPCR results showed that knockdown of TRIM21 alleviated oxidative stress and ferroptosis induced by H5N1 HPAIV and promoted the activation of antioxidant pathways. Co-IP results showed that TRIM21 promoted oxidative stress and ferroptosis by regulating the SQSTM1-NRF2-KEAP1 axis by increasing SQSTM1 K63-linked polyubiquitination under the condition of HPAIV infection. In addition, TRIM21 attenuated the inhibitory effect of antioxidant NAC on HPAIV titers and enhanced the promoting effect of ferroptosis agonist Erastin on HPAIV titers. Our findings provide new insight into the role of TRIM21 in oxidative stress and ferroptosis induced by viral infection.
Collapse
Affiliation(s)
- Yifan Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Yongxia Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Ziwei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Changrong Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Yanwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Yuan J, Pan J, Zhang X, Gao R. TRIM21 reduces H1N1-induced inflammation and apoptosis by regulating the TBK1-IRF3 signaling pathway in A549 cells. Arch Virol 2024; 169:74. [PMID: 38480558 DOI: 10.1007/s00705-024-05989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/29/2023] [Indexed: 04/10/2024]
Abstract
Triple motif protein 21 (TRIM21) has an antiviral function that inhibits various viral infections. However, its role in the progress of influenza A virus (IAV) infection is unclear. In this study, we investigated the role and molecular mechanism of TRIM21 in IAV infection. RT-qPCR was used to determine the level of TRIM21 mRNA, and ELISA was used to measure the levels of IFN-α, IFN-β, IL-6, and TNF-α. The levels of the TRIM21, NP, TBK1, IRF3, p-TBK1, and p-IRF3 proteins were estimated by Western blot. The results showed that, after IAV infection, TRIM21 was upregulated in clinical patient serum and A549 cells, and this was correlated with the IFN response. Overexpression of TRIM21 reduced IAV replication and transcription in in vitro cell experiments. TRIM21 also increased IFN-α and IFN-β levels and decreased IL-6 and TNF-α levels in A549 cells. In addition, overexpression of TRIM21 inhibited IAV-induced apoptosis. Further experiments demonstrated that TBK1-IRF3 signaling was activated by TRIM21 and was involved in the inhibitory effect of TRIM21 on virus replication. In summary, our study suggests that TRIM21 inhibits viral replication by activating the TBK1-IRF3 signaling pathway, further inhibiting the infection process of IAV.
Collapse
Affiliation(s)
- Juan Yuan
- Outpatient of Infectious Diseases, Xi'an Children's Hospital, No 69, Xiju Yuan Lane, Lianhu District, Xi'an, 710003, Shaanxi, China
| | - Jianli Pan
- The Special Department, Xi'an Children's Hospital, Xi'an, 710003, Shaanxi, China
| | - Xiaofang Zhang
- Outpatient of Infectious Diseases, Xi'an Children's Hospital, No 69, Xiju Yuan Lane, Lianhu District, Xi'an, 710003, Shaanxi, China
| | - Rui Gao
- Outpatient of Infectious Diseases, Xi'an Children's Hospital, No 69, Xiju Yuan Lane, Lianhu District, Xi'an, 710003, Shaanxi, China.
| |
Collapse
|
11
|
Huang Y, Gao X, He QY, Liu W. A Interacting Model: How TRIM21 Orchestrates with Proteins in Intracellular Immunity. SMALL METHODS 2024; 8:e2301142. [PMID: 37922533 DOI: 10.1002/smtd.202301142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Tripartite motif-containing protein 21 (TRIM21), identified as both a cytosolic E3 ubiquitin ligase and FcR (Fragment crystallizable receptor), primarily interacts with proteins via its PRY/SPRY domains and promotes their proteasomal degradation to regulate intracellular immunity. But how TRIM21 involves in intracellular immunity still lacks systematical understanding. Herein, it is probed into the TRIM21-related literature and raises an interacting model about how TRIM21 orchestrates proteins in cytosol. In this novel model, TRIM21 generally interacts with miscellaneous protein in intracellular immunity in two ways: For one, TRIM21 solely plays as an E3, ubiquitylating a glut of proteins that contain specific interferon-regulatory factor, nuclear transcription factor kappaB, virus sensors and others, and involving inflammatory responses. For another, TRIM21 serves as both E3 and specific FcR that detects antibody-complexes and facilitates antibody destroying target proteins. Correspondingly delineated as Fc-independent signaling and Fc-dependent signaling in this review, how TRIM21's interactions contribute to intracellular immunity, expecting to provide a systematical understanding of this important protein and invest enlightenment for further research on the pathogenesis of related diseases and its prospective application is elaborated.
