1
|
Hang A, Feldman S, Amin AP, Ochoa JAR, Park SS. Intravitreal Anti-Vascular Endothelial Growth Factor Therapies for Retinal Disorders. Pharmaceuticals (Basel) 2023; 16:1140. [PMID: 37631054 PMCID: PMC10458692 DOI: 10.3390/ph16081140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Vascular endothelial growth factors (VEGFs) are key mediator of retinal and choroidal neovascularization as well as retinal vascular leakage leading to macular edema. As such, VEGF plays an important role in mediating visually significant complications associated with common retinal disorders such as diabetic retinopathy, retinal vein occlusion, and age-related macular degeneration. Various drugs that inhibit vascular endothelial growth factors (anti-VEGF therapies) have been developed to minimize vision loss associated with these disorders. These drugs are injected into the vitreous cavity in a clinic setting at regular intervals. This article provides an overview of the various anti-VEGF drugs used in ophthalmology and the common retinal conditions that benefit from this therapy.
Collapse
Affiliation(s)
- Abraham Hang
- Department of Ophthalmology & Vision Science, Ernest E. Tschannen Eye Institute, University of California Davis Eye Center, 4860 Y Street, Sacramento, CA 95817, USA; (A.H.); (S.F.)
| | - Samuel Feldman
- Department of Ophthalmology & Vision Science, Ernest E. Tschannen Eye Institute, University of California Davis Eye Center, 4860 Y Street, Sacramento, CA 95817, USA; (A.H.); (S.F.)
| | - Aana P. Amin
- School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (A.P.A.); (J.A.R.O.)
| | - Jorge A. Rivas Ochoa
- School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (A.P.A.); (J.A.R.O.)
| | - Susanna S. Park
- Department of Ophthalmology & Vision Science, Ernest E. Tschannen Eye Institute, University of California Davis Eye Center, 4860 Y Street, Sacramento, CA 95817, USA; (A.H.); (S.F.)
| |
Collapse
|
2
|
Liu YT, Romero C, Xiao X, Guo L, Zhou X, Applebaum MA, Xu L, Skapek SX. Methyltransferase Inhibition Enables Tgf β Driven Induction of CDKN2A and B in Cancer Cells. Mol Cell Biol 2023; 43:115-129. [PMID: 36941772 PMCID: PMC10038032 DOI: 10.1080/10985549.2023.2186074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/21/2022] [Accepted: 02/20/2023] [Indexed: 03/23/2023] Open
Abstract
CDKN2A/B deletion or silencing is common across human cancer, reinforcing the general importance of bypassing its tumor suppression in cancer formation or progression. In rhabdomyosarcoma (RMS) and neuroblastoma, two common childhood cancers, the three CDKN2A/B transcripts are independently expressed to varying degrees, but one, ARF, is uniformly silenced. Although TGFβ induces certain CDKN2A/B transcripts in HeLa cells, it was unable to do so in five tested RMS lines unless the cells were pretreated with a broadly acting methyltransferase inhibitor, DZNep, or one targeting EZH2. CDKN2A/B induction by TGFβ correlated with de novo appearance of three H3K27Ac peaks within a 20 kb cis element ∼150 kb proximal to CDKN2A/B. Deleting that segment prevented their induction by TGFβ but not a basal increase driven by methyltransferase inhibition alone. Expression of two CDKN2A/B transcripts was enhanced by dCas9/CRISPR activation targeting either the relevant promoter or the 20 kb cis elements, and this "precise" manipulation diminished RMS cell propagation in vitro. Our findings show crosstalk between methyltransferase inhibition and TGFβ-dependent activation of a remote enhancer to reverse CDKN2A/B silencing. Though focused on CDKN2A/B here, such crosstalk may apply to other TGFβ-responsive genes and perhaps govern this signaling protein's complex effects promoting or blocking cancer.
Collapse
Affiliation(s)
- Yen-Ting Liu
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Celeste Romero
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xue Xiao
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lei Guo
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiaoyun Zhou
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mark A. Applebaum
- Section of Hematology/Oncology, Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Lin Xu
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Stephen X. Skapek
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
Wagner KD, Wagner N. The Senescence Markers p16INK4A, p14ARF/p19ARF, and p21 in Organ Development and Homeostasis. Cells 2022; 11:cells11121966. [PMID: 35741095 PMCID: PMC9221567 DOI: 10.3390/cells11121966] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
It is widely accepted that senescent cells accumulate with aging. They are characterized by replicative arrest and the release of a myriad of factors commonly called the senescence-associated secretory phenotype. Despite the replicative cell cycle arrest, these cells are metabolically active and functional. The release of SASP factors is mostly thought to cause tissue dysfunction and to induce senescence in surrounding cells. As major markers for aging and senescence, p16INK4, p14ARF/p19ARF, and p21 are established. Importantly, senescence is also implicated in development, cancer, and tissue homeostasis. While many markers of senescence have been identified, none are able to unambiguously identify all senescent cells. However, increased levels of the cyclin-dependent kinase inhibitors p16INK4A and p21 are often used to identify cells with senescence-associated phenotypes. We review here the knowledge of senescence, p16INK4A, p14ARF/p19ARF, and p21 in embryonic and postnatal development and potential functions in pathophysiology and homeostasis. The establishment of senolytic therapies with the ultimate goal to improve healthy aging requires care and detailed knowledge about the involvement of senescence and senescence-associated proteins in developmental processes and homeostatic mechanism. The review contributes to these topics, summarizes open questions, and provides some directions for future research.
Collapse
|
4
|
Thomas DM, Kannabiran C, Balasubramanian D. Identification of Key Genes and Pathways in Persistent Hyperplastic Primary Vitreous of the Eye Using Bioinformatic Analysis. Front Med (Lausanne) 2021; 8:690594. [PMID: 34485332 PMCID: PMC8409525 DOI: 10.3389/fmed.2021.690594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The failure of the embryonic hyaloid vascular system to regress naturally causes persistent hyperplastic primary vitreous (PHPV), a congenital eye disease. PHPVs molecular pathway, candidate genes, and drug targets are unknown. The current paper describes a comprehensive analysis using bioinformatics to identify the key genes and molecular pathways associated with PHPV, and to evaluate potential therapeutic agents for disease management. Methods: The genes associated with PHPV were identified using the pubmed2ensembl text mining platform. GeneCodis was employed to evaluate the Gene Ontology (GO) biological process terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Search Tool for the Retrieval of Interacting Genes (STRING) constructed a protein-protein interaction (PPI) network from the text mining genes (TMGs) in Cytoscape. The significant modules were clustered using Molecular Complex Detection (MCODE), and the GO and KEGG analysis for the hub genes were analyzed with the Database of Annotation, Visualization and Integrated Discovery (DAVID) tool. ClueGO, CluePedia, and ShinyGo were used to illustrate the functions and pathways of the clustered hub genes in a significant module. The Drug-Gene Interaction database (DGIdb) was used to evaluate drug-gene interactions of the hub genes to identify potential PHPV drug candidates. Results: A total of 50 genes associated with PHPV were identified. Overall, 35 enriched GO terms and 15 KEGG pathways were discovered by the gene functional enrichment analysis. Two gene modules were obtained from the PPI network constructed with 31 nodes with 42 edges using MCODE. We selected 14 hub genes as core candidate genes: TP53, VEGFA, SMAD2, CDKN2A, FOXC, FZD4, LRP5, KDR, FZD5, PAX6, MYCN, NDP, PITX2, and PAX2, primarily associated with camera-type eye morphogenesis, pancreatic cancer, the apoptotic process involved in morphogenesis, and the VEGF receptor signaling pathway. We discovered that 26 Food and Drug Administration (FDA)-approved drugs could target 7 of the 14 hub genes. Conclusions: In conclusion, the results revealed a total of 14 potential genes, 4 major pathways, 7 drug gene targets, and 26 candidate drugs that could provide the basis of novel targeted therapies for targeted treatment and management of PHPV.
Collapse
Affiliation(s)
- Derin M Thomas
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, India
| | - Chitra Kannabiran
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, India
| | - D Balasubramanian
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
5
|
Saffren B, Price JM, Zhang QE, Hamershock RA, Sharpe J, Levin AV. Falsely high rebound tonometry. J AAPOS 2021; 25:97.e1-97.e5. [PMID: 33901671 DOI: 10.1016/j.jaapos.2020.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 10/21/2022]
Abstract
BACKGROUND Rebound tonometry (RBT) can be used to measure intraocular pressure (IOP) in children unable to tolerate measurement with applanation tonometry (AT) while awake. RBT readings are often 2-3 mm Hg higher than AT. We have experienced children with a repeatedly higher difference between RBT and AT measurements (≥6 mm Hg). The purpose of this study was to identify demographic and ocular characteristics that contribute to this artifactuous discrepancy. METHODS The medical records of pediatric patients with IOP measured by RBT followed by AT within 6 months without intervening surgery or change in medical management were retrospectively reviewed to identify potential predictors of greater difference between RBT and AT readings. RESULTS A total of 123 eyes of 65 patients were included. In patients with normal IOP (≤24 mm Hg), 18.5% had a ≥6 mm Hg difference between RBT and AT, with RBT being higher. Risk factors for this included presence of persistent fetal vasculature (PFV), increased corneal diameter, and higher initial RBT value (>20). In patients with elevated IOP (>24 mm Hg), 77% had ≥6 mm Hg difference, with larger corneal diameter being the sole predictor. Eyes were less likely to have significant RBT-AT difference if there was corneal opacity or iris abnormalities in eyes with elevated IOP (>24 mm Hg). CONCLUSIONS In some children, RBT readings are ≥ 6 mm Hg higher than AT readings. Caution should be taken when interpreting RBT values in patients with PFV, increased corneal diameter, and higher initial RBT values.
