1
|
Kowluru RA, Malaviya P. Mitochondrial Transport of Glutathione in Diabetic Retinopathy. Free Radic Biol Med 2025:S0891-5849(25)00753-1. [PMID: 40490204 DOI: 10.1016/j.freeradbiomed.2025.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/30/2025] [Accepted: 06/03/2025] [Indexed: 06/11/2025]
Abstract
Diabetes increases free radical production and impairs the antioxidant defense system and increased oxidative stress-mitochondrial damage plays a central role in the development of diabetic retinopathy. GSH, a negatively charged molecule at physiological pH, is biosynthesized in the cytosol, and cannot pass through mitochondrial inner membranes. Interestingly, mitochondria contain ∼15% of the total GSH and depend on their inner membrane solute carriers for its import from cytosol; in diabetes, retinal cellular and mitochondrial GSH (mtGSH) levels are downregulated. Our aim was to investigate the role of solute carriers in the subnormal levels of mtGSH in diabetic retinopathy. Human retinal endothelial cells, regulated for solute carriers dicarboxylate (DIC), or 2-oxyglutarate (OGC) by their respective siRNAs or by overexpressing plasmids, and incubated in 20mM glucose, were analyzed for cytosolic and mitochondrial GSH levels, mitochondrial respiration, membrane potential and cell apoptosis. Key results were confirmed in the retina from streptozotocin-induced C57BL/6J diabetic mice. High glucose decreased DIC and OGC expression, and downregulated cytosolic and mtGSH. While mtGSH was further decreased by inhibition of DIC or OGC and protected by their overexpression, cytosolic GSH was not affected by DIC or OGC regulation. Overexpression of these solute carriers also prevented glucose-induced decrease in mitochondrial structural damage, impaired membrane potential and respiration and increased cell death. Consistent with in vitro results, retinal DIC, OGC and mtGSH levels were significantly downregulated in diabetic mouse, and GSH co-staining with DIC, or with OGC, was also significantly decreased. Thus, DIC and OGC downregulation pays a major role in the impaired GSH import inside the mitochondria, making them more susceptible to the damage. Damaged mitochondria accelerate cell death, culminating in the development of diabetic retinopathy. Restoring mtGSH levels via upregulating GSH transporters could provide a novel approach to inhibit diabetic retinopathy.
Collapse
Affiliation(s)
- Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI.
| | - Pooja Malaviya
- Kresge Eye Institute, Wayne State University, Detroit, MI
| |
Collapse
|
2
|
Yuan F, Han S, Li Y, Li S, Li D, Tian Q, Feng R, Shao Y, Liang X, Wang J, Lei H, Li X, Duan Y. miR-214-3p attenuates ferroptosis-induced cellular damage in a mouse model of diabetic retinopathy through the p53/SLC7A11/GPX4 axis. Exp Eye Res 2025; 253:110299. [PMID: 39978746 DOI: 10.1016/j.exer.2025.110299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Ferroptosis has been implicated in the development of diabetic retinopathy (DR). This study aimed to identify novel ferroptosis-related regulators involved in the pathophysiology of DR using an in vivo streptozotocin (STZ)-induced diabetic model in C57BL/6J mice and cultured primary human retinal vascular endothelial cells (HRECs). Transmission electron microscopy revealed mitochondrial morphological changes consistent with ferroptosis in vascular endothelial cells from STZ-treated mice. Western blot analysis showed increased levels of ferroptosis markers (4-HNE, p53, phosphorylated p53) along with decreased levels of glutathione (GSH), SLC7A11, and GPX4 in diabetic mice. In vitro experiments demonstrated that ferroptosis inhibitors, including pifithrin-α (a p53 inhibitor) and ferrostatin-1 (Fer-1), mitigated cellular damage and Fe2+ accumulation in high-glucose-treated HRECs. These inhibitors also improved mitochondrial membrane potential and restored GSH levels. Bioinformatics analysis and dual-luciferase assays identified a p53 binding site within the miR-214-3p sequence. Overexpression of miR-214-3p in high-glucose-treated HRECs resulted in downregulation of p53 and upregulation of SLC7A11 and GPX4, thereby alleviating ferroptosis-induced injury. This study demonstrates that ferroptosis contributes to retinal damage at tissue, cellular, and molecular levels in DR. Specifically, p53, regulated by miR-214-3p, promotes ferroptosis through the SLC7A11/GPX4 pathway under high-glucose conditions. These findings suggest that the miR-214-3p/p53/SLC7A11/GPX4 axis could serve as a potential therapeutic target for managing ferroptosis and retinal damage in diabetic retinopathy.
Collapse
Affiliation(s)
- Fang Yuan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China; Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Songyu Han
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yahong Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sanming Li
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Dian Li
- Washington University in St. Louis, MO, USA
| | - Qingjun Tian
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ronghua Feng
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Shao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xing Liang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingbo Wang
- Shanxi Eye Hospital Affiliated with Shanxi Medical University, Taiyuan, 030072, China
| | - Hetian Lei
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| | - Yajian Duan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China; Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Jeong H, Shaia JK, Talcott KE, Singh RP. Investigating the Relationship Between Lipid-Lowering Agents and the Complications of Diabetic Retinopathy. Ophthalmic Surg Lasers Imaging Retina 2024; 55:706-713. [PMID: 39231114 DOI: 10.3928/23258160-20240729-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
BACKGROUND AND OBJECTIVE As the therapeutic efficacy of lipid-lowering agents (LLA) against diabetic retinopathy (DR) remains controversial, this study aimed to evaluate whether various LLA therapies are associated with a reduced risk of DR progression. PATIENTS AND METHODS This retrospective study of the medical records of adults with type 2 diabetes mellitus and DR compared the risk of adverse progression of DR between patients who received statins, fibrates, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and no LLA (control). RESULTS Patients in the statin cohort had a reduced rate of progression to proliferative DR compared to controls (HR = 0.30, CI = 0.11 to 0.83). The PCSK9 inhibitor cohort had a reduced risk of progressing to other secondary complications of DR compared to the control (RR = 0.52, CI = 0.43 to 0.64), statin (RR = 0.69, CI = 0.61 to 0.79), and fibrate (RR = 0.67, CI = 0.59 to 0.77) cohorts. CONCLUSIONS These findings suggest use of statins and PCSK9 inhibitors are associated with a reduced risk of adverse progression of DR. [Ophthalmic Surg Lasers Imaging Retina 2024;55:706-713.].
Collapse
|
4
|
Malaviya P, Kumar J, Kowluru RA. Role of ferroptosis in mitochondrial damage in diabetic retinopathy. Free Radic Biol Med 2024; 225:821-832. [PMID: 39433112 PMCID: PMC11624098 DOI: 10.1016/j.freeradbiomed.2024.10.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Diabetic retinopathy is driven by oxidative stress-mitochondrial damage. Activation of ROS producing cytosolic NADPH oxidase 2 (Nox2) in diabetes precedes retinal mitochondrial damage, initiating a vicious cycle of free radicals. Elevated ROS levels peroxidize membrane lipids increasing damaging lipid peroxides (LPOs). While glutathione peroxidase 4 (GPx4) neutralizes LPOs, an imbalance in its generation-neutralization leads to ferroptosis, which is characterized by increased LPOs, free iron and decreased GPx4 activity. Mitochondria are rich in polyunsaturated fatty acids and iron and have mitochondrial isoform of GPx4. Our aim was to investigate mitochondrial ferroptosis in diabetic retinopathy, focusing on Nox2 mediated ROS production. Using human retinal endothelial cells, incubated in 5 mM or 20 mM D-glucose for 12-96 h, with or without Nox2 inhibitors (100 μM apocynin, 5 μM EHop-016 or 5 μM Gp91 ds-tat), or ferroptosis inhibitors (1 μM ferrostatin-1, 50 μM deferoxamine) or activator (0.1 μM RSL3), cytosolic and mitochondrial ROS, LPOs, iron, GPx4 activity, mitochondrial integrity (membrane permeability, oxygen consumption rate, mtDNA copy numbers) and cell death were quantified. High glucose significantly increased ROS, LPOs and iron levels and inhibited GPx4 activity in cytosol, and while Nox2 and ferroptosis inhibitors prevented glucose-induced increase in ferroptosis markers, mitochondrial damage and cell death, RSL3, further worsened them. Furthermore, high glucose also increased ferroptosis markers in the mitochondria, which followed their increase in the cytosol, suggesting a role of cytosolic ROS in mitochondrial ferroptosis. Thus, targeting Nox2-ferroptosis should help break down the self-perpetuating vicious cycle of free radicals, initiated by the damaged mitochondria, and could provide novel therapeutics to prevent/retard the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Pooja Malaviya
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | - Jay Kumar
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
5
|
Gáll T, Pethő D, Erdélyi K, Egri V, Balla JG, Nagy A, Nagy A, Póliska S, Gram M, Gábriel R, Nagy P, Balla J, Balla G. Heme: A link between hemorrhage and retinopathy of prematurity progression. Redox Biol 2024; 76:103316. [PMID: 39260060 PMCID: PMC11415884 DOI: 10.1016/j.redox.2024.103316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
Neovascularization is implicated in the pathology of retinopathy of prematurity (ROP), diabetic retinopathy (DR), and age-related macular degeneration (AMD), which are the leading causes of blindness worldwide. In our work, we analyzed how heme released during hemorrhage affects hypoxic response and neovascularization. Our retrospective clinical analysis demonstrated, that hemorrhage was associated with more severe retinal neovascularization in ROP patients. Our heme-stimulated human retinal pigment epithelial (ARPE-19) cell studies demonstrated increased expression of positive regulators of angiogenesis, including vascular endothelial growth factor-A (VEGFA), a key player of ROP, DR and AMD, and highlighted the activation of the PI3K/AKT/mTOR/VEGFA pathway involved in angiogenesis in response to heme. Furthermore, heme decreased oxidative phosphorylation in the mitochondria, augmented glycolysis, facilitated HIF-1α nuclear translocation, and increased VEGFA/GLUT1/PDK1 expression suggesting HIF-1α-driven hypoxic response in ARPE-19 cells without effecting the metabolism of reactive oxygen species. Inhibitors of HIF-1α, PI3K and suppression of mTOR pathway by clinically promising drug, rapamycin, mitigated heme-provoked cellular response. Our data proved that oxidatively modified forms of hemoglobin can be sources of heme to induce VEGFA during retinal hemorrhage. We propose that hemorrhage is involved in the pathology of ROP, DR, and AMD.
Collapse
Affiliation(s)
- Tamás Gáll
- Department of Internal Medicine, Division of Nephrology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Dávid Pethő
- Department of Internal Medicine, Division of Nephrology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary; HUN-REN-UD Vascular Biology and Myocardium Pathophysiology Research Group, Hungarian Academy of Sciences, University of Debrecen, Debrecen, H-4032, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Katalin Erdélyi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest H-1122, Hungary
| | - Virág Egri
- Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Jázon György Balla
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Annamária Nagy
- Department of Internal Medicine, Division of Nephrology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary; HUN-REN-UD Vascular Biology and Myocardium Pathophysiology Research Group, Hungarian Academy of Sciences, University of Debrecen, Debrecen, H-4032, Hungary
| | - Annamária Nagy
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Magnus Gram
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Department of Neonatology, Skåne University Hospital, Lund, Sweden; Biofilms - Research Center for Biointerfaces, Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Róbert Gábriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, H-7624, Hungary; János Szentágothai Research Centre, University of Pécs, Pécs, H-7624, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest H-1122, Hungary; Chemistry Institute, University of Debrecen, Debrecen, H-4032, Hungary; Department of Anatomy and Histology, HUN-REN-UVMB Laboratory of Redox Biology, University of Veterinary Medicine; Budapest, Hungary
| | - József Balla
- Department of Internal Medicine, Division of Nephrology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary; HUN-REN-UD Vascular Biology and Myocardium Pathophysiology Research Group, Hungarian Academy of Sciences, University of Debrecen, Debrecen, H-4032, Hungary
| | - György Balla
- Department of Internal Medicine, Division of Nephrology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary; Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary.
| |
Collapse
|
6
|
Guo Z. The role of glucagon-like peptide-1/GLP-1R and autophagy in diabetic cardiovascular disease. Pharmacol Rep 2024; 76:754-779. [PMID: 38890260 DOI: 10.1007/s43440-024-00609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Diabetes leads to a significantly accelerated incidence of various related macrovascular complications, including peripheral vascular disease and cardiovascular disease (the most common cause of mortality in diabetes), as well as microvascular complications such as kidney disease and retinopathy. Endothelial dysfunction is the main pathogenic event of diabetes-related vascular disease at the earliest stage of vascular injury. Understanding the molecular processes involved in the development of diabetes and its debilitating vascular complications might bring up more effective and specific clinical therapies. Long-acting glucagon-like peptide (GLP)-1 analogs are currently available in treating diabetes with widely established safety and extensively evaluated efficacy. In recent years, autophagy, as a critical lysosome-dependent self-degradative process to maintain homeostasis, has been shown to be involved in the vascular endothelium damage in diabetes. In this review, the GLP-1/GLP-1R system implicated in diabetic endothelial dysfunction and related autophagy mechanism underlying the pathogenesis of diabetic vascular complications are briefly presented. This review also highlights a possible crosstalk between autophagy and the GLP-1/GLP-1R axis in the treatment of diabetic angiopathy.
