1
|
Hartman GD, Sishtla K, Kpenu EK, Mijit M, Muniyandi A, Jo HN, Junge HJ, Shaw A, Bischof D, Liu S, Wan J, Kelley MR, Corson TW. Ref-1 redox activity modulates canonical Wnt signaling in endothelial cells. Redox Biol 2025; 83:103646. [PMID: 40305885 DOI: 10.1016/j.redox.2025.103646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Ischemic retinopathies, including proliferative diabetic retinopathy (PDR) and retinopathy of prematurity (ROP), are characterized by abnormal retinal neovascularization and can lead to blindness in children and adults. Current treatments, such as intravitreal anti-VEGF injections, face limitations due to high treatment burden and variable efficacy, as multiple signaling pathways, beyond VEGF, contribute to retinal neovascularization. Previous studies demonstrate that targeting the redox-mediated transcriptional regulatory function of APE1/Ref-1 reduces pathological neovascularization. We aimed to identify novel signaling pathways regulated by Ref-1 redox activity utilizing RNA sequencing of human retinal endothelial cells (HRECs) treated with a Ref-1 redox inhibitor. We found that Wnt/β-catenin signaling was significantly downregulated after Ref-1 inhibition. Given the role of Wnt signaling in vascular pathologies, we investigated how Ref-1 regulates Wnt/β-catenin signaling. Ref-1 inhibition downregulated Wnt co-receptors LRP5/6 at both the mRNA and protein levels in endothelial cells, suggesting transcriptional regulation. Ref-1 redox inhibitors APX3330 and APX2009 reduced Wnt3a-induced nuclear β-catenin levels, decreased Wnt transcriptional activity by TOPFlash luciferase assay, and blocked hypoxia-induced Wnt/β-catenin activation in HRECs. In the oxygen-induced retinopathy mouse model of retinal neovascularization, Ref-1 specific inhibitor APX2009 reduced the expression of Wnt-related genes at sites of neovascularization. These findings reveal a novel role for Ref-1 redox activity in modulating Wnt/β-catenin signaling in endothelial cells and highlight the potential of Ref-1 redox activity targeted inhibitors as a novel therapeutic approach for retinal neovascular diseases by modulating multiple disease-relevant pathways.
Collapse
Affiliation(s)
- Gabriella D Hartman
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kamakshi Sishtla
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Eyram K Kpenu
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mahmut Mijit
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Anbukkarasi Muniyandi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ha-Neul Jo
- Department of Ophthalmology and Visual Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Harald J Junge
- Department of Ophthalmology and Visual Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Aaron Shaw
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniela Bischof
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics, Indiana University, Indianapolis, IN, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University, Indianapolis, IN, USA
| | - Mark R Kelley
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Timothy W Corson
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Lin JB, Apte RS. The Landscape of Vascular Endothelial Growth Factor Inhibition in Retinal Diseases. Invest Ophthalmol Vis Sci 2025; 66:47. [PMID: 39836404 PMCID: PMC11756608 DOI: 10.1167/iovs.66.1.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025] Open
Abstract
Ever since the US Food and Drug Administration (FDA) approved the first vascular endothelial growth factor (VEGF) antagonist 2 decades ago, inhibitors of VEGF have revolutionized the treatment of a variety of ocular disorders involving pathologic neovascularization and retinal exudation. In this perspective, we evaluate the current status of anti-VEGF therapies and the real-world challenges encountered with maintaining therapeutic outcomes. Finally, we describe novel VEGF-based and combinatorial approaches that are in clinical development.
Collapse
Affiliation(s)
- Joseph B. Lin
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
| | - Rajendra S. Apte
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|
3
|
Yi G, Li Z, Sun Y, Ma X, Wang Z, Chen J, Cai D, Zhang Z, Chen Z, Wu F, Cao M, Fu M. Integration of multi-omics transcriptome-wide analysis for the identification of novel therapeutic drug targets in diabetic retinopathy. J Transl Med 2024; 22:1146. [PMID: 39719581 DOI: 10.1186/s12967-024-05856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/02/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is the most important complication of Type 2 Diabetes (T2D) in eyes. Despite its prevalence, the early detection and management of DR continue to pose considerable challenges. Our research aims to elucidate potent drug targets that could facilitate the identification of DR and propel advancements in its therapeutic strategies. METHODS A broad multi-omics exploration of DR was presented to decipher the drug targets of DR and proliferative diabetic retinopathy (PDR). Transcriptome-Wide Association Studies (TWAS), fine-mapping and conditional analysis were applied to unearth potential tissue-specific gene associations with DR. Summary Data-based Mendelian Randomization (SMR) provided secondary analysis of high confidence genes. Cis-instrument of druggable genes were extracted from the eQTLGen Consortium and PsychENCODE, facilitating drug-target MR supported by colocalization analysis. Phenome-Wide Association Studies (PheWAS) was conducted on the high confidence genes. Metabolomic and immunomic MR-profiling further augmented our research as complement. RESULTS TWAS identified multiple robust genetic loci in both DR and PDR (WFS1, RPS26, and SRPK1) through genetic associations across different tissues. Meanwhile, we have delineated both the commonalities and discrepancies between DR and PDR at the transcriptomic level, represented by DCLRE1B as the hub gene that DR progressed into PDR. SMR revealed 92 key DR-related genes and 55 PDR-related genes. HLA-DQ family genes have a frequent occurrence, while RPS26, WFS1 and SRPK1 were validated as the genetic network's linchpins. Drug-target MR casted ERBB3 and SRPK1 as candidate effector genes for DR and PDR susceptibility. In addition, metabolomics and immunomics analyses also revealed multifaceted pathogenic factors for DR. CONCLUSIONS Our research offers targeted therapeutic insights for early-stage DR and facilitates multi-omic comparisons of it and PDR.
Collapse
Affiliation(s)
- Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China
- The Department of Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhengran Li
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxin Sun
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyu Ma
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China
| | - Zijin Wang
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinken Chen
- School of Architecture, South China University of Technology, Guangzhou, Guangdong, China
| | - Dong Cai
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Ziran Zhang
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zejun Chen
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Fanye Wu
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingzhe Cao
- Department of Ophthalmology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China.
| |
Collapse
|
4
|
Lin P, Cao W, Chen X, Zhang N, Xing Y, Yang N. Role of mRNA-binding proteins in retinal neovascularization. Exp Eye Res 2024; 242:109870. [PMID: 38514023 DOI: 10.1016/j.exer.2024.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Retinal neovascularization (RNV) is a pathological process that primarily occurs in diabetic retinopathy, retinopathy of prematurity, and retinal vein occlusion. It is a common yet debilitating clinical condition that culminates in blindness. Urgent efforts are required to explore more efficient and less limiting therapeutic strategies. Key RNA-binding proteins (RBPs), crucial for post-transcriptional regulation of gene expression by binding to RNAs, are closely correlated with RNV development. RBP-RNA interactions are altered during RNV. Here, we briefly review the characteristics and functions of RBPs, and the mechanism of RNV. Then, we present insights into the role of the regulatory network of RBPs in RNV. HuR, eIF4E, LIN28B, SRSF1, METTL3, YTHDF1, Gal-1, HIWI1, and ZFR accelerate RNV progression, whereas YTHDF2 and hnRNPA2B1 hinder it. The mechanisms elucidated in this review provide a reference to guide the design of therapeutic strategies to reverse abnormal processes.
Collapse
Affiliation(s)
- Pei Lin
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Wenye Cao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Xuemei Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China; Department of Ophthalmology, Aier Eye Hospital of Wuhan University, Hubei, China.
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| |
Collapse
|
5
|
Vieira da Silva Torchelsen FK, Fernandes Pedrosa TC, Rodrigues MP, de Aguiar AR, de Oliveira FM, Amarante GW, Sales-Junior PA, Branquinho RT, Gomes da Silva SP, Talvani A, Fonseca Murta SM, Martins FT, Braun RL, Teixeira RR, Furtado Mosqueira VC, Lana MD. Novel diamides inspired by protein kinase inhibitors as anti- Trypanosoma cruzi agents: in vitro and in vivo evaluations. Future Med Chem 2023; 15:1469-1489. [PMID: 37650735 DOI: 10.4155/fmc-2023-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Background: Chagas disease is a life-threatening illness caused by Trypanosoma cruzi. The involvement of serine-/arginine-rich protein kinase in the T. cruzi life cycle is significant. Aims: To synthesize, characterize and evaluate the trypanocidal activity of diamides inspired by kinase inhibitor, SRPIN340. Material & Methods: Synthesis using a three-step process and characterization by infrared, nuclear magnetic resonance and high-resolution mass spectrometry were conducted. The selectivity index was obtained by the ratio of CC50/IC50 in two in vitro models. The most active compound, 3j, was evaluated using in vitro cytokine assays and assessing in vivo trypanocidal activity. Results: 3j activity in the macrophage J774 lineage showed an anti-inflammatory profile, and mice showed significantly reduced parasitemia and morbidity at low compound dosages. Conclusion: Novel diamide is active against T. cruzi in vitro and in vivo.