Collapse
Affiliation(s)
- Yisha Huang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xuejuan Gao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wanting Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
12
|
Teng P, Li Y, Ku L, Wang F, Goldsmith DR, Wen Z, Yao B, Feng Y. The human lncRNA GOMAFU suppresses neuronal interferon response pathways affected in neuropsychiatric diseases. Brain Behav Immun 2023; 112:175-187. [PMID: 37301236 PMCID: PMC10527610 DOI: 10.1016/j.bbi.2023.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/26/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play multifaceted roles in regulating brain gene networks. LncRNA abnormalities are thought to underlie the complex etiology of numerous neuropsychiatric disorders. One example is the human lncRNA gene GOMAFU, which is found dysregulated in schizophrenia (SCZ) postmortem brains and harbors genetic variants that contribute to the risk of SCZ. However, transcriptome-wide biological pathways regulated by GOMAFU have not been determined. How GOMAFU dysregulation contributes to SCZ pathogenesis remains elusive. Here we report that GOMAFU is a novel suppressor of human neuronal interferon (IFN) response pathways that are hyperactive in the postmortem SCZ brains. We analyzed recently released transcriptomic profiling datasets in clinically relevant brain areas derived from multiple SCZ cohorts and found brain region-specific dysregulation of GOMAFU. Using CRISPR-Cas9 to delete the GOMAFU promoter in a human neural progenitor cell model, we identified transcriptomic alterations caused by GOMAFU deficiency in pathways commonly affected in postmortem brains of SCZ and autism spectrum disorder (ASD), with the most striking effects on upregulation of numerous genes underlying IFN signaling. In addition, expression levels of GOMAFU target genes in the IFN pathway are differentially affected in SCZ brain regions and negatively associated with GOMAFU alterations. Furthermore, acute exposure to IFN-γ causes a rapid decline of GOMAFU and activation of a subclass of GOMAFU targets in stress and immune response pathways that are affected in SCZ brains, which form a highly interactive molecular network. Together, our studies unveiled the first evidence of lncRNA-governed neuronal response pathways to IFN challenge and suggest that GOMAFU dysregulation may mediate environmental risks and contribute to etiological neuroinflammatory responses by brain neurons of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Peng Teng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, United States
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, United States
| | - Li Ku
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, United States
| | - Feng Wang
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, United States
| | - David R Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States; Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, United States.
| | - Yue Feng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, United States.
| |
Collapse
|
13
|
Zhang B, Cai T, He H, Huang X, Chen G, Lai Y, Luo Y, Huang S, Luo J, Guo X. TRIM21 Promotes Rabies Virus Production by Degrading IRF7 through Ubiquitination. Int J Mol Sci 2023; 24:10892. [PMID: 37446070 PMCID: PMC10341556 DOI: 10.3390/ijms241310892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Rabies, a highly fatal zoonotic disease, is a significant global public health threat. Currently, the pathogenic mechanism of rabies has not been fully elucidated, and no effective treatment for rabies is available. Increasing evidence shows that the tripartite-motif protein (TRIM) family of proteins participates in the host's regulation of viral replication. Studies have demonstrated the upregulated expression of tripartite-motif protein 21 (TRIM21) in the brain tissue of mice infected with the rabies virus. Related studies have shown that TRIM21 knockdown inhibits RABV replication, while overexpression of TRIM21 exerted the opposite effect. Knockdown of interferon-alpha and interferon-beta modulates the inhibition of RABV replication caused by TRIM21 knockdown and promotes the replication of the virus. Furthermore, our previous study revealed that TRIM21 regulates the secretion of type I interferon during RABV infection by targeting interferon regulatory factor 7 (IRF7). IRF7 knockdown reduced the inhibition of RABV replication caused by the knockdown of TRIM21 and promoted viral replication. TRIM21 regulates RABV replication via the IRF7-IFN axis. Our study identified TRIM21 as a novel host factor required by RABV for replication. Thus, TRIM21 is a potential target for rabies treatment or management.
