1
|
Maidana DE, Puente SP, Wang C, Chandra S, Gonzalez-Buendia L, Ilios EP, Kazlauskas A, Vavvas DG. Divergence in photoreceptor cell death and neuroinflammation in transvitreal and transscleral subretinal delivery in mice. J Inflamm (Lond) 2025; 22:5. [PMID: 39920719 PMCID: PMC11806547 DOI: 10.1186/s12950-025-00433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
Subretinal injections provide direct access to photoreceptors and RPE, which is crucial for the delivery of gene therapy and neuroprotective approaches. To access the subretinal space, transvitreal (TV) and transscleral (TS) subretinal injections have been widely used in humans and animal models. In this work, we investigated recent trends and outcomes of utilizing TV and TS subretinal models of retinal detachment (RD). A literature review revealed an increasing utilization of both models over the past two decades, with TS emerging as the predominant model since 2012. Subretinal injection in CX3CR1 + /GFP CCR2 + /RFP mice revealed early inflammatory responses, with TS injections inducing higher infiltration of CD11b + CCR2 + cells compared to TV. Further leukocyte immunophenotyping indicated divergent infiltration patterns, with the TS approach exhibiting higher proportions of neutrophils and macrophages/microglia-like cells, while the TV injections had higher CD45hi CD11b + Ly6G- Ly6C + infiltration. Notably, late-stage analysis demonstrates higher photoreceptor cell death in the TS approach, paralleled by increased subretinal infiltration of CD11b + cells. Both models showed significant reactive gliosis, suggesting comparable late-stage wound healing responses. These findings underscore the utility of these approaches for subretinal delivery, offering insights into their distinctive leukocyte infiltration and late-stage tissue responses.
Collapse
Affiliation(s)
- Daniel E Maidana
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Sara Pastor Puente
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Catherine Wang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Shivam Chandra
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Lucia Gonzalez-Buendia
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
- Institute of Ocular Microsurgery (IMO) Miranza Group, Madrid, Spain
| | - Eleftherios Paschalis Ilios
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
- Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA
| | - Andrius Kazlauskas
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Demetrios G Vavvas
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
- Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA.
| |
Collapse
|
2
|
Cao Y, Qiao L, Song Y, Yan Y, Ni Y, Xi H, Chen J, Li S, Liu H. Caspase-1 Inhibition Ameliorates Photoreceptor Damage Following Retinal Detachment by Inhibiting Microglial Pyroptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1924-1937. [PMID: 39032599 DOI: 10.1016/j.ajpath.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024]
Abstract
Retinal detachment (RD) is a sight-threatening condition that occurs in several retinal diseases. Microglia that reside in retina are activated after RD and play a role in the death of photoreceptor cells. The involvement of microglial pyroptosis in the early pathological process of RD is still unclear. VX-765, an inhibitor of caspase-1, may exert neuroprotective effects by targeting microglial pyroptosis in nervous system disease; however, whether it plays a role in RD is uncertain. This study detected and localized pyroptosis to specific cells by immunofluorescence co-staining and flow cytometry in rat RD models. The majority of gasdermin D N-terminal (GSDMD-N)-positive cells exhibited IBA1-positive or P2RY12-positive microglia in the early stage of RD, indicating the pyroptosis of microglia. Administration of VX-765 shifted the microglia phenotype from M1 to M2, inhibited microglial migration toward the outer nuclear layer (ONL) post-RD, and most importantly, inhibited microglial pyroptosis. The thickness of ONL increased with VX-765 administration, and the photoreceptors were more structured and orderly under hematoxylin and eosin staining and transmission electron microscopy, revealing the protective effects of VX-765 on photoreceptors. Overall, this study demonstrated that inflammation induced by pyroptosis of microglia is the early pathological process of RD. VX-765 may serve as a candidate therapeutic approach for the treatment of RD by targeting microglia.
Collapse
Affiliation(s)
- Yumei Cao
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China; Xuzhou Medical University, Xuzhou, China
| | - Lei Qiao
- Central Laboratory, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China
| | - Yingying Song
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China; Xuzhou Medical University, Xuzhou, China
| | - Yuanye Yan
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China
| | - Yewen Ni
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China; Xuzhou Medical University, Xuzhou, China
| | - Huiyu Xi
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China
| | - Jiayu Chen
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China; Xuzhou Medical University, Xuzhou, China
| | - Suyan Li
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China; Xuzhou Medical University, Xuzhou, China.
| | - Haiyang Liu
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China; Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
3
|
Maidana DE, Gonzalez-Buendia L, Pastor-Puente S, Naqvi A, Paschalis E, Kazlauskas A, Miller JW, Vavvas DG. Peripheral monocytes and neutrophils promote photoreceptor cell death in an experimental retinal detachment model. Cell Death Dis 2023; 14:834. [PMID: 38102109 PMCID: PMC10724298 DOI: 10.1038/s41419-023-06350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/31/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Photoreceptor cell death and immune cell infiltration are two major events that contribute to retinal degeneration. However, the relationship between these two events has not been well delineated, primarily because of an inadequate understanding of the immunological processes involved in photoreceptor degeneration, especially that of peripheral leukocytes that infiltrate the subretinal space and retinal tissues. In this work, we characterized the role of leukocyte infiltration within the detached retina. We observed that CD45+ CD11b+ Ly6G+ neutrophils and CD45+ CD11b+ Ly6G- Ly6C+ monocytes are the predominant peripheral immune cell populations that infiltrate the retinal and subretinal space after detachment. Selective depletion of monocytes or neutrophils using cell-specific targeting is neuroprotective for photoreceptors. These results indicate that peripheral innate immune cells contribute to photoreceptor degeneration, and targeting these immune cell populations could be therapeutic during retinal detachment.
Collapse
Affiliation(s)
- Daniel E Maidana
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Lucia Gonzalez-Buendia
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Sara Pastor-Puente
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Afsar Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Eleftherios Paschalis
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Andrius Kazlauskas
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Joan W Miller
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Demetrios G Vavvas
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Fan R, Su L, Zhang H, Jiang Y, Yu Z, Zhang X, Li X. Enhanced therapeutic effect of PEDF-loaded mesenchymal stem cell-derived small extracellular vesicles against oxygen-induced retinopathy through increased stability and penetrability of PEDF. J Nanobiotechnology 2023; 21:327. [PMID: 37684667 PMCID: PMC10492320 DOI: 10.1186/s12951-023-02066-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Several common retinal diseases that cause blindness are characterised by pathological neovascularisation accompanied by inflammation and neurodegeneration, including retinopathy of prematurity (ROP), diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinal vein occlusion (RVO). The current treatment strategies for these diseases have limited benefits. Thus, safer and more effective alternative approaches are required. In this study, we loaded small extracellular vesicles (sEVs) derived from mesenchymal stem cell (MSC) with pigment epithelium-derived factor (PEDF), and tested the therapeutic effect of PEDF-loaded sEVs (PEDF-sEVs) using an oxygen induced retinopathy (OIR) mouse model, aiming to establish a new therapy strategy for the treatment of retinal pathological angiogenesis. RESULTS We formulated PEDF-loaded sEVs (PEDF-sEVs) containing high concentrations of PEDF and evaluated their effects through in vivo and in vitro experiments. In OIR mice, PEDF-sEVs showed significantly better effects on retinal avascular areas, inflammation, and neuronal degeneration compared with the anti-vascular endothelial growth factor (VEGF) drug, which may indicate a possible advantage of PEDF-sEVs over anti-VEGF drugs in the treatment of pathological neovascularisation. In vitro, PEDF-sEVs greatly inhibited endothelial cell (EC) proliferation, migration, and tube formation by suppressing the VEGF-induced phosphorylation of extracellular signal-regulated kinase (ERK) and AKT (also known as Protein Kinase B). All experiments and analyses were performed in triplicate. PEDF-sEVs were more effective than PEDF or sEVs alone, both in vitro and in vivo. Furthermore, to determine the distribution of PEDF-sEVs, we used DiD-labelled sEVs and FITC-labelled PEDF to track the sEVs and PEDF, respectively. We found that PEDF-sEVs effectively reduced the degradation of PEDF. CONCLUSIONS Loading PEDF on sEVs effectively enhanced the anti-angiogenic, anti-inflammatory, and neuroprotective effects of PEDF by increasing the stability and penetrability. These results suggest a potential role for PEDF-sEVs in retinal pathological neovascularisation.
Collapse
Affiliation(s)
- Ruiyan Fan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Lin Su
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Hui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Yilin Jiang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Zihao Yu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
5
|
Tabor SJ, Yuda K, Deck J, Gnanaguru G, Connor KM. Retinal Injury Activates Complement Expression in Müller Cells Leading to Neuroinflammation and Photoreceptor Cell Death. Cells 2023; 12:1754. [PMID: 37443787 PMCID: PMC10340218 DOI: 10.3390/cells12131754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Retinal detachment (RD) is a neurodegenerative blinding disease caused by plethora of clinical conditions. RD is characterized by the physical separation of retina from the underlying retinal pigment epithelium (RPE), eventually leading to photoreceptor cell death, inflammation, and vision loss. Albeit the activation of complement plays a critical role in the pathogenesis of RD, the retinal cellular source for complement production remains elusive. Here, using C3 tdTomato reporter mice we show that retinal injury upregulates C3 expression, specifically in Müller cells. Activation of the complement cascade results in the generation of proinflammatory cleaved products, C3a and C5a, that bind C3aR and C5aR1, respectively. Our flow cytometry data show that retinal injury significantly upregulated C3aR and C5aR1 in microglia and resulted in the infiltration of peripheral immune cells. Loss of C3, C5, C3aR or C5aR1 reduced photoreceptor cell death and infiltration of microglia and peripheral immune cells into the sub-retinal space. These results indicate that C3/C3aR and C5/C5aR1 play a crucial role in eliciting photoreceptor degeneration and inflammatory responses in RD.
Collapse
Affiliation(s)
- Steven J. Tabor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Kentaro Yuda
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Jonathan Deck
- Tulane University School of Medicine, Tulane Medical Center, New Orleans, LA 70112, USA
| | - Gopalan Gnanaguru
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Kip M. Connor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
6
|
Maidana DE, Gonzalez-Buendia L, Miller JW, Vavvas DG. RIPK necrotic cell death pathway in both donor photoreceptor and host immune cells synergize to affect photoreceptor graft survival. FASEB J 2023; 37:e22847. [PMID: 36862516 PMCID: PMC10590064 DOI: 10.1096/fj.202201137r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/29/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023]
Abstract
Photoreceptor transplant has been put forward as a repair strategy to tackle degenerated retinas. Nonetheless, cell death and immune rejection seriously limit the success of this strategy, with only a small fraction of transplanted cells surviving. Improving the survival of transplanted cells is of critical importance. Recent evidence has identified receptor-interacting protein kinase 3 (RIPK3) as a molecular trigger controlling necroptotic cell death and inflammation. However, its role in photoreceptor transplantation and regenerative medicine has not been studied. We hypothesized that modulation of RIPK3 to address both cell death and immunity could have advantageous effects on photoreceptor survival. In a model of inherited retinal degeneration, deletion of RIPK3 in donor photoreceptor precursors significantly increases the survival of transplanted cells. Simultaneous RIPK3 deletion in donor photoreceptors and recipients maximizes graft survival. Lastly, to discern the role of RIPK3 in the host immune response, bone marrow transplant experiments demonstrated that peripheral immune cell RIPK3 deficiency is protective for both donor and host photoreceptor survival. Interestingly, this finding is independent of photoreceptor transplantation, as the peripheral protective effect is also observed in an additional retinal detachment photoreceptor degeneration model. Altogether, these results indicate that immunomodulatory and neuroprotective strategies targeting the RIPK3 pathway can aid regenerative therapies of photoreceptor transplantation.