Collapse
Affiliation(s)
- Brooke Saffren
- Pediatric Ophthalmology and Ocular Genetics, Wills Eye Hospital, Philadelphia, Pennsylvania; Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Jade M Price
- Pediatric Ophthalmology and Ocular Genetics, Wills Eye Hospital, Philadelphia, Pennsylvania
| | - Qiang Ed Zhang
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, Pennsylvania
| | - Rose A Hamershock
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, Pennsylvania
| | - James Sharpe
- Pediatric Ophthalmology and Ocular Genetics, Wills Eye Hospital, Philadelphia, Pennsylvania
| | - Alex V Levin
- Pediatric Ophthalmology and Ocular Genetics, Wills Eye Hospital, Philadelphia, Pennsylvania; Department of Ophthalmology, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
6
|
Abstract
OBJECTIVE This study aims to examine retinal vascular findings for affected eyes and contralateral eyes as well in typical cases of unilateral persistent fetal vasculature. METHODS We retrospectively reviewed all patients evaluated at Chang Gung Memorial Hospital, Linkou, for unilateral persistent fetal vasculature between January 2008 and July 2017. All patients underwent fluorescein angiography (FA) examination under general anesthesia. FA was performed using RetCam 3 (Clarity Medical Systems, Inc, Pleasanton, CA). RESULTS Ten patients (eight male and two female) were identified as having adequate clinical data for the final analysis. The mean age at diagnosis was 13.7 ± 17.2 months (range 1-58). The mean axial length was shorter in the affected eyes as compared to the fellow eyes (17.27 ± 2.8 vs. 20.2 ± 1.7 mm; P = 0.024). In the affected eyes, nine cases (90.0%) showed a concomitant retrolental stalk, avascular peripheral retina, regional capillary dropout, and absence of foveal avascular zone. Hyperfluorescent stalk was seen in seven cases (70.0%). Four eyes (40.0%) showed leaking vessels. Terminal supernumerary branching was seen in two cases (20.0%). Popcorn hyperfluorescence was noted in one case (10.0%). In the fellow eyes, peripheral avascular zone was noted in nine eyes (90.0%), of which six (60.0%) had peripheral zones greater than two-disk diameters. Seven eyes (70.0%) presented with regional capillary dropout and abnormal choroidal filling. Three eyes (30.0%) had abnormal vessel straightening. Aberrant circumferential vessels and leaking spots were seen in two eyes (20.0%). Regional dilation of disk vessels, peripheral vessel dilation, and terminal bulbing were noted in one eye (10.0%). The mean best-corrected visual acuity of the fellow eyes was 20/39 (0.29 in logarithm of the minimum angle of resolution). CONCLUSION Retinal vascular abnormalities in the affected eyes and fundoscopically normal fellow eyes of unilateral persistent fetal vasculature patients were found in 100% and 90.0% of patients, respectively. Fellow eyes had some subtle abnormalities that were only revealed through FA. These unilateral persistent fetal vasculature cases were still bilaterally affected.
Collapse
|
7
|
Park JS, Kim JI, Lim HJ, Ryu SK, Kwon E, Han KM, Nam KT, Lee HW, Kang BC. Differential manifestation of ocular phenotypes in TALEN-mediated p19 arf knockout FVB/N and C57BL/6J mouse lines. Genes Genomics 2020; 42:1023-1033. [PMID: 32712838 DOI: 10.1007/s13258-020-00959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/09/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND p19arf, primarily known as a tumor suppressor, has also been reported to play an essential role in normal development of mouse eyes. Consistently, lack of p19arf has been associated with ocular defects, but the mixed background of the knockout (KO) mouse strain used raised a concern on the accuracy of the phenotypes observed in association with the targeted gene due to genetic heterogeneity. OBJECT We carried out a study to investigate into the effect of genetic background on the manifestation of p19arf KO associated phenotypes. METHODS We characterized the phenotypes of novel p19arf KO mouse lines generated in FVB/N and C57BL/6J using a transcription activator-like effector nuclease (TALEN) system in comparison to the reported phenotypes of three other p19arf-deficient mouse lines generated using homologous recombination. RESULTS Ninety-five percent of FVB/N-p19arf KO mice showed ocular opacity from week 4 after birth which worsened rapidly until week 6, while such abnormality was absent in C57BL/6J-p19arf KO mice up to the age of 26 weeks. Histopathological analysis revealed retrolental masses and dysplasia in the retinal layer in FVB/N-p19arf KO mice from week 4. Besides these, both strains developed normally from birth to week 26 without increased tumorigenesis except for a subcutaneous tumor found in a C57BL/6J-p19arf KO mouse. CONCLUSION Our findings demonstrated surprisingly variable manifestation of p19arf-linked phenotypes between FVB/N and C57BL/6J mice, and furthermore between our mouse lines and the established lines, indicating a critical impact of genetic background on functional study of genes using gene targeting strategies in mice.
Collapse
Affiliation(s)
- Jin-Sung Park
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joo-Il Kim
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Jin Lim
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo-Kyung Ryu
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Euna Kwon
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kang-Min Han
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Ki-Taek Nam
- College of Medicine Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea. .,Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Designed Animal Resource Center, Institute of GreenBio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea.
| |
Collapse
|
8
|
Lin S, Liu W, Chen CL, Sun D, Hu JX, Li L, Ye J, Mei L, Xiong WC. Neogenin-loss in neural crest cells results in persistent hyperplastic primary vitreous formation. J Mol Cell Biol 2020; 12:17-31. [PMID: 31336386 PMCID: PMC7053014 DOI: 10.1093/jmcb/mjz076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/07/2019] [Accepted: 06/12/2019] [Indexed: 01/25/2023] Open
Abstract
Neogenin is a transmembrane receptor critical for multiple cellular processes, including neurogenesis, astrogliogenesis, endochondral bone formation, and iron homeostasis. Here we present evidence that loss of neogenin contributes to pathogenesis of persistent hyperplastic primary vitreous (PHPV) formation, a genetic disorder accounting for ~ 5% of blindness in the USA. Selective loss of neogenin in neural crest cells (as observed in Wnt1-Cre; Neof/f mice), but not neural stem cells (as observed in GFAP-Cre and Nestin-Cre; Neof/f mice), resulted in a dysregulation of neural crest cell migration or delamination, exhibiting features of PHPV-like pathology (e.g. elevated retrolental mass), unclosed retinal fissure, and microphthalmia. These results demonstrate an unrecognized function of neogenin in preventing PHPV pathogenesis, implicating neogenin regulation of neural crest cell delamination/migration and retinal fissure formation as potential underlying mechanisms of PHPV.
Collapse
Affiliation(s)
- Sen Lin
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Chongqing, China
| | - Wei Liu
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Chongqing, China
| | - Chun-Lin Chen
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Chongqing, China
| | - Dong Sun
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA 30912, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jin-Xia Hu
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA 30912, USA
| | - Lei Li
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA 30912, USA
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Chongqing, China
| | - Lin Mei
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA 30912, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Wen-Cheng Xiong
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA 30912, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
9
|
Testis-specific Arf promoter expression in a transposase-aided BAC transgenic mouse model. Mol Biol Rep 2019; 46:6243-6252. [PMID: 31583563 DOI: 10.1007/s11033-019-05063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/04/2019] [Indexed: 10/25/2022]
Abstract
CDKN2A is an evolutionarily conserved gene encoding proteins implicated in tumor suppression, ocular development, aging, and metabolic diseases. Like the human form, mouse Cdkn2a encodes two distinct proteins-p16Ink4a, which blocks cyclin-dependent kinase activity, and p19Arf, which is best known as a positive regulator of the p53 tumor suppressor-and their functions have been well-studied in genetically engineered mouse models. Relatively little is known about how expression of the two transcripts is controlled in normal development and in certain disease states. To better understand their coordinate and transcript-specific expression in situ, we used a transposase-aided approach to generate a new BAC transgenic mouse model in which the first exons encoding Arf and Ink4a are replaced by fluorescent reporters. We show that mouse embryo fibroblasts generated from the transgenic lines faithfully display induction of each transgenic reporter in cell culture models, and we demonstrate the expected expression of the Arf reporter in the normal testis, one of the few places where that promoter is normally expressed. Interestingly, the TGFβ-2-dependent induction of the Arf reporter in the eye-a process essential for normal eye development-does not occur. Our findings illustrate the value of BAC transgenesis in mapping key regulatory elements in the mouse by revealing the genomic DNA required for Cdkn2a induction in cultured cells and the developing testis, and the apparent lack of elements driving expression in the developing eye.
