1
|
Skowronska-Krawczyk D, Finnemann SC, Grant MB, Held K, Hu Z, Lu YR, Malek G, Sennlaub F, Sparrow J, D'Amore PA. Features that distinguish age-related macular degeneration from aging. Exp Eye Res 2025; 254:110303. [PMID: 39986366 PMCID: PMC11975485 DOI: 10.1016/j.exer.2025.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial retinal degenerative disease that is influenced by both genetic and environmental factors. However, the strongest risk factor for AMD is advanced age. Several physiological processes are observed in aging tissues including a low level of chronic inflammation (inflammaging), changed lipid and energy metabolism, and senescence. Nevertheless, whereas everyone ages, only a subset of the population develops AMD. The purpose of this review is to delineate the differences on a cellular and molecular level between natural aging changes and those observed in AMD. We provide a unique perspective on how genetic and environmental components modulate aging in the eye, as well as the specific role of the aging RPE and retina in the pathogenesis of AMD. Topics discussed include the mechanism of aging and its relation to the mechanism of AMD, current animal models that can be used to recapitulate some aspects of the pathology, and potential interventions that shift the balance towards healthy aging and therefore attenuate, prevent or delay the initiation of the disease.
Collapse
Affiliation(s)
| | | | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, Marnix E. Heersink School of Medicine University of Alabama at Birmingham, Alabama, USA
| | - Katherine Held
- Ophthalmology Discovery Research, AbbVie Inc., Irvine, CA, USA
| | - Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Departments of Ophthalmology and Pathology, Harvard Medical School, Boston, MA, USA
| | | | - Goldis Malek
- Duke University, Departments of Ophthalmology, Pathology, and Cell Biology, Albert Eye Research Institute, Durham, NC, USA
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Janet Sparrow
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Departments of Ophthalmology and Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Li J, Liu J, Das V, Le H, Aguilera N, Bower AJ, Giannini JP, Lu R, Abouassali S, Chew EY, Brooks BP, Zein WM, Huryn LA, Volkov A, Liu T, Tam J. Artificial intelligence assisted clinical fluorescence imaging achieves in vivo cellular resolution comparable to adaptive optics ophthalmoscopy. COMMUNICATIONS MEDICINE 2025; 5:105. [PMID: 40269122 PMCID: PMC12019174 DOI: 10.1038/s43856-025-00803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 03/10/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Advancements in biomedical optical imaging have enabled researchers to achieve cellular-level imaging in the living human body. However, research-grade technology is not always widely available in routine clinical practice. In this paper, we incorporated artificial intelligence (AI) with standard clinical imaging to successfully obtain images of the retinal pigment epithelial (RPE) cells in living human eyes. METHODS Following intravenous injection of indocyanine green (ICG) dye, subjects were imaged by both conventional instruments and adaptive optics (AO) ophthalmoscopy. To improve the visibility of RPE cells in conventional ICG images, we demonstrate both a hardware approach using a custom lens add-on and an AI-based approach using a stratified cycleGAN network. RESULTS We observe similar fluorescent mosaic patterns arising from labeled RPE cells on both conventional and AO images, suggesting that cellular-level imaging of RPE may be obtainable using conventional imaging, albeit at lower resolution. Results show that higher resolution ICG RPE images of both healthy and diseased eyes can be obtained from conventional images using AI with a potential 220-fold improvement in time. CONCLUSIONS The application of using AI as an add-on module for existing instrumentation is an important step towards routine screening and detection of disease at earlier stages.
Collapse
Affiliation(s)
- Joanne Li
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jianfei Liu
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vineeta Das
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hong Le
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nancy Aguilera
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew J Bower
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John P Giannini
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rongwen Lu
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah Abouassali
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily Y Chew
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian P Brooks
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wadih M Zein
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Laryssa A Huryn
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrei Volkov
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tao Liu
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Johnny Tam
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Finger RP, Jungblut J, Just MD, Terheyden JH, Holz FG, Liegl R, Ach T, Wintergerst MWM. Quantitative autofluorescence is increased in clinically unaffected fellow eyes from patients with posterior uveitis. Sci Rep 2025; 15:6952. [PMID: 40011481 DOI: 10.1038/s41598-025-90071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/10/2025] [Indexed: 02/28/2025] Open
Abstract
The purpose of this prospective case-control study is to investigate differences in quantitative autofluorescence (qAF) in clinically affected and unaffected eyes of patients with inactive posterior uveitis compared to healthy, age-matched controls. Patients with posterior uveitis and healthy controls were imaged using fundus autofluorescence (488 nm excitation; Spectralis HRA + OCT; Heidelberg Engineering) to measure qAF values using the proprietary HEYEX software. Mean background qAF (excluding vessels and retinal lesions) across all segments (as previously defined by Delori et al.) and in the segment with the highest mean qAF value were compared between affected and unaffected eyes from patients with posterior uveitis, and healthy age-matched control eyes using the Kruskal-Wallis-test. A total of 83 eyes from 83 patients were included: 33 affected eyes (33 patients with uni-/bilateral posterior uveitis), 21 clinically unaffected eyes (21 patients with unilateral posterior uveitis), and 29 healthy, age-matched control eyes (29 patients). Mean qAF values were significantly higher (p-value < 0.0001) in both clinically affected (177.0 ± 83.8 qAF arbitrary units [qAF a.u.]) and unaffected (173.8 ± 56.4 qAF a.u.) eyes compared to healthy, age-matched controls (135.7 ± 41.8 qAF a.u.). Likewise, mean qAF in the segment with the highest mean qAF value was significantly higher (p-value: <0.01) in affected (243.2 ± 103.1 qAF a.u.) and unaffected eyes (227.1 ± 63.4 qAF a.u.) in comparison to controls (168.9 ± 48.5 qAF a.u.). In conclusion, both clinically affected and unaffected eyes from patients with posterior uveitis demonstrated increased fundus autofluorescence. The results of our study could indicate subclinical inflammation in currently inactive and (yet) unaffected eyes of posterior uveitis patients. This could be caused by accumulation of fluorophores or an increased metabolic activity generated by low-grade inflammation. As these changes may precede future inflammation in yet unaffected eyes, additional longitudinal studies including analysis of eyes with active disease are warranted.