Collapse
Affiliation(s)
- Daniel E. Maidana
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lucia Gonzalez-Buendia
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Joan W. Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
7
|
Zhang Q, Hu XM, Zhao WJ, Ban XX, Li Y, Huang YX, Wan H, He Y, Liao LS, Shang L, Jiang B, Qing GP, Xiong K. Targeting Necroptosis: A Novel Therapeutic Option for Retinal Degenerative Diseases. Int J Biol Sci 2023; 19:658-674. [PMID: 36632450 PMCID: PMC9830514 DOI: 10.7150/ijbs.77994] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
The discovery of the necroptosis, a form of regulated necrosis that is mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed-lineage kinase domain-like pseudokinase (MLKL), represents a major breakthrough that has dramatically altered the conception of necrosis - traditionally thought of as uncontrolled cell death - in various human diseases. Retinal cell death is a leading cause of blindness and has been identified in most retinal diseases, e.g., age-related macular degeneration, glaucoma, retinal detachment, retinitis pigmentosa, etc. Increasing evidence demonstrates that retinal degenerative diseases also share a common mechanism in necroptosis. Exacerbated necroptotic cell death hinders the treatment for retinal degenerative diseases. In this review, we highlight recent advances in identifying retinal necroptosis, summarize the underlying mechanisms of necroptosis in retinal degenerative diseases, and discuss potential anti-necroptosis strategies, such as selective inhibitors and chemical agents, for treating retinal degenerative diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| | - Xi-min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wen-juan Zhao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xiao-xia Ban
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yan Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yan-xia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Hao Wan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ye He
- Changsha Aier Eye Hospital, Changsha, China
| | - Lv-shuang Liao
- School of Physical Education, Hunan Institute of Science and Technology, Yueyang, China
| | - Lei Shang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Bin Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-ping Qing
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
8
|
Yang S, Li T, Jia H, Gao M, Li Y, Wan X, Huang Z, Li M, Zhai Y, Li X, Yang X, Wang T, Liang J, Gu Q, Luo X, Qian L, Lu S, Liu J, Song Y, Wang F, Sun X, Yu D. Targeting C3b/C4b and VEGF with a bispecific fusion protein optimized for neovascular age-related macular degeneration therapy. Sci Transl Med 2022; 14:eabj2177. [PMID: 35648811 DOI: 10.1126/scitranslmed.abj2177] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antiangiogenesis therapies targeting vascular endothelial growth factor (VEGF) have revolutionized the treatment of neovascular ocular diseases, including neovascular age-related macular degeneration (nAMD). Compelling evidence has implicated the vital role of complement system dysregulation in AMD pathogenesis, implying it as a potential therapeutic strategy for geographic atrophy in dry AMD and to enhance the efficacy of anti-VEGF monotherapies in nAMD. This study reports the preclinical assessment and phase 1 clinical outcomes of a bispecific fusion protein, efdamrofusp alfa (code: IBI302), which is capable of neutralizing both VEGF isoforms and C3b/C4b. Efdamrofusp alfa showed superior efficacy over anti-VEGF monotherapy in a mouse laser-induced choroidal neovascularization (CNV) model after intravitreal delivery. Dual inhibition of VEGF and the complement activation was found to further inhibit macrophage infiltration and M2 macrophage polarization. Intravitreal efdamrofusp alfa demonstrated favorable safety profiles and exhibited antiangiogenetic efficacy in a nonhuman primate laser-induced CNV model. A phase 1 dose-escalating clinical trial (NCT03814291) was thus conducted on the basis of the preclinical data. Preliminary results showed that efdamrofusp alfa was well tolerated in patients with nAMD. These data suggest that efdamrofusp alfa might be effective for treating nAMD and possibly other complement-related ocular conditions.
Collapse
Affiliation(s)
- Shiqi Yang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China
| | - Tong Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China
| | - Huixun Jia
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Min Gao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yiming Li
- Innovent Biologics Inc., Suzhou 215000, China
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Zhen Huang
- Department of Ophthalmology, Wuhan General Hospital of Guangzhou Military Region, Wuhan 430070, China
| | - Min Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Yuanqi Zhai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Xiaomeng Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China
| | - Xiaotong Yang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China
| | - Tao Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Jian Liang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Lei Qian
- Innovent Biologics Inc., Suzhou 215000, China
| | - Shujie Lu
- Innovent Biologics Inc., Suzhou 215000, China
| | - Junjian Liu
- Innovent Biologics Inc., Suzhou 215000, China
| | - Yanping Song
- Department of Ophthalmology, Wuhan General Hospital of Guangzhou Military Region, Wuhan 430070, China
| | - Fenghua Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Dechao Yu
- Innovent Biologics Inc., Suzhou 215000, China
| |
Collapse
|
9
|
Vargas JA, Finnemann SC. Probing Photoreceptor Outer Segment Phagocytosis by the RPE In Vivo: Models and Methodologies. Int J Mol Sci 2022; 23:ijms23073661. [PMID: 35409021 PMCID: PMC8998817 DOI: 10.3390/ijms23073661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
In the vertebrate retina, the light-sensitive photoreceptor rods and cones constantly undergo renewal by generating new portions of the outer segment and shedding their distal, spent tips. The neighboring RPE provides the critical function of engulfing the spent material by phagocytosis. RPE phagocytosis of shed rod outer segment fragments is a circadian process that occurs in a burst of activity shortly after daily light onset with low activity at other times, a rhythm that has been reported for many species and over 50 years. In this review, we compare studies on the rhythm and quantity of RPE phagocytosis using different in vivo model systems and assessment methods. We discuss how measurement methodology impacts the observation and analysis of RPE phagocytosis. Published studies on RPE phagocytosis investigating mice further suggest that differences in genetic background and housing conditions may affect results. Altogether, a comparison between RPE phagocytosis studies performed using differing methodology and strains of the same species is not as straightforward as previously thought.
Collapse
|
10
|
Maidana DE, Gonzalez-Buendia L, Miller JW, Vavvas DG. Local photoreceptor cell death differences in the murine model of retinal detachment. Sci Rep 2021; 11:18798. [PMID: 34552137 PMCID: PMC8458282 DOI: 10.1038/s41598-021-97947-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/05/2021] [Indexed: 11/10/2022] Open
Abstract
To investigate local cell death differences in the attached and detached retina at different regions in a murine experimental retinal detachment model. Subretinal injection of sodium hyaluronate was performed in eight-week-old C57BL/6J mice. Retinal regions of interest were defined in relation to their distance from the peak of the retinal detachment, as follows: (1) attached central; (2) attached paracentral; (3) detached apex; and (4) detached base. At day 0, the outer nuclear layer cell count for the attached central, attached paracentral, detached apex, and detached base was 1247.60 ± 64.62, 1157.80 ± 163.33, 1264.00 ± 150.7, and 1013.80 ± 67.16 cells, respectively. There were significant differences between the detached base vs. attached central, and between detached base vs. detached apex at day 0. The detached apex region displayed a significant and progressive cell count reduction from day 0 to 14. In contrast, the detached base region did not show progressive retinal degeneration in this model. Moreover, only the detached apex region had a significant and progressive cell death rate compared to baseline. Immediate confounding changes with dramatic differences in cell death rates are present across regions of the detached retina. We speculate that mechanical and regional differences in the bullous detached retina can modify the rate of cell death in this model.
Collapse
Affiliation(s)
- Daniel E Maidana
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Lucia Gonzalez-Buendia
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Joan W Miller
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Demetrios G Vavvas
- Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA.
| |
Collapse
|
11
|
Chemokine CCL5 promotes robust optic nerve regeneration and mediates many of the effects of CNTF gene therapy. Proc Natl Acad Sci U S A 2021; 118:2017282118. [PMID: 33627402 DOI: 10.1073/pnas.2017282118] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ciliary neurotrophic factor (CNTF) is a leading therapeutic candidate for several ocular diseases and induces optic nerve regeneration in animal models. Paradoxically, however, although CNTF gene therapy promotes extensive regeneration, recombinant CNTF (rCNTF) has little effect. Because intraocular viral vectors induce inflammation, and because CNTF is an immune modulator, we investigated whether CNTF gene therapy acts indirectly through other immune mediators. The beneficial effects of CNTF gene therapy remained unchanged after deleting CNTF receptor alpha (CNTFRα) in retinal ganglion cells (RGCs), the projection neurons of the retina, but were diminished by depleting neutrophils or by genetically suppressing monocyte infiltration. CNTF gene therapy increased expression of C-C motif chemokine ligand 5 (CCL5) in immune cells and retinal glia, and recombinant CCL5 induced extensive axon regeneration. Conversely, CRISPR-mediated knockdown of the cognate receptor (CCR5) in RGCs or treating wild-type mice with a CCR5 antagonist repressed the effects of CNTF gene therapy. Thus, CCL5 is a previously unrecognized, potent activator of optic nerve regeneration and mediates many of the effects of CNTF gene therapy.
Collapse
|
12
|
Zhou M, Liu Y, Ma C. Distinct Nuclear Architecture of Photoreceptors and Light-Induced Behaviors in Different Strains of Mice. Transl Vis Sci Technol 2021; 10:37. [PMID: 34003922 PMCID: PMC7910638 DOI: 10.1167/tvst.10.2.37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The mouse retina is considered a remarkable model for studying gene functions. However, variations in genetic background influence phenotypes in the mammalian retina. Therefore this study aimed to investigate the effects of the genetic background on the nuclear architecture of photoreceptor cells and the light-induced behavior in C57BL/6, 129 × 1/svj, and ICR mice. Methods The nuclear architecture of photoreceptor cells was investigated using various staining methods on postnatal day 21 (P21). Murine behavior was observed using a light-dark compartment test. Results The outer nuclear layer and retina were significantly thicker in C57BL/6 mice than in 129 × 1/svj mice. The percentage of photoreceptors with one chromocenter was significantly higher in C57BL/6 mice than in 129 × 1/svj and ICR mice on P21. The numbers of photoreceptor cells in C57BL/6 and ICR mice were significantly higher than those in 129 × 1/svj mice. The behavior test revealed that the walking distance and velocity in the light compartment were increased in C57BL/6 and ICR mice compared to 129 × 1/svj mice. Conclusions Different mouse strains had a distinct nuclear architecture of photoreceptors on P21, and C57BL/6 and ICR mice were more active than 129 × 1/svj mice in response to light-induced stress. Translational Relevance This study demonstrates a technique for assessing retinal structures and nuclear architecture in various strains of mice, which are often used to model human retinal disease. Hence, this study may help to elucidate the effect of genetic or disease-induced variance in retinal architecture and the organization of photoreceptor nuclear content on visual function in humans.
Collapse
Affiliation(s)
- Mingxue Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Yutong Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chao Ma
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Torres-Costa S, Penas S, Cerqueira AR, Brandão E, Carneiro Â, Rocha-Sousa A, Falcão-Reis F. Long term outer retinal changes in central serous chorioretinopathy submitted to half-dose photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 34:102235. [PMID: 33631379 DOI: 10.1016/j.pdpdt.2021.102235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/18/2021] [Accepted: 02/19/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE To evaluate long-term changes in the foveal and parafoveal outer retina after half-dose photodynamic therapy (HD-PDT) in central serous chorioretinopathy (CSC). METHODS Retrospective study including CSC patients submitted to HD-PDT. Best corrected visual acuity (BCVA) was evaluated. Spectral-domain optical coherence tomography automatic segmentation algorithm was used and data on retinal, inner retinal, outer retinal and outer nuclear layers (ONL) in both foveal 1 mm (C) and parafoveal 3 mm ETDRS circles for the superior, nasal, inferior and temporal sectors, were obtained at baseline and 3, 12 and 24 months post-treatment. Subfoveal choroidal thickness, photoreceptors' outer segment thickness, subretinal fluid (SRF) height and width were also measured. RESULTS Twenty-one eyes of 15 patients were included. At baseline, the mean ONL thickness in the foveal area was significantly thinner in affected eyes compared to their fellow unaffected ones (55,50 ± 32,75 μm vs 93,00 ± 17,0 μm; p = 0,011), and was negatively correlated to logMAR BCVA (R=-0,601, p = 0,008) ONL thickness increased by 10,94 ± 11,88 μm at 24 months in the foveal area, and all the parafoveal sectors presented a similar increase. Baseline SRF width was significantly correlated with baseline BCVA (R1 = 0,483, p = 0,036), and with ONL thickness in all sectors. CONCLUSION In our study we found a significant long-term increase in foveal and parafoveal ONL thickness in CSC after HD-PDT, suggesting that this seems to be a safe treatment for the outer retina. This is the first study mapping the outer retinal changes in the macular area to 24 months follow up.