Collapse
|
10
|
Liu YT, Xu L, Bennett L, Hooks JC, Liu J, Zhou Q, Liem P, Zheng Y, Skapek SX. Identification of De Novo Enhancers Activated by TGFβ to Drive Expression of CDKN2A and B in HeLa Cells. Mol Cancer Res 2019; 17:1854-1866. [PMID: 31189690 DOI: 10.1158/1541-7786.mcr-19-0289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/01/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Abstract
Disruption of the CDKN2A (INK4A/ARF) and B (INK4B) genes, which encode three function-independent tumor suppressors, is one of the most common events in human cancer. Because their relative importance in tumor prevention appears to be species- and context-specific, studying their regulation can shed light on mechanisms by which they are bypassed in malignant transformation. We previously unveiled a new pathway in which TGFβ selectively induces Arf at mouse Cdkn2a in eye development and cultured fibroblasts. As TGFβ signaling is often derailed in cancer development or progression, we investigated its control of CDKN2A/B in human cancer. Computational analyses of sequencing and array data from nearly 11,000 patients with cancer in TCGA showed discordant expression of ARF and INK4A in most cancer subtypes, with gene copy-number loss and promoter methylation involved in only a subset. Using HeLa cells as a model, we found that exogenous TGFβ induced ARF mRNA and protein, and ARF knockdown limited TGFβ-mediated growth suppression. TGFβ-mediated ARF mRNA induction required SMAD2/3, p38MAPK, and SP1, and ARF mRNA was induced without added RNAPII recruitment. Chromatin immunoprecipitation unveiled a remote enhancer element engaged by TGFβ by a mechanism that partially depended on p38MAPK. CRISPR-based editing of this enhancer limited induction of ARF and INK4B by TGFβ, but not by oncogenic RAS. IMPLICATIONS: Our findings reveal new molecular mechanisms by which CDKN2A/B regulation is coupled to external cues, and those findings represent entry points to further explore pharmacologic strategies to restore their expression in cancer.
Collapse
Affiliation(s)
- Yen-Ting Liu
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lin Xu
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lynda Bennett
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jared C Hooks
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jing Liu
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qinbo Zhou
- Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Priscilla Liem
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yanbin Zheng
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stephen X Skapek
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas. .,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
11
|
Lian Q, Zhao M, Li T, Wu K, Zhu D, Shang B, Mei T, Li W, Lin Y, Mao F, Liu Y, Liu C, Lu L, Zhao L. In vivo detecting mouse persistent hyperplastic primary vitreous by Spectralis Optical Coherence Tomography. Exp Eye Res 2019; 181:271-276. [PMID: 30817926 DOI: 10.1016/j.exer.2019.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/15/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
To identify imaging characteristics of mouse persistent hyperplastic primary vitreous (PHPV) by Spectralis Optical Coherence Tomography (OCT), as well as to assess and compare the sensitivity and precision of OCT with color photography (CP) and Fundus Fluorescein Angiography (FFA) imaging in detecting mouse PHPV. Notch4-/- C57BL/6J mice (224 eyes) aged from 3 months to 7 months were examined in this study. CP, FFA and OCT imaging were utilized to examine vitreous cavity and retina of mouse eyes. Horizontal and radial OCT scan volume was centered on the optic nerve head. Hematoxylin and eosin (H&E) staining was performed to validate PHPV. For color photography and FFA imaging, retrolental irregular fibrovascular membrane-like tissues were found in 33 eyes with/without blood vessels in vitreous cavity. Among them, 31 eyes were visualized with lateral and oblique linear hyperreflective opacities in vitreous cavity using Spectralis OCT. Position of PHPV in posterior segment of eyes was also measured via OCT. Mouse PHPV was validated by H&E staining. Typical hyperreflective opacities in vitreous cavity were detected in PHPV mouse using Spectralis OCT. Spectralis OCT imaging can effectively detect mouse PHPV as color photography and FFA.
Collapse
Affiliation(s)
- Qing Lian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Minglei Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Tianzhong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Keling Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Deliang Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bizhi Shang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Tingfang Mei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fuxiang Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chujun Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
12
|
Heimsath EG, Yim YI, Mustapha M, Hammer JA, Cheney RE. Myosin-X knockout is semi-lethal and demonstrates that myosin-X functions in neural tube closure, pigmentation, hyaloid vasculature regression, and filopodia formation. Sci Rep 2017; 7:17354. [PMID: 29229982 PMCID: PMC5725431 DOI: 10.1038/s41598-017-17638-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/28/2017] [Indexed: 01/07/2023] Open
Abstract
Myosin-X (Myo10) is an unconventional myosin best known for its striking localization to the tips of filopodia. Despite the broad expression of Myo10 in vertebrate tissues, its functions at the organismal level remain largely unknown. We report here the generation of KO-first (Myo10tm1a/tm1a), floxed (Myo10tm1c/tm1c), and KO mice (Myo10tm1d/tm1d). Complete knockout of Myo10 is semi-lethal, with over half of homozygous KO embryos exhibiting exencephaly, a severe defect in neural tube closure. All Myo10 KO mice that survive birth exhibit a white belly spot, all have persistent fetal vasculature in the eye, and ~50% have webbed digits. Myo10 KO mice that survive birth can breed and produce litters of KO embryos, demonstrating that Myo10 is not absolutely essential for mitosis, meiosis, adult survival, or fertility. KO-first mice and an independent spontaneous deletion (Myo10m1J/m1J) exhibit the same core phenotypes. During retinal angiogenesis, KO mice exhibit a ~50% decrease in endothelial filopodia, demonstrating that Myo10 is required to form normal numbers of filopodia in vivo. The Myo10 mice generated here demonstrate that Myo10 has important functions in mammalian development and provide key tools for defining the functions of Myo10 in vivo.
Collapse
Affiliation(s)
- Ernest G Heimsath
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yang-In Yim
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mirna Mustapha
- Department of Otolaryngology, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - John A Hammer
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard E Cheney
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Elmore SA, Farman CA, Hailey JR, Kovi RC, Malarkey DE, Morrison JP, Neel J, Pesavento PA, Porter BF, Szabo KA, Teixeira LBC, Quist EM. Proceedings of the 2015 National Toxicology Program Satellite Symposium. Toxicol Pathol 2016; 44:502-35. [PMID: 27075180 DOI: 10.1177/0192623316631844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The 2015 Annual National Toxicology Program Satellite Symposium, entitled "Pathology Potpourri" was held in Minneapolis, Minnesota, at the American College of Veterinary Pathologists/American Society for Veterinary Clinical Pathology/Society of Toxicologic Pathology combined meeting. The goal of this symposium is to present and discuss diagnostic pathology challenges or nomenclature issues. Because of the combined meeting, both laboratory and domestic animal cases were presented. This article presents summaries of the speakers' talks, including challenging diagnostic cases or nomenclature issues that were presented, along with select images that were used for audience voting and discussion. Some lesions and topics covered during the symposium included hepatocellular lesions, a proposed harmonized diagnostic approach to rat cardiomyopathy, crop milk in a bird, avian feeding accoutrement, heat exchanger in a tuna, metastasis of a tobacco carcinogen-induced pulmonary carcinoma, neurocytoma in a rat, pituicytoma in a rat, rodent mammary gland whole mounts, dog and rat alveolar macrophage ultrastructure, dog and rat pulmonary phospholipidosis, alveolar macrophage aggregation in a dog, degenerating yeast in a cat liver aspirate, myeloid leukemia in lymph node aspirates from a dog, Trypanosoma cruzi in a dog, solanum toxicity in a cow, bovine astrovirus, malignant microglial tumor, and nomenclature challenges from the Special Senses International Harmonization of Nomenclature and Diagnostic Criteria Organ Working Group.
Collapse
Affiliation(s)
- Susan A Elmore
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | - Ramesh C Kovi
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - David E Malarkey
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | - Jennifer Neel
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Patricia A Pesavento
- School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| | | | | | | | - Erin M Quist
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
14
|
Gao S, Jakobs TC. Mice Homozygous for a Deletion in the Glaucoma Susceptibility Locus INK4 Show Increased Vulnerability of Retinal Ganglion Cells to Elevated Intraocular Pressure. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:985-1005. [PMID: 26883755 DOI: 10.1016/j.ajpath.2015.11.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/30/2015] [Accepted: 11/17/2015] [Indexed: 12/13/2022]
Abstract
A genomic region located on chromosome 9p21 is associated with primary open-angle glaucoma and normal tension glaucoma in genome-wide association studies. The genomic region contains the gene for a long noncoding RNA called CDKN2B-AS, two genes that code for cyclin-dependent kinase inhibitors 2A and 2B (CDKN2A/p16(INK4A) and CDKN2B/p15(INK4B)) and an additional protein (p14(ARF)). We used a transgenic mouse model in which 70 kb of murine chromosome 4, syntenic to human chromosome 9p21, are deleted to study whether this deletion leads to a discernible phenotype in ocular structures implicated in glaucoma. Homozygous mice of this strain were previously reported to show persistent hyperplastic primary vitreous. Fundus photography and optical coherence tomography confirmed that finding but showed no abnormalities for heterozygous mice. Optokinetic response, eletroretinogram, and histology indicated that the heterozygous and mutant retinas were normal functionally and morphologically, whereas glial cells were activated in the retina and optic nerve head of mutant eyes. In quantitative PCR, CDKN2B expression was reduced by approximately 50% in the heterozygous mice and by 90% in the homozygous mice, which suggested that the CDKN2B knock down had no deleterious consequences for the retina under normal conditions. However, compared with wild-type and heterozygous animals, the homozygous mice are more vulnerable to retinal ganglion cell loss in response to elevated intraocular pressure.