Collapse
Affiliation(s)
- Robert P Finger
- Department of Ophthalmology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Julie Jungblut
- Department of Ophthalmology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Marie D Just
- Department of Ophthalmology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Jan H Terheyden
- Department of Ophthalmology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Frank G Holz
- Department of Ophthalmology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Raffael Liegl
- Department of Ophthalmology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Maximilian W M Wintergerst
- Department of Ophthalmology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
- Augenzentrum Grischun, Chur, Switzerland.
| |
Collapse
|
4
|
Taha AT, Shen LL, Diaz A, Chahal N, Saroya J, Sun M, Allingham MJ, Farsiu S, Yiu G, Keenan JD, Stewart JM. Association of Hyperautofluorescence Signals with Geographic Atrophy Progression in the METformin for the MINimization of Geographic Atrophy Progression Trial. OPHTHALMOLOGY SCIENCE 2025; 5:100620. [PMID: 39584185 PMCID: PMC11585696 DOI: 10.1016/j.xops.2024.100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 11/26/2024]
Abstract
Purpose To investigate the association between rim area focal hyperautofluorescence (RAFH) signals and geographic atrophy (GA) growth rates, as well as the impact of oral metformin on the longitudinal change of RAFH. Design Secondary analysis of a randomized controlled trial. Participants Seventy-one eyes from 44 participants with GA and ≥6 months of follow-up in the METformin for the MINimization of geographic atrophy progression study. Methods Fundus autofluorescence images were captured using a 488 nm excitation wavelength. Two masked graders identified and measured RAFH lesions using proprietary semiautomatic segmentation software and ImageJ. We calculated RAFH by dividing the areas of hyperautofluorescence within a 450-μm rim circumscribing the GA by the total area enclosed within this rim. Main Outcome Measures Longitudinal changes in RAFH and GA area. Results Baseline RAFH was positively associated with the baseline square root of GA area 0.065/year (P < 0.001). In the entire study cohort, higher baseline RAFH was associated with a faster GA area growth rate in mm2/year (Spearman's ρ = 0.53; P < 0.001). The association became weaker in square root-transformed GA area growth (ρ = 0.19, P = 0.11) and perimeter-adjusted GA growth rate (ρ = 0.28, P = 0.02), achieving statistical significance only in the latter. When this analysis was stratified into 3 baseline GA tertiles, the first and second tertiles showed weak to moderate association with statistical significance in all 3 modes of GA growth rates. Rim area focal hyperautofluorescence increased slightly but significantly over time at 0.020/year (P < 0.01). Rim area focal hyperautofluorescence increased slightly but significantly over time at 0.020/year (P < 0.01). The use of oral metformin was not significantly associated with the change in RAFH over time compared with the observation group (0.023/year vs. 0.016/year; P = 0.29). Conclusions Increased baseline RAFH is associated with faster GA area progression. However, the effect size of this association may depend on the baseline GA lesion size such that small to medium-sized GA lesions display this relationship regardless of the mode of the calculation of GA growth rate. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Abu Tahir Taha
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - Liangbo Linus Shen
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - Antonio Diaz
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - Noor Chahal
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - Jasmeet Saroya
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - Mengyuan Sun
- Institute of Cardiovascular Diseases, Gladstone Institute, San Francisco, California
| | - Michael J. Allingham
- Department of Ophthalmology, Duke University Medical Center, Durham, North California
| | - Sina Farsiu
- Department of Ophthalmology, Duke University Medical Center, Durham, North California
| | - Glenn Yiu
- Department of Ophthalmology & Visual Sciences, University of California, Davis, Sacramento, California
| | - Jeremy D. Keenan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
- University of California, San Francisco, Francis I Proctor Foundation, San Francisco, California
| | - Jay M. Stewart
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
- Department of Ophthalmology, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California
| |
Collapse
|
5
|
Soltanian-Zadeh S, Kovalick K, Aghayee S, Miller DT, Liu Z, Hammer DX, Farsiu S. Identifying retinal pigment epithelium cells in adaptive optics-optical coherence tomography images with partial annotations and superhuman accuracy. BIOMEDICAL OPTICS EXPRESS 2024; 15:6922-6939. [PMID: 39679394 PMCID: PMC11640571 DOI: 10.1364/boe.538473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024]
Abstract
Retinal pigment epithelium (RPE) cells are essential for normal retinal function. Morphological defects in these cells are associated with a number of retinal neurodegenerative diseases. Owing to the cellular resolution and depth-sectioning capabilities, individual RPE cells can be visualized in vivo with adaptive optics-optical coherence tomography (AO-OCT). Rapid, cost-efficient, and objective quantification of the RPE mosaic's structural properties necessitates the development of an automated cell segmentation algorithm. This paper presents a deep learning-based method with partial annotation training for detecting RPE cells in AO-OCT images with accuracy better than human performance. We have made the code, imaging datasets, and the manual expert labels available online.