Collapse
Affiliation(s)
| | - Tamiles Caroline Fernandes Pedrosa
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | | | - Alex Ramos de Aguiar
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 30130-171, Brazil
| | | | - Giovanni Wilson Amarante
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | | | - Renata Tupinambá Branquinho
- Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Sirlaine Pio Gomes da Silva
- Programa de pós-graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - André Talvani
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
- Programa de pós-graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | | | - Felipe Terra Martins
- Departamento de Química, Universidade Federal de Goiás, Goiânia, Goiás, 74001-970, Brazil
| | - Rodrigo Ligabue Braun
- Departamento de Ciências Farmacêuticas, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Róbson Ricardo Teixeira
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 30130-171, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Marta de Lana
- Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
6
|
Su J, Yuan J, Xu L, Xing S, Sun M, Yao Y, Ma Y, Chen F, Jiang L, Li K, Yu X, Xue Z, Zhang Y, Fan D, Zhang J, Liu H, Liu X, Zhang G, Wang H, Zhou M, Lyu F, An G, Yu X, Xue Y, Yang J, Qu J. Sequencing of 19,219 exomes identifies a low-frequency variant in FKBP5 promoter predisposing to high myopia in a Han Chinese population. Cell Rep 2023; 42:112510. [PMID: 37171956 DOI: 10.1016/j.celrep.2023.112510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/13/2022] [Accepted: 04/28/2023] [Indexed: 05/14/2023] Open
Abstract
High myopia (HM) is one of the leading causes of visual impairment and blindness worldwide. Here, we report a whole-exome sequencing (WES) study in 9,613 HM cases and 9,606 controls of Han Chinese ancestry to pinpoint HM-associated risk variants. Single-variant association analysis identified three newly identified -genetic loci associated with HM, including an East Asian ancestry-specific low-frequency variant (rs533280354) in FKBP5. Multi-ancestry meta-analysis with WES data of 2,696 HM cases and 7,186 controls of European ancestry from the UK Biobank discerned a newly identified European ancestry-specific rare variant in FOLH1. Functional experiments revealed a mechanism whereby a single G-to-A transition at rs533280354 disrupted the binding of transcription activator KLF15 to the promoter of FKBP5, resulting in decreased transcription of FKBP5. Furthermore, burden tests showed a significant excess of rare protein-truncating variants among HM cases involved in retinal blood vessel morphogenesis and neurotransmitter transport.
Collapse
Affiliation(s)
- Jianzhong Su
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China.
| | - Jian Yuan
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Liangde Xu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Shilai Xing
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Institute of PSI Genomics, Wenzhou 325024, China
| | - Mengru Sun
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yinghao Yao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| | - Yunlong Ma
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Fukun Chen
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Longda Jiang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Kai Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| | - Xiangyi Yu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhengbo Xue
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yaru Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Dandan Fan
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ji Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hui Liu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xinting Liu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Guosi Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hong Wang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Meng Zhou
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Fan Lyu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China
| | - Gang An
- Institute of PSI Genomics, Wenzhou 325024, China
| | - Xiaoguang Yu
- Institute of PSI Genomics, Wenzhou 325024, China
| | - Yuanchao Xue
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| | - Jia Qu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China.
| |
Collapse
|
7
|
Fevereiro-Martins M, Marques-Neves C, Guimarães H, Bicho M. Retinopathy of prematurity: A review of pathophysiology and signaling pathways. Surv Ophthalmol 2023; 68:175-210. [PMID: 36427559 DOI: 10.1016/j.survophthal.2022.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Retinopathy of prematurity (ROP) is a vasoproliferative disorder of the retina and a leading cause of visual impairment and childhood blindness worldwide. The disease is characterized by an early stage of retinal microvascular degeneration, followed by neovascularization that can lead to subsequent retinal detachment and permanent visual loss. Several factors play a key role during the different pathological stages of the disease. Oxidative and nitrosative stress and inflammatory processes are important contributors to the early stage of ROP. Nitric oxide synthase and arginase play important roles in ischemia/reperfusion-induced neurovascular degeneration. Destructive neovascularization is driven by mediators of the hypoxia-inducible factor pathway, such as vascular endothelial growth factor and metabolic factors (succinate). The extracellular matrix is involved in hypoxia-induced retinal neovascularization. Vasorepulsive molecules (semaphorin 3A) intervene preventing the revascularization of the avascular zone. This review focuses on current concepts about signaling pathways and their mediators, involved in the pathogenesis of ROP, highlighting new potentially preventive and therapeutic modalities. A better understanding of the intricate molecular mechanisms underlying the pathogenesis of ROP should allow the development of more effective and targeted therapeutic agents to reduce aberrant vasoproliferation and facilitate physiological retinal vascular development.
Collapse
Affiliation(s)
- Mariza Fevereiro-Martins
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal; Departamento de Oftalmologia, Hospital Cuf Descobertas, Lisboa, Portugal.
| | - Carlos Marques-Neves
- Centro de Estudos das Ci.¼ncias da Visão, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Hercília Guimarães
- Departamento de Ginecologia-Obstetrícia e Pediatria, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| | - Manuel Bicho
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal.
| |
Collapse
|
8
|
Pimentel DC, Leopoldo JR, Teixeira LF, Barros MVDA, de Souza APM, Onofre TS, de Carvalho RL, Machado SA, Messias IG, Pinto CCDS, Poleto MD, Diogo MA, Mariotini-Moura C, Bressan GC, Teixeira RR, Fietto JLR, Vasconcellos RDS. First evidence of a serine arginine protein kinase (SRPK) in leishmania braziliensis and its potential as therapeutic target. Acta Trop 2023; 238:106801. [PMID: 36563831 DOI: 10.1016/j.actatropica.2022.106801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Leishmaniasis is a parasitic disease found in tropical and subtropical regions around the world, caused by parasites of the genus Leishmania. The disease is a public health concern and presents clinical manifestations that can cause death, disability, and mutilation. The parasite has promastigote (vector) and amastigote (vertebrate host) forms and kinase enzymes are involved in this differentiation process. In the present investigation, we show, for the first time, evidence of a serine/arginine protein kinase in Leshmania braziliensis (LbSRPK). Our results show that amastigotes express more LbSRPK than promastigotes. Analogues of SRPIN340 (a known inhibitor of SRPK) were evaluated for their leishmanicidal activity and two of them, namely SRVIC22 and SRVIC32 showed important leishmanicidal activity in vitro. SRVIC22 and SRVIC32 were able to reduce the infection rate in macrophages and the number of intracellular amastigotes by 55 and 60%, respectively. Bioinformatics analysis revealed the existence of two different amino acid residues in the active site of LbSRPK compared to their human homologue (Tyr/Leu-and Ser/Tyr), which could explain the absence of leishmanicidal activity of SRPIN340 on infected macrophages. In order to enhance leishmanicidal activity of the analogues, optimizations were proposed in the structures of the ligands, suggesting strong interactions with the catalytic site of LbSRPK. Although the evidence on the action of inhibitors upon LbSRPK is only indirect, our studies not only reveal, for the first time, evidence of a SRPK in Leishmania, but also shed light on a new therapeutic target for drug development.
Collapse
Affiliation(s)
- Débora Cristina Pimentel
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP, Viçosa, MG 36570-900, Brazil
| | - Juliana Rodrigues Leopoldo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP, Viçosa, MG 36570-900, Brazil
| | - Leilane Ferreira Teixeira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP, Viçosa, MG 36570-900, Brazil
| | - Marcus Vinícius de Andrade Barros
- Departamento de Química, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP, Viçosa, MG 36570-900, Brazil
| | - Ana Paula Martins de Souza
- Departamento de Química, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP, Viçosa, MG 36570-900, Brazil
| | - Thiago Souza Onofre
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rayane Luiza de Carvalho
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP, Viçosa, MG 36570-900, Brazil
| | - Sara Andrade Machado
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP, Viçosa, MG 36570-900, Brazil
| | - Isabelly Gonçalves Messias
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP, Viçosa, MG 36570-900, Brazil
| | - Carla Cristina de Souza Pinto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP, Viçosa, MG 36570-900, Brazil
| | - Marcelo Depolo Poleto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP, Viçosa, MG 36570-900, Brazil
| | - Marcel Arruda Diogo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP, Viçosa, MG 36570-900, Brazil
| | - Christiane Mariotini-Moura
- FAMINAS Muriaé, Bairro Universitário Muriaé, Av. Cristiano Ferreira Varella, 655, CEP, MG 36888-233, Brazil
| | - Gustavo Costa Bressan
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP, Viçosa, MG 36570-900, Brazil
| | - Robson Ricardo Teixeira
- Departamento de Química, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP, Viçosa, MG 36570-900, Brazil
| | - Juliana Lopes Rangel Fietto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP, Viçosa, MG 36570-900, Brazil
| | - Raphael de Souza Vasconcellos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP, Viçosa, MG 36570-900, Brazil.
| |
Collapse
|
9
|
Synthesis and Anti-Angiogenic Activity of Novel c(RGDyK) Peptide-Based JH-VII-139-1 Conjugates. Pharmaceutics 2023; 15:pharmaceutics15020381. [PMID: 36839704 PMCID: PMC9962512 DOI: 10.3390/pharmaceutics15020381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Peptide-drug conjugates are delivery systems for selective delivery of cytotoxic agents to target cancer cells. In this work, the optimized synthesis of JH-VII-139-1 and its c(RGDyK) peptide conjugates is presented. The low nanomolar SRPK1 inhibitor, JH-VII-139-1, which is an analogue of Alectinib, was linked to the ανβ3 targeting oligopeptide c(RGDyK) through amide, carbamate and urea linkers. The chemostability, cytotoxic and antiangiogenic properties of the synthesized hybrids were thoroughly studied. All conjugates retained mid nanomolar-level inhibitory activity against SRPK1 kinase and two out of four conjugates, geo75 and geo77 exhibited antiproliferative effects with low micromolar IC50 values against HeLa, K562, MDA-MB231 and MCF7 cancer cells. The activities were strongly related to the stability of the linkers and the release of JH-VII-139-1. In vivo zebrafish screening assays demonstrated the ability of the synthesized conjugates to inhibit the length or width of intersegmental vessels (ISVs). Flow cytometry experiments were used to test the cellular uptake of a fluorescein tagged hybrid in MCF7 and MDA-MB231 cells that revealed a receptor-mediated endocytosis process. In conclusion, most conjugates retained the inhibitory potency against SRPK1 as JH-VII-139-1 and demonstrated antiproliferative and antiangiogenic activities. Further animal model experiments are needed to uncover the full potential of such peptide conjugates in cancer therapy and angiogenesis-related diseases.