Collapse
Affiliation(s)
- Sónia Torres-Costa
- Department of Ophthalmology, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Susana Penas
- Department of Ophthalmology, Centro Hospitalar Universitário de São João, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.
| | | | - Elisete Brandão
- Department of Ophthalmology, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Ângela Carneiro
- Department of Ophthalmology, Centro Hospitalar Universitário de São João, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Amândio Rocha-Sousa
- Department of Ophthalmology, Centro Hospitalar Universitário de São João, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Fernando Falcão-Reis
- Department of Ophthalmology, Centro Hospitalar Universitário de São João, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Gao W, Du J, Chi Y, Zhu R, Gao X, Yang L. Minocycline prevents the inflammatory response after retinal detachment, where microglia phenotypes being regulated through A20. Exp Eye Res 2020; 203:108403. [PMID: 33326811 DOI: 10.1016/j.exer.2020.108403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022]
Abstract
Retinal detachment (RD) is a severe sight-threatening complication that can be caused by a multitude of retinal diseases. It has been evidenced that minocycline exerts neuroprotective effects by targeting microglia in the pathogenesis of massive ocular lesions including RD, but mechanisms remain elusive. We carried out this research to elucidate the potential mediators that link RD-induced vision loss with microglia reactivity by discussing effects of minocycline on cytokine levels and A20, a negative regulator of inflammation. Minocycline or vehicle was intraperitoneally administrated immediately after RD and continued daily before animals being euthanized. The oxygen glucose deprivation assay was undertaken on the co-cultured BV-2 and 661W cells to mimic the condition of RD in vitro, where A20 siRNA was adopted to knock down the A20 expression in BV-2 cells. Photoreceptor cells apoptosis, inflammatory response and microglia activity following RD with or without minocycline were evaluated. Photoreceptor cells apoptosis and inflammatory response were induced after RD, which could be largely counteracted by minocycline. Minocycline postponed the migration and proliferation of microglia and facilitated their transition to the M2 subtype following RD. Blocking A20 expression in BV-2 cells with siRNA crippled the effect of minocycline. Collectively, minocycline yields a promoting effect on photoreceptor cells survival post-RD by modulating the transformation of microglia phenotypes, in which process A20 may play a "bridge" role.
Collapse
Affiliation(s)
- Wenna Gao
- Department of Ophthalmology, Peking University First Hospital, Beijing, PR China
| | - Jiantong Du
- Department of Ophthalmology, Peking University First Hospital, Beijing, PR China
| | - Ying Chi
- Department of Ophthalmology, Peking University First Hospital, Beijing, PR China
| | - Ruilin Zhu
- Department of Ophthalmology, Peking University First Hospital, Beijing, PR China
| | - Xinran Gao
- Department of Ophthalmology, Peking University First Hospital, Beijing, PR China
| | - Liu Yang
- Department of Ophthalmology, Peking University First Hospital, Beijing, PR China.
| |
Collapse
|
15
|
Maidana DE, Notomi S, Ueta T, Zhou T, Joseph D, Kosmidou C, Caminal-Mitjana JM, Miller JW, Vavvas DG. ThicknessTool: automated ImageJ retinal layer thickness and profile in digital images. Sci Rep 2020; 10:18459. [PMID: 33116161 PMCID: PMC7595229 DOI: 10.1038/s41598-020-75501-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
To develop an automated retina layer thickness measurement tool for the ImageJ platform, to quantitate nuclear layers following the retina contour. We developed the ThicknessTool (TT), an automated thickness measurement plugin for the ImageJ platform. To calibrate TT, we created a calibration dataset of mock binary skeletonized mask images with increasing thickness masks and different rotations. Following, we created a training dataset and performed an agreement analysis of thickness measurements between TT and two masked manual observers. Finally, we tested the performance of TT measurements in a validation dataset of retinal detachment images. In the calibration dataset, there were no differences in layer thickness between measured and known thickness masks, with an overall coefficient of variation of 0.00%. Training dataset measurements of immunofluorescence retina nuclear layers disclosed no significant differences between TT and any observer’s average outer nuclear layer (ONL) (p = 0.998), inner nuclear layer (INL) (p = 0.807), and ONL/INL ratio (p = 0.944) measurements. Agreement analysis showed that bias between TT vs. observers’ mean was lower than between any observers’ mean against each other in the ONL (0.77 ± 0.34 µm vs 3.25 ± 0.33 µm) and INL (1.59 ± 0.28 µm vs 2.82 ± 0.36 µm). Validation dataset showed that TT can detect significant and true ONL thinning (p = 0.006), more sensitive than manual measurement capabilities (p = 0.069). ThicknessTool can measure retina nuclear layers thickness in a fast, accurate, and precise manner with multi-platform capabilities. In addition, the TT can be customized to user preferences and is freely available to download.
Collapse
Affiliation(s)
- Daniel E Maidana
- From the Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.,From the Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.,From the Retina Service, Bellvitge Hospital, University of Barcelona, Barcelona, Spain
| | - Shoji Notomi
- From the Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Takashi Ueta
- From the Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Tianna Zhou
- From the Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.,From the Retina Service, Bellvitge Hospital, University of Barcelona, Barcelona, Spain
| | - Danica Joseph
- From the Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Cassandra Kosmidou
- From the Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | | | - Joan W Miller
- From the Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Demetrios G Vavvas
- From the Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
CORRELATIONS BETWEEN CHANGES IN PHOTORECEPTOR LAYER AND OTHER CLINICAL CHARACTERISTICS IN CENTRAL SEROUS CHORIORETINOPATHY. Retina 2020; 39:1110-1116. [PMID: 29401176 PMCID: PMC6553978 DOI: 10.1097/iae.0000000000002092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study of 222 eyes with central serous chorioretinopathy demonstrates that morphologic changes in photoreceptor layer, visual acuity, decreasing foveal outer nuclear layer thickness, and symptom duration correlated closely but may behave asynchronously. These objective parameters, besides symptom duration, could be helpful when considering the timing of CSC treatment. Purpose: To clarify the correlations between changes in the photoreceptor layer (PRL) and other clinical characteristics during central serous chorioretinopathy. Methods: Patients with central serous chorioretinopathy with one eye affected were enrolled. Photoreceptor layer appearance within the detached area was evaluated, and its correlations with symptom duration, best-corrected visual acuity, and the difference in the foveal outer nuclear layer thickness between the affected and contralateral eyes were analyzed. Results: A total of 222 patients were included. The PRL outer border appeared either smooth, granulated, or as scattered dots attached to external limiting membrane. These different appearances were associated with elongation in symptom duration (18, 180, and 1,855 days), decreases in best-corrected visual acuity (6/10, 6/15, and 6/120), and increases in the difference of foveal outer nuclear layer thickness (−16, −32, and −60 μm). Among eyes with smooth PRL outer border, which had similar symptom duration, eyes with foveal PRL defect had poorer best-corrected visual acuity and greater reduction in outer nuclear layer thickness than the other eyes (all P = 0.00). Conclusion: Morphologic changes in PRL, best-corrected visual acuity, the reduction in foveal outer nuclear layer thickness, and symptom duration correlate closely but may behave asynchronously. These objective parameters, besides symptom duration, could be helpful when considering the timing of central serous chorioretinopathy treatment.
Collapse
|
17
|
McKay KM, Vingopoulos F, Wang JC, Papakostas TD, Silverman RF, Marmalidou A, Lains I, Eliott D, Vavvas DG, Kim LA, Wu DM, Miller JB. Retinal Microvasculature Changes After Repair of Macula-off Retinal Detachment Assessed with Optical Coherence Tomography Angiography. Clin Ophthalmol 2020; 14:1759-1767. [PMID: 32616995 PMCID: PMC7326212 DOI: 10.2147/opth.s214623] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/12/2020] [Indexed: 11/23/2022] Open
Abstract
Objective To characterize the microvascular retinal changes after repair of macula-off rhegmatogenous retinal detachment (RRD) using optical coherence tomography angiography (OCT-A). Patients and Methods A retrospective review of patients who underwent repair of macula-off RRD. Fellow unaffected eyes were used as controls. Post-operative OCT-A allowed comparison of vessel density (VD) and foveal avascular zone (FAZ) area in the superficial and deep retinal capillary plexus (DCP) as well as VD in the choriocapillaris layer. Results Seventeen eyes of 17 RRD patients were included in the final analysis. There was a reduction in VD of the deep retinal capillary plexus in affected eyes compared to fellow eyes (p = 0.046). RRD eyes with reduced VD in DCP compared with their fellow control eyes had worse visual acuity after repair compared to those without (p = 0.032). No significant microvasculature changes were detected in the FAZ area and VD in the superficial capillary plexus and choriocapillaris compared to fellow eyes. Conclusion In macula-off RRD eyes, significant microvascular changes were detected in the DCP using OCT-A even after successful anatomical repair. Decreased VD in the DCP compared to the fellow healthy eyes was correlated with worse visual acuity.
Collapse
Affiliation(s)
- K Matthew McKay
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Filippos Vingopoulos
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jay C Wang
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Thanos D Papakostas
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,Retina Service, Weill Cornell Medical College, New York, NY, USA
| | - Rebecca F Silverman
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Anna Marmalidou
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Inês Lains
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Dean Eliott
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Demetrios G Vavvas
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Leo A Kim
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - David M Wu
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - John B Miller
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Camacho ET, Lenhart S, Melara LA, Villalobos MC, Wirkus S. Optimal control with MANF treatment of photoreceptor degeneration. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2020; 37:1-21. [PMID: 30810166 DOI: 10.1093/imammb/dqz003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 02/05/2023]
Abstract
People afflicted with diseases such as retinitis pigmentosa and age-related macular degeneration experience a decline in vision due to photoreceptor degeneration, which is currently unstoppable and irreversible. Currently there is no cure for diseases linked to photoreceptor degeneration. Recent experimental work showed that mesencephalic astrocyte-derived neurotrophic factor (MANF) can reduce neuron death and, in particular, photoreceptor death by reducing the number of cells that undergo apoptosis. In this work, we build on an existing system of ordinary differential equations that represent photoreceptor interactions and incorporate MANF treatment for three experimental mouse models having undergone varying degrees of photoreceptor degeneration. Using MANF treatment levels as controls, we investigate optimal control results in the three mouse models. In addition, our numerical solutions match the experimentally observed surviving percentage of photoreceptors and our uncertainty and sensitivity analysis identifies significant parameters in the math model both with and without MANF treatment.