Collapse
Affiliation(s)
- Somayyeh Soltanian-Zadeh
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Katherine Kovalick
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Samira Aghayee
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Donald T. Miller
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
6
|
Patel NA, Hoyek S, Al-Khersan H, Yannuzzi NA, Smiddy WE. A Cost Effectiveness Analysis of Avacincaptad Pegol for the Treatment of Geographic Atrophy with Comparison to Pegcetacoplan. Ophthalmol Retina 2024; 8:1061-1065. [PMID: 38777140 DOI: 10.1016/j.oret.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/18/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE The purpose of this study was to evaluate the cost effectiveness of the treatment of geographic atrophy (GA) with intravitreal avacincaptad pegol (ACP) and to compare it with pegcetacoplan (PEG). DESIGN Cost analysis based on data from published studies. SUBJECTS None; based on data from published sham control compared with 2 treatment groups in each of the index studies. METHODS Costs were based on 2022 Medicare reimbursement data for both facility (hospital-based) and nonfacility settings in Miami. Specific usage and outcomes were derived from the GATHER2 study as well as DERBY and OAKS trials. For ACP, all patients were treated every month (EM) in year 1 then randomized to every other month (EOM) or EM in year 2. Two-year models were created for patients in the facility setting for extrafoveal (ACP and PEG) and all patients (PEG). MAIN OUTCOME MEASURES Cost, cost utility, and cost per area of GA (in United States dollars). RESULTS The cost to treat GA with ACP in EM and EOM treatment groups over the 2 years as reported was $67 400 and $40 600, respectively. With ACP treatment over 2 years, the daily cost of delaying GA 3.4 months (EM) and 4.5 months (EOM) was $649 (EM) and $356 (EOM). The (facility-based) costs per unit area of retinal pigment epithelium saved for patients with extrafoveal GA over the 2-year period were $119 000/mm2 (EM ACP) versus $54 000/mm2 (EM PEG) (P < 0.001), $57 100/mm2 (EOM ACP) versus $31 400/mm2 (EOM PEG) (P < 0.001), and $45 300/mm2 (hypothetical EOM from outset ACP). CONCLUSION Treatment of GA with intravitreal ACP EOM was more cost effective than EM. When assessing extrafoveal lesions, ACP was less cost effective than PEG for both EM and EOM treatment. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Nimesh A Patel
- Department of Ophthalmology, Massachusetts Eye and Ear and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Sandra Hoyek
- Department of Ophthalmology, Massachusetts Eye and Ear and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hasenin Al-Khersan
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Nicolas A Yannuzzi
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - William E Smiddy
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
7
|
Boopathiraj N, Wagner IV, Dorairaj SK, Miller DD, Stewart MW. Recent Updates on the Diagnosis and Management of Age-Related Macular Degeneration. Mayo Clin Proc Innov Qual Outcomes 2024; 8:364-374. [PMID: 39036487 PMCID: PMC11259890 DOI: 10.1016/j.mayocpiqo.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the Western world, with a higher prevalence among Europeans and North Americans than that in Africans, Hispanics, and Asians. Advanced AMD is categorized as atrophic (dry) or exudative (wet/neovascular age-related macular degeneration [nAMD]). Dry AMD is characterized by progressive geographic atrophy of the retinal pigment epithelium and outer retinal layers, whereas nAMD is characterized by new vessels that invade the subretinal and/or subretinal pigment epithelium spaces. Existing treatments delay the onset of advanced AMD and reverses vision loss for a couple of years before atrophy usually decreases central visual acuity. We searched PubMed and Medline databases from January 1, 1980, to December 1, 2023, using the following search terms: macular degeneration, choroidal neovascularization, geographic atrophy, drusen, age-related maculopathy, AMD, ARMD, and anti-VEGF. Relevant articles in English (or English translations) were retrieved and reviewed. Bibliographies of the identified manuscripts were also reviewed to identify relevant studies. Age-related macular degeneration most commonly affects people older than 55 years. Visual prognosis varies, with advanced lesions (nAMD and geographic atrophy) leading to rapid, progressive loss of central vision and contrast sensitivity. Although AMD is not a life-threatening disease, reduced vision profoundly compromises quality of life and necessitates living assistance for many patients. Over the past 2 decades, advances in prevention (vitamin supplementation) and therapy (antivascular endothelial growth factor and complement inhibitor drugs) have reduced vision loss and blindness. Further research is needed to decrease the incidence of blindness in patients with advanced disease.