Collapse
|
10
|
Malhi NK, Allen CL, Stewart E, Horton KL, Riu F, Batson J, Amoaku W, Morris JC, Arkill KP, Bates DO. Serine-arginine-rich protein kinase-1 inhibition for the treatment of diabetic retinopathy. Am J Physiol Heart Circ Physiol 2022; 322:H1014-H1027. [PMID: 35302878 PMCID: PMC9109797 DOI: 10.1152/ajpheart.00001.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Angiogenic VEGF isoforms are upregulated in diabetic retinopathy (DR), driving pathological growth and fluid leakage. Serine-arginine-rich protein kinase-1 (SRPK1) regulates VEGF splicing, and its inhibition blocks angiogenesis. We tested the hypothesis that SRPK1 is activated in diabetes, and an SRPK1 inhibitor (SPHINX31) switches VEGF splicing in DR and prevents increased vascular permeability into the retina. SRPK1 was activated by high glucose (HG), in a PKC-dependent manner, and was blocked by SPHINX31. HG induced release of SRSF1 from the nuclear speckles, which was also SRPK1 dependent, and increased retinal pigment epithelial (RPE) monolayer admittance, which was reversed by SRPK1 inhibition (P < 0.05). Diabetes increased retinal permeability and thickness after 14 days which was blocked by treatment with SPHINX31 eye drops (P < 0.0001). These results show that SRPK1 inhibition, administered as an eye drop, protected the retinal barrier from hyperglycemia-associated loss of integrity in RPE cells in vitro and in diabetic rats in vivo. A clinical trial of another SRPK1 inhibitor has now been initiated in patients with diabetic macular edema.NEW & NOTEWORTHY VEGF-A165b splicing is induced by hyperglycemia through PKC-mediated activation of SRPK1 in RPE cells, increasing their permeability and angiogenic capability. SRPK1 inhibitors can be given as eye drops to reduce retinal permeability and edema in diabetic retinopathy.
Collapse
Affiliation(s)
- Naseeb K Malhi
- Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Claire L Allen
- Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | | | - Katherine L Horton
- Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Federica Riu
- Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | | | - Winfried Amoaku
- Division of Clinical Neuroscience, Department of Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jonathan C Morris
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Kenton P Arkill
- Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - David O Bates
- Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,Exonate Limited, Duxford, United Kingdom.,COMPARE, University of Birmingham and University of Nottingham Midlands, Nottingham, United Kingdom
| |
Collapse
|
11
|
Serine-Arginine Protein Kinase 1 (SRPK1): a systematic review of its multimodal role in oncogenesis. Mol Cell Biochem 2022; 477:2451-2467. [PMID: 35583632 PMCID: PMC9499919 DOI: 10.1007/s11010-022-04456-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022]
Abstract
Alternative splicing is implicated in each of the hallmarks of cancer, and is mechanised by various splicing factors. Serine-Arginine Protein Kinase 1 (SRPK1) is an enzyme which moderates the activity of splicing factors rich in serine/arginine domains. Here we review SRPK1’s relationship with various cancers by performing a systematic review of all relevant published data. Elevated SRPK1 expression correlates with advanced disease stage and poor survival in many epithelial derived cancers. Numerous pre-clinical studies investigating a host of different tumour types; have found increased SRPK1 expression to be associated with proliferation, invasion, migration and apoptosis in vitro as well as tumour growth, tumourigenicity and metastasis in vivo. Aberrant SRPK1 expression is implicated in various signalling pathways associated with oncogenesis, a number of which, such as the PI3K/AKT, NF-КB and TGF-Beta pathway, are implicated in multiple different cancers. SRPK1-targeting micro RNAs have been identified in a number of studies and shown to have an important role in regulating SRPK1 activity. SRPK1 expression is also closely related to the response of various tumours to platinum-based chemotherapeutic agents. Future clinical applications will likely focus on the role of SRPK1 as a biomarker of treatment resistance and the potential role of its inhibition.
Collapse
|
12
|
Kundinger SR, Dammer EB, Yin L, Hurst C, Shapley S, Ping L, Khoshnevis S, Ghalei H, Duong DM, Seyfried NT. Phosphorylation regulates arginine-rich RNA-binding protein solubility and oligomerization. J Biol Chem 2021; 297:101306. [PMID: 34673031 PMCID: PMC8569591 DOI: 10.1016/j.jbc.2021.101306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
Posttranslational modifications (PTMs) such as phosphorylation of RNA-binding proteins (RBPs) regulate several critical steps in RNA metabolism, including spliceosome assembly, alternative splicing, and mRNA export. Notably, serine-/arginine- (SR)-rich RBPs are densely phosphorylated compared with the remainder of the proteome. Previously, we showed that dephosphorylation of the splicing factor SRSF2 regulated increased interactions with similar arginine-rich RBPs U1-70K and LUC7L3. However, the large-scale functional and structural impact of these modifications on RBPs remains unclear. In this work, we dephosphorylated nuclear extracts using phosphatase in vitro and analyzed equal amounts of detergent-soluble and -insoluble fractions by mass-spectrometry-based proteomics. Correlation network analysis resolved 27 distinct modules of differentially soluble nucleoplasm proteins. We found classes of arginine-rich RBPs that decrease in solubility following dephosphorylation and enrich the insoluble pelleted fraction, including the SR protein family and the SR-like LUC7L RBP family. Importantly, increased insolubility was not observed across broad classes of RBPs. We determined that phosphorylation regulated SRSF2 structure, as dephosphorylated SRSF2 formed high-molecular-weight oligomeric species in vitro. Reciprocally, phosphorylation of SRSF2 by serine/arginine protein kinase 2 (SRPK2) in vitro decreased high-molecular-weight SRSF2 species formation. Furthermore, upon pharmacological inhibition of SRPKs in mammalian cells, we observed SRSF2 cytoplasmic mislocalization and increased formation of cytoplasmic granules as well as cytoplasmic tubular structures that associated with microtubules by immunocytochemical staining. Collectively, these findings demonstrate that phosphorylation may be a critical modification that prevents arginine-rich RBP insolubility and oligomerization.
Collapse
Affiliation(s)
- Sean R Kundinger
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Luming Yin
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Cheyenne Hurst
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Sarah Shapley
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Lingyan Ping
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | | | - Homa Ghalei
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
13
|
Leonidis G, Dalezis P, Trafalis D, Beis D, Giardoglou P, Koukiali A, Sigala I, Nikolakaki E, Sarli V. Synthesis and Biological Evaluation of a c(RGDyK) Peptide Conjugate of SRPIN803. ACS OMEGA 2021; 6:28379-28393. [PMID: 34723035 PMCID: PMC8552469 DOI: 10.1021/acsomega.1c04576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
In the present study, SRPIN803 and c(RGDyK)-SRPIN803 hybrid compounds were efficiently synthesized and evaluated for their stability in human plasma and buffers of pH 7.4 and 5.2. The hybrids were mainly cytostatic against a panel of tested cancer cells, whereas one c(RGDyK)-SRPIN803 hybrid, geo35, was the most active compound in this screen and was cytotoxic against cell lines MCF7 and MRC5 with IC50 values of 61 and 63 μM, respectively. SRPIN803 and geo35 exhibited antiangiogenic activity in zebrafish embryos, and this effect was dose-dependent. Although c(RGDyK)-SRPIN803 hybrid compounds were found less potent compared to SRPIN803, they have shown activities interesting enough to illustrate the potential of this approach for the development of a new class of antiangiogenic compounds.
Collapse
Affiliation(s)
- George Leonidis
- Department
of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Panagiotis Dalezis
- Laboratory
of Pharmacology, Medical School National
and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens 11527, Greece
| | - Dimitrios Trafalis
- Laboratory
of Pharmacology, Medical School National
and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens 11527, Greece
| | - Dimitris Beis
- Zebrafish
Disease Model Lab, Biomedical Research Foundation
Academy of Athens, Athens 115 27, Greece
| | - Panagiota Giardoglou
- Zebrafish
Disease Model Lab, Biomedical Research Foundation
Academy of Athens, Athens 115 27, Greece
| | - Anastasia Koukiali
- Department
of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Ioanna Sigala
- Department
of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Eleni Nikolakaki
- Department
of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Vasiliki Sarli
- Department
of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
14
|
Wei X, Xu S, Chen L. LncRNA Neat1/miR-298-5p/Srpk1 Contributes to Sevoflurane-Induced Neurotoxicity. Neurochem Res 2021; 46:3356-3364. [PMID: 34524595 DOI: 10.1007/s11064-021-03436-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023]
Abstract
Sevoflurane is a widely used volatile anesthetic, that can cause long-term neurotoxicity and learning and memory impairment. Long non-coding RNAs (lncRNAs) have been demonstrated to function as key mediators in neurotoxicity. This study aimed to investigate the effects of lncRNA Neat1 on sevoflurane-induced neurotoxicity. The expression of Neat1, miR-298-5p, and Srpk1 was measured by RT-qPCR. Cell viability, cell apoptosis, inflammation markers, and reactive oxygen species (ROS) generation were examined by CCK-8, TUNEL, ELISA, and the ROS kit. The interaction between miR-298-5p and Neat1 or Srpk1 was confirmed by luciferase reporter assay. In our study, it was found that sevoflurane aggravated neurotoxicity through inhibiting cell viability and enhancing cell apoptosis, neuroinflammation, and ROS generation. Neat1 was up-regulated in sevoflurane-treated HT22 cells, and Neat1 knockdown improved sevoflurane-mediated neurotoxicity. Through the exploration of the ceRNA mechanism, we found that Neat1 bound with miR-298-5p, and Srpk1 was a direct target gene of miR-298-5p. Finally, rescue assays proved that up-regulation of Srpk1 reversed the effects of Neat1 knockdown on neurotoxicity. In conclusion, our study revealed that lncRNA Neat1 facilitated sevoflurane-stimulated neurotoxicity by sponging miR-298-5p to up-regulate Srpk1. These findings might provide novel insights into the treatment of sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Xiang Wei
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, No. 415, Fengyang Road, Huangpu District, 200003, Shanghai, China
| | - Shan Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, No. 415, Fengyang Road, Huangpu District, 200003, Shanghai, China
| | - Liang Chen
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, No. 415, Fengyang Road, Huangpu District, 200003, Shanghai, China.