Collapse
Affiliation(s)
- Shan Gao
- Department of Ophthalmology, The First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Tatjana C Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
15
|
Iqbal NS, Devitt CC, Sung CY, Skapek SX. p19(Arf) limits primary vitreous cell proliferation driven by PDGF-B. Exp Eye Res 2016; 145:224-229. [PMID: 26778750 DOI: 10.1016/j.exer.2016.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/29/2015] [Accepted: 01/05/2016] [Indexed: 12/29/2022]
Abstract
Arf encodes an important tumor suppressor, p19(Arf), which also plays a critical role to control hyperplasia in the primary vitreous during mouse eye development. In the absence of Arf, mice are born blind and display a phenotype closely mimicking severe forms of the human eye disease, persistent hyperplastic primary vitreous (PHPV). In this report, we characterize p19(Arf) expression in perivascular cells that normally populate the primary vitreous and express the Arf promoter. Using a new ex vivo model, we show that these cells respond to exogenous Tgfβ, despite being isolated at a time when Tgfβ has already turned on the Arf promoter. Treatment of the cells with PDGF-B ligand doubles the population of cells in S-phase and ectopic expression of Arf blunts that effect. We show this effect is mediated through Pdgfrβ as expression of Arf represses expression of Pdgfrβ mRNA and protein to approximately 60%. p53 is not required for Arf-dependent blockade of PDGF-B driven proliferation and repression of Pdgfrβ protein as ectopic expression of Arf is still able to inhibit the 2-fold increase in the S-phase fraction of cells upon treatment with PDGF-B. Finally, induction of mature miR-34a, a microRNA previously identified to be regulated by p19(Arf) does not depend on p53 while the expression of the primary transcript does require p53. These data corroborate that, as in vivo, p19(Arf) functions to inhibit PDGF-B driven proliferation ex vivo.
Collapse
Affiliation(s)
- Nida S Iqbal
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Caitlin C Devitt
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Caroline Y Sung
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Stephen X Skapek
- Gill Center for Cancer and Blood Disorders, Children's Medical Center, Dallas, TX, USA.
| |
Collapse
|
16
|
Li Z, Ding S, Zhong Q, Li G, Zhang Y, Huang XC. Significance of MMP11 and P14(ARF) expressions in clinical outcomes of patients with laryngeal cancer. Int J Clin Exp Med 2015; 8:15581-15590. [PMID: 26629052 PMCID: PMC4658941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND To evaluate the association of MMP11 and P14(ARF) expression in laryngeal squamous cell carcinoma (LSCC) with clinical pathological characteristics and survival. METHODS The mRNA and protein levels for both genes were determined in 65 LSCC patients. A log-rank test and Cox models were used to compare survival among different groups. RESULTS The mRNA expressions of MMP11 and P14(ARF) were significantly different between LSCC and their corresponding adjacent tissues (All P < 0.001). The expressions of MMP11 and P14(ARF) were correlated with several clinical characteristics (All P < 0.05). Patients with low MMP11 and high P14(ARF) expression had significantly better survival compared with those with high MMP11 and low P14(ARF) expression, respectively (All P < 0.05). The patients with surgery only had significantly better survival than those with chemoradiotherapy (log rank: P = 0.016), particularly in patients with low MMP11 and high P14(ARF) expression (log rank: P = 0.006). Furthermore, multivariable analysis showed that patients with low MMP11 and high P14(ARF) expression alone had a significantly reduced risk of death compared with those with high MMP11 and low P14(ARF) expression. The reduced risk for overall death was pronounced for patients with low and high expression of both genes (HR, 0.2; 95% CI, 0.1-0.5) compared with any other co-expression status of both genes, particularly for patients with surgery only (HR, 0.1; 95% CI, 0.0-0.9). CONCLUSION These results suggest that altered expression of MMP11 and P14(ARF) in tumors may individually, or in combination, predict poor prognosis of LSCC, particularly for patients with surgery only.
Collapse
Affiliation(s)
- Zufei Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education Beijing 100730, China ; Department of Otolaryngology Head and Neck Surgery, Aerospace Center Hospital Beijing 100039, China
| | - Shuo Ding
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education Beijing 100730, China
| | - Qi Zhong
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education Beijing 100730, China
| | - Guojun Li
- Department of Head and Neck Surgery and Epidemiology, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Yang Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education Beijing 100730, China
| | - Xiaohong ChenZhigang Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education Beijing 100730, China
| |
Collapse
|
17
|
βA3/A1-crystallin and persistent fetal vasculature (PFV) disease of the eye. Biochim Biophys Acta Gen Subj 2015; 1860:287-98. [PMID: 26022148 DOI: 10.1016/j.bbagen.2015.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Persistent fetal vasculature (PFV) is a human disease in which the fetal vasculature of the eye fails to regress normally. The fetal, or hyaloid, vasculature nourishes the lens and retina during ocular development, subsequently regressing after formation of the retinal vessels. PFV causes serious congenital pathologies and is responsible for as much as 5% of blindness in the United States. SCOPE OF REVIEW The causes of PFV are poorly understood, however there are a number of animal models in which aspects of the disease are present. One such model results from mutation or elimination of the gene (Cryba1) encoding βA3/A1-crystallin. In this review we focus on the possible mechanisms whereby loss of functional βA3/A1-crystallin might lead to PFV. MAJOR CONCLUSIONS Cryba1 is abundantly expressed in the lens, but is also expressed in certain other ocular cells, including astrocytes. In animal models lacking βA3/A1-crystallin, astrocyte numbers are increased and they migrate abnormally from the retina to ensheath the persistent hyaloid artery. Evidence is presented that the absence of functional βA3/A1-crystallin causes failure of the normal acidification of endolysosomal compartments in the astrocytes, leading to impairment of certain critical signaling pathways, including mTOR and Notch/STAT3. GENERAL SIGNIFICANCE The findings suggest that impaired endolysosomal signaling in ocular astrocytes can cause PFV disease, by adversely affecting the vascular remodeling processes essential to ocular development, including regression of the fetal vasculature. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
|
18
|
Isolation and characterization of mammalian cells expressing the Arf promoter during eye development. Biotechniques 2014; 56:239-49. [PMID: 24806224 DOI: 10.2144/000114166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 03/12/2014] [Indexed: 12/27/2022] Open
Abstract
Although many researchers have successfully uncovered novel functions of the tumor suppressor p19(Arf) utilizing various types of cultured cancer cells and immortalized fibroblasts, these systems do not accurately reflect the endogenous environment in which Arf is developmentally expressed. We addressed this by isolating perivascular cells (PVCs) from the primary vitreous of the mouse eye. This rare cell type normally expresses the p19(Arf) tumor suppressor in a non-pathological, developmental context. We utilized fluorescence activated cell sorting (FACS) to purify the cells by virtue of a GFP reporter driven by the native Arf promoter and then characterized their morphology and gene expression pattern. We further examined the effects of reintroduction of Arf expression in the Arf(GFP/GFP) PVCs to verify expected downstream effectors of p19(Arf) as well as uncover novel functions of Arf as a regulator of vasculogenesis. This methodology and cell culture model should serve as a useful tool to examine p19(Arf) biology.
Collapse
|
19
|
Son AI, Sheleg M, Cooper MA, Sun Y, Kleiman NJ, Zhou R. Formation of persistent hyperplastic primary vitreous in ephrin-A5-/- mice. Invest Ophthalmol Vis Sci 2014; 55:1594-606. [PMID: 24550361 DOI: 10.1167/iovs.13-12706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Primary vitreous regression is a critical event in mammalian eye development required for proper ocular maturity and unhindered vision. Failure of this event results in the eye disease persistent hyperplastic primary vitreous (PHPV), also identified as persistent fetal vasculature (PFV), a condition characterized by the presence of a fibrovascular mass adjacent to the lens and retina, and associated with visual disability and blindness. Here, we identify ephrin-A5 to be a critical regulator for primary vitreous regression. METHODS Wild-type and ephrin-A5(-/-) eyes were examined at various developmental stages to determine the progression of PHPV. Eye tissue was sectioned and examined by H&E staining. Protein expression and localization was determined through immunohistochemistry. Relative levels of Eph receptors were determined by RT-PCR. RESULTS Ephrin-A5(-/-) animals develop ocular phenotypes representative of PHPV, most notably the presence of a large hyperplastic mass posterior to the lens that remains throughout the lifetime of the animal. The aberrant tissue in these mutant mice consists of residual hyaloid vessels surrounded by pigmented cells of neural crest origin. Labeling with bromodeoxyuridine (BrdU) and detection of proliferating cell nuclear antigen (PCNA) expression shows that the mass in ephrin-A5(-/-) animals is mitotically active in embryonic and postnatal stages. CONCLUSIONS Ephrin-A5 is a critical factor that regulates primary vitreous regression.
Collapse
Affiliation(s)
- Alexander I Son
- Department of Chemical Biology, Susan Lehman-Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | | | | | | | | | | |
Collapse
|
20
|
Mary-Sinclair MN, Wang X, Swanson DJ, Sung CY, Mendonca EA, Wroblewski K, Baumer SH, Goldowitz D, Jablonski MM, Skapek SX. Varied manifestations of persistent hyperplastic primary vitreous with graded somatic mosaic deletion of a single gene. Mol Vis 2014; 20:215-30. [PMID: 24623965 PMCID: PMC3945809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/28/2014] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Persistent hyperplastic primary vitreous (PHPV) represents a developmental eye disease known to have diverse manifestations ranging from a trivial remnant of hyaloid vessels to a dense fibrovascular mass causing lens opacity and retinal detachment. PHPV can be modeled in mice lacking individual genes, but certain features of such models differ from the clinical realm. For example, mice lacking the Arf gene have uniformly severe disease with consistent autosomal recessive disease penetrance. We tested whether the graded somatic loss of Arf in a subset of cells in chimeric mice mimics the range of disease in a non-heritable manner. METHODS Wild type ↔ Arf(-/-) mouse chimeras were generated by morulae fusion, and when the mice were 10 weeks old, fundoscopic, slit-lamp, and histological evaluations were performed. The relative fraction of cells of the Arf(-/-) lineage was assessed with visual, molecular genetic, and histological analysis. Objective quantification of various aspects of the phenotype was correlated with the genotype. RESULTS Sixteen chimeras were generated and shown to have low, medium, and high contributions of Arf(-/-) cells to tail DNA, the cornea, and the retinal pigment epithelium (RPE), with excellent correlation between chimerism in the tail DNA and the RPE. Phenotypic differences (coat color and severity of eye disease) were evident, objectively quantified, and found to correlate with the contribution of Arf(-/-) cells to the RPE and tail-derived DNA, but not the cornea. CONCLUSIONS Generating animals composed of different numbers of Arf(-/-) cells mimicked the range of disease severity observed in patients with PHPV. This establishes the potential for full manifestations of PHPV to be caused by somatic mutations of a single gene during development.