Collapse
Affiliation(s)
- Zi Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
7
|
Sheemar A, Bellala K, Sharma SV, Sharma S, Kaur I, Rani P, Sivaprasad S, Narayan KV, Das T, Takkar B. Metabolic memory and diabetic retinopathy: Legacy of glycemia and possible steps into future. Indian J Ophthalmol 2024; 72:796-808. [PMID: 38804800 PMCID: PMC11232859 DOI: 10.4103/ijo.ijo_2563_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 05/29/2024] Open
Abstract
The response of retinal pathology to interventions in diabetic retinopathy (DR) is often independent of the glycated hemoglobin (HbA1c) values at the point of care. This is despite glucose control being one of the strongest risk factors for the development and progression of DR. Previous preclinical and clinical research has indicated metabolic memory, whereby past cumulative glucose exposure may continue to impact DR for a prolonged period. Preclinical studies have evaluated punitive metabolic memory through poor initial control of DM, whereas clinical studies have evaluated protective metabolic memory through good initial control of DM. In this narrative review, we evaluate the preclinical and clinical evidence regarding metabolic memory and discuss how this may form the basis of preventive care for DR by inducing "metabolic amnesia" in people with a history of uncontrolled diabetes in the past. While our review suggested mitochondrial biology may be one such target, research is still far from a possible clinical trial. We discuss the challenges in such research.
Collapse
Affiliation(s)
| | - Keerthi Bellala
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Vishakhapatnam, Andhra Pradesh, India
| | | | - Sarmeela Sharma
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Inderjeet Kaur
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Padmaja Rani
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sobha Sivaprasad
- NIHR Moorfields Clinical Research Facility, Moorfields Eye Hospital, London, UK
| | - Km Venkat Narayan
- Emory Global Diabetes Research Center, Emory University, Atlanta, USA
| | - Taraprasad Das
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Brijesh Takkar
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Indian Health Outcomes, Public Health and Health Economics Research Centre (IHOPE), LVPEI, Hyderabad, Telangana, India
| |
Collapse
|
8
|
Zhang CJ, Mou H, Yuan J, Wang YH, Sun SN, Wang W, Xu ZH, Yu SJ, Jin K, Jin ZB. Effects of fluorescent protein tdTomato on mouse retina. Exp Eye Res 2024; 243:109910. [PMID: 38663720 DOI: 10.1016/j.exer.2024.109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 02/26/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Fluorescent proteins (FPs) have been widely used to investigate cellular and molecular interactions and trace biological events in many applications. Some of the FPs have been demonstrated to cause undesirable cellular damage by light-induced ROS production in vivo or in vitro. However, it remains unknown if one of the most popular FPs, tdTomato, has similar effects in neuronal cells. In this study, we discovered that tdTomato expression led to unexpected retinal dysfunction and ultrastructural defects in the transgenic mouse retina. The retinal dysfunction mainly manifested in the reduced photopic electroretinogram (ERG) responses and decreased contrast sensitivity in visual acuity, caused by mitochondrial damages characterized with cellular redistribution, morphological modifications and molecular profiling alterations. Taken together, our findings for the first time demonstrated the retinal dysfunction and ultrastructural defects in the retinas of tdTomato-transgenic mice, calling for a more careful design and interpretation of experiments involved in FPs.
Collapse
Affiliation(s)
- Chang-Jun Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Hao Mou
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Jing Yuan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Ya-Han Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Shu-Ning Sun
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Wen Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Ze-Hua Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Si-Jian Yu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China.
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
9
|
Iorio R, Petricca S, Mattei V, Delle Monache S. Horizontal mitochondrial transfer as a novel bioenergetic tool for mesenchymal stromal/stem cells: molecular mechanisms and therapeutic potential in a variety of diseases. J Transl Med 2024; 22:491. [PMID: 38790026 PMCID: PMC11127344 DOI: 10.1186/s12967-024-05047-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/29/2024] [Indexed: 05/26/2024] Open
Abstract
Intercellular mitochondrial transfer (MT) is a newly discovered form of cell-to-cell signalling involving the active incorporation of healthy mitochondria into stressed/injured recipient cells, contributing to the restoration of bioenergetic profile and cell viability, reduction of inflammatory processes and normalisation of calcium dynamics. Recent evidence has shown that MT can occur through multiple cellular structures and mechanisms: tunneling nanotubes (TNTs), via gap junctions (GJs), mediated by extracellular vesicles (EVs) and other mechanisms (cell fusion, mitochondrial extrusion and migrasome-mediated mitocytosis) and in different contexts, such as under physiological (tissue homeostasis and stemness maintenance) and pathological conditions (hypoxia, inflammation and cancer). As Mesenchimal Stromal/ Stem Cells (MSC)-mediated MT has emerged as a critical regulatory and restorative mechanism for cell and tissue regeneration and damage repair in recent years, its potential in stem cell therapy has received increasing attention. In particular, the potential therapeutic role of MSCs has been reported in several articles, suggesting that MSCs can enhance tissue repair after injury via MT and membrane vesicle release. For these reasons, in this review, we will discuss the different mechanisms of MSCs-mediated MT and therapeutic effects on different diseases such as neuronal, ischaemic, vascular and pulmonary diseases. Therefore, understanding the molecular and cellular mechanisms of MT and demonstrating its efficacy could be an important milestone that lays the foundation for future clinical trials.
Collapse
Affiliation(s)
- Roberto Iorio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Sabrina Petricca
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Vincenzo Mattei
- Dipartimento di Scienze della Vita, Della Salute e delle Professioni Sanitarie, Link Campus University, Via del Casale di San Pio V 44, 00165, Rome, Italy.
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy.
| |
Collapse
|
10
|
Chen J, Wang Q, Li R, Li Z, Jiang Q, Yan F, Ye J. The role of Keap1-Nrf2 signaling pathway during the progress and therapy of diabetic retinopathy. Life Sci 2024; 338:122386. [PMID: 38159594 DOI: 10.1016/j.lfs.2023.122386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Diabetic retinopathy is a complex and progressive ocular complication of diabetes mellitus and is a leading cause of blindness in people of working age worldwide. The pathophysiology of diabetic retinopathy involves multifactorial processes, including oxidative stress, inflammation and vascular abnormalities. Understanding the underlying molecular mechanisms involved in its pathogenesis is essential for the development of effective therapeutic interventions. One of the pathways receiving increasing attention is the Keap1-Nrf2 signaling pathway, which regulates the cellular response to oxidative stress by activating Nrf2. In this review, we analyze the current evidence linking Keap1-Nrf2 signaling pathway dysregulation to diabetic retinopathy. In addition, we explore the potential therapeutic implications and the challenges of targeting this pathway for disease management. A comprehensive understanding of the molecular mechanisms of diabetic retinopathy and the therapeutic potential of the Keap1-Nrf2 pathway may pave the way for innovative and effective interventions to combat this vision-threatening disease.
Collapse
Affiliation(s)
- Jiawen Chen
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China; Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China
| | - Qi Wang
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China
| | - Ruiyan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Zhe Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular research Institute, Wuhan University, Wuhan 430060, China
| | - Qizhou Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Fangrong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Junmei Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China.
| |
Collapse
|
11
|
Qaed E, Alyafeai E, Al-Maamari A, Zaky MY, Almoiliqy M, Al-Hamyari B, Qaid A, Yafei S, Aldahmash W, Mahyoub MA, Wang F, Kang L, Tang Z, Zhang J. Uncovering the Therapeutic Potential of Phosphocreatine in Diabetic Retinopathy: Mitigating Mitochondrial Dysfunction and Apoptosis via JAK2/STAT3 Signaling Pathway. J Mol Neurosci 2024; 74:11. [PMID: 38231435 DOI: 10.1007/s12031-023-02175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
Diabetic retinopathy (DR) stands as a prevalent complication of diabetes mellitus, causing damage to the delicate retinal capillaries and potentially leading to visual impairment. While the exact underlying cause of DR remains elusive, compelling research suggests that mitochondrial energy deficiency and the excessive generation of reactive oxygen species (ROS) play pivotal roles in its pathogenesis. Recognizing that controlling hyperglycemia alone fails to reverse the defects in retinal mitochondria induced by diabetes, current strategies seek to restore mitochondrial function as a means of safeguarding against DR. To address this pressing issue, a comprehensive study was undertaken to explore the potential of phosphocreatine (PCr) in bolstering mitochondrial bioenergetics and providing protection against DR via modulation of the JAK2/STAT3 signaling pathway. Employing rat mitochondria and RGC-5 cells, the investigation meticulously assessed the impact of PCr on ROS production, mitochondrial membrane potential, as well as the expression of crucial apoptotic and JAK2/STAT3 signaling pathway proteins, utilizing cutting-edge techniques such as high-resolution respirometry and western blotting. The remarkable outcomes revealed that PCr exerts a profound protective influence against DR by enhancing mitochondrial function and alleviating diabetes-associated symptoms and biochemical markers. Notably, PCr administration resulted in an upregulation of antiapoptotic proteins, concomitant with a downregulation of proapoptotic proteins and the JAK2/STAT3 signaling pathway. These significant findings firmly establish PCr as a potential therapeutic avenue for combating diabetic retinopathy. By augmenting mitochondrial function and exerting antiapoptotic effects via the JAK2/STAT3 signaling pathway, PCr demonstrates promising efficacy both in vivo and in vitro, particularly in counteracting the oxidative stress engendered by hyperglycemia. In summary, our study sheds light on the potential of PCr as an innovative therapeutic strategy for diabetic retinopathy. By bolstering mitochondrial function and exerting protective effects via the modulation of the JAK2/STAT3 signaling pathway, PCr holds immense promise in ameliorating the impact of DR in the face of oxidative stress induced by hyperglycemia.
Collapse
Grants
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
Collapse
Affiliation(s)
- Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ahmed Al-Maamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Marwan Almoiliqy
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China
| | - Bandar Al-Hamyari
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, Lanzhou, People's Republic of China
| | - Abdullah Qaid
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Saeed Yafei
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China
| | - Waleed Aldahmash
- Zoology Department, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mueataz A Mahyoub
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fuhan Wang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China
| | - Le Kang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China.
| | - Jianbin Zhang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China.
| |
Collapse
|
12
|
Li J, Chen K, Li X, Zhang X, Zhang L, Yang Q, Xia Y, Xie C, Wang X, Tong J, Shen Y. Mechanistic insights into the alterations and regulation of the AKT signaling pathway in diabetic retinopathy. Cell Death Discov 2023; 9:418. [PMID: 37978169 PMCID: PMC10656479 DOI: 10.1038/s41420-023-01717-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
In the early stages of diabetic retinopathy (DR), diabetes-related hyperglycemia directly inhibits the AKT signaling pathway by increasing oxidative stress or inhibiting growth factor expression, which leads to retinal cell apoptosis, nerve proliferation and fundus microvascular disease. However, due to compensatory vascular hyperplasia in the late stage of DR, the vascular endothelial growth factor (VEGF)/phosphatidylinositol 3 kinase (PI3K)/AKT cascade is activated, resulting in opposite levels of AKT regulation compared with the early stage. Studies have shown that many factors, including insulin, insulin-like growth factor-1 (IGF-1), VEGF and others, can regulate the AKT pathway. Disruption of the insulin pathway decreases AKT activation. IGF-1 downregulation decreases the activation of AKT in DR, which abrogates the neuroprotective effect, upregulates VEGF expression and thus induces neovascularization. Although inhibiting VEGF is the main treatment for neovascularization in DR, excessive inhibition may lead to apoptosis in inner retinal neurons. AKT pathway substrates, including mammalian target of rapamycin (mTOR), forkhead box O (FOXO), glycogen synthase kinase-3 (GSK-3)/nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor kappa-B (NF-κB), are a research focus. mTOR inhibitors can delay or prevent retinal microangiopathy, whereas low mTOR activity can decrease retinal protein synthesis. Inactivated AKT fails to inhibit FOXO and thus causes apoptosis. The GSK-3/Nrf2 cascade regulates oxidation and inflammation in DR. NF-κB is activated in diabetic retinas and is involved in inflammation and apoptosis. Many pathways or vital activities, such as the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) signaling pathways, interact with the AKT pathway to influence DR development. Numerous regulatory methods can simultaneously impact the AKT pathway and other pathways, and it is essential to consider both the connections and interactions between these pathways. In this review, we summarize changes in the AKT signaling pathway in DR and targeted drugs based on these potential sites.