Collapse
Affiliation(s)
- Erika T Camacho
- School of Mathematical & Natural Sciences, Arizona State University, Phoenix, AZ, USA
| | - Suzanne Lenhart
- Department of Mathematics, University of Tennessee, Knoxville, TN, USA
| | - Luis A Melara
- Department of Mathematics, Shippensburg University, Shippensburg, PA, USA
| | - M Cristina Villalobos
- School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Stephen Wirkus
- School of Mathematical & Natural Sciences, Arizona State University, Phoenix, AZ, USA
| |
Collapse
|
19
|
Ma M, Li B, Zhang M, Zhou L, Yang F, Ma F, Shao H, Li Q, Li X, Zhang X. Therapeutic effects of mesenchymal stem cell-derived exosomes on retinal detachment. Exp Eye Res 2019; 191:107899. [PMID: 31866431 DOI: 10.1016/j.exer.2019.107899] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/26/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Retinal detachment (RD) induces ischemia and oxygen deficiency in the retina and results in multiple pathological events; photoreceptor cell degeneration and death is the eventual cause of vision decline. In this study, we investigated the therapeutic effects of mesenchymal stem cell-derived exosomes (MSC-Exos) in a rat retinal detachment (RD) model. The model was developed using a subretinal injection of 1% hyaluronic acid in male Sprague-Dawley rats. MSC-Exos were sub-retinally injected at the time of retinal separation to study their therapeutic function. The retinal expression levels of inflammatory cytokines TNF-α, IL-1β, and MCP-1 were detected by RT-PCR, the autophagy-related protein 5 (Atg5) and microtubule-associated protein 1 light chain 3 beta (LC3) were detected by Western blot, and apoptosis was examined using TUNEL assays at 3 days following RD. Retinal structure was observed at 7 days post-RD. Proteomic analysis was also performed to detect proteins carried by MSC-Exos using iTRAQ-based technology combined with one-dimensional nano LC-nano-ESI- MS/MS. We found that expression of TNF-α and IL-1β were significantly reduced, the LC3-II to LC3-I ratio was enhanced and cleavage of Atg5 was decreased after MSC-Exo treatment. Treatment with MSC-Exos also suppressed photoreceptor cell apoptosis and maintained normal retinal structure when compared to control groups. Proteomic analysis revealed that MSC-Exos contained proteins with anti-inflammatory, neuroprotective and anti-apoptotic effects. These results suggest that MSC-Exos have therapeutic effects on RD-induced retinal injury and can be used to reduce effects of retinal detachment on photoreceptor cell degeneration in patients.
Collapse
Affiliation(s)
- Mingming Ma
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Bing Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Mingliang Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Lei Zhou
- Singapore Eye Research Institute, Singapore
| | - Fuhua Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Feifei Ma
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, USA
| | - Qiutang Li
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, USA
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China.
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China.
| |
Collapse
|
20
|
Autophagy, lysosome dysfunction and mTOR inhibition in MNU-induced photoreceptor cell damage. Tissue Cell 2019; 61:98-108. [PMID: 31759414 DOI: 10.1016/j.tice.2019.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 01/03/2023]
Abstract
Progressive photoreceptor death is the main cause of retinal degeneration diseases. Determining the underlying mechanism of this process is essential for therapy improvement. Autophagy has long been considered to be involved in neuronal degeneration diseases, and the regulation of autophagy is thought to have potential implications for neurodegenerative disease therapies. However, whether autophagy is protective or destructive varies among diseases and is controversial. In the present study, we established an N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell damage model in vitro that faithfully replicated photoreceptor cell death in retinal degeneration diseases. Cell viability was tested by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assays. Reactive oxygen species (ROS) levels were assessed through 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence. Autophagy was confirmed by observing autophagosomes using transmission electron microscopy (TEM). A lysosome tracker was used to identify acidic lysosomes in cells. We also measured the expression of some proteins related to autophagy, apoptosis and lysosomal degradation by western blot and immunofluorescence assays. We found that MNU could decrease photoreceptor cell viability in a time- and dose-dependent manner, and this change was accompanied by concomitant increases in ROS and the expression of the apoptosis-inducing protein cleaved caspase-3. Moreover, autophagy was activated by MNU treatment during this process. Inhibition of autophagy with 3-methyladenine accelerated cell damage. Lysosome dysfunction was confirmed by autophagosome enlargement and increased cathepsin expression, which was accompanied by mTOR dephosphorylation. In conclusion, autophagy was activated through inhibition of the PI3K/mTOR pathway in the context of MNU-induced photoreceptor cell death. Prolonged mTOR dephosphorylation and autophagy activation resulted in autophagic vacuole accumulation, as indicated by inefficient degradation in lysosomes, and further led to apoptosis.
Collapse
|
21
|
Dyka FM, Molday LL, Chiodo VA, Molday RS, Hauswirth WW. Dual ABCA4-AAV Vector Treatment Reduces Pathogenic Retinal A2E Accumulation in a Mouse Model of Autosomal Recessive Stargardt Disease. Hum Gene Ther 2019; 30:1361-1370. [PMID: 31418294 DOI: 10.1089/hum.2019.132] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autosomal recessive Stargardt disease is the most common inherited macular degeneration in humans. It is caused by mutations in the retina-specific ATP binding cassette transporter A4 (ABCA4) that is essential for the clearance of all-trans-retinal from photoreceptor cells. Loss of this function results in the accumulation of toxic bisretinoids in the outer segment disk membranes and their subsequent transfer into adjacent retinal pigment epithelium (RPE) cells. This ultimately leads to the Stargardt disease phenotype of increased retinal autofluorescence and progressive RPE and photoreceptor cell loss. Adeno-associated virus (AAV) vectors have been widely used in gene therapeutic applications, but their limited cDNA packaging capacity of ∼4.5 kb has impeded their use for transgenes exceeding this limit. AAV dual vectors were developed to overcome this size restriction. In this study, we have evaluated the in vitro expression of ABCA4 using three options: overlap, transplicing, and hybrid ABCA4 dual vector systems. The hybrid system was the most efficient of these dual vector alternatives and used to express the full-length ABCA4 in Abca4-/- mice. The full-length ABCA4 protein correctly localized to photoreceptor outer segments. Moreover, treatment of Abca4-/- mice with this ABCA4 hybrid dual vector system resulted in a reduced accumulation of the lipofuscin/N-retinylidene-N-retinylethanolamine (A2E) autofluorescence in vivo, and retinal A2E quantification supported these findings. These results show that the hybrid AAV dual vector option is both safe and therapeutic in mice, and the delivered ABCA4 transgene is functional and has a significant effect on reducing A2E accumulation in the Abca4-/- mouse model of Stargardt disease.
Collapse
Affiliation(s)
- Frank M Dyka
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| | - Laurie L Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vince A Chiodo
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - William W Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
22
|
Tao Y, Dong X, Lu X, Qu Y, Wang C, Peng G, Zhang J. Subcutaneous delivery of tauroursodeoxycholic acid rescues the cone photoreceptors in degenerative retina: A promising therapeutic molecule for retinopathy. Biomed Pharmacother 2019; 117:109021. [PMID: 31387173 DOI: 10.1016/j.biopha.2019.109021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
Inherited retinal degeneration (RD) comprises a heterogeneous group of retinopathies that rank among the main causes of blindness. Tauroursodeoxycholic acid (TUDCA) is taurine conjugate hydrophilic bile acid that demonstrates profound protective effects against a series of neurodegenerative diseases related to oxidative stress. This study sought to evaluate the TUDCA induced effects of on a pharmacologically induced RD animal model by electroretinogram (ERG) examination, behavior tests, morphological analysis and immunochemistry assay. Massive photoreceptor degeneration in mice retina was induced by an intraperitoneal administration of N-methyl-N-nitrosourea(MNU). Subcutaneous delivery of TUDCA inhibits effectively the photoreceptor loss and visual impairments in the MNU administered mice. In the retinal flat-mounts of TUDCA treated mice, the cone photoreceptors were efficiently preserved. Furthermore, the multi-electrodes array (MEA) was used to detect the firing activities of retinal ganglion cells within the inner retinal circuits. TUDCA therapy could restrain the spontaneous firing response, enhance the light induced firing response, and preserve the basic configurations of ON-OFF signal pathway in degenerative retinas. Our MEA assay provided an example to evaluate the potency of pharmacological compounds on retinal plasticity. TUDCA affords these protective effects by modulating apoptosis and alleviating oxidative stress in the degenerative retina. In conclusion, TUDCA therapy can ameliorate the photoreceptor degeneration and rectify the abnormities in visual signal transmission. These findings suggest that TUDCA might act as a potential medication for these retinopathies with progressive photoreceptor degeneration.
Collapse
Affiliation(s)
- Ye Tao
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China; Lab of Visual Cell Differentiation, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Xin Dong
- Department of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xin Lu
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China; Lab of Visual Cell Differentiation, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingxin Qu
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunhui Wang
- Department of Pediatric, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| | - Guanghua Peng
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China; Lab of Visual Cell Differentiation, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jianbin Zhang
- Department of Occupational & Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
23
|
Solanki A, Smalling R, Parola AH, Nathan I, Kasher R, Pathak Y, Sutariya V. Humanin Nanoparticles for Reducing Pathological Factors Characteristic of Age-Related Macular Degeneration. Curr Drug Deliv 2019; 16:226-232. [PMID: 30381074 DOI: 10.2174/1567201815666181031163111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND Humanin is a novel neuronal peptide that has displayed potential in the treatment of Alzheimer's Disease through the suppression of inflammatory IL-6 cytokine receptors. Such receptors are found throughout the body, including the eye, suggesting its other potential applications. Age-related Macular Degeneration (AMD) is the leading cause of blindness in the developing world. There is no cure for this disease, and current treatments have several negative side effects associated with them, making finding other treatment options desirable. OBJECTIVE In this study, the potential applications in treating AMD for a more potent humanin derivative, AGA-HNG, were studied. METHODS AGA-HNG was synthesized and encapsulated in chitosan Nanoparticles (NPs), which were then characterized for their size, Encapsulation Efficiency (EE), and drug release. Their ability to suppress VEGF secretion and protect against oxidative apoptosis was studied in vitro using ARPE-19 cells. The chitosan NPs exhibited similar anti-VEGF properties and oxidative protection as the free protein while exhibiting superior pharmaceutical characteristics including biocompatibility and drug release. RESULTS Drug-loaded NPs exhibited a radius of 346nm with desirable pharmacokinetic properties including a stable surface charge (19.5 ± 3.7 mV) and steady drug release capacity. AGA-HNG showed great promise in mediating apoptosis in hypoxic cells. They were also able to significantly reduce VEGF expression in vitro with reduced cellular toxicity compared to the free drug. CONCLUSION The ability of this drug delivery system to reduce retinal apoptosis with desirable pharmacokinetic and biocompatible properties makes this a promising therapeutic option for AMD.
Collapse
Affiliation(s)
- Aum Solanki
- Department of Pharmaceutical Sciences, USF College of Pharmacy, University of South Florida, Tampa, FL 33647, United States.,USF Morsani College of Medicine, University of South Florida, Tampa, FL 33647, United States
| | - Rudy Smalling
- Department of Pharmaceutical Sciences, USF College of Pharmacy, University of South Florida, Tampa, FL 33647, United States
| | - Abraham H Parola
- Department of Chemistry, The Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ilana Nathan
- Department of Clinical Biochemistry and Pharmacology, The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Roni Kasher
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boquer Campus, Beersheba, 8499000, Israel
| | - Yashwant Pathak
- Department of Pharmaceutical Sciences, USF College of Pharmacy, University of South Florida, Tampa, FL 33647, United States.,Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Vijaykumar Sutariya
- Department of Pharmaceutical Sciences, USF College of Pharmacy, University of South Florida, Tampa, FL 33647, United States
| |
Collapse
|
24
|
The relationship between foveal outer nuclear layer thickness in the active and resolved phases of central serous chorioretinopathy treated with half-dose photodynamic therapy. BMC Ophthalmol 2019; 19:84. [PMID: 30922273 PMCID: PMC6440016 DOI: 10.1186/s12886-019-1089-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/20/2019] [Indexed: 11/25/2022] Open
Abstract
Background To investigate the relationship between the foveal outer nuclear layer (ONL) thickness in the active and resolved phases of central serous chorioretinopathy (CSC), and its possible association with optical coherence tomography (OCT) parameters. Methods The medical records of CSC patients treated with half-dose photodynamic therapy (PDT) between August 2011 and October 2017 were reviewed. The difference between the foveal ONL thickness at 12 m after half-dose PDT and that before half-dose PDT was analyzed, and its association with OCT parameters was assessed using generalized linear models. Results Sixty-two patients were included. The mean difference in foveal ONL thickness was 9.15 ± 8.16 μm. The average ratios of the retinal detachment height to the subretinal space width on horizontal and vertical scans were 0.10 ± 0.04 and 0.12 ± 0.04, respectively. The ratio was independently associated with the degree of increase in the foveal ONL thickness difference on both the horizontal scans (β = 103.684, P = .000) and vertical scans (β = 67.569, P = .000), even after adjusting for potential confounders. Conclusions The majority of resolved CSC eyes showed some increase in foveal ONL thickness, and the degree of increase was related to the ratio of the retinal detachment height to the subretinal space width in their active phase. It suggested that the retina is stretched when it becomes detached, and recovers with resolution of the subretinal fluid. Therefore, besides photoreceptor cell death, retinal stretch may contribute to the reduction in foveal ONL thickness in eyes with active CSC.