Collapse
Affiliation(s)
- Michelle N. Mary-Sinclair
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - XiaoFei Wang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN
| | - Douglas J. Swanson
- Department of Medical Genetics, Centre of Molecular Medicine and Therapeutics, CFRI, University of British Columbia, Vancouver, BC, Canada
| | - Caroline Y. Sung
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eneida A. Mendonca
- Department of Pediatrics and Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI
| | | | | | - Dan Goldowitz
- Department of Medical Genetics, Centre of Molecular Medicine and Therapeutics, CFRI, University of British Columbia, Vancouver, BC, Canada
| | - Monica M. Jablonski
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN
| | - Stephen X. Skapek
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
21
|
Iqbal N, Mei J, Liu J, Skapek SX. miR-34a is essential for p19(Arf)-driven cell cycle arrest. Cell Cycle 2014; 13:792-800. [PMID: 24401748 DOI: 10.4161/cc.27725] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Arf tumor suppressor gene product, p19(Arf), regulates cell proliferation in incipient cancer cells and during embryo development. Beyond its commonly accepted p53-dependent actions, p19(Arf) also acts independently of p53 in both contexts. One such p53-independent effect with in vivo relevance includes its repression of Pdgfrβ, a process that is essential for vision in the mouse. We have utilized cell culture-based and mouse models to define a new role for miR-34a in this process. Ectopic expression of Arf in cultured cells enhanced the expression of several microRNAs predicted to target Pdgfrß synthesis, including the miR-34 family. Because miR-34a has been implicated as a p53-dependent effector, we investigated whether it also contributed to p53-independent effects of p19(Arf). Indeed, in mouse embryo fibroblasts (MEFs) lacking p53, Arf-driven repression of Pdgfrβ and its blockade of Pdgf-B stimulated DNA synthesis were both completely interrupted by anti-microRNA against miR-34a. Ectopic miR-34a directly targeted Pdgfrβ and a plasmid reporter containing wild-type Pdgfrβ 3'UTR sequence, but not one in which the miR-34a target sequence was mutated. Although miR-34a expression has been linked to p53-a well-known effector of p19(Arf)-Arf expression and its knockdown correlated with miR-34a level in MEFs lacking p53. Finally, analysis of the mouse embryonic eye demonstrated that Arf controlled expression of miR-34a, and the related miR-34b and c, in vivo during normal mouse development. Our findings indicate that miR-34a provides an essential link between p19(Arf) and its p53-independent capacity to block cell proliferation driven by Pdgfrβ. This has ramifications for developmental and tumor suppressor roles of Arf.
Collapse
Affiliation(s)
- Nida Iqbal
- Division of Hematology/Oncology; Department of Pediatrics; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Jie Mei
- Division of Hematology/Oncology; Department of Pediatrics; University of Texas Southwestern Medical Center; Dallas, TX USA; College of Fisheries; Key Laboratory of Freshwater Animal Breeding; Ministry of Agriculture; Huazhong Agricultural University; Wuhan, China
| | - Jing Liu
- Division of Hematology/Oncology; Department of Pediatrics; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Stephen X Skapek
- Division of Hematology/Oncology; Department of Pediatrics; University of Texas Southwestern Medical Center; Dallas, TX USA; Center for Cancer and Blood Disorders; Children's Medical Center; Dallas, TX USA
| |
Collapse
|
22
|
Colitz CMH, Rudnick JC, Heegaard S. Bilateral ocular anomalies in a South African fur seal (Arctocephalus pusillus pusillus). Vet Ophthalmol 2013; 17:294-9. [PMID: 24283987 DOI: 10.1111/vop.12100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A female South African fur seal (Arctocephalus pusillus pusillus) began having obvious clinical ophthalmologic problems by 8 weeks of age. The initial clinical sign was diffuse corneal edema, which progressed to bullae formation and ulcers; the underlying cause of corneal edema and bullous keratopathy was not identified antemortem.An ophthalmological evaluation was performed when the fur seal was approximately 6 months of age, but due to the diffuse corneal edema, intraocular structures could not be easily evaluated. An underlying infectious etiology was suspected; therefore,appropriate diagnostics were pursued, but did not identify a cause. Initial improvement was noted, but the fur seal then became blind and eventually became very painful.Due to decreased quality of life and aggressive behavior, the fur seal was euthanized.Histopathological diagnoses were persistent tunica vasculosa lentis and persistent hyperplastic primary vitreous with bilateral hypermature resorbed cataracts and retinal detachments with rosette formation.
Collapse
|
23
|
Zheng Y, Devitt C, Liu J, Mei J, Skapek SX. A distant, cis-acting enhancer drives induction of Arf by Tgfβ in the developing eye. Dev Biol 2013; 380:49-57. [PMID: 23665474 DOI: 10.1016/j.ydbio.2013.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/01/2013] [Accepted: 05/05/2013] [Indexed: 01/10/2023]
Abstract
The Arf tumor suppressor represents one of several genes encoded at the Cdkn2a and Cdkn2b loci in the mouse. Beyond its role blunting the growth of incipient cancer cells, the Arf gene also plays an essential role in development: its gene product, p19(Arf), is induced by Tgfβ2 in the developing eye to dampen proliferative signals from Pdgfrβ, which effect ultimately fosters the vascular remodeling required for normal vision in the mouse. Mechanisms underlying Arf induction by Tgfβ2 are not fully understood. Using the chr4(Δ70 kb/Δ70 kb) mouse, we now show that deletion of the coronary artery disease (CAD) risk interval lying upstream of the Cdkn2a/b locus represses developmentally-timed induction of Arf resulting in eye disease mimicking the persistent hyperplastic primary vitreous (PHPV) found in Arf-null mice and in children. Using mouse embryo fibroblasts, we demonstrate that Arf induction by Tgfβ is blocked in cis to the 70 kb deletion, but Arf induction by activated RAS and cell culture "shock" is not. Finally, we show that Arf induction by Tgfβ is derailed by preventing RNA polymerase II recruitment following Smad 2/3 binding to the promoter. These findings provide the first evidence that the CAD risk interval, located at a distance from Arf, acts as a cis enhancer of Tgfβ2-driven induction of Arf during development.
Collapse
Affiliation(s)
- Yanbin Zheng
- Division of Hematology-Oncology, Department of Pediatrics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. MC 9063, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
24
|
p19Arf represses platelet-derived growth factor receptor β by transcriptional and posttranscriptional mechanisms. Mol Cell Biol 2012; 32:4270-82. [PMID: 22907756 DOI: 10.1128/mcb.06424-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to cancer surveillance, p19(Arf) plays an essential role in blocking signals stemming from platelet-derived growth factor receptor β (Pdgfrβ) during eye development, but the underlying mechanisms have not been clear. We now show that without Arf, pericyte hyperplasia in the eye results from enhanced Pdgfrβ-dependent proliferation from embryonic day 13.5 (E13.5) of mouse development. Loss of Arf in the eye increases Pdgfrβ expression. In cultured fibroblasts and pericyte-like cells, ectopic p19(Arf) represses and Arf knockdown enhances the expression of Pdgfrβ mRNA and protein. Ectopic Arf also represses primary Pdgfrβ transcripts and a plasmid driven by a minimal promoter, including one missing the CCAAT element required for high-level expression. p19(Arf) uses both p53-dependent and -independent mechanisms to control Pdgfrβ. In vivo, without p53, Pdgfrβ mRNA is elevated and eye development abnormalities resemble the Arf (-/-) phenotype. However, effects of p53 on Pdgfrβ mRNA do not appear to be due to direct p53 or RNA polymerase II recruitment to the promoter. Although p19(Arf) controls Pdgfrβ mRNA in a p53-dependent manner, it also blunts Pdgfrβ protein expression by blocking new protein synthesis in the absence of p53. Thus, our findings demonstrate a novel capacity for p19(Arf) to control Pdgfrβ expression by p53-dependent and -independent mechanisms involving RNA transcription and protein synthesis, respectively, to promote the vascular remodeling needed for normal vision.