Collapse
Affiliation(s)
- Jiayuan Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuhong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyue Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiawei Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Zhang SM, Fan B, Li YL, Zuo ZY, Li GY. Oxidative Stress-Involved Mitophagy of Retinal Pigment Epithelium and Retinal Degenerative Diseases. Cell Mol Neurobiol 2023; 43:3265-3276. [PMID: 37391574 PMCID: PMC10477140 DOI: 10.1007/s10571-023-01383-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
The retinal pigment epithelium (RPE) is a highly specialized and polarized epithelial cell layer that plays an important role in sustaining the structural and functional integrity of photoreceptors. However, the death of RPE is a common pathological feature in various retinal diseases, especially in age-related macular degeneration (AMD) and diabetic retinopathy (DR). Mitophagy, as a programmed self-degradation of dysfunctional mitochondria, is crucial for maintaining cellular homeostasis and cell survival under stress. RPE contains a high density of mitochondria necessary for it to meet energy demands, so severe stimuli can cause mitochondrial dysfunction and the excess generation of intracellular reactive oxygen species (ROS), which can further trigger oxidative stress-involved mitophagy. In this review, we summarize the classical pathways of oxidative stress-involved mitophagy in RPE and investigate its role in the progression of retinal diseases, aiming to provide a new therapeutic strategy for treating retinal degenerative diseases. The role of mitophagy in AMD and DR. In AMD, excessive ROS production promotes mitophagy in the RPE by activating the Nrf2/p62 pathway, while in DR, ROS may suppress mitophagy by the FOXO3-PINK1/parkin signaling pathway or the TXNIP-mitochondria-lysosome-mediated mitophagy.
Collapse
Affiliation(s)
- Si-Ming Zhang
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Bin Fan
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Yu- Lin Li
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Zhao-Yang Zuo
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Guang-Yu Li
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
14
|
Lam CHI, Zou B, Chan HHL, Tse DYY. Functional and structural changes in the neuroretina are accompanied by mitochondrial dysfunction in a type 2 diabetic mouse model. EYE AND VISION (LONDON, ENGLAND) 2023; 10:37. [PMID: 37653465 PMCID: PMC10472703 DOI: 10.1186/s40662-023-00353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/16/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Diabetic retinopathy (DR), one of the leading causes of blindness and vision impairment, is suggested to exhibit functional and structural changes in retinal neurons as the earliest manifestation, which could be used to predict the progression of related angiopathy. While neural function and survival rely on proper mitochondrial function, and a growing body of literature has supported the role of mitochondrial dysfunction in the development of DR, how diabetes affects mitochondrial function in retinal tissue remains elusive. This study primarily aimed to investigate mitochondrial functional changes in a diabetic rodent model. We also characterized the early DR phenotype, in particular, neurodegeneration. METHODS C57BLKsJ-db/db (db/db) mice (a type 2 diabetic mouse model) were used with their normoglycemic heterozygous littermates (db/+) serving as controls. Longitudinal changes in retinal function and morphology were assessed with electroretinography (ERG) and optical coherence tomography (OCT), respectively, at 9, 13, 17, and 25 weeks of age. At 25 weeks, the retinas were harvested for immunohistochemistry and ex vivo mitochondrial bioenergetics. RESULTS Decreased ERG responses were observed in db/db mice as early as 13 weeks of age. OCT revealed that db/db mice had significantly thinner retinas than the controls. Immunohistochemistry showed that the retinas of the db/db mice at 25 weeks were thinner at the outer and inner nuclear layers, with lower photoreceptor and cone cell densities compared with the db/+ mice. The number of rod-bipolar cell dendritic boutons and axon terminals was significantly reduced in db/db mice relative to the db/+ mice, suggesting that diabetes may lead to compromised synaptic connectivity. More importantly, the retinas of db/db mice had weaker mitochondrial functions than the controls. CONCLUSIONS Our longitudinal data suggest that diabetes-induced functional deterioration and morphological changes were accompanied by reduced mitochondrial function in the retina of db/db mice. These findings suggest that mitochondrial dysfunction may be a contributing factor triggering the development of DR. While the underlying mechanistic cause remains elusive, the db/db mice could be a useful animal model for testing potential treatment regimens targeting neurodegeneration in DR.
Collapse
Affiliation(s)
- Christie Hang-I Lam
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, SAR, China
| | - Bing Zou
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Henry Ho-Lung Chan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, SAR, China
| | - Dennis Yan-Yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, SAR, China.
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| |
Collapse
|
15
|
Wang S, Zhao H, Lin S, Lv Y, Lin Y, Liu Y, Peng R, Jin H. New therapeutic directions in type II diabetes and its complications: mitochondrial dynamics. Front Endocrinol (Lausanne) 2023; 14:1230168. [PMID: 37670891 PMCID: PMC10475949 DOI: 10.3389/fendo.2023.1230168] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
As important organelles of energetic and metabolism, changes in the dynamic state of mitochondria affect the homeostasis of cellular metabolism. Mitochondrial dynamics include mitochondrial fusion and mitochondrial fission. The former is coordinated by mitofusin-1 (Mfn1), mitofusin-2 (Mfn2), and optic atrophy 1 (Opa1), and the latter is mediated by dynamin related protein 1 (Drp1), mitochondrial fission 1 (Fis1) and mitochondrial fission factor (MFF). Mitochondrial fusion and fission are generally in dynamic balance and this balance is important to preserve the proper mitochondrial morphology, function and distribution. Diabetic conditions lead to disturbances in mitochondrial dynamics, which in return causes a series of abnormalities in metabolism, including decreased bioenergy production, excessive production of reactive oxygen species (ROS), defective mitophagy and apoptosis, which are ultimately closely linked to multiple chronic complications of diabetes. Multiple researches have shown that the incidence of diabetic complications is connected with increased mitochondrial fission, for example, there is an excessive mitochondrial fission and impaired mitochondrial fusion in diabetic cardiomyocytes, and that the development of cardiac dysfunction induced by diabetes can be attenuated by inhibiting mitochondrial fission. Therefore, targeting the restoration of mitochondrial dynamics would be a promising therapeutic target within type II diabetes (T2D) and its complications. The molecular approaches to mitochondrial dynamics, their impairment in the context of T2D and its complications, and pharmacological approaches targeting mitochondrial dynamics are discussed in this review and promise benefits for the therapy of T2D and its comorbidities.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Suxian Lin
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yang Lv
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yue Lin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Huanzhi Jin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| |
Collapse
|
16
|
Pielok A, Kępska M, Steczkiewicz Z, Grobosz S, Bourebaba L, Marycz K. Equine Hoof Progenitor Cells Display Increased Mitochondrial Metabolism and Adaptive Potential to a Highly Pro-Inflammatory Microenvironment. Int J Mol Sci 2023; 24:11446. [PMID: 37511204 PMCID: PMC10379971 DOI: 10.3390/ijms241411446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Medicinal signaling cells (MSC) exhibit distinct molecular signatures and biological abilities, depending on the type of tissue they originate from. Recently, we isolated and described a new population of stem cells residing in the coronary corium, equine hoof progenitor cells (HPCs), which could be a new promising cell pool for the treatment of laminitis. Therefore, this study aimed to compare native populations of HPCs to well-established adipose-derived stem cells (ASCs) in standard culture conditions and in a pro-inflammatory milieu to mimic a laminitis condition. ASCs and HPCs were either cultured in standard conditions or subjected to priming with a cytokines cocktail mixture. The cells were harvested and analyzed for expression of key markers for phenotype, mitochondrial metabolism, oxidative stress, apoptosis, and immunomodulation using RT-qPCR. The morphology and migration were assessed based on fluorescent staining. Microcapillary cytometry analyses were performed to assess the distribution in the cell cycle, mitochondrial membrane potential, and oxidative stress. Native HPCs exhibited a similar morphology to ASCs, but a different phenotype. The HPCs possessed lower migration capacity and distinct distribution across cell cycle phases. Native HPCs were characterized by different mitochondrial dynamics and oxidative stress levels. Under standard culture conditions, HPCs displayed different expression patterns of apoptotic and immunomodulatory markers than ASCs, as well as distinct miRNA expression. Interestingly, after priming with the cytokines cocktail mixture, HPCs exhibited different mitochondrial dynamics than ASCs; however, the apoptosis and immunomodulatory marker expression was similar in both populations. Native ASCs and HPCs exhibited different baseline expressions of markers involved in mitochondrial dynamics, the oxidative stress response, apoptosis and inflammation. When exposed to a pro-inflammatory microenvironment, ASCs and HPCs differed in the expression of mitochondrial condition markers and chosen miRNAs.
Collapse
Affiliation(s)
- Ariadna Pielok
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
| | - Martyna Kępska
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
| | - Zofia Steczkiewicz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
| | - Sylwia Grobosz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mała, Poland
| |
Collapse
|
17
|
Van Huynh T, Rethi L, Rethi L, Chen CH, Chen YJ, Kao YH. The Complex Interplay between Imbalanced Mitochondrial Dynamics and Metabolic Disorders in Type 2 Diabetes. Cells 2023; 12:1223. [PMID: 37174622 PMCID: PMC10177489 DOI: 10.3390/cells12091223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a global burden, with an increasing number of people affected and increasing treatment costs. The advances in research and guidelines improve the management of blood glucose and related diseases, but T2DM and its complications are still a big challenge in clinical practice. T2DM is a metabolic disorder in which insulin signaling is impaired from reaching its effectors. Mitochondria are the "powerhouses" that not only generate the energy as adenosine triphosphate (ATP) using pyruvate supplied from glucose, free fatty acid (FFA), and amino acids (AA) but also regulate multiple cellular processes such as calcium homeostasis, redox balance, and apoptosis. Mitochondrial dysfunction leads to various diseases, including cardiovascular diseases, metabolic disorders, and cancer. The mitochondria are highly dynamic in adjusting their functions according to cellular conditions. The shape, morphology, distribution, and number of mitochondria reflect their function through various processes, collectively known as mitochondrial dynamics, including mitochondrial fusion, fission, biogenesis, transport, and mitophagy. These processes determine the overall mitochondrial health and vitality. More evidence supports the idea that dysregulated mitochondrial dynamics play essential roles in the pathophysiology of insulin resistance, obesity, and T2DM, as well as imbalanced mitochondrial dynamics found in T2DM. This review updates and discusses mitochondrial dynamics and the complex interactions between it and metabolic disorders.
Collapse
Affiliation(s)
- Tin Van Huynh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City 700000, Vietnam
| | - Lekha Rethi
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Hwa Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
18
|
Zhou Y, Li M, Wang Z, Lin X, Xu Y, Feng S, Miao J. AMPK/Drp1 pathway mediates Streptococcus uberis-Induced mitochondrial dysfunction. Int Immunopharmacol 2022; 113:109413. [PMID: 36461586 DOI: 10.1016/j.intimp.2022.109413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Excessive production of reactive oxygen species (ROS) leads to oxidative stress in host cells and affects the progress of disease. Mitochondria are an important source of ROS and their dysfunction is closely related to ROS production. S. uberis is a common causative agent of mastitis. The expression of key enzymes of the mitochondrial apoptotic pathway is increased in mammary epithelial cells after S. uberis stimulation, while expression of proteins related to mitochondrial function is decreased. Drp1, a key protein associated with mitochondrial function, is activated upon infection. Accompanied by mitochondria-cytosol translocation of Drp1, Fis1 expression is significantly upregulated while Mfn1 expression is downregulated implying that the balance of mitochondrial dynamics is disrupted. This leads to mitochondrial fragmentation, decreased mitochondrial membrane potential, higher levels of mROS and oxidative injury. The AMPK activator AICAR inhibits the increased phosphorylation of Drp1 and the translocation of Drp1 to mitochondria by salvaging mitochondrial function in an AMPK/Drp1 dependent manner, which has a similar effect to Drp1 inhibitor Mdivi-1. These data show that AMPK, as an upstream negative regulator of Drp1, ameliorates mitochondrial dysfunction induced by S. uberis infection.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinguang Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shiyuan Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
19
|
Takkar B, Sheemar A, Jayasudha R, Soni D, Narayanan R, Venkatesh P, Shivaji S, Das T. Unconventional avenues to decelerated diabetic retinopathy. Surv Ophthalmol 2022; 67:1574-1592. [PMID: 35803389 DOI: 10.1016/j.survophthal.2022.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is an important microvascular complication of diabetes mellitus (DM), causing significant visual impairment worldwide. Current gold standards for retarding the progress of DR include blood sugar control and regular fundus screening. Despite these measures, the incidence and prevalence of DR and vision-threatening DR remain high. Given its slowly progressive course and long latent period, opportunities to contain or slow DR before it threatens vision must be explored. This narrative review assesses the recently described unconventional strategies to retard DR progression. These include gut-ocular flow, gene therapy, mitochondrial dysfunction-oxidative stress, stem cell therapeutics, neurodegeneration, anti-inflammatory treatments, lifestyle modification, and usage of phytochemicals. These therapies impact DR directly, while some of them also influence DM control. Most of these strategies are currently in the preclinical stage, and clinical evidence remains low. Nevertheless, our review suggests that these approaches have the potential for human use to prevent the progression of DR.