| |
Collapse
|
15
|
Li Q, Zeng C, Liu H, Yung KWY, Chen C, Xie Q, Zhang Y, Wan SWC, Mak BSW, Xia J, Xiong S, Ngo JCK. Protein-Protein Interaction Inhibitor of SRPKs Alters the Splicing Isoforms of VEGF and Inhibits Angiogenesis. iScience 2021; 24:102423. [PMID: 33997701 PMCID: PMC8102418 DOI: 10.1016/j.isci.2021.102423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/13/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Serine-arginine (SR) protein kinases (SRPKs) regulate the functions of the SR-rich splicing factors by phosphorylating multiple serines within their C-terminal arginine-serine-rich domains. Dysregulation of these phosphorylation events has been implicated in many diseases, suggesting SRPKs are potential therapeutic targets. In particular, aberrant SRPK1 expression alters the balances of proangiogenic (VEGF165) and antiangiogenic (VEGF165b) splicing isoforms of the key angiogenesis factor, vascular endothelial growth factor (VEGF), through the phosphorylation of prototypic SR protein SRSF1. Here, we report a protein-protein interaction (PPI) inhibitor of SRPKs, docking blocker of SRPK1 (DBS1), that specifically blocks a conserved substrate docking groove unique to SRPKs. DBS1 is a cell-permeable inhibitor that effectively inhibits the binding and phosphorylation of SRSF1 and subsequently switches VEGF splicing from the proangiogenic to the antiangiogenic isoform. Our findings thus provide a new direction for the development of SRPK inhibitors through targeting a unique PPI site to combat angiogenic diseases.
Collapse
Affiliation(s)
- Qingyun Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Hong Kong Branch of National Engineering Research Center of Genetic Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Chuyue Zeng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Haizhen Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Kristen Wing Yu Yung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Chun Chen
- Department of Cellular Biology, Jinan University, Guangzhou, China
| | - Qiuling Xie
- Department of Cellular Biology, Jinan University, Guangzhou, China
| | - Yu Zhang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Stephanie Winn Chee Wan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Bertha Sze Wing Mak
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Sheng Xiong
- Department of Cellular Biology, Jinan University, Guangzhou, China
- Hong Kong Branch of National Engineering Research Center of Genetic Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Hong Kong Branch of National Engineering Research Center of Genetic Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
16
|
Tsang JKW, Liu J, Lo ACY. Vascular and Neuronal Protection in the Developing Retina: Potential Therapeutic Targets for Retinopathy of Prematurity. Int J Mol Sci 2019; 20:E4321. [PMID: 31484463 PMCID: PMC6747312 DOI: 10.3390/ijms20174321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a common retinal disease in preterm babies. To prolong the lives of preterm babies, high oxygen is provided to mimic the oxygen level in the intrauterine environment for postnatal organ development. However, hyperoxia-hypoxia induced pathological events occur when babies return to room air, leading to ROP with neuronal degeneration and vascular abnormality that affects retinal functions. With advances in neonatal intensive care, it is no longer uncommon for increased survival of very-low-birth-weight preterm infants, which, therefore, increased the incidence of ROP. ROP is now a major cause of preventable childhood blindness worldwide. Current proven treatment for ROP is limited to invasive retinal ablation, inherently destructive to the retina. The lack of pharmacological treatment for ROP creates a great need for effective and safe therapies in these developing infants. Therefore, it is essential to identify potential therapeutic agents that may have positive ROP outcomes, especially in preserving retinal functions. This review gives an overview of various agents in their efficacy in reducing retinal damages in cell culture tests, animal experiments and clinical studies. New perspectives along the neuroprotective pathways in the developing retina are also reviewed.
Collapse
Affiliation(s)
- Jessica K W Tsang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jin Liu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Amy C Y Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
17
|
Flower VA, Barratt SL, Ward S, Pauling JD. The Role of Vascular Endothelial Growth Factor in Systemic Sclerosis. Curr Rheumatol Rev 2019; 15:99-109. [DOI: 10.2174/1573397114666180809121005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/07/2018] [Accepted: 07/23/2018] [Indexed: 11/22/2022]
Abstract
The pathological hallmarks of Systemic Sclerosis (SSc) constitute an inter-related triad of autoimmunity, vasculopathy and tissue remodeling. Many signaling mediators have been implicated in SSc pathology; most focusing on individual components of this pathogenic triad and current treatment paradigms tend to approach management of such as distinct entities. The present review shall examine the role of Vascular Endothelial Growth Factor (VEGF) in SSc pathogenesis. We shall outline potential mechanisms whereby differential Vascular Endothelial Growth Factor-A (VEGF-A) isoform expression (through conventional and alternative VEGF-A splicing,) may influence the relevant burden of vasculopathy and fibrosis offering novel insight into clinical heterogeneity and disease progression in SSc. Emerging therapeutic approaches targeting VEGF signaling pathways might play an important role in the management of SSc, and differential VEGF-A splice isoform expression may provide a tool for personalized medicine approaches to disease management.
Collapse
Affiliation(s)
- Victoria A. Flower
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Shaney L. Barratt
- Academic Respiratory Unit, School of Clinical Sciences, University of Bristol, Bristol, BS10 5NB, United Kingdom
| | - Stephen Ward
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, United Kingdom
| | - John D. Pauling
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
18
|
Modulation of Receptor Tyrosine Kinase Activity through Alternative Splicing of Ligands and Receptors in the VEGF-A/VEGFR Axis. Cells 2019; 8:cells8040288. [PMID: 30925751 PMCID: PMC6523102 DOI: 10.3390/cells8040288] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) signaling is essential for physiological and pathological angiogenesis. Alternative splicing of the VEGF-A pre-mRNA gives rise to a pro-angiogenic family of isoforms with a differing number of amino acids (VEGF-Axxxa), as well as a family of isoforms with anti-angiogenic properties (VEGF-Axxxb). The biological functions of VEGF-A proteins are mediated by a family of cognate protein tyrosine kinase receptors, known as the VEGF receptors (VEGFRs). VEGF-A binds to both VEGFR-1, largely suggested to function as a decoy receptor, and VEGFR-2, the predominant signaling receptor. Both VEGFR-1 and VEGFR-2 can also be alternatively spliced to generate soluble isoforms (sVEGFR-1/sVEGFR-2). The disruption of the splicing of just one of these genes can result in changes to the entire VEGF-A/VEGFR signaling axis, such as the increase in VEGF-A165a relative to VEGF-A165b resulting in increased VEGFR-2 signaling and aberrant angiogenesis in cancer. Research into this signaling axis has recently focused on manipulating the splicing of these genes as a potential therapeutic avenue in disease. Therefore, further research into understanding the mechanisms by which the splicing of VEGF-A/VEGFR-1/VEGFR-2 is regulated will help in the development of drugs aimed at manipulating splicing or inhibiting specific splice isoforms in a therapeutic manner.
Collapse
|
19
|
Stevens M, Neal CR, Craciun EC, Dronca M, Harper SJ, Oltean S. The natural drug DIAVIT is protective in a type II mouse model of diabetic nephropathy. PLoS One 2019; 14:e0212910. [PMID: 30865689 PMCID: PMC6415805 DOI: 10.1371/journal.pone.0212910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/10/2019] [Indexed: 02/06/2023] Open
Abstract
There is evidence to suggest that abnormal angiogenesis, inflammation, and fibrosis drive diabetic nephropathy (DN). However, there is no specific treatment to counteract these processes. We aimed to determine whether DIAVIT, a natural Vaccinium myrtillus (blueberry) and Hippophae Rhamnoides (sea buckthorn) extract, is protective in a model of type II DN. Diabetic db/db mice were administered DIAVIT in their drinking water for 14 weeks. We assessed the functional, structural, and ultra-structural phenotype of three experimental groups (lean+vehicle, db/db+vehicle, db/db+DIAVIT). We also investigated the angiogenic and fibrotic pathways involved in the mechanism of action of DIAVIT. Diabetic db/db mice developed hyperglycaemia, albuminuria, and an increased glomerular water permeability; the latter two were prevented by DIAVIT. db/db mice developed fibrotic glomeruli, endothelial insult, and glomerular ultra-structural changes, which were not present in DIAVIT-treated mice. Vascular endothelial growth factor A (VEGF-A) splicing was altered in the db/db kidney cortex, increasing the pro-angiogenic VEGF-A165 relative to the anti-angiogenic VEGF-A165b. This was partially prevented with DIAVIT treatment. Delphinidin, an anthocyanin abundant in DIAVIT, increased the VEGF-A165b expression relative to total VEGF-A165 in cultured podocytes through phosphorylation of the splice factor SRSF6. DIAVIT, in particular delphinidin, alters VEGF-A splicing in type II DN, rescuing the DN phenotype. This study highlights the therapeutic potential of natural drugs in DN through the manipulation of gene splicing and expression.