Collapse
|
25
|
Kiang L, Ross BX, Yao J, Shanmugam S, Andrews CA, Hansen S, Besirli CG, Zacks DN, Abcouwer SF. Vitreous Cytokine Expression and a Murine Model Suggest a Key Role of Microglia in the Inflammatory Response to Retinal Detachment. Invest Ophthalmol Vis Sci 2019; 59:3767-3778. [PMID: 30046818 PMCID: PMC6059764 DOI: 10.1167/iovs.18-24489] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Retinal detachment (RD) separates the retina from the underlying retinal pigment epithelium, resulting in a gradual degeneration of photoreceptor (PR) cells. It is known that RD also results in an inflammatory response, but its contribution to PR degeneration is unknown. In this study we examine the inflammatory responses to RD in patient vitreous and validate a mouse experimental RD as a model of this phenomenon. Methods Multiplex bead arrays were used to examine cytokine levels in vitreous samples from 24 patients with macula-off rhegmatogenous retinal detachment (RRD) undergoing reattachment surgery and from 10 control patients undergoing vitrectomy for vitreous opacities or epiretinal membrane. Activation of the innate immune response was then examined in a mouse model of RD. Results Twenty-eight factors were significantly increased in vitreous from RD patients versus controls. Notable were the cytokines MCP-1 (CCL2), IP-10 (CXCL10), fractalkine (CX3CL1), GRO (CXCL1), MDC (CCL22), IL-6, and IL-8, which all exhibited relatively high concentrations and several-fold increases in the vitreous of RD patients. Concentrations of various analytes correlated with a range of clinical variables such as duration of detachment and visual acuity. Retinal detachment in the mouse resulted in cytokine mRNA expression changes consistent with human RD vitreous results, as well as microglial proliferation and migration toward the outer retina. Conclusions The findings suggest that an inflammatory response involving microglia is a component of the reaction to retinal detachment that may impact visual acuity after surgical repair and that mouse experimental RD can serve as a model to study this effect.
Collapse
Affiliation(s)
- Lee Kiang
- Oregon Health and Science University, Casey Eye Institute, Portland, Oregon, United States
| | - Bing X Ross
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Jingyu Yao
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Sumathi Shanmugam
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Chris A Andrews
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Sean Hansen
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Cagri G Besirli
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - David N Zacks
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Steven F Abcouwer
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| |
Collapse
|
26
|
Li T, Yang S, She X, Yan Q, Zhang P, Zhu H, Wang F, Luo X, Sun X. Modulation of α-adrenoceptor signalling protects photoreceptors after retinal detachment by inhibiting oxidative stress and inflammation. Br J Pharmacol 2019; 176:801-813. [PMID: 30588605 DOI: 10.1111/bph.14565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Currently available treatments do not halt progression of photoreceptor death and subsequent visual impairment related to retinal detachment (RD) which is observed in various retinal disorders. This study investigated the neuroprotective effects of two adrenoceptor ligands, the α1 -adrenoceptor antagonist doxazosin and the α2 -adrenoceptor agonist guanabenz, against photoreceptor cell death in RD. EXPERIMENTAL APPROACH We used a model of experimental RD in Brown-Norway rats induced by subretinal injection of sodium hyaluronate. Oxidative stress biomarkers and cytokine production were quantified with elisa. Protein expression levels and immunofluorescent labelling were determined in rats with RD and controls for mechanistic elucidation. The effects of systemic (i.p.) administration of doxazosin or guanabenz on photoreceptor apoptosis, retinal histology and electroretinography were evaluated in rats with RD and compared to the effects in vehicle controls. KEY RESULTS Photoreceptors were the major source of RD-induced ROS overproduction in the rat retina through the regulation of NADPH oxidase. Systemic administration of doxazosin or guanabenz decreased the RD-induced production of ROS and proinflammatory cytokines, including IL-1β and the chemokine CCL2, and suppressed retinal gliosis, resulting in attenuation of photoreceptor death and preservation of retinal structures and functions in RD. CONCLUSIONS AND IMPLICATIONS Our findings point to α-adrenoceptors as novel therapeutic targets to provide photoreceptor protection and suggest that both doxazosin and guanabenz, two FDA-approved drugs, could be further explored to treat retinal diseases.
Collapse
Affiliation(s)
- Tong Li
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiqi Yang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangjun She
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Yan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengfei Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Fenghua Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
27
|
Tsoka P, Barbisan PR, Kataoka K, Chen XN, Tian B, Bouzika P, Miller JW, Paschalis EI, Vavvas DG. NLRP3 inflammasome in NMDA-induced retinal excitotoxicity. Exp Eye Res 2019; 181:136-144. [PMID: 30707890 DOI: 10.1016/j.exer.2019.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/09/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
N-methyl-D-aspartate (NMDA)-induced excitotoxicity is an acute form of experimental retinal injury as a result of overactivation of glutamate receptors. NLRP3 (nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain containing-3) inflammasome, one of the most studied sensors of innate immunity, has been reported to play a critical role in retinal neurodegeneration with controversial implications regarding neuroprotection and cell death. Thus far, it has not been elucidated whether NMDA-mediated excitotoxicity can trigger NLRP3 inflammasome in vivo. Moreover, it is unknown if NLRP3 is beneficial or detrimental to NMDA-mediated retinal cell death. Here, we employed a murine model of NMDA-induced retinal excitotoxicity by administering 100 nmoles of NMDA intravitreally, which resulted in massive TUNEL+ (TdT-dUTP terminal nick-end labelling) cell death in all retinal layers and especially in retinal ganglion cells (RGCs) 24 h post injection. NMDA insult in the retina potentiates macrophage/microglia cell infiltration, primes the NLRP3 inflammasome in a transcription-dependent manner and induces the expression of interleukin-1β (IL-1β). However, despite NLRP3 inflammasome upregulation, systemic deletion of Nlrp3 or Casp1 (caspase-1) did not significantly alter the NMDA-induced, excitotoxicity-mediated TUNEL+ retinal cell death at 24 h (acute phase). Similarly, the deletion of the two aforementioned genes did not alter the survival of the Brn3a+ (brain-specific homeobox/POU domain protein 3A) RGCs in a significant way at 3- or 7-days post injection (long-term phase). Our results indicate that NMDA-mediated retinal excitotoxicity induces immune cell recruitment and NLRP3 inflammasome activity even though inflammasome-mediated neuroinflammation is not a leading contributing factor to cell death in this type of retinal injury.
Collapse
Affiliation(s)
- Pavlina Tsoka
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Paulo R Barbisan
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Keiko Kataoka
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Xiaohong Nancy Chen
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Bo Tian
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Peggy Bouzika
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Joan W Miller
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Eleftherios I Paschalis
- Boston Keratoprosthesis Laboratory, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Demetrios G Vavvas
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Daruich A, Le Rouzic Q, Jonet L, Naud MC, Kowalczuk L, Pournaras JA, Boatright JH, Thomas A, Turck N, Moulin A, Behar-Cohen F, Picard E. Iron is neurotoxic in retinal detachment and transferrin confers neuroprotection. SCIENCE ADVANCES 2019; 5:eaau9940. [PMID: 30662950 PMCID: PMC6326753 DOI: 10.1126/sciadv.aau9940] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/28/2018] [Indexed: 05/12/2023]
Abstract
In retinal detachment (RD), photoreceptor death and permanent vision loss are caused by neurosensory retina separating from the retinal pigment epithelium because of subretinal fluid (SRF), and successful surgical reattachment is not predictive of total visual recovery. As retinal iron overload exacerbates cell death in retinal diseases, we assessed iron as a predictive marker and therapeutic target for RD. In the vitreous and SRF from patients with RD, we measured increased iron and transferrin (TF) saturation that is correlated with poor visual recovery. In ex vivo and in vivo RD models, iron induces immediate necrosis and delayed apoptosis. We demonstrate that TF decreases both apoptosis and necroptosis induced by RD, and using RNA sequencing, pathways mediating the neuroprotective effects of TF are identified. Since toxic iron accumulates in RD, we propose TF supplementation as an adjunctive therapy to surgery for improving the visual outcomes of patients with RD.
Collapse
Affiliation(s)
- Alejandra Daruich
- INSERM, UMRS1138, Team 17, From physiopathology of ocular diseases to clinical development, Université Sorbonne Paris Cité, Centre de Recherche des Cordeliers, 15 rue de l’Ecole de Médecine, 75006 Paris, France
- Department of ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Quentin Le Rouzic
- INSERM, UMRS1138, Team 17, From physiopathology of ocular diseases to clinical development, Université Sorbonne Paris Cité, Centre de Recherche des Cordeliers, 15 rue de l’Ecole de Médecine, 75006 Paris, France
| | - Laurent Jonet
- INSERM, UMRS1138, Team 17, From physiopathology of ocular diseases to clinical development, Université Sorbonne Paris Cité, Centre de Recherche des Cordeliers, 15 rue de l’Ecole de Médecine, 75006 Paris, France
| | - Marie-Christine Naud
- INSERM, UMRS1138, Team 17, From physiopathology of ocular diseases to clinical development, Université Sorbonne Paris Cité, Centre de Recherche des Cordeliers, 15 rue de l’Ecole de Médecine, 75006 Paris, France
| | - Laura Kowalczuk
- Department of ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Jean-Antoine Pournaras
- Department of ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Jeffrey H. Boatright
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, GA, USA
- Center of Excellence, Atlanta Veterans Administration Medical Center, Decatur, GA, USA
| | - Aurélien Thomas
- Geneva University Hospitals, Unit of Toxicology, CURML, Geneva, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, 1011 Lausanne, Switzerland
| | - Natacha Turck
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, 1011 Lausanne, Switzerland
- Geneva University, Department of Human Protein Science, Geneva, Switzerland
| | - Alexandre Moulin
- Department of ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From physiopathology of ocular diseases to clinical development, Université Sorbonne Paris Cité, Centre de Recherche des Cordeliers, 15 rue de l’Ecole de Médecine, 75006 Paris, France
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, 1011 Lausanne, Switzerland
- Ophtalmopole, Cochin Hospital, AP-HP, Assistance Publique Hôpitaux de Paris, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
- Corresponding author.