Collapse
Affiliation(s)
- Brijesh Takkar
- Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India; Indian Health Outcomes, Public Health, and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India.
| | - Abhishek Sheemar
- Department of Ophthalmology, All India Institute of Medical Sciences, Jodhpur, India
| | | | - Deepak Soni
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhopal, India
| | - Raja Narayanan
- Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India; Indian Health Outcomes, Public Health, and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Pradeep Venkatesh
- Dr. RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sisinthy Shivaji
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Taraprasad Das
- Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
20
|
Zhu BT. Biochemical mechanism underlying the pathogenesis of diabetic retinopathy and other diabetic complications in humans: the methanol-formaldehyde-formic acid hypothesis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:415-451. [PMID: 35607958 PMCID: PMC9828688 DOI: 10.3724/abbs.2022012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Hyperglycemia in diabetic patients is associated with abnormally-elevated cellular glucose levels. It is hypothesized that increased cellular glucose will lead to increased formation of endogenous methanol and/or formaldehyde, both of which are then metabolically converted to formic acid. These one-carbon metabolites are known to be present naturally in humans, and their levels are increased under diabetic conditions. Mechanistically, while formaldehyde is a cross-linking agent capable of causing extensive cytotoxicity, formic acid is an inhibitor of mitochondrial cytochrome oxidase, capable of inducing histotoxic hypoxia, ATP deficiency and cytotoxicity. Chronic increase in the production and accumulation of these toxic one-carbon metabolites in diabetic patients can drive the pathogenesis of ocular as well as other diabetic complications. This hypothesis is supported by a large body of experimental and clinical observations scattered in the literature. For instance, methanol is known to have organ- and species-selective toxicities, including the characteristic ocular lesions commonly seen in humans and non-human primates, but not in rodents. Similarly, some of the diabetic complications (such as ocular lesions) also have a characteristic species-selective pattern, closely resembling methanol intoxication. Moreover, while alcohol consumption or combined use of folic acid plus vitamin B is beneficial for mitigating acute methanol toxicity in humans, their use also improves the outcomes of diabetic complications. In addition, there is also a large body of evidence from biochemical and cellular studies. Together, there is considerable experimental support for the proposed hypothesis that increased metabolic formation of toxic one-carbon metabolites in diabetic patients contributes importantly to the development of various clinical complications.
Collapse
Affiliation(s)
- Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhen518172China
- Department of PharmacologyToxicology and TherapeuticsSchool of MedicineUniversity of Kansas Medical CenterKansas CityKS66160USA
| |
Collapse
|
21
|
Wu H, Li G, Chen W, Luo W, Yang Z, You Z, Zou Y. Drp1 knockdown represses apoptosis of rat retinal endothelial cells by inhibiting mitophagy. Acta Histochem 2022; 124:151837. [PMID: 34959219 DOI: 10.1016/j.acthis.2021.151837] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy (DR) is the leading clinical cause of blindness in diabetic patients. Mitophagy participates in the pathogenesis of DR. Dynamin related protein 1 (Drp1) is associated with mitophagy. Here, we investigated whether Drp1 can regulate mitophagy to affect the progression of DR. We constructed DR rat model by administration of streptozocin. Primary rat retinal endothelial cells (RECs) were treated with high glucose (HG) as a DR cell model. Drp1 was highly expressed in the retinal tissues of DR rats and HG-treated RECs. Drp1 knockdown inhibited HG-mediated increase of reactive oxygen species (ROS) levels and apoptosis in RECs. Moreover, Drp1 silencing inhibited the expression of autophagy-related proteins LC3-II/LC3-1 and Beclin-1 and reduced LC3 puncta in HG-treated RECs. The expression of mitochondrial marker Tom20 was reduced and the levels of mitophagy were increased in the HG-treated RECs, which was rescued by Drp1 silencing. Drp1 knockdown repressed LC3-II expression in HG-treated RECs, indicating that autophagy flux was inhibited. Rapamycin (autophagy activator) enhanced ROS levels and apoptosis in HG-treated RECs by activating autophagy, which was rescued by Drp1 knockdown. In conclusion, these data demonstrated that Drp1 knockdown repressed apoptosis of rat retinal endothelial cells by inhibiting mitophagy. Thus, this work suggests that targeted regulation of Drp1 may become a treatment for DR.
Collapse
|
22
|
Mohammad G, Kowluru RA. Mitochondrial Dynamics in the Metabolic Memory of Diabetic Retinopathy. J Diabetes Res 2022; 2022:3555889. [PMID: 35399705 PMCID: PMC8989559 DOI: 10.1155/2022/3555889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/16/2022] Open
Abstract
Mitochondria play a central role in the development of diabetic retinopathy and in the metabolic memory associated with its continued progression. Mitochondria have a regulated fusion fission process, which is essential for their homeostasis. One of the major fission proteins, dynamin-related protein 1 (Drp1), is recruited to the mitochondria by fission protein 1 (Fis1) to initiate fragmentation. Our aim is to investigate the role of Drp1 in the altered mitochondrial dynamics in the continued progression of diabetic retinopathy. Methods. Drp1 activation, mitochondrial transport, and Drp1-Fis1 interactions were analyzed in retinal endothelial cells incubated in 20 mM glucose (HG), followed by 5 mM glucose (NG), for four days each (HG-NG group). The results were confirmed in retinal microvessels from streptozotocin-induced diabetic rats with poor glycemia (>350 mg/dl blood glucose, PC group), followed by normal glycemia (~100 mg/dl), for four months each (PC-GC group). Results. GTPase activity of Drp1, Fis1-Drp1 interactions, mitochondrial levels of Drp1, and fragmentation of the mitochondria were elevated in HG group. Mitochondrial Division Inhibitor 1 (Mdiv) or Drp1-siRNA attenuated Drp1 activation, mitochondrial fragmentation, and DNA damage. In HG-NG group, NG failed to ameliorate Drp1 activation and Drp1-Fis1 interactions, and the mitochondria remained fragmented. However, Mdiv supplementation in normal glucose, which had followed four days of high glucose (HG-NG/Mdiv group), inhibited Drp1 activation, mitochondrial fragmentation, and increase in ROS and prevented mitochondrial damage. Retinal microvessels from the rats in PC and PC-GC groups had similar Drp1 activation. Conclusion. Thus, Drp1 plays a major role in mitochondrial homeostasis in diabetic retinopathy and in the metabolic memory phenomenon associated with its continued progression. Supplementation of normal glycemia with a Drp1 inhibitor could retard development and further progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Ghulam Mohammad
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Renu A. Kowluru
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
23
|
Paraoxonase 2 protects against the CML mediated mitochondrial dysfunction through modulating JNK pathway in human retinal cells. Biochim Biophys Acta Gen Subj 2021; 1866:130043. [PMID: 34710487 DOI: 10.1016/j.bbagen.2021.130043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Paraoxonase 2 (PON2) a known anti-apoptotic protein, has not been explored against Nε-(carboxymethyl)lysine (CML), induced mitochondrial dysfunction and apoptosis in human retinal cells. Hence this present study aims to investigate the potential role of PON2 in mitigating CML-induced mitochondrial dysfunction in these cells. METHODS PON2 protein was quantified in HRECs (Human retinal endothelial cells), ARPE-19 (Retinal pigment epithelial cells) cells upon CML treatment and also in cadaveric diabetic retina vs respective controls. ROS production, mitochondrial membrane potential (MMP), mitochondrial permeability transition pore (mPTP) opening, the release of Cyt-c, Bax, Caspase-3, Fis1, Mfn1, Mfn2, mitochondrial morphology, and the signaling pathway was assessed using DCFDA, JC-1, CoCl2, immunofluorescence or western blotting analysis in both loss-of-function or gain-of-function experiments. RESULTS PON2 protein was downregulated in HREC and ARPE-19 cells upon CML treatment as well as in the diabetic retina (p = 0.035). Decrease in PON2 augments Fis1 expression resulting in fragmentation of mitochondria and enhances the ROS production, decreases MMP, facilitates mPTP opening, and induces the release of Cyt-c, which activates the pro-apoptotic pathway. Whereas PON2 overexpression similar to SP600125 (a specific JNK inhibitor) was able to decrease Fis1 (p = 0.036) and reverse the Bcl-2 and Bax ratio, and inhibit the JNK1/2 signaling pathway. CONCLUSION Our results confirm that PON2 has an anti-apoptotic role against the CML mediated mitochondrial dysfunction and inhibits apoptosis through the JNK-Fis1 axis. GENERAL SIGNIFICANCE We hypothesis that enhancing PON2 may provide a better therapeutic potential against diabetic vascular disease.
Collapse
|
24
|
Gao LM, Fu S, Liu F, Wu HB, Li WJ. Astragalus Polysaccharide Regulates miR-182/Bcl-2 Axis to Relieve Metabolic Memory through Suppressing Mitochondrial Damage-Mediated Apoptosis in Retinal Pigment Epithelial Cells. Pharmacology 2021; 106:520-533. [PMID: 34352784 DOI: 10.1159/000515901] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Metabolic memory is one of the causes of diabetic retinopathy, and astragalus polysaccharide (APS) has great advantages in the treatment of diabetes. However, the effect of APS on metabolic memory remains to be investigated. METHODS Retinal pigment epithelial cell line ARPE-19 and primary retinal pigment epithelial cells were used to verify the effect of APS on mitochondria damage and apoptosis induced by high glucose-induced metabolic memory. The relationship between miR-182 and Bcl-2 was confirmed by a luciferase activity assay. Western blotting and quantitative reverse-transcriptase polymerase chain reaction were conducted to investigate the changes in mitochondrial damage- and apoptosis-associated markers. The cell mitochondrial membrane potential was assessed by JC-1 fluorescence. Terminal deoxynucleotidyl transferase dUTP nick end labelling staining and flow cytometry assays were performed to determine the occurrence of apoptosis. RESULTS Treatment with high glucose followed by normal glucose significantly upregulated the expression of miR-182 and downregulated the expression of its target Bcl-2, and APS treatment reversed the above effects. Additionally, APS treatment restored mitochondrial function and inhibited apoptosis in cells in a state of metabolic memory. The effects of APS against mitochondrial damage and apoptosis were partially inhibited after miR-182 overexpression. CONCLUSION APS alleviated mitochondrial damage and apoptosis induced by metabolic memory by regulating the miR-182/Bcl-2 axis, which might serve as a new strategy for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Li-Mo Gao
- Department of Ophthalmology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shun Fu
- Department of Ophthalmology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Fen Liu
- Department of Gynaecology and Obstetrics, The First Hospital of Changsha, Changsha, China
| | - Han-Bing Wu
- Tumor Center, Huaihua First People's Hospital, Huaihua, China
| | - Wen-Jie Li
- Department of Ophthalmology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
25
|
Carrella S, Massa F, Indrieri A. The Role of MicroRNAs in Mitochondria-Mediated Eye Diseases. Front Cell Dev Biol 2021; 9:653522. [PMID: 34222230 PMCID: PMC8249810 DOI: 10.3389/fcell.2021.653522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
The retina is among the most metabolically active tissues with high-energy demands. The peculiar distribution of mitochondria in cells of retinal layers is necessary to assure the appropriate energy supply for the transmission of the light signal. Photoreceptor cells (PRs), retinal pigment epithelium (RPE), and retinal ganglion cells (RGCs) present a great concentration of mitochondria, which makes them particularly sensitive to mitochondrial dysfunction. To date, visual loss has been extensively correlated to defective mitochondrial functions. Many mitochondrial diseases (MDs) show indeed neuro-ophthalmic manifestations, including retinal and optic nerve phenotypes. Moreover, abnormal mitochondrial functions are frequently found in the most common retinal pathologies, i.e., glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR), that share clinical similarities with the hereditary primary MDs. MicroRNAs (miRNAs) are established as key regulators of several developmental, physiological, and pathological processes. Dysregulated miRNA expression profiles in retinal degeneration models and in patients underline the potentiality of miRNA modulation as a possible gene/mutation-independent strategy in retinal diseases and highlight their promising role as disease predictive or prognostic biomarkers. In this review, we will summarize the current knowledge about the participation of miRNAs in both rare and common mitochondria-mediated eye diseases. Definitely, given the involvement of miRNAs in retina pathologies and therapy as well as their use as molecular biomarkers, they represent a determining target for clinical applications.