Collapse
Affiliation(s)
| | | | - Syril K. Dorairaj
- Department of Ophthalmology, Mayo Clinic, Jacksonville, FL
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Jacksonville, FL
| | - Darby D. Miller
- Department of Ophthalmology, Mayo Clinic, Jacksonville, FL
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Jacksonville, FL
| | - Michael W. Stewart
- Department of Ophthalmology, Mayo Clinic, Jacksonville, FL
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
8
|
Liu Z, Aghayee S, Soltanian-Zadeh S, Kovalick K, Agrawal A, Saeedi O, Cukras C, Chew EY, Farsiu S, Hammer DX. Quantification of Human Photoreceptor-Retinal Pigment Epithelium Macular Topography with Adaptive Optics-Optical Coherence Tomography. Diagnostics (Basel) 2024; 14:1518. [PMID: 39061655 PMCID: PMC11276449 DOI: 10.3390/diagnostics14141518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Photoreceptors (PRs) and retinal pigment epithelial (RPE) cells form a functional unit called the PR-RPE complex. The PR-RPE complex plays a critical role in maintaining retinal homeostasis and function, and the quantification of its structure and topographical arrangement across the macula are important for understanding the etiology, mechanisms, and progression of many retinal diseases. However, the three-dimensional cellular morphology of the PR-RPE complex in living human eyes has not been completely described due to limitations in imaging techniques. We used the cellular resolution and depth-sectioning capabilities of a custom, high-speed Fourier domain mode-locked laser-based adaptive optics-optical coherence tomography (FDML-AO-OCT) platform to characterize human PR-RPE complex topography across the temporal macula from eleven healthy volunteers. With the aid of a deep learning algorithm, key metrics were extracted from the PR-RPE complex of averaged AO-OCT volumes including PR and RPE cell density, PR outer segment length (OSL), and PR/RPE ratio. We found a tight grouping among our cohort for PR density, with a mean (±SD) value of 53,329 (±8106) cells/mm2 at 1° decreasing to 8669 (±737) cells/mm2 at 12°. We observed a power function relationship between eccentricity and both PR density and PR/RPE ratio. We found similar variability in our RPE density measures, with a mean value of 7335 (±681) cells/mm2 at 1° decreasing to 5547 (±356) cells/mm2 at 12°, exhibiting a linear relationship with a negative slope of -123 cells/mm2 per degree. OSL monotonically decreased from 33.3 (±2.4) µm at 1° to 18.0 (±1.8) µm at 12°, following a second-order polynomial relationship. PR/RPE ratio decreased from 7.3 (±0.9) µm at 1° to 1.5 (±0.1) µm at 12°. The normative data from this investigation will help lay a foundation for future studies of retinal pathology.
Collapse
Affiliation(s)
- Zhuolin Liu
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA (S.S.-Z.); (A.A.)
| | - Samira Aghayee
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA (S.S.-Z.); (A.A.)
| | - Somayyeh Soltanian-Zadeh
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA (S.S.-Z.); (A.A.)
| | - Katherine Kovalick
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA (S.S.-Z.); (A.A.)
| | - Anant Agrawal
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA (S.S.-Z.); (A.A.)
| | - Osamah Saeedi
- Department of Ophthalmology, University of Maryland Baltimore School of Medicine, Baltimore, MD 21201, USA;
| | - Catherine Cukras
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA (E.Y.C.)
| | - Emily Y. Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA (E.Y.C.)
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA;
| | - Daniel X. Hammer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA (S.S.-Z.); (A.A.)