Collapse
Affiliation(s)
- Megan Stevens
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail: (MS); (SO)
| | - Christopher R. Neal
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Elena C. Craciun
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, School of Pharmacy, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca, Romania
| | - Maria Dronca
- Department of Medical Biochemistry, School of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca, Romania
| | - Steven J. Harper
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail: (MS); (SO)
| |
Collapse
|
20
|
Kikuchi R, Stevens M, Harada K, Oltean S, Murohara T. Anti-angiogenic isoform of vascular endothelial growth factor-A in cardiovascular and renal disease. Adv Clin Chem 2019; 88:1-33. [PMID: 30612603 DOI: 10.1016/bs.acc.2018.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that pathologic interactions between the heart and the kidney can contribute to the progressive dysfunction of both organs. Recently, there has been an increase in the prevalence of cardiovascular disease (CVD) and chronic kidney disease (CKD) due to increasing obesity rates. It has been reported that obesity causes various heart and renal disorders and appears to accelerate their progression. Vascular endothelial growth factor-A (VEGF-A) is a major regulator of angiogenesis and vessel permeability, and is associated with CVD and CKD. It is now recognized that alternative VEGF-A gene splicing generates VEGF-A isoforms that differ in their biological actions. Proximal splicing that includes an exon 8a sequence results in pro-angiogenic VEGF-A165a, whereas distal splicing inclusive of exon 8b yields the anti-angiogenic isoform of VEGF-A (VEGF-A165b). This review highlights several recent preclinical and clinical studies on the role of VEGF-A165b in CVD and CKD as a novel function of VEGF-A. This review also discusses potential therapeutic approaches of the use of VEGF-A in clinical settings as a potential circulating biomarker for CVD and CKD.
Collapse
Affiliation(s)
- Ryosuke Kikuchi
- Department of Medical Technique, Nagoya University Hospital, Nagoya, Japan.
| | - Megan Stevens
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Kazuhiro Harada
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
21
|
Liu T, Tang X, Yao L, Song H. Expression and significance of SDF-1 and its receptor CXCR4 in the retina of pregnant rats after optic nerve injury. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218819675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stromal cell–derived factor 1 (SDF-1) and its receptor CXCR4 have shown to play a role in embryonic development process, regulation of hematopoiesis, mediating immunology response, inflammatory reaction, and metastasis of malignant tumor. Recently, SDF-1 and CXCR4 are also closely related to retinal neovascularization. This study was to investigate the expression of SDF-1 and CXCR4 in the retina after optic nerve injury in pregnant rats so as to reveal its significance. A total of 12 pregnant rats were randomly divided into normal group and experimental group (after 5 days of optic nerve injury), six rats in each group; expressions of SDF-1 as well as CXCR4 in rat retina were detected by immunofluorescence staining and western blot assay. The result of immunofluorescence staining showed that the relative gray scale values of SDF-1 and CXCR4 in the experimental group were significantly higher than those in the normal group ( P < 0.05), and the result of Western blot assay showed that the expression levels of SDF-1 and CXCR4 in the experimental group were significantly higher than those in the normal group ( P < 0.05). In conclusion, SDF-1 and its receptor CXCR4 have abnormal expression in the retina of pregnant rats after optic nerve injury, which may be involved in the occurrence and development of optic nerve injury.
Collapse
Affiliation(s)
- Tiegang Liu
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
- Tianjin Eye Hospital, Tianjin 300020, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin 300020, China
- Tianjin Eye Institute, Tianjin 300020, China
- Department of Ophthalmology, Beijing Capital International Airport Hospital, Beijing 100621, China
| | - Xin Tang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
- Tianjin Eye Hospital, Tianjin 300020, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin 300020, China
- Tianjin Eye Institute, Tianjin 300020, China
| | - Ling Yao
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Hui Song
- Tianjin Eye Hospital, Tianjin 300020, China
| |
Collapse
|
22
|
Patel M, Sachidanandan M, Adnan M. Serine arginine protein kinase 1 (SRPK1): a moonlighting protein with theranostic ability in cancer prevention. Mol Biol Rep 2018; 46:1487-1497. [PMID: 30535769 DOI: 10.1007/s11033-018-4545-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022]
Abstract
Serine/arginine protein kinase 1 (SRPK1); a versatile functional moonlighting protein involved in varied cellular activities comprised of cell cycle progression, innate immune response, chromatin reorganization, negative and positive regulation of viral genome replication, protein amino acid phosphorylation, regulation of numerous mRNA-processing pathways, germ cell development as well as inflammation due to acquaintances with many transcription factors and signaling pathways. Several diseases including cancer have been associated with dysregulation of SRPK1. The function of SRPK1 in cancer is contradictory and inexplicable because it acts as both tumor suppressor and promoter based on the type of cell and locale. Over expression of SRPK1 including its role has been recently narrated and associated with several cancers, which includes, lung, glioma, prostate and breast via dysregulated signals from the Akt/eIF4E/HIF-1/VEGF, Erk or MAPK, PI3K/AKT/mTOR, TGF-β, and Wnt/β-catenin signaling pathways. Therefore, SRPK1 has occurred as a promising and possible curative target in cancer. In recent years, few natural and synthetic SRPK1 inhibitors have been discovered. This review emphasizes and highlights the complicated connections between SRPK1 and oncogenic signaling circuits together with the possibility of aiming SRPK1 in the treatment of cancer.
Collapse
Affiliation(s)
- Mitesh Patel
- Department of Biosciences, Bapalal Vaidya Botanical Research Centre, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, P O Box 2440, Hail, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, Faculty of Science, University of Hail, P O Box 2440, Hail, Saudi Arabia.
| |
Collapse
|
23
|
Yang C, Kelaini S, Caines R, Margariti A. RBPs Play Important Roles in Vascular Endothelial Dysfunction Under Diabetic Conditions. Front Physiol 2018; 9:1310. [PMID: 30294283 PMCID: PMC6158626 DOI: 10.3389/fphys.2018.01310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022] Open
Abstract
Diabetes is one of the major health care problems worldwide leading to huge suffering and burden to patients and society. Diabetes is also considered as a cardiovascular disorder because of the correlation between diabetes and an increased incidence of cardiovascular disease. Vascular endothelial cell dysfunction is a major mediator of diabetic vascular complications. It has been established that diabetes contributes to significant alteration of the gene expression profile of vascular endothelial cells. Post-transcriptional regulation by RNA binding proteins (RBPs) plays an important role in the alteration of gene expression profile under diabetic conditions. The review focuses on the roles and mechanisms of critical RBPs toward diabetic vascular endothelial dysfunction. Deeper understanding of the post- transcriptional regulation by RBPs could lead to new therapeutic strategies against diabetic manifestation in the future.
Collapse
Affiliation(s)
- Chunbo Yang
- Centre for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| | - Sophia Kelaini
- Centre for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| | - Rachel Caines
- Centre for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| | - Andriana Margariti
- Centre for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| |
Collapse
|
24
|
Targeting the pro-angiogenic forms of VEGF or inhibiting their expression as anti-cancer strategies. Oncotarget 2018; 8:9174-9188. [PMID: 27999187 PMCID: PMC5354723 DOI: 10.18632/oncotarget.13942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
Tumor growth relies on oxygen and blood supply depending on neo-vascularization. This process is mediated by the Vascular Endothelial Growth Factor (VEGF) in many tumors. This paradigm has led to the development of specific therapeutic approaches targeting VEGF or its receptors. Despite their promising effects, these strategies have not improved overall survival of patients suffering from different cancers compared to standard therapies. We hypothesized that the existence of anti-angiogenic forms of VEGF VEGFxxxb which are still present in many tumors limit the therapeutic effects of the anti-VEGF antibodies bevacizumab/Avastin (BVZ). To test this hypothesis, we generated renal cell carcinoma cells (RCC) expressing VEGF165b. The incidence of tumors xenografts generated in nude mice and their growth were inferior to those obtained with control cells. Whereas BVZ had no effect on control tumors, it slowed-down the growth of tumor generated with VEGF165b expressing cells. A prophylactic immunization against the domain discriminating VEGF from VEGFxxxb isoforms inhibited the growth of tumor generated with two different syngenic tumor cell lines (melanoma (B16 cells) and RCC (RENCA cells)). Purified immunoglobulins from immunized mice also slowed-down tumor growth of human RCC xenografts in nude mice, producing a potent effect compared to BVZ in this model. Furthermore, down-regulating the serine-arginine-rich splicing factor 1 (SRSF1) or masking SRSF1 binding sites by 2'O-Methyl RNA resulted in the increase of the VEGFxxxb/VEGF ratio. Therefore, a vaccine approach, specific antibodies against pro-angiogenic forms of VEGF, or increasing the VEGFxxxb/VEGF ratio may represent new prophylactic or pro-active anti-cancer strategies.
Collapse
|
25
|
Modulation of VEGF-A Alternative Splicing as a Novel Treatment in Chronic Kidney Disease. Genes (Basel) 2018; 9:genes9020098. [PMID: 29462869 PMCID: PMC5852594 DOI: 10.3390/genes9020098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/05/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) is a prominent pro-angiogenic and pro-permeability factor in the kidney. Alternative splicing of the terminal exon of VEGF-A through the use of an alternative 3' splice site gives rise to a functionally different family of isoforms, termed VEGF-Axxxb, known to have anti-angiogenic and anti-permeability properties. Dysregulation of the VEGF-Axxx/VEGF-Axxxb isoform balance has recently been reported in several kidney pathologies, including diabetic nephropathy (DN) and Denys-Drash syndrome. Using mouse models of kidney disease where the VEGF-A isoform balance is disrupted, several reports have shown that VEGF-A165b treatment/over-expression in the kidney is therapeutically beneficial. Furthermore, inhibition of certain splice factor kinases involved in the regulation of VEGF-A terminal exon splicing has provided some mechanistic insight into how VEGF-A splicing could be regulated in the kidney. This review highlights the importance of further investigation into the novel area of VEGF-A splicing in chronic kidney disease pathogenesis and how future studies may allow for the development of splicing-modifying therapeutic drugs.