Collapse
Affiliation(s)
| | - Filomena Massa
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine, Naples, Italy.,Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| |
Collapse
|
26
|
Mitochondrial remodelling-a vicious cycle in diabetic complications. Mol Biol Rep 2021; 48:4721-4731. [PMID: 34023988 DOI: 10.1007/s11033-021-06408-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
Diabetes mellitus (DM) is a chronic, metabolic condition characterized by excessive blood glucose that causes perturbations in physiological functioning of almost all the organs of human body. This devastating metabolic disease has its implications in cognitive decline, heart damage, renal, retinal and neuronal complications that severely affects quality of life and associated with decreased life expectancy. Mitochondria possess adaptive mechanisms to meet the cellular energy demand and combat cellular stress. In recent years mitochondrial homeostasis has been point of focus where several mechanisms regulating mitochondrial health and function are evaluated. Mitochondrial dynamics plays crucial role in maintaining healthy mitochondria in cell under physiological as well as stress condition. Mitochondrial dynamics and corresponding regulating mechanisms have been implicated in progression of metabolic disorders including diabetes and its complications. In current review we have discussed about role of mitochondrial dynamics under physiological and pathological conditions. Also, modulation of mitochondrial fission and fusion in diabetic complications are described. The available literature supports mitochondrial remodelling as reliable target for diabetic complications.
Collapse
|
27
|
Doğanlar ZB, Doğanlar O, Kurtdere K, Güçlü H, Chasan T, Turgut E. Melatonin prevents blood-retinal barrier breakdown and mitochondrial dysfunction in high glucose and hypoxia-induced in vitro diabetic macular edema model. Toxicol In Vitro 2021; 75:105191. [PMID: 33962019 DOI: 10.1016/j.tiv.2021.105191] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/31/2022]
Abstract
Diabetic macular edema (DME) is a leading cause of blindness in diabetic retinopathy. Prolonged hyperglycemia plus hypoxia contributes to DME pathogenesis. Retinal pigmented epithelial cells comprise the outer blood-retinal barrier and are essential for maintaining physiological functioning of the retina. Melatonin acts as an antioxidant and regulator of mitochondrial bioenergetics and has a protective effect against ocular diseases. However, the role of mitochondrial dysfunction and the therapeutic potential of melatonin in DME remain largely unexplored. Here, we used an in vitro model of DME to investigate blood-retinal barrier integrity and permeability, angiogenesis, mitochondrial dynamics, and apoptosis signaling to evaluate the potential protective efficacy of melatonin in DME. We found that melatonin prevents cell hyper-permeability and outer barrier breakdown by reducing HIF-1α, HIF-1β and VEGF and VEGF receptor gene expression. In addition, melatonin reduced the expression of genes involved in mitochondrial fission (DRP1, hFis1, MIEF2, MFF), mitophagy (PINK, BNip3, NIX), and increased the expression of genes involved in mitochondrial biogenesis (PGC-1α, NRF2, PPAR-γ) to maintain mitochondrial homeostasis. Moreover, melatonin prevented apoptosis of retinal pigmented epithelial cells. Our results suggest that mitochondrial dysfunction may be involved in DME pathology, and melatonin may have therapeutic value in DME, by targeting signaling in mitochondria.
Collapse
Affiliation(s)
- Zeynep Banu Doğanlar
- Trakya University, Faculty of Medicine, Department of Medical Biology, Edirne, Turkey.
| | - Oğuzhan Doğanlar
- Trakya University, Faculty of Medicine, Department of Medical Biology, Edirne, Turkey
| | - Kardelen Kurtdere
- Trakya University, Faculty of Medicine, Department of Medical Biology, Edirne, Turkey
| | - Hande Güçlü
- Trakya University, Faculty of Medicine, Department of Ophthalmology, Edirne, Turkey
| | - Tourkian Chasan
- Trakya University, Faculty of Medicine, Department of Medical Biology, Edirne, Turkey
| | - Esra Turgut
- Trakya University, Faculty of Medicine, Department of Medical Biology, Edirne, Turkey
| |
Collapse
|
28
|
Doblado L, Lueck C, Rey C, Samhan-Arias AK, Prieto I, Stacchiotti A, Monsalve M. Mitophagy in Human Diseases. Int J Mol Sci 2021; 22:3903. [PMID: 33918863 PMCID: PMC8069949 DOI: 10.3390/ijms22083903] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Mitophagy is a selective autophagic process, essential for cellular homeostasis, that eliminates dysfunctional mitochondria. Activated by inner membrane depolarization, it plays an important role during development and is fundamental in highly differentiated post-mitotic cells that are highly dependent on aerobic metabolism, such as neurons, muscle cells, and hepatocytes. Both defective and excessive mitophagy have been proposed to contribute to age-related neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases, metabolic diseases, vascular complications of diabetes, myocardial injury, muscle dystrophy, and liver disease, among others. Pharmacological or dietary interventions that restore mitophagy homeostasis and facilitate the elimination of irreversibly damaged mitochondria, thus, could serve as potential therapies in several chronic diseases. However, despite extraordinary advances in this field, mainly derived from in vitro and preclinical animal models, human applications based on the regulation of mitochondrial quality in patients have not yet been approved. In this review, we summarize the key selective mitochondrial autophagy pathways and their role in prevalent chronic human diseases and highlight the potential use of specific interventions.
Collapse
Affiliation(s)
- Laura Doblado
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Claudia Lueck
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Claudia Rey
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Alejandro K. Samhan-Arias
- Department of Biochemistry, Universidad Autónoma de Madrid e Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
| | - Ignacio Prieto
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Isaac Peral 42, 28015 Madrid, Spain;
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, Universita’ Degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| |
Collapse
|
29
|
Raeisossadati R, Ferrari MFR, Kihara AH, AlDiri I, Gross JM. Epigenetic regulation of retinal development. Epigenetics Chromatin 2021; 14:11. [PMID: 33563331 PMCID: PMC7871400 DOI: 10.1186/s13072-021-00384-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/28/2021] [Indexed: 01/10/2023] Open
Abstract
In the developing vertebrate retina, retinal progenitor cells (RPCs) proliferate and give rise to terminally differentiated neurons with exquisite spatio-temporal precision. Lineage commitment, fate determination and terminal differentiation are controlled by intricate crosstalk between the genome and epigenome. Indeed, epigenetic regulation plays pivotal roles in numerous cell fate specification and differentiation events in the retina. Moreover, aberrant chromatin structure can contribute to developmental disorders and retinal pathologies. In this review, we highlight recent advances in our understanding of epigenetic regulation in the retina. We also provide insight into several aspects of epigenetic-related regulation that should be investigated in future studies of retinal development and disease. Importantly, focusing on these mechanisms could contribute to the development of novel treatment strategies targeting a variety of retinal disorders.
Collapse
Affiliation(s)
- Reza Raeisossadati
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil.,Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Merari F R Ferrari
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil
| | | | - Issam AlDiri
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey M Gross
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Yang K, Liu J, Zhang X, Ren Z, Gao L, Wang Y, Lin W, Ma X, Hao M, Kuang H. H3 Relaxin Alleviates Migration, Apoptosis and Pyroptosis Through P2X7R-Mediated Nucleotide Binding Oligomerization Domain-Like Receptor Protein 3 Inflammasome Activation in Retinopathy Induced by Hyperglycemia. Front Pharmacol 2020; 11:603689. [PMID: 33584279 PMCID: PMC7873867 DOI: 10.3389/fphar.2020.603689] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction: P2X7R excitation-interrelated NLRP3 inflammasome activation induced by high glucose contributes to the pathogenesis of diabetic retinopathy (DR). Relaxin-3 is a bioactive peptide with a structure similar to insulin, which has been reported to be effective in diabetic cardiomyopathy models in vivo and in vitro. However, it is not known whether relaxin-3 has a beneficial impact on DR, and the underlying mechanisms of the effect are also remain unknown. Methods and Results: The retinas of male streptozotocin (STZ)-induced diabetic Sprague-Dawley (SD) rats were characterized. Human retinal microvascular endothelial cells (HRMECs) were used to evaluate the anti-inflammatory, antiapoptotic, antipyroptotic and anti-migration effects of H3 relaxin by transmission electron microscopy, wound-healing assay, transwell assay, flow cytometry, cytokine assays and western-blot analysis. After H3 relaxin treatment, changes of the ultrastructure and expression of NLRP3 inflammasome related proteins in the retinas of rats were compared with those in the diabetic group. In vitro, H3 relaxin played a beneficial role that decreased cell inflammation, apoptosis, pyroptosis and migration stimulated by advanced glycation end products (AGEs). Moreover, inhibition of P2X7R and NLRP3 inflammasome activation decreased NLRP3 inflammasome-mediated injury that similar to the effects of H3 relaxin. H3 relaxin suppressed the stimulation of apoptosis, pyroptosis and migration of HRMECs in response to AGEs mediated by P2X7R activation of the NLRP3 inflammasome. Conclusion: Our findings provide new insights into the mechanisms of the inhibitory effect of H3 relaxin on AGE-induced retinal injury, including migration, apoptosis and pyroptosis, mediated by P2X7R-dependent activation of the NLRP3 inflammasome in HRMECs.
Collapse
Affiliation(s)
- Kelaier Yang
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiannan Liu
- The Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohui Zhang
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziqi Ren
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Gao
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Wang
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjian Lin
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuefei Ma
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Hao
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Kuang
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Diabetic Retinopathy: The Role of Mitochondria in the Neural Retina and Microvascular Disease. Antioxidants (Basel) 2020; 9:antiox9100905. [PMID: 32977483 PMCID: PMC7598160 DOI: 10.3390/antiox9100905] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR), a common chronic complication of diabetes mellitus and the leading cause of vision loss in the working-age population, is clinically defined as a microvascular disease that involves damage of the retinal capillaries with secondary visual impairment. While its clinical diagnosis is based on vascular pathology, DR is associated with early abnormalities in the electroretinogram, indicating alterations of the neural retina and impaired visual signaling. The pathogenesis of DR is complex and likely involves the simultaneous dysregulation of multiple metabolic and signaling pathways through the retinal neurovascular unit. There is evidence that microvascular disease in DR is caused in part by altered energetic metabolism in the neural retina and specifically from signals originating in the photoreceptors. In this review, we discuss the main pathogenic mechanisms that link alterations in neural retina bioenergetics with vascular regression in DR. We focus specifically on the recent developments related to alterations in mitochondrial metabolism including energetic substrate selection, mitochondrial function, oxidation-reduction (redox) imbalance, and oxidative stress, and critically discuss the mechanisms of these changes and their consequences on retinal function. We also acknowledge implications for emerging therapeutic approaches and future research directions to find novel mitochondria-targeted therapeutic strategies to correct bioenergetics in diabetes. We conclude that retinal bioenergetics is affected in the early stages of diabetes with consequences beyond changes in ATP content, and that maintaining mitochondrial integrity may alleviate retinal disease.