Collapse
|
25
|
Costagliola C, Agnifili L, Arcidiacono B, Duse S, Fasanella V, Mastropasqua R, Verolino M, Semeraro F. Systemic thromboembolic adverse events in patients treated with intravitreal anti-VEGF drugs for neovascular age-related macular degeneration. Expert Opin Biol Ther 2012; 12:1299-313. [DOI: 10.1517/14712598.2012.707176] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Huang TQ, Wang Y, Ebrahem Q, Chen Y, Cheng C, Doughman YQ, Watanabe M, Dunwoodie SL, Yang YC. Deletion of HIF-1α partially rescues the abnormal hyaloid vascular system in Cited2 conditional knockout mouse eyes. Mol Vis 2012; 18:1260-70. [PMID: 22665973 PMCID: PMC3365139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/09/2012] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Cited2 (CBP/p300-interacting transactivators with glutamic acid (E) and aspartic acid (D)-rich tail 2) is a member of a new family of transcriptional modulators. Cited2 null embryos exhibit hyaloid hypercellularity consisting of aberrant vasculature in the eye. The purpose of the study is to address whether abnormal lenticular development is a primary defect of Cited2 deletion and whether deletion of hypoxia inducible factor (HIF)-1α or an HIF-1α target gene, vascular endothelial growth factor (VEGF), could rescue abnormal hyaloid vascular system (HVS) in Cited2 deficient adult eyes. METHODS Le-Cre specific Cited2 knockout (Cited2(CKO)) mice with or without deletion of HIF-1α or VEGF were generated by standard Cre-Lox methods. Eyes collected from six-eight weeks old mice were characterized by Real Time PCR and immunohistological staining. RESULTS Cited2(CKO) mice had smaller lenses, abnormal lens stalk formation, and failed regression of the HVS in the adult eye. The eye phenotype had features similar to persistent hyperplastic primary vitreous (PHPV), a human congenital eye disorder leading to abnormal lenticular development. Deletion of HIF-1α or VEGF in Cited2 knockout eyes partially rescued the abnormal HVS but had no effect on the smaller lens and abnormal lens stalk differentiation. Intravitreal injection of Topotecan (TPT), a compound that inhibits HIF-1α expression, partially eliminated HVS defects in Cited2(CKO) lenses. CONCLUSIONS Abnormal HVS is a primary defect in Cited2 knockout mice, resulting in part from dysregulated functions of HIF-1 and VEGF. The Cited2(CKO) mouse line could be used as a novel disease model for PHPV and as an in vivo model for testing potential HIF-1 inhibitors.
Collapse
Affiliation(s)
- Tai-Qin Huang
- Department of Biochemistry and Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Yiwei Wang
- Department of Biochemistry and Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Quteba Ebrahem
- Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | - Yu Chen
- Department of Pharmacology, Rainbow Babies' and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Cindy Cheng
- Department of Biochemistry and Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Yong Qiu Doughman
- Department of Pediatrics, Rainbow Babies' and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Michiko Watanabe
- Department of Pediatrics, Rainbow Babies' and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Sally L. Dunwoodie
- Developmental and Stem Cell Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW. St Vincent’s Clinical School University of New South Wales, Kensington, NSW, Australia
| | - Yu-Chung Yang
- Department of Biochemistry and Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
27
|
Busch SE, Gurley KE, Moser RD, Kemp CJ. ARF suppresses hepatic vascular neoplasia in a carcinogen-exposed murine model. J Pathol 2012; 227:298-305. [PMID: 22430984 DOI: 10.1002/path.4024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/04/2012] [Accepted: 03/09/2012] [Indexed: 01/01/2023]
Abstract
Hepatic haemangiosarcoma is a deadly malignancy whose aetiology remains poorly understood. Inactivation of the CDKN2A locus, which houses the ARF and p16(INK4a) tumour suppressor genes, is a common event in haemangiosarcoma patients, but the precise role of ARF in vascular tumourigenesis is unknown. To determine the extent to which ARF suppresses vascular neoplasia, we examined the incidence of hepatic vascular lesions in Arf-deficient mice exposed to the carcinogen urethane [intraperitoneal (i.p.), 1 mg/g]. Loss of Arf resulted in elevated morbidity and increased the incidence of both haemangiomas and incipient haemangiosarcomas. Suppression of vascular lesion development by ARF was heavily dependent on both Arf gene-dosage and the genetic strain of the mouse. Trp53-deficient mice also developed hepatic vascular lesions after exposure to urethane, suggesting that ARF signals through a p53-dependent pathway to inhibit the development of hepatic haemangiosarcoma. Our findings provide strong evidence that inactivation of Arf is a causative event in vascular neoplasia and suggest that the ARF pathway may be a novel molecular target for therapeutic intervention in haemangiosarcoma patients.
Collapse
Affiliation(s)
- Stephanie E Busch
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
28
|
Morrison DG, Lambert SR, Wilson ME. Posterior capsular plaque in bilateral congenital cataracts. J AAPOS 2012; 16:17-20. [PMID: 22244507 DOI: 10.1016/j.jaapos.2011.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/30/2011] [Accepted: 08/31/2011] [Indexed: 01/24/2023]
Abstract
BACKGROUND Many cases of unilateral congenital cataract have an associated posterior capsular plaque. Observations such as this have led to the hypothesis that posterior capsular plaque is caused by persistent fetal vasculature, generally a unilateral condition, even if no obvious hyaloid remnant is visible. We investigated the incidence of posterior capsular plaque associated with bilateral congenital cataracts. METHODS Children with bilateral congenital cataracts were identified from three surgical practices. Children were included if lensectomies were performed prior to age 7 months. Surgical videos were evaluated for cataract morphology. RESULTS Fourteen children with bilateral cataracts were identified. Surgical videos were available for 24 eyes. Five eyes (21%) had evidence of persistent hyaloid remnants. Of the remaining 19 eyes, cataracts were categorized as nuclear in 10 cases, nuclear with cortical extension in 6 cases, and posterior cortical in 3 cases. Evidence of posterior capsular plaque was seen in seven cases (37%) on video review. CONCLUSIONS Video review revealed a much lower incidence of posterior capsular plaque in eyes with bilateral congenital cataracts compared to unilateral congenital cataracts, lending presumptive evidence to the hypothesis that most unilateral lens opacities arise from persistent fetal vasculature.
Collapse
|
29
|
Skeie JM, Tsang SH, Mahajan VB. Evisceration of mouse vitreous and retina for proteomic analyses. J Vis Exp 2011:2795. [PMID: 21490583 PMCID: PMC3169273 DOI: 10.3791/2795] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
While the mouse retina has emerged as an important genetic model for inherited retinal disease, the mouse vitreous remains to be explored. The vitreous is a highly aqueous extracellular matrix overlying the retina where intraocular as well as extraocular proteins accumulate during disease.1-3 Abnormal interactions between vitreous and retina underlie several diseases such as retinal detachment, proliferative diabetic retinopathy, uveitis, and proliferative vitreoretinopathy.1,4 The relative mouse vitreous volume is significantly smaller than the human vitreous (Figure 1), since the mouse lens occupies nearly 75% of its eye.5 This has made biochemical studies of mouse vitreous challenging. In this video article, we present a technique to dissect and isolate the mouse vitreous from the retina, which will allow use of transgenic mouse models to more clearly define the role of this extracellular matrix in the development of vitreoretinal diseases.
Collapse
|
30
|
Zheng Y, Zhao YD, Gibbons M, Abramova T, Chu PY, Ash JD, Cunningham JM, Skapek SX. Tgfbeta signaling directly induces Arf promoter remodeling by a mechanism involving Smads 2/3 and p38 MAPK. J Biol Chem 2010; 285:35654-64. [PMID: 20826783 DOI: 10.1074/jbc.m110.128959] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have investigated how the Arf gene product, p19(Arf), is activated by Tgfβ during mouse embryo development to better understand how this important tumor suppressor is controlled. Taking advantage of new mouse models, we provide genetic evidence that Arf lies downstream of Tgfβ signaling in cells arising from the Wnt1-expressing neural crest and that the anti-proliferative effects of Tgfβ depend on Arf in vivo. Tgfβ1, -2, and -3 (but not BMP-2, another member of the Tgfβ superfamily) induce p19(Arf) expression in wild type mouse embryo fibroblasts (MEFs), and they enhance Arf promoter activity in Arf(lacZ/lacZ) MEFs. Application of chemical inhibitors of Smad-dependent and -independent pathways show that SB431542, a Tgfβ type I receptor (TβrI) inhibitor, and SB203580, a p38 MAPK inhibitor, impede Tgfβ2 induction of Arf. Genetic studies confirm the findings; transient knockdown of Smad2, Smad3, or p38 MAPK blunt Tgfβ2 effects, as does Cre recombinase treatment of Tgfbr2(fl/fl) MEFs to delete Tgfβ receptor II. Chromatin immunoprecipitation reveals that Tgfβ rapidly induces Smads 2/3 binding and histone H3 acetylation at genomic DNA proximal to Arf exon 1β. This is followed by increased RNA polymerase II binding and progressively increased Arf primary and mature transcripts from 24 through 72 h, indicating that increased transcription contributes to p19(Arf) increase. Last, Arf induction by oncogenic Ras depends on p38 MAPK but is independent of TβrI activation of Smad 2. These findings add to our understanding of how developmental and tumorigenic signals control Arf expression in vivo and in cultured MEFs.