Collapse
|
26
|
Aubol BE, Hailey KL, Fattet L, Jennings PA, Adams JA. Redirecting SR Protein Nuclear Trafficking through an Allosteric Platform. J Mol Biol 2017; 429:2178-2191. [PMID: 28576472 DOI: 10.1016/j.jmb.2017.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
Abstract
Although phosphorylation directs serine-arginine (SR) proteins from nuclear storage speckles to the nucleoplasm for splicing function, dephosphorylation paradoxically induces similar movement, raising the question of how such chemical modifications are balanced in these essential splicing factors. In this new study, we investigated the interaction of protein phosphatase 1 (PP1) with the SR protein splicing factor (SRSF1) to understand the foundation of these opposing effects in the nucleus. We found that RNA recognition motif 1 (RRM1) in SRSF1 binds PP1 and represses its catalytic function through an allosteric mechanism. Disruption of RRM1-PP1 interactions reduces the phosphorylation status of the RS domain in vitro and in cells, redirecting SRSF1 in the nucleus. The data imply that an allosteric SR protein-phosphatase platform balances phosphorylation levels in a "goldilocks" region for the proper subnuclear storage of an SR protein splicing factor.
Collapse
Affiliation(s)
- Brandon E Aubol
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | - Kendra L Hailey
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | - Laurent Fattet
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | - Patricia A Jennings
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | - Joseph A Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636, USA.
| |
Collapse
|
27
|
Siqueira RP, Barros MVDA, Barbosa ÉDAA, Onofre TS, Gonçalves VHS, Pereira HS, Silva Júnior A, de Oliveira LL, Almeida MR, Fietto JLR, Teixeira RR, Bressan GC. Trifluoromethyl arylamides with antileukemia effect and intracellular inhibitory activity over serine/arginine-rich protein kinases (SRPKs). Eur J Med Chem 2017; 134:97-109. [PMID: 28407594 DOI: 10.1016/j.ejmech.2017.03.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 12/19/2022]
Abstract
The serine/arginine-rich protein kinases (SRPKs) have frequently been found with altered activity in a number of cancers, suggesting they could serve as potential therapeutic targets in oncology. Here we describe the synthesis of a series of twenty-two trifluoromethyl arylamides based on the known SRPKs inhibitor N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)isonicotinamide (SRPIN340) and the evaluation of their antileukemia effects. Some derivatives presented superior cytotoxic effects against myeloid and lymphoid leukemia cell lines compared to SRPIN340. In particular, compounds 24, 30, and 36 presented IC50 values ranging between 6.0 and 35.7 μM. In addition, these three compounds were able to trigger apoptosis and autophagy, and to exhibit synergistic effects with the chemotherapeutic agent vincristine. Furthermore, compound 30 was more efficient than SRPIN340 in impairing the intracellular phosphorylation status of SR proteins as well as the expression of MAP2K1, MAP2K2, VEGF, and RON oncogenic isoforms. Therefore, novel compounds with increased intracellular effects against SRPK activity were obtained, contributing to medicinal chemistry efforts towards the development of new anticancer agents.
Collapse
Affiliation(s)
- Raoni Pais Siqueira
- Universidade Federal de Viçosa, Departamento de Bioquímica e Biologia Molecular, Viçosa, MG, Brazil
| | | | | | - Thiago Souza Onofre
- Universidade Federal de Viçosa, Departamento de Bioquímica e Biologia Molecular, Viçosa, MG, Brazil
| | | | - Higor Sette Pereira
- Universidade Federal de Viçosa, Departamento de Bioquímica e Biologia Molecular, Viçosa, MG, Brazil
| | | | | | - Márcia Rogéria Almeida
- Universidade Federal de Viçosa, Departamento de Bioquímica e Biologia Molecular, Viçosa, MG, Brazil
| | | | | | - Gustavo Costa Bressan
- Universidade Federal de Viçosa, Departamento de Bioquímica e Biologia Molecular, Viçosa, MG, Brazil.
| |
Collapse
|
28
|
Vascular endothelial growth factor-A 165b ameliorates outer-retinal barrier and vascular dysfunction in the diabetic retina. Clin Sci (Lond) 2017; 131:1225-1243. [PMID: 28341661 PMCID: PMC5450016 DOI: 10.1042/cs20170102] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/09/2017] [Accepted: 03/24/2017] [Indexed: 01/11/2023]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of blindness in the developed world. Characteristic features of DR are retinal neurodegeneration, pathological angiogenesis and breakdown of both the inner and outer retinal barriers of the retinal vasculature and retinal pigmented epithelial (RPE)–choroid respectively. Vascular endothelial growth factor (VEGF-A), a key regulator of angiogenesis and permeability, is the target of most pharmacological interventions of DR. VEGF-A can be alternatively spliced at exon 8 to form two families of isoforms, pro- and anti-angiogenic. VEGF-A165a is the most abundant pro-angiogenic isoform, is pro-inflammatory and a potent inducer of permeability. VEGF-A165b is anti-angiogenic, anti-inflammatory, cytoprotective and neuroprotective. In the diabetic eye, pro-angiogenic VEGF-A isoforms are up-regulated such that they overpower VEGF-A165b. We hypothesized that this imbalance may contribute to increased breakdown of the retinal barriers and by redressing this imbalance, the pathological angiogenesis, fluid extravasation and retinal neurodegeneration could be ameliorated. VEGF-A165b prevented VEGF-A165a and hyperglycaemia-induced tight junction (TJ) breakdown and subsequent increase in solute flux in RPE cells. In streptozotocin (STZ)-induced diabetes, there was an increase in Evans Blue extravasation after both 1 and 8 weeks of diabetes, which was reduced upon intravitreal and systemic delivery of recombinant human (rh)VEGF-A165b. Eight-week diabetic rats also showed an increase in retinal vessel density, which was prevented by VEGF-A165b. These results show rhVEGF-A165b reduces DR-associated blood–retina barrier (BRB) dysfunction, angiogenesis and neurodegeneration and may be a suitable therapeutic in treating DR.
Collapse
|
29
|
RNA-Sequencing data supports the existence of novel VEGFA splicing events but not of VEGFA xxxb isoforms. Sci Rep 2017; 7:58. [PMID: 28246395 PMCID: PMC5427905 DOI: 10.1038/s41598-017-00100-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/06/2017] [Indexed: 01/08/2023] Open
Abstract
Vascular endothelial growth factor (VEGFA), a pivotal regulator of angiogenesis and valuable therapeutic target, is characterised by alternative splicing which generates three principal isoforms, VEGFA121, VEGFA165 and VEGFA189. A second set of anti-angiogenic isoforms termed VEGFAxxxb that utilise an alternative splice site in the final exon have been widely reported, with mRNA detection based principally upon RT-PCR assays. We sought confirmation of the existence of the VEGFAxxxb isoforms within the abundant RNA sequencing data available publicly. Whilst sequences derived specifically from each of the canonical VEGFA isoforms were present in many tissues, there were no sequences derived from VEGFAxxxb isoforms. Sequencing of approximately 50,000 RT-PCR products spanning the exon 7–8 junction in 10 tissues did not identify any VEGFAxxxb transcripts. The absence or extremely low expression of these transcripts in vivo indicates that VEGFAxxxb isoforms are unlikely to play a role in normal physiology. Our analyses also revealed multiple novel splicing events supported by more reads than previously reported for VEGFA145 and VEGFA148 isoforms, including three from novel first exons consistent with existing transcription start site data. These novel VEGFA isoforms may play significant roles in specific cell types.
Collapse
|
30
|
Abstract
More than 95% of genes in the human genome are alternatively spliced to form multiple transcripts, often encoding proteins with differing or opposing function. The control of alternative splicing is now being elucidated, and with this comes the opportunity to develop modulators of alternative splicing that can control cellular function. A number of approaches have been taken to develop compounds that can experimentally, and sometimes clinically, affect splicing control, resulting in potential novel therapeutics. Here we develop the concepts that targeting alternative splicing can result in relatively specific pathway inhibitors/activators that result in dampening down of physiologic or pathologic processes, from changes in muscle physiology to altering angiogenesis or pain. The targets and pharmacology of some of the current inhibitors/activators of alternative splicing are demonstrated and future directions discussed.
Collapse
Affiliation(s)
- David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| | - Jonathan C Morris
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| | - Sebastian Oltean
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| | - Lucy F Donaldson
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| |
Collapse
|
31
|
Donaldson LF, Beazley-Long N. Alternative RNA splicing: contribution to pain and potential therapeutic strategy. Drug Discov Today 2016; 21:1787-1798. [PMID: 27329269 PMCID: PMC5405051 DOI: 10.1016/j.drudis.2016.06.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/31/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
Alternative pre-mRNA splicing generates multiple proteins from a single gene. Control of alternative splicing is a likely therapy in cancer and other disorders. Key molecules in pain pathways – GPCRs and channels – are alternatively spliced. It is proposed that alternative splicing may be a therapeutic target in pain.
Since the sequencing of metazoan genomes began, it has become clear that the number of expressed proteins far exceeds the number of genes. It is now estimated that more than 98% of human genes give rise to multiple proteins through alternative pre-mRNA splicing. In this review, we highlight the known alternative splice variants of many channels, receptors, and growth factors that are important in nociception and pain. Recently, pharmacological control of alternative splicing has been proposed as potential therapy in cancer, wet age-related macular degeneration, retroviral infections, and pain. Thus, we also consider the effects that known splice variants of molecules key to nociception/pain have on nociceptive processing and/or analgesic action, and the potential for control of alternative pre-mRNA splicing as a novel analgesic strategy.