| |
Collapse
|
9
|
Kunala K, Tang JAH, Parkins K, Hunter JJ. Multispectral label-free in vivo cellular imaging of human retinal pigment epithelium using adaptive optics fluorescence lifetime ophthalmoscopy improves feasibility for low emission analysis and increases sensitivity for detecting changes with age and eccentricity. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22707. [PMID: 38962492 PMCID: PMC11221116 DOI: 10.1117/1.jbo.29.s2.s22707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 07/05/2024]
Abstract
Significance Adaptive optics fluorescence lifetime ophthalmoscopy (AOFLIO) provides a label-free approach to observe functional and molecular changes at cellular scale in vivo. Adding multispectral capabilities improves interpretation of lifetime fluctuations due to individual fluorophores in the retinal pigment epithelium (RPE). Aim To quantify the cellular-scale changes in autofluorescence with age and eccentricity due to variations in lipofuscin, melanin, and melanolipofuscin in RPE using multispectral AOFLIO. Approach AOFLIO was performed on six subjects at seven eccentricities. Four imaging channels (λ ex / λ em ) were used: 473/SSC, 473/LSC, 532/LSC, and 765/NIR. Cells were segmented and the timing signals of each pixel in a cell were combined into a single histogram, which were then used to compute the lifetime and phasor parameters. An ANOVA was performed to investigate eccentricity and spectral effects on each parameter. Results A repeatability analysis revealed < 11.8 % change in lifetime parameters in repeat visits for 532/LSC. The 765/NIR and 532/LSC had eccentricity and age effects similar to previous reports. The 473/LSC had a change in eccentricity with mean lifetime and a phasor component. Both the 473/LSC and 473/SSC had changes in eccentricity in the short lifetime component and its relative contribution. The 473/SSC had no trend in eccentricity in phasor. The comparison across the four channels showed differences in lifetime and phasor parameters. Conclusions Multispectral AOFLIO can provide a more comprehensive picture of changes with age and eccentricity. These results indicate that cell segmentation has the potential to allow investigations in low-photon scenarios such as in older or diseased subjects with the co-capture of an NIR channel (such as 765/NIR) with the desired spectral channel. This work represents the first multispectral, cellular-scale fluorescence lifetime comparison in vivo in the human RPE and may be a useful method for tracking diseases.
Collapse
Affiliation(s)
- Karteek Kunala
- Stanford University, Byers Eye Institute, Palo Alto, California, United States
| | - Janet A. H. Tang
- University of Rochester, Center for Visual Science, Rochester, New York, United States
- University of Rochester, The Institute of Optics, Rochester, New York, United States
| | - Keith Parkins
- University of Rochester, Center for Visual Science, Rochester, New York, United States
| | - Jennifer J. Hunter
- University of Rochester, Center for Visual Science, Rochester, New York, United States
- University of Rochester, The Institute of Optics, Rochester, New York, United States
- University of Waterloo, School of Optometry and Vision Science, Waterloo, Ontario, Canada
| |
Collapse
|
10
|
Berlin A, Fischer NA, Clark ME, Kar D, Swain TA, Martindale RM, McGwin G, Crosson JN, Sloan KR, Owsley C, Curcio CA. Quantitative Autofluorescence at AMD's Beginnings Highlights Retinal Topography and Grading System Differences: ALSTAR2 Baseline. Ophthalmologica 2024; 247:1-13. [PMID: 38599207 PMCID: PMC11499297 DOI: 10.1159/000538696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
INTRODUCTION The aims of the study were to describe baseline quantitative (short-wavelength) autofluorescence (qAF) findings in a large pseudophakic cohort at age-related macular degeneration (AMD)'s beginnings and to assess qAF8 as an outcome measure and evaluate Age-Related Eye Disease Study (AREDS) and Beckman grading systems. METHODS In the ALSTAR2 baseline cohort (NCT04112667), 346 pseudophakic eyes of 188 persons (74.0 ± 5.5 years) were classified as normal (N = 160 by AREDS, 158 by Beckman), early AMD (eAMD) (N = 104, 66), and intermediate AMD (iAMD) (N = 82, 122). Groups were compared via mean qAF intensities in a 6°-8° annulus (qAF8) and maps of differences between observations and the overall mean, divided by standard deviation (Z-score). RESULTS qAF8 did not differ significantly among diagnostic groups by either stratification (p = 0.0869 AREDS; p = 0.0569 by Beckman). Notably, 45 eyes considered eAMD by AREDS became iAMD by Beckman. For AREDS-stratified eyes, Z-score maps showed higher centrally located qAF for normal, near the mean in eAMD, and lower values for iAMD. Maps deviated from this pattern for Beckman-stratified eyes. CONCLUSIONS In a large sample of pseudophakic eyes, qAF8 does not differ overall from normal aging to iAMD but also does not capture the earliest AMD activity in the macula lutea. AREDS classification gives results more consistent with a slow decline in histologic autofluorescence than Beckman classification.