| | - Emilie Picard
- INSERM, UMRS1138, Team 17, From physiopathology of ocular diseases to clinical development, Université Sorbonne Paris Cité, Centre de Recherche des Cordeliers, 15 rue de l’Ecole de Médecine, 75006 Paris, France
| |
Collapse
|
29
|
Retinal Detachment-Induced Müller Glial Cell Swelling Activates TRPV4 Ion Channels and Triggers Photoreceptor Death at Body Temperature. J Neurosci 2018; 38:8745-8758. [PMID: 30143574 PMCID: PMC6181316 DOI: 10.1523/jneurosci.0897-18.2018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 12/24/2022] Open
Abstract
Using region-specific injection of hyaluronic acid, we developed a mouse model of acute retinal detachment (RD) to investigate molecular mechanisms of photoreceptor cell death triggered by RD. We focused on the transient receptor potential vanilloid 4 (TRPV4) ion channel, which functions as a thermosensor, osmosensor, and/or mechanosensor. After RD, the number of apoptotic photoreceptors was reduced by ∼50% in TRPV4KO mice relative to wild-type mice, indicating the possible involvement of TRPV4 activation in RD-induced photoreceptor cell death. Furthermore, TRPV4 expressed in Müller glial cells can be activated by mechanical stimuli caused by RD-induced swelling of these cells, resulting in release of the cytokine MCP-1, which is reported as a mediator of Müller glia-derived strong mediator for RD-induced photoreceptor death. We also found that the TRPV4 activation by the Müller glial swelling was potentiated by body temperature. Together, our results suggest that RD adversely impacts photoreceptor viability via TRPV4-dependent cytokine release from Müller glial cells and that TRPV4 is part of a novel molecular pathway that could exacerbate the effects of hypoxia on photoreceptor survival after RD. SIGNIFICANCE STATEMENT Identification of the mechanisms of photoreceptor death in retinal detachment is required for establishment of therapeutic targets for preventing loss of visual acuity. In this study, we found that TRPV4 expressed in Müller glial cells can be activated by mechanical stimuli caused by RD-induced swelling of these cells, resulting in release of the cytokine MCP-1, which is reported as a mediator of Müller glia-derived strong mediator for RD-induced photoreceptor death. We also found that the TRPV4 activation by the Müller glial swelling was potentiated by body temperature. Hence, TRPV4 inhibition could suppress cell death in RD pathological conditions and suggests that TRPV4 in Müller glial cells might be a novel therapeutic target for preventing photoreceptor cell death after RD.
Collapse
|
30
|
Tsoka P, Matsumoto H, Maidana DE, Kataoka K, Naoumidi I, Gravanis A, Vavvas DG, Tsilimbaris MK. Effects of BNN27, a novel C17-spiroepoxy steroid derivative, on experimental retinal detachment-induced photoreceptor cell death. Sci Rep 2018; 8:10661. [PMID: 30006508 PMCID: PMC6045604 DOI: 10.1038/s41598-018-28633-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 06/26/2018] [Indexed: 02/01/2023] Open
Abstract
Retinal detachment (RD) leads to photoreceptor cell death secondary to the physical separation of the retina from the underlying retinal pigment epithelium. Intensifying photoreceptor survival in the detached retina could be remarkably favorable for many retinopathies in which RD can be seen. BNN27, a blood-brain barrier (BBB)-permeable, C17-spiroepoxy derivative of dehydroepiandrosterone (DHEA) has shown promising neuroprotective activity through interaction with nerve growth factor receptors, TrkA and p75NTR. Here, we administered BNN27 systemically in a murine model of RD. TUNEL+ photoreceptors were significantly decreased 24 hours post injury after a single administration of 200 mg/kg BNN27. Furthermore, BNN27 increased inflammatory cell infiltration, as well as, two markers of gliosis 24 hours post RD. However, single or multiple doses of BNN27 were not able to protect the overall survival of photoreceptors 7 days post injury. Additionally, BNN27 did not induce the activation/phosphorylation of TrkAY490 in the detached retina although the mRNA levels of the receptor were increased in the photoreceptors post injury. Together, these findings, do not demonstrate neuroprotective activity of BNN27 in experimentally-induced RD. Further studies are needed in order to elucidate the paradox/contradiction of these results and the mechanism of action of BNN27 in this model of photoreceptor cell damage.
Collapse
Affiliation(s)
- Pavlina Tsoka
- Laboratory of Optics and Vision, University of Crete Medical School, Heraklion, Crete, Greece.,Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Hidetaka Matsumoto
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel E Maidana
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Keiko Kataoka
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Irene Naoumidi
- Laboratory of Optics and Vision, University of Crete Medical School, Heraklion, Crete, Greece
| | - Achille Gravanis
- Department of Pharmacology, University of Crete Medical School, Heraklion, Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Demetrios G Vavvas
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA.
| | - Miltiadis K Tsilimbaris
- Laboratory of Optics and Vision, University of Crete Medical School, Heraklion, Crete, Greece.
| |
Collapse
|
31
|
Microglia inhibit photoreceptor cell death and regulate immune cell infiltration in response to retinal detachment. Proc Natl Acad Sci U S A 2018; 115:E6264-E6273. [PMID: 29915052 PMCID: PMC6142210 DOI: 10.1073/pnas.1719601115] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Photoreceptor cell death resulting from retinal detachment (RD) causes significant visual loss. While the immune system is activated during RD, its role is still unclear. Microglia are resident immune cells in the retina and are thought to be either protective or deleterious in response to neuronal injury, suggesting context-dependent effects. Here, we demonstrate that microglia limit retinal damage during acute injury, since microglial ablation led to increased photoreceptor death. Microglial morphological–activation changes triggered their migration into injured tissue where they formed intimate connections with infiltrating immune cells and phagocytized injured photoreceptors. These findings provide insight into the microglial response and function during RD, indicating microglia promote photoreceptor survival during acute phase injury by removing potentially damaging cell debris. Retinal detachment (RD) is a sight-threatening complication common in many highly prevalent retinal disorders. RD rapidly leads to photoreceptor cell death beginning within 12 h following detachment. In patients with sustained RD, progressive visual decline due to photoreceptor cell death is common, leading to significant and permanent loss of vision. Microglia are the resident immune cells of the central nervous system, including the retina, and function in the homeostatic maintenance of the neuro-retinal microenvironment. It is known that microglia become activated and change their morphology in retinal diseases. However, the function of activated microglia in RD is incompletely understood, in part because of the lack of microglia-specific markers. Here, using the newly identified microglia marker P2ry12 and microglial depletion strategies, we demonstrate that retinal microglia are rapidly activated in response to RD and migrate into the injured area within 24 h post-RD, where they closely associate with infiltrating macrophages, a population distinct from microglia. Once in the injured photoreceptor layer, activated microglia can be observed to contain autofluorescence within their cell bodies, suggesting they function to phagocytose injured or dying photoreceptors. Depletion of retinal microglia results in increased disease severity and inhibition of macrophage infiltration, suggesting that microglia are involved in regulating neuroinflammation in the retina. Our work identifies that microglia mediate photoreceptor survival in RD and suggests that this effect may be due to microglial regulation of immune cells and photoreceptor phagocytosis.
Collapse
|
32
|
Choi JA, Kim YJ, Seo BR, Koh JY, Yoon YH. Potential Role of Zinc Dyshomeostasis in Matrix Metalloproteinase-2 and -9 Activation and Photoreceptor Cell Death in Experimental Retinal Detachment. ACTA ACUST UNITED AC 2018; 59:3058-3068. [DOI: 10.1167/iovs.17-23502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jeong A Choi
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoon Jeon Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul, Korea
| | - Bo-Ra Seo
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Young Koh
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Hee Yoon
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Sene A, Apte RS. Inflammation-Induced Photoreceptor Cell Death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:203-208. [PMID: 29721945 DOI: 10.1007/978-3-319-75402-4_25] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuroinflammation is an important aspect of many diseases of the eye, and experimental animal models have been widely used to determine its impact on retinal homeostasis and neuron survival. Physical separation of the neurosensory retina from the underlying retinal pigment epithelium (RPE) results in activation and infiltration of macrophages. Numerous studies have shown the critical role of macrophages in retinal disease processes. In retinal detachment, accumulation of macrophages in the subretinal space is associated with changes in cytokine and chemokine profile which lead to photoreceptor cell death. Targeted disruption of macrophage chemotaxis significantly reduces retinal detachment-induced photoreceptor degeneration. Apoptosis is the predominant mechanism of cell death; however regulated necrosis is also a contributor of photoreceptor loss. Therefore, effective neuroprotective approaches could integrate combined inhibition of both apoptotic and regulated necrosis pathways.
Collapse
Affiliation(s)
- Abdoulaye Sene
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
| | - Rajendra S Apte
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.,Department of Developmental Biology and Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Department of Biology, Allergan, Inc., Irvine, CA, USA
| |
Collapse
|
34
|
MIF Inhibitor ISO-1 Protects Photoreceptors and Reduces Gliosis in Experimental Retinal Detachment. Sci Rep 2017; 7:14336. [PMID: 29084983 PMCID: PMC5662618 DOI: 10.1038/s41598-017-14298-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/06/2017] [Indexed: 01/16/2023] Open
Abstract
Photoreceptor death and retinal gliosis underlie the majority of vision threatening retinal diseases including retinal detachment (RD). Although the underlying pathobiology of vision limiting processes in RD is not fully understood, inflammation is known to play a critical role. We conducted an iTRAQ proteomic screen of up- and down-regulated proteins in a murine model of RD to identify potential targetable candidates. Macrophage migration inhibitory factor (MIF) was identified and evaluated for neurotoxic and pro-gliotic effects during RD. Systemic administration of the MIF inhibitor ISO-1 significantly blocked photoreceptor apoptosis, outer nuclear layer (ONL) thinning, and retinal gliosis. ISO-1 and MIF knockout (MIFKO) had greater accumulation of Müller glia pERK expression in the detached retina, suggesting that Müller survival pathways might underlie the neuroprotective response. Our data show the feasibility of the MIF-inhibitor ISO-1 to block pathological damage responses in retinal detachment and provide a rationale to explore MIF inhibition as a potential therapeutic option for RD.
Collapse
|
35
|
Hoffman A, Sisler S, Pappania M, Hsu K, Ross M, Ofri R. Electroretinography is a prognostic indicator for postoperative vision in dogs undergoing retinal reattachment surgery. Vet Ophthalmol 2017; 21:273-280. [DOI: 10.1111/vop.12505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | | | | | | | - Maya Ross
- Koret School of Veterinary Medicine; Hebrew University of Jerusalem; Rehovot 7610001 Israel
| | - Ron Ofri
- Koret School of Veterinary Medicine; Hebrew University of Jerusalem; Rehovot 7610001 Israel
| |
Collapse
|
36
|
Retinal cell death dependent reactive proliferative gliosis in the mouse retina. Sci Rep 2017; 7:9517. [PMID: 28842607 PMCID: PMC5572737 DOI: 10.1038/s41598-017-09743-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 07/31/2017] [Indexed: 12/14/2022] Open
Abstract
Neurodegeneration is a common starting point of reactive gliosis, which may have beneficial and detrimental consequences. It remains incompletely understood how distinctive pathologies and cell death processes differentially regulate glial responses. Müller glia (MG) in the retina are a prime model: Neurons are regenerated in some species, but in mammals there may be proliferative disorders and scarring. Here, we investigated the relationship between retinal damage and MG proliferation, which are both induced in a reproducible and temporal order in organotypic culture of EGF-treated mouse retina: Hypothermia pretreatment during eye dissection reduced neuronal cell death and MG proliferation; stab wounds increased both. Combined (but not separate) application of defined cell death signaling pathway inhibitors diminished neuronal cell death and maintained MG mitotically quiescent. The level of neuronal cell death determined MG activity, indicated by extracellular signal-regulated kinase (ERK) phosphorylation, and proliferation, both of which were abolished by EGFR inhibition. Our data suggest that retinal cell death, possibly either by programmed apoptosis or necrosis, primes MG to be able to transduce the EGFR–ERK activity required for cell proliferation. These results imply that cell death signaling pathways are potential targets for future therapies to prevent the proliferative gliosis frequently associated with certain neurodegenerative conditions.