Collapse
|
32
|
Kim D, Roy S. Effects of Diabetes on Mitochondrial Morphology and Its Implications in Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2020; 61:10. [PMID: 32756920 PMCID: PMC7441301 DOI: 10.1167/iovs.61.10.10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose To determine whether high glucose (HG) or diabetes alters mitochondrial morphology and promotes mitochondrial fragmentation in retinal vascular cells and thereby triggers apoptosis associated with diabetic retinopathy. Methods To assess whether diabetes promotes mitochondrial fragmentation and thereby triggers apoptosis, retinas from nondiabetic and diabetic rats were analyzed using electron microscopy (EM) and in parallel, wild-type, diabetic, and OPA1+/- mice were analyzed for optic atrophy gene 1 (OPA1) and cytochrome c levels using Western blot (WB) analysis. To assess the relationship between mitochondrial fragmentation and OPA1 levels, rat retinal endothelial cells (RRECs) were grown in normal (N; 5 mmol/L) medium, HG (30 mmol/L) medium, or in N medium transfected with OPA1 siRNA for seven days. Cells were examined for OPA1 expression and cytochrome c release by WB. In parallel, cells were stained with MitoTracker Red and assessed for mitochondrial fragmentation in live cells using confocal microscopy. Results EM images revealed significant mitochondrial fragmentation in vascular cells of retinal capillaries of diabetic rats compared with that of nondiabetic rats. WB analysis showed significant OPA1 downregulation concomitant with increased levels of proapoptotic cytochrome c levels in cells grown in HG and in cells transfected with OPA1 siRNA alone. Similarly, OPA1 level was significantly reduced in diabetic retinas compared with that of nondiabetic retinas. Interestingly, OPA1+/- animals exhibited elevated cytochrome c release similar to those of diabetic mice. Conclusions Findings indicate that diabetes promotes mitochondrial fragmentation in retinal vascular cells, which are driven, at least in part, by decreased OPA1 levels leading to apoptosis in diabetic retinopathy.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Cells, Cultured
- Cytochromes c/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetic Retinopathy/metabolism
- Diabetic Retinopathy/pathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Glucose/pharmacology
- Mice
- Mice, Inbred C57BL
- Microscopy, Confocal
- Microscopy, Electron
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondrial Diseases/metabolism
- Mitochondrial Diseases/pathology
- RNA, Small Interfering/genetics
- Rats
- Rats, Sprague-Dawley
- Retinal Vessels/pathology
- Transfection
Collapse
Affiliation(s)
- Dongjoon Kim
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
33
|
Mise K, Galvan DL, Danesh FR. Shaping Up Mitochondria in Diabetic Nephropathy. ACTA ACUST UNITED AC 2020; 1:982-992. [PMID: 34189465 DOI: 10.34067/kid.0002352020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitochondrial medicine has experienced significant progress in recent years and is expected to grow significantly in the near future, yielding many opportunities to translate novel bench discoveries into clinical medicine. Multiple lines of evidence have linked mitochondrial dysfunction to a variety of metabolic diseases, including diabetic nephropathy (DN). Mitochondrial dysfunction presumably precedes the emergence of key histologic and biochemical features of DN, which provides the rationale to explore mitochondrial fitness as a novel therapeutic target in patients with DN. Ultimately, the success of mitochondrial medicine is dependent on a better understanding of the underlying biology of mitochondrial fitness and function. To this end, recent advances in mitochondrial biology have led to new understandings of the potential effect of mitochondrial dysfunction in a myriad of human pathologies. We have proposed that molecular mechanisms that modulate mitochondrial dynamics contribute to the alterations of mitochondrial fitness and progression of DN. In this comprehensive review, we highlight the possible effects of mitochondrial dysfunction in DN, with the hope that targeting specific mitochondrial signaling pathways may lead to the development of new drugs that mitigate DN progression. We will outline potential tools to improve mitochondrial fitness in DN as a novel therapeutic strategy. These emerging views suggest that the modulation of mitochondrial fitness could serve as a key target in ameliorating progression of kidney disease in patients with diabetes.
Collapse
Affiliation(s)
- Koki Mise
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel L Galvan
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farhad R Danesh
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
34
|
Jiang D, Chen FX, Zhou H, Lu YY, Tan H, Yu SJ, Yuan J, Liu H, Meng W, Jin ZB. Bioenergetic Crosstalk between Mesenchymal Stem Cells and various Ocular Cells through the intercellular trafficking of Mitochondria. Theranostics 2020; 10:7260-7272. [PMID: 32641991 PMCID: PMC7330858 DOI: 10.7150/thno.46332] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/24/2020] [Indexed: 12/29/2022] Open
Abstract
Rationale: Mitochondrial disorders preferentially affect tissues with high energy requirements, such as the retina and corneal endothelium, in human eyes. Mesenchymal stem cell (MSC)-based treatment has been demonstrated to be beneficial for ocular degeneration. However, aside from neuroprotective paracrine actions, the mechanisms underlying the beneficial effect of MSCs on retinal and corneal tissues are largely unknown. In this study, we investigated the fate and associated characteristics of mitochondria subjected to intercellular transfer from MSCs to ocular cells. Methods: MSCs were cocultured with corneal endothelial cells (CECs), 661W cells (a photoreceptor cell line) and ARPE-19 cells (a retinal pigment epithelium cell line). Immunofluorescence, fluorescence activated cell sorting and confocal microscopy imaging were employed to investigate the traits of intercellular mitochondrial transfer and the fate of transferred mitochondria. The oxygen consumption rate of recipient cells was measured to investigate the effect of intercellular mitochondrial transfer. Transcriptome analysis was performed to investigate the expression of metabolic genes in recipient cells with donated mitochondria. Results: Mitochondrial transport is a ubiquitous intercellular mechanism between MSCs and various ocular cells, including the corneal endothelium, retinal pigmented epithelium, and photoreceptors. Additionally, our results indicate that the donation process depends on F-actin-based tunneling nanotubes. Rotenone-pretreated cells that received mitochondria from MSCs displayed increased aerobic capacity and upregulation of mitochondrial genes. Furthermore, living imaging determined the ultimate fate of transferred mitochondria through either degradation by lysosomes or exocytosis as extracellular vesicles. Conclusions: For the first time, we determined the characteristics and fate of mitochondria undergoing intercellular transfer from MSCs to various ocular cells through F-actin-based tunneling nanotubes, helping to characterize MSC-based treatment for ocular tissue regeneration.
Collapse
|
35
|
Kowluru RA, Mohammad G. Epigenetics and Mitochondrial Stability in the Metabolic Memory Phenomenon Associated with Continued Progression of Diabetic Retinopathy. Sci Rep 2020; 10:6655. [PMID: 32313015 PMCID: PMC7171070 DOI: 10.1038/s41598-020-63527-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Retinopathy continues to progress even when diabetic patients try to control their blood sugar, but the molecular mechanism of this 'metabolic memory' phenomenon remains elusive. Retinal mitochondria remain damaged and vicious cycle of free radicals continues to self-propagate. DNA methylation suppresses gene expression, and diabetes activates DNA methylation machinery. Our aim was to investigate the role of DNA methylation in continued compromised mitochondrial dynamics and genomic stability in diabetic retinopathy. Using retinal endothelial cells, incubated in 20 mM glucose for four days, followed by 5 mM glucose for four days, and retinal microvessels from streptozotocin-induced diabetic rats in poor glycemia for four months, followed by normal glycemia for four additional months, DNA methylation of mitochondrial fusion and mismatch repair proteins, Mfn2 and Mlh1 respectively, was determined. Retinopathy was detected in trypsin-digested microvasculature. Re-institution of good glycemia had no beneficial effect on hypermethylation of Mfn2 and Mlh1 and retinal function (electroretinogram), and the retinopathy continued to progress. However, intervention of good glycemia directly with DNA methylation inhibitors (Azacytidine or Dnmt1-siRNA), prevented Mfn2 and Mlh1 hypermethylation, and ameliorated retinal dysfunction and diabetic retinopathy. Thus, direct regulation of DNA methylation can prevent/reverse diabetic retinopathy by maintaining mitochondrial dynamics and DNA stability, and prevent retinal functional damage.
Collapse
MESH Headings
- Animals
- Azacitidine/pharmacology
- Cell Line
- DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- DNA Methylation
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/therapy
- Diabetic Retinopathy/chemically induced
- Diabetic Retinopathy/genetics
- Diabetic Retinopathy/pathology
- Diabetic Retinopathy/therapy
- Disease Progression
- Electroretinography
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Epigenesis, Genetic
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Glucose/adverse effects
- Humans
- Hyperglycemia/chemically induced
- Hyperglycemia/genetics
- Hyperglycemia/pathology
- Hyperglycemia/therapy
- Male
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- MutL Protein Homolog 1/genetics
- MutL Protein Homolog 1/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Wistar
- Retina/drug effects
- Retina/metabolism
- Retina/pathology
- Signal Transduction
- Streptozocin/administration & dosage
Collapse
Affiliation(s)
- Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA.
| | - Ghulam Mohammad
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
36
|
Qi X, Mitter SK, Yan Y, Busik JV, Grant MB, Boulton ME. Diurnal Rhythmicity of Autophagy Is Impaired in the Diabetic Retina. Cells 2020; 9:cells9040905. [PMID: 32272782 PMCID: PMC7226792 DOI: 10.3390/cells9040905] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 12/28/2022] Open
Abstract
Retinal homeostasis is under both diurnal and circadian regulation. We sought to investigate the diurnal expression of autophagy proteins in normal rodent retina and to determine if this is impaired in diabetic retinopathy. C57BL/6J mice and Bio-Breeding Zucker (BBZ) rats were maintained under a 12h/12h light/dark cycle and eyes, enucleated over a 24 h period. Eyes were also collected from diabetic mice with two or nine-months duration of type 1 diabetes (T1D) and Bio-Breeding Zucker diabetic rat (BBZDR/wor rats with 4-months duration of type 2 diabetes (T2D). Immunohistochemistry was performed for the autophagy proteins Atg7, Atg9, LC3 and Beclin1. These autophagy proteins (Atgs) were abundantly expressed in neural retina and endothelial cells in both mice and rats. A differential staining pattern was observed across the retinas which demonstrated a distinctive diurnal rhythmicity. All Atgs showed localization to retinal blood vessels with Atg7 being the most highly expressed. Analysis of the immunostaining demonstrated distinctive diurnal rhythmicity, of which Atg9 and LC3 shared a biphasic expression cycle with the highest level at 8:15 am and 8:15 pm. In contrast, Beclin1 revealed a 24-h cycle with the highest level observed at midnight. Atg7 was also on a 24-h cycle with peak expression at 8:15 am, coinciding with the first peak expression of Atg9 and LC3. In diabetic animals, there was a dramatic reduction in all four Atgs and the distinctive diurnal rhythmicity of these autophagy proteins was significantly impaired and phase shifted in both T1D and T2D animals. Restoration of diurnal rhythmicity and facilitation of autophagy protein expression may provide new treatment strategies for diabetic retinopathy.
Collapse
Affiliation(s)
- Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, AL 35294, USA; (X.Q.); (S.K.M.); (M.B.G.)
| | - Sayak K. Mitter
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, AL 35294, USA; (X.Q.); (S.K.M.); (M.B.G.)
| | - Yuanqing Yan
- Department of Neurosurgery, The University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Julia V. Busik
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, AL 35294, USA; (X.Q.); (S.K.M.); (M.B.G.)
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, AL 35294, USA; (X.Q.); (S.K.M.); (M.B.G.)
- Correspondence:
| |
Collapse
|
37
|
Ferrington DA, Fisher CR, Kowluru RA. Mitochondrial Defects Drive Degenerative Retinal Diseases. Trends Mol Med 2020; 26:105-118. [PMID: 31771932 PMCID: PMC6938541 DOI: 10.1016/j.molmed.2019.10.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023]
Abstract
Mitochondrial dysfunction is involved in the pathology of two major blinding retinal diseases, diabetic retinopathy (DR) and age-related macular degeneration (AMD). These diseases accumulate mitochondrial defects in distinct retinal subcellular structures, the vascular/neural network in DR and the retinal pigment epithelium (RPE) in AMD. These mitochondrial defects cause a metabolic crisis that drives disease. With no treatments to stop these diseases, coupled with an increasing population suffering from AMD and DR, there is an urgent need to develop new therapeutics targeting the mitochondria to prevent or reverse disease-specific pathology.
Collapse
Affiliation(s)
- Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences and Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Cody R Fisher
- Department of Ophthalmology and Visual Neurosciences and Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Renu A Kowluru
- Ophthalmology, Vision, and Anatomical Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
38
|
Hombrebueno JR, Cairns L, Dutton LR, Lyons TJ, Brazil DP, Moynagh P, Curtis TM, Xu H. Uncoupled turnover disrupts mitochondrial quality control in diabetic retinopathy. JCI Insight 2019; 4:129760. [PMID: 31661466 PMCID: PMC6962019 DOI: 10.1172/jci.insight.129760] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/23/2019] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial quality control (MQC) is crucial for regulating CNS homeostasis, and its disruption has been implicated in the pathogenesis of some of the most common neurodegenerative diseases. In healthy tissues, the maintenance of MQC depends upon an exquisite balance between mitophagy (removal of damaged mitochondria by autophagy) and biogenesis (de novo synthesis of mitochondria). Here, we show that mitophagy is disrupted in diabetic retinopathy (DR) and decoupled from mitochondrial biogenesis during the progression of the disease. Diabetic retinas from human postmortem donors and experimental mice exhibit a net loss of mitochondrial contents during the early stages of the disease process. Using diabetic mitophagy-reporter mice (mitoQC-Ins2Akita) alongside pMitoTimer (a molecular clock to address mitochondrial age dynamics), we demonstrate that mitochondrial loss arose due to an inability of mitochondrial biogenesis to compensate for diabetes-exacerbated mitophagy. However, as diabetes duration increases, Pink1-dependent mitophagy deteriorates, leading to the build-up of mitochondria primed for degradation in DR. Impairment of mitophagy during prolonged diabetes is linked with the development of retinal senescence, a phenotype that blunted hyperglycemia-induced mitophagy in mitoQC primary Müller cells. Our findings suggest that normalizing mitochondrial turnover may preserve MQC and provide therapeutic options for the management of DR-associated complications. Uncoupled mitophagy and mitochondrial biogenesis leads to mitochondrial damage in the retina during the progression of diabetes.