Collapse
Affiliation(s)
- Andreas Berlin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA,
- University Hospital Würzburg, Würzburg, Germany,
| | - Nathan A Fischer
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Retina Consultants of Alabama, Birmingham, Alabama, USA
| | - Mark E Clark
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas A Swain
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard M Martindale
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Retina Consultants of Alabama, Birmingham, Alabama, USA
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason N Crosson
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Retina Consultants of Alabama, Birmingham, Alabama, USA
| | - Kenneth R Sloan
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
11
|
Pedersen HR, Gilson SJ, Hagen LA, Holtan JP, Bragadottir R, Baraas RC. Multimodal in-vivo maps as a tool to characterize retinal structural biomarkers for progression in adult-onset Stargardt disease. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1384473. [PMID: 38984108 PMCID: PMC11182093 DOI: 10.3389/fopht.2024.1384473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/04/2024] [Indexed: 07/11/2024]
Abstract
Purpose To characterize retinal structural biomarkers for progression in adult-onset Stargardt disease from multimodal retinal imaging in-vivo maps. Methods Seven adult patients (29-69 years; 3 males) with genetically-confirmed and clinically diagnosed adult-onset Stargardt disease and age-matched healthy controls were imaged with confocal and non-confocal Adaptive Optics Scanning Light Ophthalmoscopy (AOSLO), optical coherence tomography (OCT), fundus infrared (FIR), short wavelength-autofluorescence (FAF) and color fundus photography (CFP). Images from each modality were scaled for differences in lateral magnification before montages of AOSLO images were aligned with en-face FIR, FAF and OCT scans to explore changes in retinal structure across imaging modalities. Photoreceptors, retinal pigment epithelium (RPE) cells, flecks, and other retinal alterations in macular regions were identified, delineated, and correlated across imaging modalities. Retinal layer-thicknesses were extracted from segmented OCT images in areas of normal appearance on clinical imaging and intact outer retinal structure on OCT. Eccentricity dependency in cell density was compared with retinal thickness and outer retinal layer thickness, evaluated across patients, and compared with data from healthy controls. Results In patients with Stargardt disease, alterations in retinal structure were visible in different image modalities depending on layer location and structural properties. The patients had highly variable foveal structure, associated with equally variable visual acuity (-0.02 to 0.98 logMAR). Cone and rod photoreceptors, as well as RPE-like structures in some areas, could be quantified on non-confocal split-detection AOSLO images. RPE cells were also visible on dark field AOSLO images close to the foveal center. Hypo-reflective gaps of non-waveguiding cones (dark cones) were seen on confocal AOSLO in regions with clinically normal CFP, FIR, FAF and OCT appearance and an intact cone inner segment mosaic in three patients. Conclusion Dark cones were identified as a possible first sign of retinal disease progression in adult-onset Stargardt disease as these are observed in retinal locations with otherwise normal appearance and outer retinal thickness. This corroborates a previous report where dark cones were proposed as a first sign of progression in childhood-onset Stargardt disease. This also supports the hypothesis that, in Stargardt disease, photoreceptor degeneration occurs before RPE cell death.
Collapse
Affiliation(s)
- Hilde R Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Lene A Hagen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Josephine Prener Holtan
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ragnheidur Bragadottir
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
12
|
Das V, Zhang F, Bower AJ, Li J, Liu T, Aguilera N, Alvisio B, Liu Z, Hammer DX, Tam J. Revealing speckle obscured living human retinal cells with artificial intelligence assisted adaptive optics optical coherence tomography. COMMUNICATIONS MEDICINE 2024; 4:68. [PMID: 38600290 PMCID: PMC11006674 DOI: 10.1038/s43856-024-00483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND In vivo imaging of the human retina using adaptive optics optical coherence tomography (AO-OCT) has transformed medical imaging by enabling visualization of 3D retinal structures at cellular-scale resolution, including the retinal pigment epithelial (RPE) cells, which are essential for maintaining visual function. However, because noise inherent to the imaging process (e.g., speckle) makes it difficult to visualize RPE cells from a single volume acquisition, a large number of 3D volumes are typically averaged to improve contrast, substantially increasing the acquisition duration and reducing the overall imaging throughput. METHODS Here, we introduce parallel discriminator generative adversarial network (P-GAN), an artificial intelligence (AI) method designed to recover speckle-obscured cellular features from a single AO-OCT volume, circumventing the need for acquiring a large number of volumes for averaging. The combination of two parallel discriminators in P-GAN provides additional feedback to the generator to more faithfully recover both local and global cellular structures. Imaging data from 8 eyes of 7 participants were used in this study. RESULTS We show that P-GAN not only improves RPE cell contrast by 3.5-fold, but also improves the end-to-end time required to visualize RPE cells by 99-fold, thereby enabling large-scale imaging of cells in the living human eye. RPE cell spacing measured across a large set of AI recovered images from 3 participants were in agreement with expected normative ranges. CONCLUSIONS The results demonstrate the potential of AI assisted imaging in overcoming a key limitation of RPE imaging and making it more accessible in a routine clinical setting.
Collapse
Affiliation(s)
- Vineeta Das
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Furu Zhang
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew J Bower
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joanne Li
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tao Liu
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nancy Aguilera
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bruno Alvisio
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Daniel X Hammer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Johnny Tam
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Sun R, Feng J, Wang J. Underlying Mechanisms and Treatment of Cellular Senescence-Induced Biological Barrier Interruption and Related Diseases. Aging Dis 2024; 15:612-639. [PMID: 37450933 PMCID: PMC10917536 DOI: 10.14336/ad.2023.0621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Given its increasing prevalence, aging is of great concern to researchers worldwide. Cellular senescence is a physiological or pathological cellular state caused by aging and a prominent risk factor for the interruption of the integrity and functionality of human biological barriers. Health barriers play an important role in maintaining microenvironmental homeostasis within the body. The senescence of barrier cells leads to barrier dysfunction and age-related diseases. Cellular senescence has been reported to be a key target for the prevention of age-related barrier diseases, including Alzheimer's disease, Parkinson's disease, age-related macular degeneration, diabetic retinopathy, and preeclampsia. Drugs such as metformin, dasatinib, quercetin, BCL-2 inhibitors, and rapamycin have been shown to intervene in cellular senescence and age-related diseases. In this review, we conclude that cellular senescence is involved in age-related biological barrier impairment. We further outline the cellular pathways and mechanisms underlying barrier impairment caused by cellular senescence and describe age-related barrier diseases associated with senescent cells. Finally, we summarize the currently used anti-senescence pharmacological interventions and discuss their therapeutic potential for preventing age-related barrier diseases.