Collapse
Affiliation(s)
- Yanbin Zheng
- Department of Pediatrics, Section of Hematology/Oncology and Stem Cell Transplantation, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sato H, Suzuki T, Ikeda K, Masuya H, Sezutsu H, Kaneda H, Kobayashi K, Miura I, Kurihara Y, Yokokura S, Nishida K, Tamai M, Gondo Y, Noda T, Wakana S. A monogenic dominant mutation in Rom1 generated by N-ethyl-N-nitrosourea mutagenesis causes retinal degeneration in mice. Mol Vis 2010; 16:378-91. [PMID: 20300562 PMCID: PMC2838736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 03/01/2010] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To characterize an N-ethyl-N-nitrosourea-induced dominant mouse mutant, M-1156, that exhibits progressive retinal degeneration and to investigate the pathogenesis of the retinal phenotype in the mutant. METHODS A positional candidate gene approach was used to identify the causative gene in the M-1156 mutant. Funduscopic examination, light microscopy, transmission electron microscopy, and electroretinography were performed to analyze the M-1156 phenotype. Real-time quantitative PCR, immunohistochemistry, and western blotting were also performed. RESULTS Linkage analysis enabled the mutant gene to be mapped to a region of chromosome 19 containing Rom1, which encodes rod outer segment membrane protein 1. Sequence analysis demonstrated that the mutation consisted of a single base T-->C substitution at position 1,195 in Rom1 (M96760, National Center for Biotechnology Information [NCBI]) and that the mutant allele was expressed. A putative missense mutation designated Rom1(Rgsc1156) that was identified in the M-1156 mutant mouse causes a Trp to Arg substitution at position 182 in the translated protein. Rom1(Rgsc1156) heterozygotes were found to have a mottled retina and narrowed arteries in the fundus oculi. Photomicrographs of the retina revealed significant differences among the genotypes in the thickness of the outer nuclear layer and in the length of the outer segments of the photoreceptors. The alterations were more marked in the homozygotes than in the heterozygotes. Electron micrographs showed that the diameters of the discs varied in the heterozygotes and that the discs were more compactly stacked than in the wild type. There were significant differences among the genotypes in the amplitude of the a-wave in single-flash electroretinograms, but there were no significant differences among the photopic electroretinograms. Real-time quantitative PCR showed that there were no significant differences among the genotypes in Rom1 or peripherin/rds (Prph2) mRNA levels relative to the rhodopsin (Rho) mRNA level. Rom1 and Prph2 immunoreactivity were decreased in the retinas of the Rom1(Rgsc1156) mutants. Semiquantitative western blot analysis of retinas from 3-week-old Rom1(Rgsc1156) mutants demonstrated significant decreases in Rom1, Prph2, and Rho protein levels in all of the genotypes. CONCLUSIONS The Trp182Arg substitution in Rom1(Rgsc1156) mutants causes retinal degeneration. The results suggested that Trp182Arg mutant Rom1 causes a decrease in the levels of wild-type Prph2 and Rom1, which in turn cause a reduction in the level of Prph2 containing tetramers in the disc rim region and ultimately result in unstable, disorganized outer segments and photoreceptor degeneration.
Collapse
Affiliation(s)
- Hajime Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Suzuki
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Center, Ibaraki, Japan
| | - Kyoko Ikeda
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Center, Ibaraki, Japan
| | - Hiroshi Masuya
- Technology and Development Unit for Knowledge Base of Mouse Phenotype, RIKEN BioResource Center, Ibaraki, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Center, National Institute of Agrobiological Sciences, Ibaraki, Japan
| | - Hideki Kaneda
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Center, Ibaraki, Japan
| | - Kimio Kobayashi
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Center, Ibaraki, Japan
| | - Ikuo Miura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Center, Ibaraki, Japan
| | - Yasuyuki Kurihara
- Department of Environment and National Science, Graduate School of Environment and Information Science, Yokohama National University, Yokohama, Japan
| | - Shunji Yokokura
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Tamai
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Ibaraki, Japan
| | - Tetsuo Noda
- Team for Advanced Development and Evaluation of Human Disease Models, RIKEN BioResource Center, Ibaraki, Japan
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Center, Ibaraki, Japan
| |
Collapse
|
32
|
Shastry BS. Persistent hyperplastic primary vitreous: congenital malformation of the eye. Clin Exp Ophthalmol 2009; 37:884-90. [DOI: 10.1111/j.1442-9071.2009.02150.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Freeman-Anderson NE, Zheng Y, McCalla-Martin AC, Treanor LM, Zhao YD, Garfin PM, He TC, Mary MN, Thornton JD, Anderson C, Gibbons M, Saab R, Baumer SH, Cunningham JM, Skapek SX. Expression of the Arf tumor suppressor gene is controlled by Tgfbeta2 during development. Development 2009; 136:2081-9. [PMID: 19465598 DOI: 10.1242/dev.033548] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Arf tumor suppressor (also known as Cdkn2a) acts as an oncogene sensor induced by ;abnormal' mitogenic signals in incipient cancer cells. It also plays a crucial role in embryonic development: newborn mice lacking Arf are blind due to a pathological process resembling severe persistent hyperplastic primary vitreous (PHPV), a human eye disease. The cell-intrinsic mechanism implied in the oncogene sensor model seems unlikely to explain Arf regulation during embryo development. Instead, transforming growth factor beta2 (Tgfbeta2) might control Arf expression, as we show that mice lacking Tgfbeta2 have primary vitreous hyperplasia similar to Arf(-/-) mice. Consistent with a potential linear pathway, Tgfbeta2 induces Arf transcription and p19(Arf) expression in cultured mouse embryo fibroblasts (MEFs); and Tgfbeta2-dependent cell cycle arrest in MEFs is maintained in an Arf-dependent manner. Using a new model in which Arf expression can be tracked by beta-galactosidase activity in Arf(lacZ/+) mice, we show that Tgfbeta2 is required for Arf transcription in the developing vitreous as well as in the cornea and the umbilical arteries, two previously unrecognized sites of Arf expression. Chemical and genetic strategies show that Arf promoter induction depends on Tgfbeta receptor activation of Smad proteins; the induction correlates with Smad2 phosphorylation in MEFs and Arf-expressing cells in vivo. Chromatin immunoprecipitation shows that Smads bind to genomic DNA proximal to Arf exon 1beta. In summary, Tgfbeta2 and p19(Arf) act in a linear pathway during embryonic development. We present the first evidence that p19(Arf) expression can be coupled to extracellular cues in normal cells and suggest a new mechanism for Arf control in tumor cells.
Collapse
|
34
|
Transient expression of the Arf tumor suppressor during male germ cell and eye development in Arf-Cre reporter mice. Proc Natl Acad Sci U S A 2009; 106:6285-90. [PMID: 19339492 DOI: 10.1073/pnas.0902310106] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Arf tumor suppressor is expressed transiently during mouse male germ cell and eye development. Its inactivation compromises spermatogenesis as mice age and leads to aberrant postnatal proliferation of cells in the vitreous of the eye, resulting in blindness. In the testis, expression of p19(Arf) is limited to spermatogonia but is extinguished completely in spermatocytes, suggesting that Arf plays a physiologic role in setting the balance between mitotic and meiotic germ cell division. A knock-in allele encoding Cre recombinase regulated by the mouse cellular Arf promoter was used to trace Arf gene induction in vivo. Interbreeding to a reporter strain that expresses Cre-dependent YFP provided proof-of-principle that the Arf-Cre allele was appropriately expressed in the male germ cell lineage. However, Cre expression resulted in male sterility, limiting germ line transmission of the knock-in allele to females. Arf-null mice fail to resorb the hyaloid vasculature within the ocular vitreous where pericyte-like cells that express the PDGF-beta receptor (Pdgfrbeta) proliferate aberrantly and destroy the retina and lens. Interbreeding of Arf-Cre females to males containing "floxed" (FL) Arf alleles yielded Arf(Cre/FL) progeny that exhibited variably penetrant defects in visual acuity ranging to total blindness. Crossing the Arf(Cre/FL) alleles onto a Pdgfrbeta(FL/FL) background normalized all histopathology and restored vision fully.
Collapse
|
35
|
Beebe DC. Maintaining transparency: a review of the developmental physiology and pathophysiology of two avascular tissues. Semin Cell Dev Biol 2007; 19:125-33. [PMID: 17920963 DOI: 10.1016/j.semcdb.2007.08.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 08/22/2007] [Accepted: 08/24/2007] [Indexed: 12/13/2022]
Abstract
The lens and cornea are transparent and usually avascular. Controlling nutrient supply while maintaining transparency is a physiological challenge for both tissues. During sleep and with contact lens wear the endothelial layer of the cornea may become hypoxic, compromising its ability to maintain corneal transparency. The mechanism responsible for establishing the avascular nature of the corneal stroma is unknown. In several pathological conditions, the stroma can be invaded by abnormal, leaky vessels, leading to opacification. Several molecules that are likely to help maintain the avascular nature of the corneal stroma have been identified, although their relative contributions remain to be demonstrated. The mammalian lens is surrounded by capillaries early in life. After the fetal vasculature regresses, the lens resides in a hypoxic environment. Hypoxia is likely to be required to maintain lens transparency. The vitreous body may help to maintain the low oxygen level around the lens. The hypothesis is presented that many aspects of the aging of the lens, including increased hardening, loss of accommodation (presbyopia), and opacification of the lens nucleus, are caused by exposure to oxygen. Testing this hypothesis may lead to prevention for nuclear cataract and insight into the mechanisms of lens aging. Although they are both transparent, corneal pathology is associated with an insufficient supply of oxygen, while lens pathology may involve excessive exposure to oxygen.