Collapse
Affiliation(s)
- Jose R Hombrebueno
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lauren Cairns
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Louise R Dutton
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Timothy J Lyons
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.,Division of Endocrinology and Diabetes, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Derek P Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Paul Moynagh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.,Institute of Immunology, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | - Tim M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
39
|
Mitochondrial Structural Changes in the Pathogenesis of Diabetic Retinopathy. J Clin Med 2019; 8:jcm8091363. [PMID: 31480638 PMCID: PMC6780143 DOI: 10.3390/jcm8091363] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
At the core of proper mitochondrial functionality is the maintenance of its structure and morphology. Physical changes in mitochondrial structure alter metabolic pathways inside mitochondria, affect mitochondrial turnover, disturb mitochondrial dynamics, and promote mitochondrial fragmentation, ultimately triggering apoptosis. In high glucose condition, increased mitochondrial fragmentation contributes to apoptotic death in retinal vascular and Müller cells. Although alterations in mitochondrial morphology have been detected in several diabetic tissues, it remains to be established in the vascular cells of the diabetic retina. From a mechanistic standpoint, our current work supports the notion that increased expression of fission genes and decreased expression of fusion genes are involved in promoting excessive mitochondrial fragmentation. While mechanistic insights are only beginning to reveal how high glucose alters mitochondrial morphology, the consequences are clearly seen as release of cytochrome c from fragmented mitochondria triggers apoptosis. Current findings raise the prospect of targeting excessive mitochondrial fragmentation as a potential therapeutic strategy for treatment of diabetic retinopathy. While biochemical and epigenetic changes have been reported to be associated with mitochondrial dysfunction, this review focuses on alterations in mitochondrial morphology, and their impact on mitochondrial function and pathogenesis of diabetic retinopathy.
Collapse
|
40
|
Platania CBM, Maisto R, Trotta MC, D'Amico M, Rossi S, Gesualdo C, D'Amico G, Balta C, Herman H, Hermenean A, Ferraraccio F, Panarese I, Drago F, Bucolo C. Retinal and circulating miRNA expression patterns in diabetic retinopathy: An in silico and in vivo approach. Br J Pharmacol 2019; 176:2179-2194. [PMID: 30883703 PMCID: PMC6555853 DOI: 10.1111/bph.14665] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Diabetic retinopathy, a secondary complication of diabetes mellitus, can lead to irreversible vision loss. Currently, no treatment is approved for early phases of diabetic retinopathy. Modifications of the expression pattern of miRNAs could be involved in the early retinal damage of diabetic subjects. Therefore, we aimed at identification of dysregulated miRNAs-mRNA interactions that might be biomarkers and pharmacological targets for diagnosis and treatment of early diabetic retinopathy. METHODS A focused set of miRNAs was predicted through a bioinformatic analysis accessing to Gene Expression Omnibus dataset and enrichment of information approach (GENEMANIA-Cytoscape). Identification of miRNAs-mRNA interactions was carried out with miRNET analysis. Diabetes was induced in C57BL6J mice by streptozotocin and samples analysed at 5 and 10 weeks after diabetes induction. Retinal ultrastructure of diabetic mice was analysed through electron microscopy. We used Real-time PCR, western blot analysis, elisa, and immunohistochemistry to study expression of miRNAs and possible targets of dysregulated miRNAs. KEY RESULTS We found that miR-20a-5p, miR-20a-3p, miR-20b, miR-106a-5p, miR-27a-5p, miR-27b-3p, miR-206-3p, and miR-381-3p were dysregulated in the retina and serum of diabetic mice. VEGF, brain-derived neurotrophic factor (BDNF), PPAR-α, and cAMP response element-binding protein 1 (CREB1) are targets of dysregulated miRNAs, which then modulated protein expression in diabetic retina. We found structural modifications in retinas from diabetic mice. CONCLUSIONS AND IMPLICATIONS Serum and retina of diabetic mice express eight dysregulated miRNAs, which modified the expression of VEGF, BDNF, PPAR-α, and CREB1, before vasculopathy in diabetic retinas.
Collapse
Affiliation(s)
| | - Rosa Maisto
- Department of Experimental Medicine, Division of PharmacologyUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, Division of PharmacologyUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Michele D'Amico
- Department of Experimental Medicine, Division of PharmacologyUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Carlo Gesualdo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | | | - Cornel Balta
- Institute of Life SciencesVasile Godis Western University of AradAradRomania
| | - Hildegard Herman
- Institute of Life SciencesVasile Godis Western University of AradAradRomania
| | - Anca Hermenean
- Institute of Life SciencesVasile Godis Western University of AradAradRomania
- Department of Biochemistry and Molecular BiologyUniversity of BucharestBucharestRomania
| | - Franca Ferraraccio
- Pathology Unit, Department of Mental and Physical Health and Preventive MedicineUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Iacopo Panarese
- Pathology Unit, Department of Mental and Physical Health and Preventive MedicineUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of MedicineUniversity of CataniaCataniaItaly
- Center for Research in Ocular Pharmacology—CERFOUniversity of CataniaCataniaItaly
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of MedicineUniversity of CataniaCataniaItaly
- Center for Research in Ocular Pharmacology—CERFOUniversity of CataniaCataniaItaly
| |
Collapse
|
41
|
Duraisamy AJ, Mohammad G, Kowluru RA. Mitochondrial fusion and maintenance of mitochondrial homeostasis in diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1617-1626. [PMID: 30922813 DOI: 10.1016/j.bbadis.2019.03.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 01/01/2023]
Abstract
Mitochondria are dynamic in structure, and undergo continuous fusion-fission to maintain their homeostasis. In diabetes, retinal mitochondria are swollen, their membrane is damaged and mitochondrial fusion protein, mitofusin 2 (Mfn2), is decreased. DNA methylation machinery is also activated and methylation status of genes implicated in mitochondrial damage and biogenesis is altered. This study aims to investigate the role of mitochondrial fusion in the development of diabetic retinopathy, and to illustrate the molecular mechanism responsible for Mfn2 suppression. Using human retinal endothelial cells, manipulated for Mfn2, we investigated the role of fusion in mitochondrial structural and functional damage in diabetes. The molecular mechanism of its suppression in diabetic milieu was determined by investigating Mfn2 promoter DNA methylation, and confirmed using molecular and pharmacological inhibitors of DNA methylation. Similar studies were performed in the retinal microvasculature (prepared by hypotonic shock method) of diabetic rats, and human donors with documented diabetic retinopathy. Overexpression of Mfn2 prevented glucose-induced increase in mitochondrial fragmentation, decrease in complex III activity and increase in membrane permeability, mtDNA damage and apoptosis. High glucose hypermethylated Mfn2 promoter and decreased transcription factor (SP1) binding, and Dnmt inhibition protected Mfn2 promoter from these changes. In streptozotocin-induced diabetic rats, intravitreal administration of Dnmt1-siRNA attenuated Mfn2 promoter hypermethylation and restored its expression. Human donors with diabetic retinopathy confirmed Mfn2 promoter DNA hypermethylation. Thus, regulating Mfn2 and its epigenetic modifications by molecular/pharmacological means will protect mitochondrial homeostasis in diabetes, and could attenuate the development of retinopathy in diabetic patients.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Cell Line
- DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- DNA Methylation
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Retinopathy/genetics
- Diabetic Retinopathy/metabolism
- Diabetic Retinopathy/pathology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Epigenesis, Genetic
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Homeostasis/genetics
- Humans
- Male
- Middle Aged
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondrial Dynamics
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Promoter Regions, Genetic
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Wistar
- Retina/metabolism
- Retina/pathology
- Signal Transduction
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Streptozocin/administration & dosage
Collapse
Affiliation(s)
- Arul J Duraisamy
- Kresge Eye Institute, Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, MI, United States of America
| | - Ghulam Mohammad
- Kresge Eye Institute, Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, MI, United States of America
| | - Renu A Kowluru
- Kresge Eye Institute, Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, MI, United States of America.
| |
Collapse
|
42
|
Chang JYA, Yu F, Shi L, Ko ML, Ko GYP. Melatonin Affects Mitochondrial Fission/Fusion Dynamics in the Diabetic Retina. J Diabetes Res 2019; 2019:8463125. [PMID: 31098384 PMCID: PMC6487082 DOI: 10.1155/2019/8463125] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/14/2019] [Accepted: 02/10/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial fission and fusion are dependent on cellular nutritional states, and maintaining this dynamics is critical for the health of cells. Starvation triggers mitochondrial fusion to maintain bioenergetic efficiency, but during nutrient overloads (as with hyperglycemic conditions), fragmenting mitochondria is a way to store nutrients to avoid waste of energy. In addition to ATP production, mitochondria play an important role in buffering intracellular calcium (Ca2+). We found that in cultured 661W cells, a photoreceptor-derived cell line, hyperglycemic conditions triggered an increase of the expression of dynamin-related protein 1 (DRP1), a protein marker of mitochondrial fission, and a decrease of mitofusin 2 (MFN2), a protein for mitochondrial fusion. Further, these hyperglycemic cells also had decreased mitochondrial Ca2+ but increased cytosolic Ca2+. Treating these hyperglycemic cells with melatonin, a multifaceted antioxidant, averted hyperglycemia-altered mitochondrial fission-and-fusion dynamics and mitochondrial Ca2+ levels. To mimic how people most commonly take melatonin supplements, we gave melatonin to streptozotocin- (STZ-) induced type 1 diabetic mice by daily oral gavage and determined the effects of melatonin on diabetic eyes. We found that melatonin was not able to reverse the STZ-induced systemic hyperglycemic condition, but it prevented STZ-induced damage to the neural retina and retinal microvasculature. The beneficial effects of melatonin in the neural retina in part were through alleviating STZ-caused changes in mitochondrial dynamics and Ca2+ buffering.
Collapse
Affiliation(s)
- Janet Ya-An Chang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
- Interdisciplinary Toxicology Program, Texas A&M University, College Station, Texas, USA
| | - Fei Yu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Liheng Shi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Michael L. Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Gladys Y.-P. Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
- Interdisciplinary Toxicology Program, Texas A&M University, College Station, Texas, USA
- Texas A&M Institute of Neuroscience, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
43
|
Dierschke SK, Miller WP, Favate JS, Shah P, Imamura Kawasawa Y, Salzberg AC, Kimball SR, Jefferson LS, Dennis MD. O-GlcNAcylation alters the selection of mRNAs for translation and promotes 4E-BP1-dependent mitochondrial dysfunction in the retina. J Biol Chem 2019; 294:5508-5520. [PMID: 30733333 PMCID: PMC6462503 DOI: 10.1074/jbc.ra119.007494] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/31/2019] [Indexed: 02/05/2023] Open
Abstract
Diabetes promotes the posttranslational modification of proteins by O-linked addition of GlcNAc (O-GlcNAcylation) to Ser/Thr residues of proteins and thereby contributes to diabetic complications. In the retina of diabetic mice, the repressor of mRNA translation, eIF4E-binding protein 1 (4E-BP1), is O-GlcNAcylated, and sequestration of the cap-binding protein eukaryotic translation initiation factor (eIF4E) is enhanced. O-GlcNAcylation has also been detected on several eukaryotic translation initiation factors and ribosomal proteins. However, the functional consequence of this modification is unknown. Here, using ribosome profiling, we evaluated the effect of enhanced O-GlcNAcylation on retinal gene expression. Mice receiving thiamet G (TMG), an inhibitor of the O-GlcNAc hydrolase O-GlcNAcase, exhibited enhanced retinal protein O-GlcNAcylation. The principal effect of TMG on retinal gene expression was observed in ribosome-associated mRNAs (i.e. mRNAs undergoing translation), as less than 1% of mRNAs exhibited changes in abundance. Remarkably, ∼19% of the transcriptome exhibited TMG-induced changes in ribosome occupancy, with 1912 mRNAs having reduced and 1683 mRNAs having increased translational rates. In the retina, the effect of O-GlcNAcase inhibition on translation of specific mitochondrial proteins, including superoxide dismutase 2 (SOD2), depended on 4E-BP1/2. O-GlcNAcylation enhanced cellular respiration and promoted mitochondrial superoxide levels in WT cells, and 4E-BP1/2 deletion prevented O-GlcNAcylation-induced mitochondrial superoxide in cells in culture and in the retina. The retina of diabetic WT mice exhibited increased reactive oxygen species levels, an effect not observed in diabetic 4E-BP1/2-deficient mice. These findings provide evidence for a mechanism whereby diabetes-induced O-GlcNAcylation promotes oxidative stress in the retina by altering the selection of mRNAs for translation.