Collapse
Affiliation(s)
- Lucy F Donaldson
- School of Life Sciences and Arthritis Research UK Pain Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Nicholas Beazley-Long
- School of Life Sciences and Arthritis Research UK Pain Centre, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
32
|
Wang H. Anti-VEGF therapy in the management of retinopathy of prematurity: what we learn from representative animal models of oxygen-induced retinopathy. Eye Brain 2016; 8:81-90. [PMID: 28539803 PMCID: PMC5398744 DOI: 10.2147/eb.s94449] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Retinopathy of prematurity (ROP) remains a leading cause of childhood blindness, affecting infants born prematurely. ROP is characterized by the onset of delayed physiological retinal vascular development (PRVD) and followed by pathologic neovascularization into the vitreous instead of the retina, called intravitreal neovascularization (IVNV). Therefore, the therapeutic strategy for treating ROP is to promote PRVD and inhibit or prevent IVNV. Vascular endothelial growth factor (VEGF) plays an important role in the pathogenesis of ROP. There is a growing body of studies testing the use of anti-VEGF agents as a treatment for ROP. Intravitreal anti-VEGF treatment for ROP has potential advantages compared with laser photocoagulation, the gold standard for the treatment of severe ROP; however, intravitreal anti-VEGF treatment has been associated with reactivation of ROP and suppression of systemic VEGF that may affect body growth and organ development in preterm infants. Therefore, it is important to understand the role of VEGF in PRVD and IVNV. This review includes the current knowledge of anti-VEGF treatment for ROP from animal models of oxygen-induced retinopathy (OIR), highlighting the importance of VEGF inhibition by targeting retinal Müller cells, which inhibits IVNV and permits PRVD. The signaling events involved in mediating VEGF expression and promoting VEGF-mediated angiogenesis, including hypoxia-dependent signaling, erythropoietin/erythropoietin receptor-, oxidative stress-, beta-adrenergic receptor-, integrin-, Notch/Delta-like ligand 4- and exon guidance molecules-mediated signaling pathways, are also discussed.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Ophthalmology, John A Moran Eye Center, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
33
|
Abstract
Much of the knowledge we have gained into the development of pathological ocular angiogenesis has come from the development of in vivo models that enable functional assessment of key components of signaling pathways in disease progression. Indeed, rodent models have facilitated identification of several therapeutics that target pathological angiogenesis. Two of the most widely used rodent models of oxygen induced retinopathy (OIR), Smith's mouse model and Penn's rat model reproducibly induce neovascularization reminiscent of the disease retinopathy of prematurity (ROP). In this chapter we discuss development of ROP in humans and compare features with that of the rat and mouse models, focusing both on the benefits and caveats of using such models. Furthermore, we discuss in detail the methodology of both procedures and discuss the importance of various features of the model.
Collapse
Affiliation(s)
- Melissa V Gammons
- MRC Laboratory of Molecular Biology, University of Cambridge, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, C Floor, Pope Building, University Park, Nottingham, NG2 7UH, UK.
| |
Collapse
|
34
|
Potential Antileukemia Effect and Structural Analyses of SRPK Inhibition by N-(2-(Piperidin-1-yl)-5-(Trifluoromethyl)Phenyl)Isonicotinamide (SRPIN340). PLoS One 2015; 10:e0134882. [PMID: 26244849 PMCID: PMC4526641 DOI: 10.1371/journal.pone.0134882] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/14/2015] [Indexed: 12/20/2022] Open
Abstract
Dysregulation of pre-mRNA splicing machinery activity has been related to the biogenesis of several diseases. The serine/arginine-rich protein kinase family (SRPKs) plays a critical role in regulating pre-mRNA splicing events through the extensive phosphorylation of splicing factors from the family of serine/arginine-rich proteins (SR proteins). Previous investigations have described the overexpression of SRPK1 and SRPK2 in leukemia and other cancer types, suggesting that they would be useful targets for developing novel antitumor strategies. Herein, we evaluated the effect of selective pharmacological SRPK inhibition by N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)isonicotinamide (SRPIN340) on the viability of lymphoid and myeloid leukemia cell lines. Along with significant cytotoxic activity, the effect of treatments in regulating the phosphorylation of the SR protein family and in altering the expression of MAP2K1, MAP2K2, VEGF and FAS genes were also assessed. Furthermore, we found that pharmacological inhibition of SRPKs can trigger early and late events of apoptosis. Finally, intrinsic tryptophan fluorescence emission, molecular docking and molecular dynamics were analyzed to gain structural information on the SRPK/SRPIN340 complex. These data suggest that SRPK pharmacological inhibition should be considered as an alternative therapeutic strategy for fighting leukemias. Moreover, the obtained SRPK-ligand interaction data provide useful structural information to guide further medicinal chemistry efforts towards the development of novel drug candidates.
Collapse
|
35
|
Morooka S, Hoshina M, Kii I, Okabe T, Kojima H, Inoue N, Okuno Y, Denawa M, Yoshida S, Fukuhara J, Ninomiya K, Ikura T, Furuya T, Nagano T, Noda K, Ishida S, Hosoya T, Ito N, Yoshimura N, Hagiwara M. Identification of a Dual Inhibitor of SRPK1 and CK2 That Attenuates Pathological Angiogenesis of Macular Degeneration in Mice. Mol Pharmacol 2015; 88:316-25. [PMID: 25993998 DOI: 10.1124/mol.114.097345] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/20/2015] [Indexed: 12/28/2022] Open
Abstract
Excessive angiogenesis contributes to numerous diseases, including cancer and blinding retinopathy. Antibodies against vascular endothelial growth factor (VEGF) have been approved and are widely used in clinical treatment. Our previous studies using SRPIN340, a small molecule inhibitor of SRPK1 (serine-arginine protein kinase 1), demonstrated that SRPK1 is a potential target for the development of antiangiogenic drugs. In this study, we solved the structure of SRPK1 bound to SRPIN340 by X-ray crystallography. Using pharmacophore docking models followed by in vitro kinase assays, we screened a large-scale chemical library, and thus identified a new inhibitor of SRPK1. This inhibitor, SRPIN803, prevented VEGF production more effectively than SRPIN340 owing to the dual inhibition of SRPK1 and CK2 (casein kinase 2). In a mouse model of age-related macular degeneration, topical administration of eye ointment containing SRPIN803 significantly inhibited choroidal neovascularization, suggesting a clinical potential of SRPIN803 as a topical ointment for ocular neovascularization. Thus SRPIN803 merits further investigation as a novel inhibitor of VEGF.
Collapse
Affiliation(s)
- Satoshi Morooka
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Mitsuteru Hoshina
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Isao Kii
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Takayoshi Okabe
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Hirotatsu Kojima
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Naoko Inoue
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Yukiko Okuno
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Masatsugu Denawa
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Suguru Yoshida
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Junichi Fukuhara
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Kensuke Ninomiya
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Teikichi Ikura
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Toshio Furuya
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Tetsuo Nagano
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Kousuke Noda
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Susumu Ishida
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Takamitsu Hosoya
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Nobutoshi Ito
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Nagahisa Yoshimura
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Masatoshi Hagiwara
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| |
Collapse
|
36
|
Zhang J, Jiang H, Xia W, Jiang Y, Tan X, Liu P, Jia H, Yang X, Shen G. Serine-arginine protein kinase 1 is associated with hepatocellular carcinoma progression and poor patient survival. Tumour Biol 2015. [PMID: 26201897 DOI: 10.1007/s13277-015-3771-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pre-mRNA splicing regulator serine-arginine protein kinase 1 (SRPK1) promotes cancer development and various pathophysiological processes. However, the clinical relevance of SRPK1 in hepatocellular carcinoma (HCC) is not clear. This study investigates the expression and prognostic value of SRPK1 in HCC. We found that SRPK1 expression was significantly upregulated at the mRNA and protein level in all HCC cell lines or HCC tissue samples compared with the hepatic cell line or matched noncancerous tissue samples, respectively. Higher SRPK1 expression significantly correlated with clinical staging (p = 0.031), survival time (p = 0.004), and gender (p = 0.011) of HCC patients. Together, our study showed that SRPK1 is overexpressed in HCC and may be a promising indicator of prognosis for HCC patients.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9th Jinsui Road, Postal Code 510000, Guangzhou, Guangdong, 510623, People's Republic of China
| | - Hua Jiang
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9th Jinsui Road, Postal Code 510000, Guangzhou, Guangdong, 510623, People's Republic of China
| | - Wenfei Xia
- Department of General Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yizhou Jiang
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9th Jinsui Road, Postal Code 510000, Guangzhou, Guangdong, 510623, People's Republic of China
| | - Xiaoyun Tan
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9th Jinsui Road, Postal Code 510000, Guangzhou, Guangdong, 510623, People's Republic of China
| | - Peiying Liu
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9th Jinsui Road, Postal Code 510000, Guangzhou, Guangdong, 510623, People's Republic of China
| | - Hongyun Jia
- Department of Clinical Examination, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, People's Republic of China
| | - Xuewei Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, People's Republic of China
| | - Gang Shen
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9th Jinsui Road, Postal Code 510000, Guangzhou, Guangdong, 510623, People's Republic of China.
| |
Collapse
|
37
|
Ma IT, McConaghy S, Namachivayam K, Halloran BA, Kurundkar AR, MohanKumar K, Maheshwari A, Ohls RK. VEGF mRNA and protein concentrations in the developing human eye. Pediatr Res 2015; 77:500-5. [PMID: 25588190 PMCID: PMC4363168 DOI: 10.1038/pr.2015.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 10/08/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF), a well-characterized regulator of angiogenesis, has been mechanistically implicated in retinal neovascularization and in the pathogenesis of retinopathy of prematurity. However, the ontogeny of VEGF expression in the human fetal retina is not well known. Because retinal vasculature grows with gestational maturation, we hypothesized that VEGF expression also increases in the midgestation human fetal eye as a function of gestational age. METHODS To identify changes in VEGF gene expression during normal human development, we measured VEGF mRNA by quantitative PCR and measured VEGF protein by enzyme-linked immunosorbent assay and western blots in 10-24 wk gestation fetal vitreous, retina, and serum. RESULTS VEGF mRNA expression in the retina increased with gestational age. VEGF isoform A, particularly its VEGF121 splice variant, contributed to this positive correlation. Consistent with these findings, we detected increasing VEGF121 protein concentrations in vitreous humor from fetuses of 10-24 wk gestation, while VEGF concentrations decreased in fetal serum. CONCLUSION VEGF121 mRNA and protein concentrations increase with increasing gestational age in the developing human retina. We speculate that VEGF plays an important role in normal retinal vascular development, and that preterm delivery affects production of this vascular growth factor.