Collapse
Affiliation(s)
- David C Beebe
- Department of Ophthalmology and Visual Sciences, Washington University, St Louis, MO 63110, USA.
| |
Collapse
|
36
|
Farjo R, Skaggs J, Quiambao AB, Cooper MJ, Naash MI. Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS One 2006; 1:e38. [PMID: 17183666 PMCID: PMC1762345 DOI: 10.1371/journal.pone.0000038] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 10/10/2006] [Indexed: 11/18/2022] Open
Abstract
Background The eye is an excellent candidate for gene therapy as it is immune privileged and much of the disease-causing genetics are well understood. Towards this goal, we evaluated the efficiency of compacted DNA nanoparticles as a system for non-viral gene transfer to ocular tissues. The compacted DNA nanoparticles examined here have been shown to be safe and effective in a human clinical trial, have no theoretical limitation on plasmid size, do not provoke immune responses, and can be highly concentrated. Methods and Findings Here we show that these nanoparticles can be targeted to different tissues within the eye by varying the site of injection. Almost all cell types of the eye were capable of transfection by the nanoparticle and produced robust levels of gene expression that were dose-dependent. Most impressively, subretinal delivery of these nanoparticles transfected nearly all of the photoreceptor population and produced expression levels almost equal to that of rod opsin, the highest expressed gene in the retina. Conclusions As no deleterious effects on retinal function were observed, this treatment strategy appears to be clinically viable and provides a highly efficient non-viral technology to safely deliver and express nucleic acids in the retina and other ocular tissues.
Collapse
Affiliation(s)
- Rafal Farjo
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma City, Oklahoma, United States of America
| | - Jeff Skaggs
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma City, Oklahoma, United States of America
| | - Alexander B. Quiambao
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma City, Oklahoma, United States of America
| | - Mark J. Cooper
- Copernicus Therapeutics, Inc.Cleveland, Ohio, United States of America
| | - Muna I. Naash
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma City, Oklahoma, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Bhisitkul RB. Vascular endothelial growth factor biology: clinical implications for ocular treatments. Br J Ophthalmol 2006; 90:1542-7. [PMID: 17114590 PMCID: PMC1857529 DOI: 10.1136/bjo.2006.098426] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Decades of research on vascular endothelial growth factor (VEGF) have reached fruition with the recent development of intravitreal anti-VEGF treatments for exudative age-related macular degeneration. VEGF is a critical regulator of angiogenesis and vascular permeability with diverse roles, both pathological and physiological, during development and adulthood. The aim of this article is to review aspects of VEGF biology that may be relevant to the clinical use of anti-VEGF agents in ophthalmology: molecular characteristics and isoforms of VEGF; its roles in vasculogenesis, vascular maintenance and angiogenesis; systemic effects of VEGF inhibition; and properties of current anti-VEGF agents.
Collapse
Affiliation(s)
- R B Bhisitkul
- Department of Ophthalmology, Beckman Vision Center, University of California San Francisco, 10 Koret Way, K301, San Francisco, CA 94143, USA.
| |
Collapse
|
38
|
Cheong C, Sung YH, Lee J, Choi YS, Song J, Kee C, Lee HW. Role of INK4a locus in normal eye development and cataract genesis. Mech Ageing Dev 2006; 127:633-8. [PMID: 16620915 DOI: 10.1016/j.mad.2006.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 02/01/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
The murine INK4a locus encodes the critical tumor suppressor proteins, p16(INK4a) and p19(ARF). Mice lacking both p16(INK4a) and p19(ARF) (INK4a-/-) in their FVB/NJ genetic backgrounds developed cataracts and microophthalmia. Histopathologically, INK4a-/- mice showed defects in the developmental regression of the hyaloid vascular system (HVS), retinal dysplasia, and cataracts with numerous vacuolations, closely resembling human persistent hyperplastic primary vitreous (PHPV). Ocular defects, such as retinal fold and abnormal migration of lens fiber cells, were observed as early as embryonic day (E) 15.5, thereby resulting in the abnormal differentiation of the lens. We also found that ectopic expression of p16(INK4a) resulted in the induction of gammaF-crystallin, suggesting an important role of INK4a locus during mouse eye development, and also providing insights into the potential genetic basis of human cataract genesis.
Collapse
Affiliation(s)
- Cheolho Cheong
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Molecular Therapy Research Center, Sungkyunkwan University School of Medicine, 300 Chonchon-Dong, Changan-Gu, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Jablonski MM, Wang X, Lu L, Miller DR, Rinchik EM, Williams RW, Goldowitz D. The Tennessee Mouse Genome Consortium: identification of ocular mutants. Vis Neurosci 2006; 22:595-604. [PMID: 16332270 DOI: 10.1017/s0952523805225087] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 06/17/2005] [Indexed: 11/05/2022]
Abstract
The Tennessee Mouse Genome Consortium (TMGC) is in its fifth year of a ethylnitrosourea (ENU)-based mutagenesis screen to detect recessive mutations that affect the eye and brain. Each pedigree is tested by various phenotyping domains including the eye, neurohistology, behavior, aging, ethanol, drug, social behavior, auditory, and epilepsy domains. The utilization of a highly efficient breeding protocol and coordination of various universities across Tennessee makes it possible for mice with ENU-induced mutations to be evaluated by nine distinct phenotyping domains within this large-scale project known as the TMGC. Our goal is to create mutant lines that model human diseases and disease syndromes and to make the mutant mice available to the scientific research community. Within the eye domain, mice are screened for anterior and posterior segment abnormalities using slit-lamp biomicroscopy, indirect ophthalmoscopy, fundus photography, eye weight, histology, and immunohistochemistry. As of January 2005, we have screened 958 pedigrees and 4800 mice, excluding those used in mapping studies. We have thus far identified seven pedigrees with primary ocular abnormalities. Six of the mutant pedigrees have retinal or subretinal aberrations, while the remaining pedigree presents with an abnormal eye size. Continued characterization of these mutant mice should in most cases lead to the identification of the mutated gene, as well as provide insight into the function of each gene. Mice from each of these pedigrees of mutant mice are available for distribution to researchers for independent study.
Collapse
Affiliation(s)
- Monica M Jablonski
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Silva RLA, Thornton JD, Martin AC, Rehg JE, Bertwistle D, Zindy F, Skapek SX. Arf-dependent regulation of Pdgf signaling in perivascular cells in the developing mouse eye. EMBO J 2005; 24:2803-14. [PMID: 16037818 PMCID: PMC1182246 DOI: 10.1038/sj.emboj.7600751] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 06/27/2005] [Indexed: 01/20/2023] Open
Abstract
We have established that the Arf tumor suppressor gene regulates mural cell biology in the hyaloid vascular system (HVS) of the developing eye. In the absence of Arf, perivascular cells accumulate within the HVS and prevent its involution. We now demonstrate that mural cell accumulation evident at embryonic day (E) 13.5 in Arf(-/-) mice was driven by excess proliferation at E12.5, when Arf expression was detectable in vitreous pericyte-like cells. Their expression of Arf overlapped with Pdgf receptor beta (Pdgfrbeta), which is essential for pericyte accumulation in the mouse. In cultured cells, p19Arf decreased Pdgfrbeta and blocked Pdgf-B-driven proliferation independently of Mdm2 and p53. The presence of a normal Arf allele correlated with decreased Pdgfrbeta in the embryonic vitreous. Pdgfrbeta was required for vitreous cell accumulation in the absence of Arf. Our findings demonstrate a novel, p53- and Mdm2-independent function for p19Arf. Instead of solely sensing excessive mitogenic stimuli, developmental cues induce Arf to block Pdgfrbeta-dependent signals and prevent the accumulation of perivascular cells selectively in a vascular bed destined to regress.
Collapse
Affiliation(s)
- Ricardo L A Silva
- Department of Hematology/Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - J Derek Thornton
- Department of Hematology/Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Amy C Martin
- Department of Hematology/Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerold E Rehg
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - David Bertwistle
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
- Howard Hughes Medical Institute, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Frederique Zindy
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen X Skapek
- Department of Hematology/Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Hematology/Oncology, St Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA. Tel.: +1 901 495 4019; Fax: +1 901 495 3966; E-mail:
| |
Collapse
|
41
|
Johnson DK, Rinchik EM, Moustaid-Moussa N, Miller DR, Williams RW, Michaud EJ, Jablonski MM, Elberger A, Hamre K, Smeyne R, Chesler E, Goldowitz D. Phenotype screening for genetically determined age-onset disorders and increased longevity in ENU-mutagenized mice. AGE (DORDRECHT, NETHERLANDS) 2005; 27:75-90. [PMID: 23598606 PMCID: PMC3456097 DOI: 10.1007/s11357-005-4131-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 11/01/2004] [Indexed: 06/02/2023]
Abstract
With the goal of discovering genes that contribute to late-onset neurological and ocular disorders and also genes that extend the healthy life span in mammals, we are phenotyping mice carrying new mutations induced by the chemical N-ethyl-N-nitrosourea (ENU). The phenotyping plan includes basic behavioral, neurohistological, and vision testing in sibling cohorts of mice aged to 18 months, and then evaluation for markers of growth trajectory and stress response in these same cohorts aged up to 28 months. Statistical outliers are identified by comparison to test results of similar aged cohorts, and potential mutants are recovered for re-aging to confirm heritability of the phenotype.
Collapse
Affiliation(s)
- Dabney K. Johnson
- Life Sciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6420 USA
| | - Eugene M. Rinchik
- Life Sciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6420 USA
| | | | - Darla R. Miller
- Life Sciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6420 USA
| | - Robert W. Williams
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN 38163 USA
| | - Edward J. Michaud
- Life Sciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6420 USA
| | - Monica M. Jablonski
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN 38163 USA
| | - Andrea Elberger
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN 38163 USA
| | - Kristen Hamre
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN 38163 USA
| | - Richard Smeyne
- St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Elissa Chesler
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN 38163 USA
| | - Daniel Goldowitz
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN 38163 USA
| |
Collapse
|