Collapse
Affiliation(s)
- Sadie K Dierschke
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - William P Miller
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - John S Favate
- the Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - Premal Shah
- the Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - Yuka Imamura Kawasawa
- the Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, and
| | - Anna C Salzberg
- the Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Scot R Kimball
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Leonard S Jefferson
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Michael D Dennis
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033,
| |
Collapse
|
44
|
Kowluru RA. Mitochondrial Stability in Diabetic Retinopathy: Lessons Learned From Epigenetics. Diabetes 2019; 68:241-247. [PMID: 30665952 PMCID: PMC6341304 DOI: 10.2337/dbi18-0016] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022]
Abstract
Diabetic retinopathy remains the leading cause of acquired blindness in working-age adults. While the cutting-edge research in the field has identified many molecular, functional, and structural abnormalities, the exact molecular mechanism of this devastating disease remains obscure. Diabetic environment drives dysfunction of the power generator of the cell and disturbs the homeostasis of mitochondrial dynamic. Mitochondrial DNA (mtDNA) is damaged, the transcription of mtDNA-encoded genes is impaired, and the electron transport chain is compromised, fueling into a vicious cycle of free radicals. The hyperglycemic milieu also alters the epigenetic machinery, and mtDNA and other genes associated with mitochondrial homeostasis are epigenetically modified, further contributing to the mitochondrial damage. Thus, mitochondria appear to have a significant role in the development of diabetic retinopathy, and unraveling the mechanism responsible for their damage as well as the role of epigenetic modifications in mitochondrial homeostasis should identify novel therapeutic targets. This will have a major impact on inhibiting/halting diabetic retinopathy and preventing the loss of vision.
Collapse
Affiliation(s)
- Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI
| |
Collapse
|
45
|
Teodoro JS, Nunes S, Rolo AP, Reis F, Palmeira CM. Therapeutic Options Targeting Oxidative Stress, Mitochondrial Dysfunction and Inflammation to Hinder the Progression of Vascular Complications of Diabetes. Front Physiol 2019; 9:1857. [PMID: 30705633 PMCID: PMC6344610 DOI: 10.3389/fphys.2018.01857] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022] Open
Abstract
Type 2 diabetes mellitus is a leading cause of morbidity and mortality worldwide, given its serious associated complications. Despite constant efforts and intensive research, an effective, ubiquitous treatment still eludes the scientific community. As such, the identification of novel avenues of research is key to the potential discovery of this evasive "silver bullet." We focus on this review on the matter of diabetic injury to endothelial tissue and some of the pivotal underlying mechanisms, including hyperglycemia and hyperlipidemia evoked oxidative stress and inflammation. In this sense, we revisited the most promising therapeutic interventions (both non-pharmacological and antidiabetic drugs) targeting oxidative stress and inflammation to hinder progression of vascular complications of diabetes. This review article gives particular attention to the relevance of mitochondrial function, an often ignored and understudied organelle in the vascular endothelium. We highlight the importance of mitochondrial function and number homeostasis in diabetic conditions and discuss the work conducted to address the aforementioned issue by the use of various therapeutic strategies. We explore here the functional, biochemical and bioenergetic alterations provoked by hyperglycemia in the endothelium, from elevated oxidative stress to inflammation and cell death, as well as loss of tissue function. Furthermore, we synthetize the literature regarding the current and promising approaches into dealing with these alterations. We discuss how known agents and therapeutic behaviors (as, for example, metformin, dietary restriction or antioxidants) can restore normality to mitochondrial and endothelial function, preserving the tissue's function and averting the aforementioned complications.
Collapse
Affiliation(s)
- João S Teodoro
- Center for Neurosciences and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sara Nunes
- Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal
| | - Anabela P Rolo
- Center for Neurosciences and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
46
|
Satari M, Aghadavod E, Mobini M, Asemi Z. Association between miRNAs expression and signaling pathways of oxidative stress in diabetic retinopathy. J Cell Physiol 2018; 234:8522-8532. [PMID: 30478922 DOI: 10.1002/jcp.27801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/31/2018] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy (DR) is a major cause of vision reduction in diabetic patients. Hyperglycemia is a known instigator for the development of DR, even though the role of oxidative stress pathways in the pathogenesis of DR is established. The studies indicate that microRNAs (miRNAs) are significant to the etiology of DR; changes in miRNAs expression levels may be associated with onset and progression of DR. In addition, miRNAs have emerged as a useful disease marker due to their availability and stability in detecting the severity of DR. The relationship between miRNAs expression levels and oxidative stress pathways has been investigated in several studies. The aim of this study is the examination of function and expression levels of target miRNAs in oxidative stress pathway and pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Mahbobeh Satari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Depatrment of Biochemistry, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Depatrment of Biochemistry, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Mobini
- Department of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Depatrment of Biochemistry, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
47
|
Kowluru RA, Mishra M. Therapeutic targets for altering mitochondrial dysfunction associated with diabetic retinopathy. Expert Opin Ther Targets 2018; 22:233-245. [PMID: 29436254 PMCID: PMC6088375 DOI: 10.1080/14728222.2018.1439921] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Retinopathy remains as one of the most feared blinding complications of diabetes, and with the prevalence of this life-long disease escalating at an alarming rate, the incidence of retinopathy is also climbing. Although the cutting edge research has identified many molecular mechanisms associated with its development, the exact mechanism how diabetes damages the retina remains obscure, limiting therapeutic options for this devastating disease. Areas covered: This review focuses on the central role of mitochondrial dysfunction/damage in the pathogenesis of diabetic retinopathy, and how damaged mitochondria initiates a self-perpetuating vicious cycles of free radicals. We have also reviewed how mitochondria could serve as a therapeutic target, and the challenges associated with the complex double mitochondrial membranes and a well-defined blood-retinal barrier for optimal pharmacologic/molecular approach to improve mitochondrial function. Expert opinion: Mitochondrial dysfunction provides many therapeutic targets for ameliorating the development of diabetic retinopathy including their biogenesis, DNA damage and epigenetic modifications. New technology to enhance pharmaceuticals uptake inside the mitochondria, nanotechnology to deliver drugs to the retina, and maintenance of mitochondrial homeostasis via lifestyle changes and novel therapeutics to prevent epigenetic modifications, could serve as some of the welcoming avenues for a diabetic patient to target this sight-threatening disease.
Collapse
Affiliation(s)
- Renu A Kowluru
- a Department of Ophthalmology, Kresge Eye Institute , Wayne State University , Detroit , MI , USA
| | - Manish Mishra
- a Department of Ophthalmology, Kresge Eye Institute , Wayne State University , Detroit , MI , USA
| |
Collapse
|
48
|
Williams M, Caino MC. Mitochondrial Dynamics in Type 2 Diabetes and Cancer. Front Endocrinol (Lausanne) 2018; 9:211. [PMID: 29755415 PMCID: PMC5934432 DOI: 10.3389/fendo.2018.00211] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are bioenergetic, biosynthetic, and signaling organelles that control various aspects of cellular and organism homeostasis. Quality control mechanisms are in place to ensure maximal mitochondrial function and metabolic homeostasis at the cellular level. Dysregulation of these pathways is a common theme in human disease. In this mini-review, we discuss how alterations of the mitochondrial network influences mitochondrial function, focusing on the molecular regulators of mitochondrial dynamics (organelle's shape and localization). We highlight similarities and critical differences in the mitochondrial network of cancer and type 2 diabetes, which may be relevant for treatment of these diseases.
Collapse
|
49
|
Bhansali S, Bhansali A, Walia R, Saikia UN, Dhawan V. Alterations in Mitochondrial Oxidative Stress and Mitophagy in Subjects with Prediabetes and Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2017; 8:347. [PMID: 29326655 PMCID: PMC5737033 DOI: 10.3389/fendo.2017.00347] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND AIM Hyperglycemia-mediated oxidative stress impedes cell-reparative process like autophagy, which has been implicated in impairment of β-cell function in type 2 diabetes mellitus (T2DM). However, the role of mitophagy (selective mitochondrial autophagy) in progression of hyperglycemia remains elusive. This study aimed to assess the impact of increasing severity of hyperglycemia on mitochondrial stress and mitophagy. DESIGN AND METHODS A case-control study included healthy controls, subjects with prediabetes, newly diagnosed T2DM (NDT2DM) and advanced duration of T2DM (ADT2DM) (n = 20 each). Mitochondrial stress indices, transcriptional and translational expression of mitophagy markers (PINK1, PARKIN, MFN2, NIX, LC3-II, and LAMP-2) and transmission electron microscopic (TEM) studies were performed in peripheral blood mononuclear cells. RESULTS With mild hyperglycemia in subjects with prediabetes, to moderate to severe hyperglycemia in NDT2DM and ADT2DM, a progressive rise in mitochondrial oxidative stress was observed. Prediabetic subjects exhibited significantly increased expression of mitophagy-related markers and showed a positive association with HOMA-β, whereas, patients with NDT2DM and ADT2DM demonstrated decreased expression, with a greater decline in ADT2DM subjects. TEM studies revealed significantly reduced number of distorted mitochondria in prediabetics, as compared to the T2DM patients. In addition, receiver operating characteristic analysis showed HbA1C > 7% (53 mmol/mol) was associated with attenuated mitophagy. CONCLUSION Increasing hyperglycemia is associated with progressive rise in oxidative stress and altered mitochondrial morphology. Sustenance of mitophagy at HbA1C < 7% (53 mmol/mol) strengthens the rationale of achieving HbA1C below this cutoff for good glycemic control. An "adaptive" increase in mitophagy may delay progression to T2DM by preserving the β-cell function in subjects with prediabetes.
Collapse
Affiliation(s)
- Shipra Bhansali
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anil Bhansali
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rama Walia
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Veena Dhawan
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
50
|
Masser DR, Otalora L, Clark NW, Kinter MT, Elliott MH, Freeman WM. Functional changes in the neural retina occur in the absence of mitochondrial dysfunction in a rodent model of diabetic retinopathy. J Neurochem 2017; 143:595-608. [PMID: 28902411 DOI: 10.1111/jnc.14216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy is a neurovascular diabetes complication resulting in vision loss. A wealth of literature reports retinal molecular changes indicative of neural deficits, inflammation, and vascular leakage with chronic diabetes, but the mechanistic causes of disease initiation and progression are unknown. Microvascular mitochondrial DNA (mtDNA) damage leading to mitochondrial dysfunction has been proposed to drive vascular dysfunction in retinopathy. However, growing evidence suggests that neural retina dysfunction precedes and may cause vascular damage. Therefore, we tested the hypothesis that neural mtDNA damage and mitochondrial dysfunction are an early initiating factor of neural diabetic retinopathy development in a rat streptozotocin-induced, Type I diabetes model. Mitochondrial function (oxygen consumption rates) was quantified in retinal synaptic terminals from diabetic and non-diabetic rats with paired retinal structural and function assessment (optical coherence tomography and electroretinography, respectively). Mitochondrial genome damage was assessed by identifying mutations and deletions across the mtDNA genome by high depth sequencing and absolute mtDNA copy number counting through digital PCR. Mitochondrial protein expression was assessed by targeted mass spectrometry. Retinal functional deficits and neural anatomical changes were present after 3 months of diabetes and prevented/normalized by insulin treatment. No marked dysfunction of mitochondrial activity, maladaptive changes in mitochondrial protein expression, alterations in mtDNA copy number, or increase in mtDNA damage was observed in conjunction with retinal functional and anatomical changes. These results demonstrate that neural retinal dysfunction with diabetes begins prior to mtDNA damage and dysfunction, and therefore retinal neurodegeneration initiation with diabetes occurs through other, non-mitochondrial DNA damage, mechanisms.
Collapse
Affiliation(s)
- Dustin R Masser
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Laura Otalora
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Reynolds Oklahoma Center on Aging, Oklahoma City, Oklahoma, USA.,Oklahoma Nathan Shock Center on Aging, Oklahoma City, Oklahoma, USA
| | - Nicholas W Clark
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Reynolds Oklahoma Center on Aging, Oklahoma City, Oklahoma, USA
| | - Michael T Kinter
- Oklahoma Nathan Shock Center on Aging, Oklahoma City, Oklahoma, USA.,Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Michael H Elliott
- Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Willard M Freeman
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Reynolds Oklahoma Center on Aging, Oklahoma City, Oklahoma, USA.,Oklahoma Nathan Shock Center on Aging, Oklahoma City, Oklahoma, USA
| |
Collapse
|