Collapse
Affiliation(s)
- Ruize Sun
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Curcio CA, Kar D, Owsley C, Sloan KR, Ach T. Age-Related Macular Degeneration, a Mathematically Tractable Disease. Invest Ophthalmol Vis Sci 2024; 65:4. [PMID: 38466281 PMCID: PMC10916886 DOI: 10.1167/iovs.65.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
A progression sequence for age-related macular degeneration onset may be determinable with consensus neuroanatomical nomenclature augmented by drusen biology and eye-tracked clinical imaging. This narrative review proposes to supplement the Early Treatment of Diabetic Retinopathy Study (sETDRS) grid with a ring to capture high rod densities. Published photoreceptor and retinal pigment epithelium (RPE) densities in flat mounted aged-normal donor eyes were recomputed for sETDRS rings including near-periphery rich in rods and cumulatively for circular fovea-centered regions. Literature was reviewed for tissue-level studies of aging outer retina, population-level epidemiology studies regionally assessing risk, vision studies regionally assessing rod-mediated dark adaptation (RMDA), and impact of atrophy on photopic visual acuity. The 3 mm-diameter xanthophyll-rich macula lutea is rod-dominant and loses rods in aging whereas cone and RPE numbers are relatively stable. Across layers, the largest aging effects are accumulation of lipids prominent in drusen, loss of choriocapillary coverage of Bruch's membrane, and loss of rods. Epidemiology shows maximal risk for drusen-related progression in the central subfield with only one third of this risk level in the inner ring. RMDA studies report greatest slowing at the perimeter of this high-risk area. Vision declines precipitously when the cone-rich central subfield is invaded by geographic atrophy. Lifelong sustenance of foveal cone vision within the macula lutea leads to vulnerability in late adulthood that especially impacts rods at its perimeter. Adherence to an sETDRS grid and outer retinal cell populations within it will help dissect mechanisms, prioritize research, and assist in selecting patients for emerging treatments.
Collapse
Affiliation(s)
- Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
15
|
Anderson DM, Brager DC, Kearsley AJ. Spatially-dependent model for rods and cones in the retina. J Theor Biol 2024; 579:111687. [PMID: 38103677 DOI: 10.1016/j.jtbi.2023.111687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
We develop a mathematical model for photoreceptors in the retina. We focus on rod and cone outer segment dynamics and interactions with a nutrient source associated with the retinal pigment epithelium cells. Rod and cone densities (number per unit area of retinal surface) are known to have significant spatial dependence in the retina with cones located primarily near the fovea and the rods located primarily away from the fovea. Our model accounts for this spatial dependence of the rod and cone photoreceptor density as well as for the possibility of nutrient diffusion. We present equilibrium and dynamic solutions, discuss their relation to existing models, and estimate model parameters through comparisons with available experimental measurements of both spatial and temporal photoreceptor characteristics. Our model compares well with existing data on spatially-dependent regrowth of photoreceptor outer segments in the macular region of Rhesus Monkeys. Our predictions are also consistent with existing data on the spatial dependence of photoreceptor outer segment length near the fovea in healthy human subjects. We focus primarily on the healthy eye but our model could be the basis for future efforts designed to explore various retinal pathologies, eye-related injuries, and treatments of these conditions.
Collapse
Affiliation(s)
- Daniel M Anderson
- Applied & Computational Mathematics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, 20899, MD, USA; Department of Mathematical Sciences, George Mason University, 4400 University Drive, Fairfax, 22030, VA, USA.
| | - Danielle C Brager
- Applied & Computational Mathematics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, 20899, MD, USA.
| | - Anthony J Kearsley
- Applied & Computational Mathematics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, 20899, MD, USA.
| |
Collapse
|
16
|
Rzhanova LA, Markitantova YV, Aleksandrova MA. Recent Achievements in the Heterogeneity of Mammalian and Human Retinal Pigment Epithelium: In Search of a Stem Cell. Cells 2024; 13:281. [PMID: 38334673 PMCID: PMC10854871 DOI: 10.3390/cells13030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Retinal pigment epithelium (RPE) cells are important fundamentally for the development and function of the retina. In this regard, the study of the morphological and molecular properties of RPE cells, as well as their regenerative capabilities, is of particular importance for biomedicine. However, these studies are complicated by the fact that, despite the external morphological similarity of RPE cells, the RPE is a population of heterogeneous cells, the molecular genetic properties of which have begun to be revealed by sequencing methods only in recent years. This review carries out an analysis of the data from morphological and molecular genetic studies of the heterogeneity of RPE cells in mammals and humans, which reveals the individual differences in the subpopulations of RPE cells and the possible specificity of their functions. Particular attention is paid to discussing the properties of "stemness," proliferation, and plasticity in the RPE, which may be useful for uncovering the mechanisms of retinal diseases associated with pathologies of the RPE and finding new ways of treating them.