Collapse
Affiliation(s)
- Boyue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Ting Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Hongling He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Xuezhe Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Guie Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Yanqin Lai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA;
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| |
Collapse
|
14
|
Multiple Roles of TRIM21 in Virus Infection. Int J Mol Sci 2023; 24:ijms24021683. [PMID: 36675197 PMCID: PMC9867090 DOI: 10.3390/ijms24021683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The tripartite motif protein 21 (TRIM21) belongs to the TRIM family, possessing an E3 ubiquitin ligase activity. Similar to other TRIMs, TRIM21 also contains three domains (named RBCC), including the Really Interesting New Gene (RING) domain, one or two B-Box domains (B-Box), and one PRY/SPRY domain. Notably, we found that the RING and B-Box domains are relatively more conservative than the PRY/SPRY domain, suggesting that TRIM21 of different species had similar functions. Recent results showed that TRIM21 participates in virus infection by directly interacting with viral proteins or modulating immune and inflammatory responses. TRIM21 also acts as a cytosol high-affinity antibody Fc receptor, binding to the antibody-virus complex and triggering an indirect antiviral antibody-dependent intracellular neutralization (ADIN). This paper focuses on the recent progress in the mechanism of TRIM21 during virus infection and the application prospects of TRIM21 on virus infection.
Collapse
|
15
|
Cen M, Ouyang W, Lin X, Du X, Hu H, Lu H, Zhang W, Xia J, Qin X, Xu F. FBXO6 regulates the antiviral immune responses via mediating alveolar macrophages survival. J Med Virol 2023; 95:e28203. [PMID: 36217277 PMCID: PMC10092588 DOI: 10.1002/jmv.28203] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023]
Abstract
Inducing early apoptosis in alveolar macrophages is one of the strategies influenza A virus (IAV) evolved to subvert host immunity. Correspondingly, the host mitochondrial protein nucleotide-binding oligomerization domain-like receptor (NLR)X1 is reported to interact with virus polymerase basic protein 1-frame 2 (PB1-F2) accessory protein to counteract virus-induced apoptosis. Herein, we report that one of the F-box proteins, FBXO6, promotes proteasomal degradation of NLRX1, and thus facilitates IAV-induced alveolar macrophages apoptosis and modulates both macrophage survival and type I interferon (IFN) signaling. We observed that FBXO6-deficient mice infected with IAV exhibited decreased pulmonary viral replication, alleviated inflammatory-associated pulmonary dysfunction, and less mortality. Analysis of the lungs of IAV-infected mice revealed markedly reduced leukocyte recruitment but enhanced production of type I IFN in Fbxo6-/- mice. Furthermore, increased type I IFN production and decreased viral replication were recapitulated in FBXO6 knockdown macrophages and associated with reduced apoptosis. Through gain- and loss-of-function studies, we found lung resident macrophages but not bone marrow-derived macrophages play a key role in the differences FBXO6 signaling pathway brings in the antiviral immune response. In further investigation, we identified that FBXO6 interacted with and promoted the proteasomal degradation of NLRX1. Together, our results demonstrate that FBXO6 negatively regulates immunity against IAV infection by enhancing the degradation of NLRX1 and thus impairs the survival of alveolar macrophages and antiviral immunity of the host.
Collapse
Affiliation(s)
- Mengyuan Cen
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of Respiratory MedicineNingbo First HospitalNingboChina
| | - Wei Ouyang
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiuhui Lin
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaohong Du
- Institute of Clinical Medicine ResearchSuzhou Science and Technology Town HospitalSuzhouChina
| | - Huiqun Hu
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Huidan Lu
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wanying Zhang
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingyan Xia
- Department of Radiation Oncology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaofeng Qin
- Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Suzhou Institute of Systems MedicineSuzhouChina
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Research Center for Life Science and Human HealthBinjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|
16
|