Collapse
Affiliation(s)
- Irene T. Ma
- Department of Surgery, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Suzanne McConaghy
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, USA
| | | | - Brian A. Halloran
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashish R. Kurundkar
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Krishnan MohanKumar
- Center for Neonatal and Pediatric Gastrointestinal Disease, University of Illinois at Chicago, Chicago, USA
| | - Akhil Maheshwari
- Center for Neonatal and Pediatric Gastrointestinal Disease, University of Illinois at Chicago, Chicago, USA,Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, USA
| | - Robin K. Ohls
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, USA,Corresponding author: Robin K. Ohls, M.D., Professor of Pediatrics, University of New Mexico Health Sciences Center, MSC10 5590, Albuquerque, New Mexico 87131-0001; , telephone number: 505-272-6753, fax number: 505-272-1539
| |
Collapse
|
38
|
Barnett JM, Suarez S, McCollum GW, Penn JS. Endoglin promotes angiogenesis in cell- and animal-based models of retinal neovascularization. Invest Ophthalmol Vis Sci 2014; 55:6490-8. [PMID: 25159209 DOI: 10.1167/iovs.14-14945] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE We investigated endoglin expression in hypoxic microvascular endothelial cells and retinal endoglin expression in rats that develop experimental oxygen-induced retinopathy (OIR). We also tested neutralizing antibodies (Abs) against endoglin (anti-CD105 Ab) and VEGF (anti-VEGF Ab) either alone or in combination for efficacy against serum-induced retinal microvascular endothelial cell proliferation and retinal neovascularization (NV) in OIR rats. To our knowledge, this marks the first time that a biologic agent has been used to target retinal endoglin and modulate retinal neovascularization. METHODS Induction of endoglin by hypoxia was measured by immunohistochemical analysis and ELISA. Proliferation was quantified using a colorimetric 5-bromo-2-deoxyuridine ELISA. Western blots were used to measure endoglin levels in retinas of OIR rats. Immunohistochemical staining was also preformed in OIR rats using anti-CD105 and fluorescein isothiocyanate-conjugated isolectin B4 antibodies. RESULTS Anti-CD105 Ab and Anti-VEGF Ab, administered alone or in combination, reduced serum-induced retinal microvascular endothelial cell proliferation. Additionally, in a rat model of oxygen-induced retinopathy, retinal endoglin was significantly increased at 14(2), 14(3), 14(4) and 14(6) compared with retinal levels in control rats. At 14(2), immunohistochemical analysis demonstrated that endoglin was elevated in newly developed vessels at the peripheral extent of major veins, precisely where NV is expected to develop in OIR rats. Neutralizing anti-CD105 reduced retinal NV in OIR rats. CONCLUSIONS Our data support other studies showing that reduction of endoglin expression inhibits retinal NV. Our findings demonstrate that retinal endoglin immunolocalization overlaps with nascent neovascular structures in OIR rats. Therefore, endoglin may serve as a useful predictor of incipient neovascular disease.
Collapse
Affiliation(s)
- Joshua M Barnett
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Sandra Suarez
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Gary W McCollum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - John S Penn
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
39
|
Hulse RP, Beazley-Long N, Hua J, Kennedy H, Prager J, Bevan H, Qiu Y, Fernandes ES, Gammons MV, Ballmer-Hofer K, Gittenberger de Groot AC, Churchill AJ, Harper SJ, Brain SD, Bates DO, Donaldson LF. Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia. Neurobiol Dis 2014; 71:245-59. [PMID: 25151644 PMCID: PMC4194316 DOI: 10.1016/j.nbd.2014.08.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/29/2014] [Accepted: 08/06/2014] [Indexed: 12/02/2022] Open
Abstract
Vascular endothelial growth factor-A (VEGF-A) is best known as a key regulator of the formation of new blood vessels. Neutralization of VEGF-A with anti-VEGF therapy e.g. bevacizumab, can be painful, and this is hypothesized to result from a loss of VEGF-A-mediated neuroprotection. The multiple vegf-a gene products consist of two alternatively spliced families, typified by VEGF-A165a and VEGF-A165b (both contain 165 amino acids), both of which are neuroprotective. Under pathological conditions, such as in inflammation and cancer, the pro-angiogenic VEGF-A165a is upregulated and predominates over the VEGF-A165b isoform. We show here that in rats and mice VEGF-A165a and VEGF-A165b have opposing effects on pain, and that blocking the proximal splicing event – leading to the preferential expression of VEGF-A165b over VEGF165a – prevents pain in vivo. VEGF-A165a sensitizes peripheral nociceptive neurons through actions on VEGFR2 and a TRPV1-dependent mechanism, thus enhancing nociceptive signaling. VEGF-A165b blocks the effect of VEGF-A165a. After nerve injury, the endogenous balance of VEGF-A isoforms switches to greater expression of VEGF-Axxxa compared to VEGF-Axxxb, through an SRPK1-dependent pre-mRNA splicing mechanism. Pharmacological inhibition of SRPK1 after traumatic nerve injury selectively reduced VEGF-Axxxa expression and reversed associated neuropathic pain. Exogenous VEGF-A165b also ameliorated neuropathic pain. We conclude that the relative levels of alternatively spliced VEGF-A isoforms are critical for pain modulation under both normal conditions and in sensory neuropathy. Altering VEGF-Axxxa/VEGF-Axxxb balance by targeting alternative RNA splicing may be a new analgesic strategy. The different vegf-a splice variants, VEGF-A165a and VEGF-A165b have pro- and anti-nociceptive actions respectively. Pro-nociceptive actions of VEGF-A165a are dependent on TRPV1. Alternative pre-mRNA splicing underpins peripheral sensitization by VEGF-A isoforms in normal and neuropathic animals.
Collapse
Affiliation(s)
- R P Hulse
- Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK; Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham NG2 7UH, UK
| | - N Beazley-Long
- Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK; School of Life Sciences, The Medical School, University of Nottingham, Queen's Medical Centre, Nottingham NG2 7UH, UK
| | - J Hua
- Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - H Kennedy
- Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - J Prager
- Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - H Bevan
- Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Y Qiu
- Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | | | - M V Gammons
- Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | | | | | - A J Churchill
- Clinical Sciences, University of Bristol, Bristol BS1 2LX, UK
| | - S J Harper
- Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - S D Brain
- King's College London, London SE1 9NH, UK
| | - D O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham NG2 7UH, UK.
| | - L F Donaldson
- Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK; School of Life Sciences, The Medical School, University of Nottingham, Queen's Medical Centre, Nottingham NG2 7UH, UK.
| |
Collapse
|
40
|
Yoon C, Kim D, Kim S, Park GB, Hur DY, Yang JW, Park SG, Kim YS. MiR-9 regulates the post-transcriptional level of VEGF165a by targeting SRPK-1 in ARPE-19 cells. Graefes Arch Clin Exp Ophthalmol 2014; 252:1369-76. [PMID: 25007957 DOI: 10.1007/s00417-014-2698-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/07/2014] [Accepted: 06/16/2014] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To investigate the effect of the overexpression of miRNA-9 to the ratio of pro- and anti-angiogenic isoforms of vascular endothelial growth factor (VEGF) in human retinal pigment cells (ARPE-19). METHODS Oxidative stress was induced to ARPE-19 cells by 4-hydroxynonenal (4-HNE), tert-butyl hydroperoxide (t-BH), and hypoxia chamber with 1% O₂. Expression patterns of miRNAs were validated by qPCR. Relative mRNA levels of VEGF and PEDF were measured by semi-quantitative PCR. After the transfection of miR-9 mimic and inhibitor, transcriptional levels of VEGF165a, VEGF 165b, and SRPK-1 were measured by qPCR. RESULTS We demonstrated that miR-9 expression is decreased in ARPE-19 human retinal pigment cells under hypoxic stress induced by 4-HNE, a lipid peroxidation end-product. We observed that miR-9 mimic transfection of ARPE-19 inhibited one of its targets, serine-arginine protein kinase-1 (SRPK-1), modulating the transcriptional level of VEGF165b. Transfection of miR-9 reduced the alternative splicing of VEGF165a mRNA in ARPE-19 cells under hypoxic conditions, suggesting that miR-mediated regulation of alternative splicing could be a potential therapeutic target in neovascular pathologies. CONCLUSIONS Hypoxic stress decreased the miR-9 level in ARPE-19 cells, which increased the transcriptional level of SRPK-1, resulting in alternative splicing shift to pro-angiogenic isoforms of VEGF165 in human retinal pigment epithelial cells.
Collapse
Affiliation(s)
- Changshin Yoon
- Department of Anatomy, College of Medicine, Inje University, Bokji-ro 75, Busanjin-gu, Busan, South Korea, 614-735
| | | | | | | | | | | | | | | |
Collapse
|