Collapse
|
37
|
Rapid monocyte infiltration following retinal detachment is dependent on non-canonical IL6 signaling through gp130. J Neuroinflammation 2017. [PMID: 28645275 PMCID: PMC5481880 DOI: 10.1186/s12974-017-0886-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Retinal detachment (RD) can lead to proliferative vitreoretinopathy (PVR), a leading cause of intractable vision loss. PVR is associated with a cytokine storm involving common proinflammatory molecules like IL6, but little is known about the source and downstream signaling of IL6 and the consequences for the retina. Here, we investigated the early immune response and resultant cytokine signaling following RD in mice. METHODS RD was induced in C57BL/6 J and IL6 knockout mice, and the resulting inflammatory response was examined using immunohistochemistry and flow cytometry. Cytokines and signaling proteins of vitreous and retinas were quantified by multiple cytokine arrays and Western blotting. To attempt to block IL6 signaling, a neutralizing antibody of IL6 receptor α (IL6Rα) or IL6 receptor β (gp-130) was injected intravitreally immediately after RD. RESULTS Within one day of RD, bone marrow-derived Cd11b + monocytes had extravasated from the vasculature and lined the vitreal surface of the retina, while the microglia, the resident macrophages of the retina, were relatively unperturbed. Cytokine arrays and Western blot analysis revealed that this sterile inflammation did not cause activation of IL6 signaling in the neurosensory retina, but rather only in the vitreous and aqueous humor. Monocyte infiltration was inhibited by blocking gp130, but not by IL6 knockout or IL6Rα blockade. CONCLUSIONS Together, our results demonstrate that monocytes are the primary immune cell mediating the cytokine storm following RD, and that any resulting retinal damage is unlikely to be a direct result of retinal IL6 signaling, but rather gp130-mediated signaling in the monocytes themselves. These results suggest that RD should be treated immediately, and that gp130-directed therapies may prevent PVR and promote retinal healing.
Collapse
|
38
|
Garcia TB, Hollborn M, Bringmann A. Expression and signaling of NGF in the healthy and injured retina. Cytokine Growth Factor Rev 2017; 34:43-57. [PMID: 27964967 DOI: 10.1016/j.cytogfr.2016.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 01/02/2023]
Abstract
This review summarizes the present knowledge concerning the retinal localization of the nerve growth factor (NGF), its precursor proNGF, and the receptors TrkA and p75NTR in the developing and mature rodent retina. We further discuss the changes in the expression of NGF and the receptors in experimental models of retinal disorders and diseases like inherited retinitis pigmentosa, retinal detachment, glaucoma, and diabetic retinopathy. Since proNGF is now recognized as a bioactive signaling molecule which induces cell death through p75NTR activation, the role of proNGF in the induction of retinal cell loss under neurodegenerative conditions is also highlighted. In addition, we present the evidences for a potential therapeutic intervention with NGF for the treatment of retinal neurodegenerative diseases. Different strategies have been developed and experimentally tested in mice and rats in order to reduce cell loss and Müller cell gliosis, e.g., increasing the availability of endogenous NGF, administration of exogenous NGF, activation of TrkA, and inhibition of p75NTR. Here, we discuss the several lines of evidence supporting a protective effect of NGF on retinal cell loss, with specific emphasis on photoreceptor and retinal ganglion cell degeneration. A better understanding of the mechanisms underlying the effects of NGF and proNGF in the modulation of neurodegeneration and gliosis in the retina will help to develop efficient therapeutic strategies for various retinal diseases.
Collapse
Affiliation(s)
| | - Margrit Hollborn
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| |
Collapse
|
39
|
Miller JW, Bagheri S, Vavvas DG. Advances in Age-related Macular Degeneration Understanding and Therapy. ACTA ACUST UNITED AC 2017; 10:119-130. [PMID: 29142592 PMCID: PMC5683729 DOI: 10.17925/usor.2017.10.02.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the development of anti-vascular endothelial growth factor (anti-VEGF) as a therapy for neovascular age-related macular degeneration (AMD) was a great success, the pathologic processes underlying dry AMD that eventually leads to photoreceptor dysfunction, death, and vision loss remain elusive to date, with a lack of effective therapies and increasing prevalence of the disease. There is an overwhelming need to improve the classification system of AMD, to increase our understanding of cell death mechanisms involved in both neovascular and non-neovascular AMD, and to develop better biomarkers and clinical endpoints to eventually be able to identify better therapeutic targets—especially early in the disease process. There is no doubt that it is a matter of time before progress will be made and better therapies will be developed for non-neovascular AMD.
Collapse
Affiliation(s)
- Joan W Miller
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, US
| | - Saghar Bagheri
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, US
| | - Demetrios G Vavvas
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, US
| |
Collapse
|
40
|
Zieger M, Punzo C. Improved cell metabolism prolongs photoreceptor survival upon retinal-pigmented epithelium loss in the sodium iodate induced model of geographic atrophy. Oncotarget 2016; 7:9620-33. [PMID: 26883199 PMCID: PMC4891071 DOI: 10.18632/oncotarget.7330] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/23/2016] [Indexed: 01/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is characterized by malfunction and loss of retinal-pigmented epithelium (RPE) cells. Because the RPE transfers nutrients from the choriocapillaris to photoreceptor (PR), PRs are affected as well. Geographic atrophy (GA) is an advanced form of AMD characterized by severe vision impairment due to RPE loss over large areas. Currently there is no treatment to delay the degeneration of nutrient deprived PRs once RPE cells die. Here we show that cell-autonomous activation of the key regulator of cell metabolism, the kinase mammalian target of rapamycin complex 1 (mTORC1), delays PR death in the sodium iodate induced model of RPE atrophy. Consistent with this finding loss of mTORC1 in cones accelerates cone death as cones fail to balance demand with supply. Interestingly, promoting rod survival does not promote cone survival in this model of RPE atrophy as both, rods and cones suffer from a sick and dying RPE. The findings suggest that activation of metabolic genes downstream of mTORC1 can serve as a strategy to prolong PR survival when RPE cells malfunction or die.
Collapse
Affiliation(s)
- Marina Zieger
- Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Claudio Punzo
- Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
41
|
Abstract
The review intends to draw the attention of researchers working in retinal degenerations on the fact that classical apoptosis, for example, apoptosis triggering caspase activation, may not be the main pathway of cellular demise in this tissue.Former work already showed the difficulty of proving the activation of apoptosis effectors in different models of retinal degeneration. However, these results were not really considered because of the lack of an alternative explanation for cell death. Nowadays, the description of many pathways of cellular demise is filling the gap and other forms of cell death are now described in the retina.The knowledge on the molecular mechanisms of cell death is very important for the development of new therapeutic strategies, as well as for the evaluation of cell death onset in retinal degeneration.
Collapse
|
42
|
Berkowitz BA, Lewin AS, Biswal MR, Bredell BX, Davis C, Roberts R. MRI of Retinal Free Radical Production With Laminar Resolution In Vivo. Invest Ophthalmol Vis Sci 2016; 57:577-85. [PMID: 26886890 PMCID: PMC4771178 DOI: 10.1167/iovs.15-18972] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Recent studies have suggested the hypothesis that quench-assisted 1/T1 magnetic resonance imaging (MRI) measures free radical production with laminar resolution in vivo without the need of a contrast agent. Here, we test this hypothesis further by examining the spatial and detection sensitivity of quench-assisted 1/T1 MRI to strain, age, or retinal cell layer-specific genetic manipulations. Methods We studied: adult wild-type mice; mice at postnatal day 7 (P7); cre dependent retinal pigment epithelium (RPE)-specific MnSOD knockout mice; doxycycline-treated Sod2flox/flox mice lacking the cre transgene; and α-transducin knockout (Gnat1−/−) mice on a C57Bl/6 background. Transretinal 1/T1 profiles were mapped in vivo in the dark without or with antioxidant treatment, or followed by light exposure. We calibrated profiles spatially using optical coherence tomography. Results Dark-adapted RPE-specific MnSOD knockout mice had greater than normal 1/T1 in the RPE and outer nuclear layers that was corrected to wild-type levels by antioxidant treatment. Dark and light Gnat1−/− mice also had greater than normal outer retinal 1/T1 values. In adult wild-type mice, dark values of 1/T1 in the ellipsoid region and in the outer segment were suppressed by 13 minutes of light. By 29 minutes of light, 1/T1 reduction extended to the outer nuclear layer. Gnat1−/− mice demonstrated a faster light-evoked suppression of 1/T1 values in the outer retina. In P7 mice, transretinal 1/T1 profiles were the same in dark and light. Conclusions Quench-assisted MRI has the laminar resolution and detection sensitivity to evaluate normal and pathologic production of free radicals in vivo.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States 2Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States
| | - Manas R Biswal
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States
| | - Bryce X Bredell
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Christopher Davis
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robin Roberts
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
43
|
Viringipurampeer IA, Metcalfe AL, Bashar AE, Sivak O, Yanai A, Mohammadi Z, Moritz OL, Gregory-Evans CY, Gregory-Evans K. NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration. Hum Mol Genet 2016; 25:1501-16. [PMID: 27008885 DOI: 10.1093/hmg/ddw029] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/01/2016] [Indexed: 12/11/2022] Open
Abstract
The molecular signaling leading to cell death in hereditary neurological diseases such as retinal degeneration is incompletely understood. Previous neuroprotective studies have focused on apoptotic pathways; however, incomplete suppression of cell death with apoptosis inhibitors suggests that other mechanisms are at play. Here, we report that different signaling pathways are activated in rod and cone photoreceptors in the P23H rhodopsin mutant rat, a model representing one of the commonest forms of retinal degeneration. Up-regulation of the RIP1/RIP3/DRP1 axis and markedly improved survival with necrostatin-1 treatment highlighted necroptosis as a major cell-death pathway in degenerating rod photoreceptors. Conversely, up-regulation of NLRP3 and caspase-1, expression of mature IL-1β and IL-18 and improved cell survival with N-acetylcysteine treatment suggested that inflammasome activation and pyroptosis was the major cause of cone cell death. This was confirmed by generation of the P23H mutation on an Nlrp3-deficient background, which preserved cone viability. Furthermore, Brilliant Blue G treatment inhibited inflammasome activation, indicating that the 'bystander cell death' phenomenon was mediated through the P2RX7 cell-surface receptor. Here, we identify a new pathway in cones for bystander cell death, a phenomenon important in development and disease in many biological systems. In other retinal degeneration models different cell-death pathways are activated, which suggests that the particular pathways that are triggered are to some extent genotype-specific. This also implies that neuroprotective strategies to limit retinal degeneration need to be customized; thus, different combinations of inhibitors will be needed to target the specific pathways in any given disease.
Collapse
Affiliation(s)
- Ishaq A Viringipurampeer
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Andrew L Metcalfe
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Abu E Bashar
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Olena Sivak
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Anat Yanai
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Zeinabsadat Mohammadi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Orson L Moritz
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Kevin Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| |
Collapse
|
44
|
Seasonal and post-trauma remodeling in cone-dominant ground squirrel retina. Exp Eye Res 2016; 150:90-105. [PMID: 26808487 DOI: 10.1016/j.exer.2016.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/14/2015] [Accepted: 01/14/2016] [Indexed: 02/02/2023]
Abstract
With a photoreceptor mosaic containing ∼85% cones, the ground squirrel is one of the richest known mammalian sources of these important retinal cells. It also has a visual ecology much like the human's. While the ground squirrel retina is understandably prominent in the cone biochemistry, physiology, and circuitry literature, far less is known about the remodeling potential of its retinal pigment epithelium, neurons, macroglia, or microglia. This review aims to summarize the data from ground squirrel retina to this point in time, and to relate them to data from other brain areas where appropriate. We begin with a survey of the ground squirrel visual system, making comparisons with traditional rodent models and with human. Because this animal's status as a hibernator often goes unnoticed in the vision literature, we then present a brief primer on hibernation biology. Next we review what is known about ground squirrel retinal remodeling concurrent with deep torpor and with rapid recovery upon re-warming. Notable here is rapidly-reversible, temperature-dependent structural plasticity of cone ribbon synapses, as well as pre- and post-synaptic plasticity throughout diverse brain regions. It is not yet clear if retinal cell types other than cones engage in torpor-associated synaptic remodeling. We end with the small but intriguing literature on the ground squirrel retina's remodeling responses to insult by retinal detachment. Notable for widespread loss of (cone) photoreceptors, there is surprisingly little remodeling of the RPE or Müller cells. Microglial activation appears minimal, and remodeling of surviving second- and third-order neurons seems absent, but both require further study. In contrast, traumatic brain injury in the ground squirrel elicits typical macroglial and microglial responses. Overall, the data to date strongly suggest a heretofore unrecognized, natural checkpoint between retinal deafferentiation and RPE and Müller cell remodeling events. As we continue to discover them, the unique ways by which ground squirrel retina responds to hibernation or injury may be adaptable to therapeutic use.