Zhang W, Zhou H, Cen M, Ouyang W, Chen J, Xia L, Lin X, Liu J, He T, Xu F. N-myc and STAT interactor is a novel biomarker of severity in community-acquired pneumonia: a prospective study. Respir Res 2022; 23:253. [PMID: 36123652 PMCID: PMC9483521 DOI: 10.1186/s12931-022-02139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Objectives To tested the ability of N-myc and STAT interactor (NMI) levels in patients with community-acquired pneumonia (CAP) to predict the severity of the disease. Methods Prospective observational analysis of patients with CAP was performed. The NMI levels in serum of 394 CAP patients on admission were measured by immunoassay. Thirty-day mortality and intensive care unit (ICU) admission were set as clinical outcomes. The predicting value of NMI for clinical outcomes was determined by receiver operating characteristic curve and logistic regression analysis. The internal validity was assessed using cross-validation with bootstrap resampling. Results NMI was an independent risk factor for both 30-day mortality and admission to ICU for CAP patients. The area under curve (AUC) of NMI to predict mortality was 0.91 (95% CI: 0.86–0.96), and that to predict ICU admission was 0.92 (95% CI: 0.88–0.97), significantly higher than that of other biomarkers including procalcitonin and C-reactive protein. The proportion of clinical outcomes notably rose as NMI levels elevated (P < 0.001). The AUCs of the new score systems including NMI (N-PSI and N-CURB65 score) to predict outcomes were significantly higher than the original score systems. Conclusions NMI is a novel biomarker for predicting CAP severity superior to former biomarkers in 30-day mortality and ICU admission. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02139-x.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Hui Zhou
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Mengyuan Cen
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Wei Ouyang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Jie Chen
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Lexin Xia
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Xiuhui Lin
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Jinliang Liu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Teng He
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
17
|
Zhai Z, Ouyang W, Yao Y, Zhang Y, Zhang H, Xu F, Gao C. Dexamethasone-loaded ROS-responsive poly(thioketal) nanoparticles suppress inflammation and oxidative stress of acute lung injury. Bioact Mater 2022; 14:430-442. [PMID: 35415281 PMCID: PMC8965854 DOI: 10.1016/j.bioactmat.2022.01.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is associated with excessive inflammatory response, leading to acute respiratory distress syndrome (ARDS) without timely treatment. A fewer effective drugs are available currently to treat the ALI/ARDS. Herein, a therapeutic nanoplatform with reactive oxygen species (ROS)-responsiveness was developed for the regulation of inflammation. Dexamethasone acetate (Dex) was encapsulated into poly(thioketal) polymers to form polymeric nanoparticles (NPs) (PTKNPs@Dex). The NPs were composed of poly(1,4-phenyleneacetonedimethylene thioketal) (PPADT) and polythioketal urethane (PTKU), in which the thioketal bonds could be cleaved by the high level of ROS at the ALI site. The PTKNPs@Dex could accumulate in the pulmonary inflammatory sites and release the encapsulated payloads rapidly, leading to the decreased ROS level, less generation of pro-inflammatory cytokines, and reduced lung injury and mortality of mice. RNA sequencing (RNA-seq) analysis showed that the therapeutic efficacy of the NPs was associated with the modulation of many immune and inflammation-linked pathways. These findings provide a newly developed nanoplatform for the efficient treatment of ALI/ARDS. A therapeutic nanoplatform with ROS-responsiveness was developed for the regulation of inflammation. NPs composed of low Mw of PPADT and high Mw of PTKU were loaded with dexamethasone to obtain a self-adaptive system. The Dex-loaded NPs significantly decreased lung inflammation, and reduced lung injury and mortality in vivo.
Collapse
Affiliation(s)
- Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Ouyang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuqi Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Corresponding author. Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Corresponding author. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
18
|
Jones EL, Laidlaw SM, Dustin LB. TRIM21/Ro52 - Roles in Innate Immunity and Autoimmune Disease. Front Immunol 2021; 12:738473. [PMID: 34552597 PMCID: PMC8450407 DOI: 10.3389/fimmu.2021.738473] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
TRIM21 (Ro52/SSA1) is an E3 ubiquitin ligase with key roles in immune host defence, signal transduction, and possibly cell cycle regulation. It is also an autoantibody target in Sjögren's syndrome, systemic lupus erythematosus, and other rheumatic autoimmune diseases. Here, we summarise the structure and function of this enzyme, its roles in innate immunity, adaptive immunity and cellular homeostasis, the pathogenesis of autoimmunity against TRIM21, and the potential impacts of autoantibodies to this intracellular protein.
Collapse
Affiliation(s)
- Esther L Jones
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Stephen M Laidlaw
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Lynn B Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Yepsen EN, Harrod KS. Influenza Antiviral Subversion: Now the Host Is in on the Act. Am J Respir Cell Mol Biol 2021; 65:1-3. [PMID: 33848230 PMCID: PMC8320119 DOI: 10.1165/rcmb.2021-0094ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Erin N Yepsen
- Department of Anesthesiology and Perioperative Medicine University of Alabama at Birmingham Birmingham, Alabama
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine University of Alabama at Birmingham Birmingham, Alabama
| |
Collapse
|