Collapse
|
45
|
De Groef L, Dekeyster E, Geeraerts E, Lefevere E, Stalmans I, Salinas-Navarro M, Moons L. Differential visual system organization and susceptibility to experimental models of optic neuropathies in three commonly used mouse strains. Exp Eye Res 2016; 145:235-247. [PMID: 26791081 DOI: 10.1016/j.exer.2016.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/16/2015] [Accepted: 01/07/2016] [Indexed: 01/06/2023]
Abstract
Mouse disease models have proven indispensable in glaucoma research, yet the complexity of the vast number of models and mouse strains has also led to confusing findings. In this study, we evaluated baseline intraocular pressure, retinal histology, and retinofugal projections in three mouse strains commonly used in glaucoma research, i.e. C57Bl/6, C57Bl/6-Tyr(c), and CD-1 mice. We found that the mouse strains under study do not only display moderate variations in their intraocular pressure, retinal architecture, and retinal ganglion cell density, also the retinofugal projections to the dorsal lateral geniculate nucleus and the superior colliculus revealed striking differences, potentially underlying diverging optokinetic tracking responses and visual acuity. Next, we reviewed the success rate of three models of (glaucomatous) optic neuropathies (intravitreal N-methyl-d-aspartic acid injection, optic nerve crush, and laser photocoagulation-induced ocular hypertension), looking for differences in disease susceptibility between these mouse strains. Different genetic backgrounds and albinism led to differential susceptibility to experimentally induced retinal ganglion cell death among these three mouse strains. Overall, CD-1 mice appeared to have the highest sensitivity to retinal ganglion cell damage, while the C57Bl/6 background was more resistant in the three models used.
Collapse
Affiliation(s)
- Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eline Dekeyster
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Emiel Geeraerts
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Evy Lefevere
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ingeborg Stalmans
- Laboratory of Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Manuel Salinas-Navarro
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
46
|
Ghosh F, Arnér K, Taylor L. In vitro biomechanical modulation—retinal detachment in a box. Graefes Arch Clin Exp Ophthalmol 2015; 254:475-87. [DOI: 10.1007/s00417-015-3236-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/18/2015] [Accepted: 11/30/2015] [Indexed: 01/28/2023] Open
|
47
|
Emoto Y, Yoshizawa K, Kinoshita Y, Yuki M, Yuri T, Tsubura A. Susceptibility to N-methyl-N-nitrosourea-induced retinal degeneration in different rat strains. J Toxicol Pathol 2015; 29:67-71. [PMID: 26989305 PMCID: PMC4766522 DOI: 10.1293/tox.2015-0062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/30/2015] [Indexed: 11/25/2022] Open
Abstract
To evaluate the potential role of genetic background in the susceptibility to retinal degeneration induced by N-methyl-N-nitrosourea (MNU), female rats of the Sprague-Dawley (SD), Long-Evans (LE) and Copenhagen (CH) strains were administered 50 mg/kg MNU or saline at 7 weeks of age. Retina morphology and morphometric analysis of all rats was performed 7 days after MNU administration. Atrophy of both the peripheral and central outer retina occurred in all rat strains exposed to MNU. Decreased photoreceptor cell ratio and increased retinal damage ratio were observed. The severities of the retinal atrophy were similar among all three rat strains. In conclusion, MNU-induced photoreceptor degeneration developed consistently in all three strains regardless of the absence (SD rats) or presence (LE and CH rats) of melanin in the retina, suggesting that genetic and melanin factors did not affect photoreceptor cell death after MNU.
Collapse
Affiliation(s)
- Yuko Emoto
- Department of Pathology II, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Katsuhiko Yoshizawa
- Department of Pathology II, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Yuichi Kinoshita
- Department of Pathology II, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; Division of Diagnostic Cytopathology and Histopathology, Kansai Medical University Takii Hospital, 10-15 Fumizono, Moriguchi, Osaka 570-8506, Japan
| | - Michiko Yuki
- Department of Pathology II, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Takashi Yuri
- Department of Pathology II, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Airo Tsubura
- Department of Pathology II, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
48
|
Matsumoto H, Murakami Y, Kataoka K, Notomi S, Mantopoulos D, Trichonas G, Miller JW, Gregory MS, Ksander BR, Marshak-Rothstein A, Vavvas DG. Membrane-bound and soluble Fas ligands have opposite functions in photoreceptor cell death following separation from the retinal pigment epithelium. Cell Death Dis 2015; 6:e1986. [PMID: 26583327 PMCID: PMC4670938 DOI: 10.1038/cddis.2015.334] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 01/30/2023]
Abstract
Fas ligand (FasL) triggers apoptosis of Fas-positive cells, and previous reports described FasL-induced cell death of Fas-positive photoreceptors following a retinal detachment. However, as FasL exists in membrane-bound (mFasL) and soluble (sFasL) forms, and is expressed on resident microglia and infiltrating monocyte/macrophages, the current study examined the relative contribution of mFasL and sFasL to photoreceptor cell death after induction of experimental retinal detachment in wild-type, knockout (FasL-/-), and mFasL-only knock-in (ΔCS) mice. Retinal detachment in FasL-/- mice resulted in a significant reduction of photoreceptor cell death. In contrast, ΔCS mice displayed significantly more apoptotic photoreceptor cell death. Photoreceptor loss in ΔCS mice was inhibited by a subretinal injection of recombinant sFasL. Thus, Fas/FasL-triggered cell death accounts for a significant amount of photoreceptor cell loss following the retinal detachment. The function of FasL was dependent upon the form of FasL expressed: mFasL triggered photoreceptor cell death, whereas sFasL protected the retina, indicating that enzyme-mediated cleavage of FasL determines, in part, the extent of vision loss following the retinal detachment. Moreover, it also indicates that treatment with sFasL could significantly reduce photoreceptor cell loss in patients with retinal detachment.
Collapse
Affiliation(s)
- H Matsumoto
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Y Murakami
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - K Kataoka
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - S Notomi
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - D Mantopoulos
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - G Trichonas
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - J W Miller
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - M S Gregory
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Schepens Eye Research Institute, Boston, MA, USA
| | - B R Ksander
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Schepens Eye Research Institute, Boston, MA, USA
| | - A Marshak-Rothstein
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - D G Vavvas
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
van Wyk M, Schneider S, Kleinlogel S. Variable phenotypic expressivity in inbred retinal degeneration mouse lines: A comparative study of C3H/HeOu and FVB/N rd1 mice. Mol Vis 2015; 21:811-27. [PMID: 26283863 PMCID: PMC4522243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 07/29/2015] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Recent advances in optogenetics and gene therapy have led to promising new treatment strategies for blindness caused by retinal photoreceptor loss. Preclinical studies often rely on the retinal degeneration 1 (rd1 or Pde6b(rd1)) retinitis pigmentosa (RP) mouse model. The rd1 founder mutation is present in more than 100 actively used mouse lines. Since secondary genetic traits are well-known to modify the phenotypic progression of photoreceptor degeneration in animal models and human patients with RP, negligence of the genetic background in the rd1 mouse model is unwarranted. Moreover, the success of various potential therapies, including optogenetic gene therapy and prosthetic implants, depends on the progress of retinal degeneration, which might differ between rd1 mice. To examine the prospect of phenotypic expressivity in the rd1 mouse model, we compared the progress of retinal degeneration in two common rd1 lines, C3H/HeOu and FVB/N. METHODS We followed retinal degeneration over 24 weeks in FVB/N, C3H/HeOu, and congenic Pde6b(+) seeing mouse lines, using a range of experimental techniques including extracellular recordings from retinal ganglion cells, PCR quantification of cone opsin and Pde6b transcripts, in vivo flash electroretinogram (ERG), and behavioral optokinetic reflex (OKR) recordings. RESULTS We demonstrated a substantial difference in the speed of retinal degeneration and accompanying loss of visual function between the two rd1 lines. Photoreceptor degeneration and loss of vision were faster with an earlier onset in the FVB/N mice compared to C3H/HeOu mice, whereas the performance of the Pde6b(+) mice did not differ significantly in any of the tests. By postnatal week 4, the FVB/N mice expressed significantly less cone opsin and Pde6b mRNA and had neither ERG nor OKR responses. At 12 weeks of age, the retinal ganglion cells of the FVB/N mice had lost all light responses. In contrast, 4-week-old C3H/HeOu mice still had ERG and OKR responses, and we still recorded light responses from C3H/HeOu retinal ganglion cells until the age of 24 weeks. These results show that genetic background plays an important role in the rd1 mouse pathology. CONCLUSIONS Analogous to human RP, the mouse genetic background strongly influences the rd1 phenotype. Thus, different rd1 mouse lines may follow different timelines of retinal degeneration, making exact knowledge of genetic background imperative in all studies that use rd1 models.
Collapse
|
50
|
Pastor JC, Rojas J, Pastor-Idoate S, Di Lauro S, Gonzalez-Buendia L, Delgado-Tirado S. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical consequences. Prog Retin Eye Res 2015. [PMID: 26209346 DOI: 10.1016/j.preteyeres.2015.07.005] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During the last four decades, proliferative vitreoretinopathy (PVR) has defied the efforts of many researchers to prevent its occurrence or development. Thus, PVR is still the major complication following retinal detachment (RD) surgery and a bottle-neck for advances in cell therapy that require intraocular surgery. In this review we tried to combine basic and clinical knowledge, as an example of translational research, providing new and practical information for clinicians. PVR was defined as the proliferation of cells after RD. This idea was used for classifying PVR and also for designing experimental models used for testing many drugs, none of which were successful in humans. We summarize current information regarding the pathogenic events that follow any RD because this information may be the key for understanding and treating the earliest stages of PVR. A major focus is made on the intraretinal changes derived mainly from retinal glial cell reactivity. These responses can lead to intraretinal PVR, an entity that has not been clearly recognized. Inflammation is one of the major components of PVR, and we describe new genetic biomarkers that have the potential to predict its development. New treatment approaches are analyzed, especially those directed towards neuroprotection, which can also be useful for preventing visual loss after any RD. We also summarize the results of different surgical techniques and clinical information that is oriented toward the identification of high risk patients. Finally, we provide some recommendations for future classification of PVR and for designing comparable protocols for testing new drugs or techniques.
Collapse
Affiliation(s)
- J Carlos Pastor
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain.
| | - Jimena Rojas
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Universitario Austral, Universidad Austral, Buenos Aires, Argentina
| | - Salvador Pastor-Idoate
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Manchester Royal Eye Hospital, Manchester Vision Regeneration (MVR) Lab at NIHR/Wellcome Trust, Manchester, United Kingdom
| | - Salvatore Di Lauro
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Lucia Gonzalez-Buendia
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Santiago Delgado-Tirado
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| |
Collapse
|