Collapse
Affiliation(s)
| | - Yuliya V. Markitantova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (L.A.R.); (M.A.A.)
| | | |
Collapse
|
17
|
Shelton DA, Gefke I, Summers V, Kim YK, Yu H, Getz Y, Ferdous S, Donaldson K, Liao K, Papania JT, Chrenek MA, Boatright JH, Nickerson JM. Age-Related RPE changes in Wildtype C57BL/6J Mice between 2 and 32 Months. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.574142. [PMID: 38352604 PMCID: PMC10862734 DOI: 10.1101/2024.01.30.574142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Purpose This study provides a systematic evaluation of age-related changes in RPE cell structure and function using a morphometric approach. We aim to better capture nuanced predictive changes in cell heterogeneity that reflect loss of RPE integrity during normal aging. Using C57BL6/J mice ranging from P60-P730, we sought to evaluate how regional changes in RPE shape reflect incremental losses in RPE cell function with advancing age. We hypothesize that tracking global morphological changes in RPE is predictive of functional defects over time. Methods We tested three groups of C57BL/6J mice (young: P60-180; Middle-aged: P365-729; aged: 730+) for function and structural defects using electroretinograms, immunofluorescence, and phagocytosis assays. Results The largest changes in RPE morphology were evident between the young and aged groups, while the middle-aged group exhibited smaller but notable region-specific differences. We observed a 1.9-fold increase in cytoplasmic alpha-catenin expression specifically in the central-medial region of the eye between the young and aged group. There was an 8-fold increase in subretinal, IBA-1-positive immune cell recruitment and a significant decrease in visual function in aged mice compared to young mice. Functional defects in the RPE corroborated by changes in RPE phagocytotic capacity. Conclusions The marked increase of cytoplasmic alpha-catenin expression and subretinal immune cell deposition, and decreased visual output coincide with regional changes in RPE cell morphometrics when stratified by age. These cumulative changes in the RPE morphology showed predictive regional patterns of stress associated with loss of RPE integrity.
Collapse
Affiliation(s)
- Debresha A. Shelton
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Isabelle Gefke
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Vivian Summers
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Yong-Kyu Kim
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Department of Ophthalmology, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul, South Korea
| | - Hanyi Yu
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Department of Computer Science, Emory University, Atlanta, Georgia, United States
| | - Yana Getz
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Salma Ferdous
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Kevin Donaldson
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Kristie Liao
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Jack T. Papania
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Micah A. Chrenek
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Jeffrey H. Boatright
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| | - John M. Nickerson
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
18
|
Bourauel L, Vaisband M, von der Emde L, Bermond K, Tarau IS, Heintzmann R, Holz FG, Curcio CA, Hasenauer J, Ach T. Spectral Analysis of Human Retinal Pigment Epithelium Cells in Healthy and AMD Eyes. Invest Ophthalmol Vis Sci 2024; 65:10. [PMID: 38170540 PMCID: PMC10768704 DOI: 10.1167/iovs.65.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Purpose Retinal pigment epithelium (RPE) cells show strong autofluorescence (AF). Here, we characterize the AF spectra of individual RPE cells in healthy eyes and those affected by age-related macular degeneration (AMD) and investigate associations between AF spectral response and the number of intracellular AF granules per cell. Methods RPE-Bruch's membrane flatmounts of 22 human donor eyes, including seven AMD-affected eyes (early AMD, three; geographic atrophy, one; neovascular, three) and 15 unaffected macula (<51 years, eight; >80 years, seven), were imaged at the fovea, perifovea, and near-periphery using confocal AF microscopy (excitation 488 nm), and emission spectra were recorded (500-710 nm). RPE cells were manually segmented with computer assistance and stratified by disease status, and emission spectra were analyzed using cubic spline transforms. Intracellular granules were manually counted and classified. Linear mixed models were used to investigate associations between spectra and the number of intracellular granules. Results Spectra of 5549 RPE cells were recorded. The spectra of RPE cells in healthy eyes showed similar emission curves that peaked at 580 nm for fovea and perifovea and at 575 and 580 nm for near-periphery. RPE spectral curves in AMD eyes differed significantly, being blue shifted by 10 nm toward shorter wavelengths. No significant association coefficients were found between wavelengths and granule counts. Conclusions This large series of RPE cell emission spectra at precisely predefined retinal locations showed a hypsochromic spectral shift in AMD. Combining different microscopy techniques, our work has identified cellular RPE spectral AF and subcellular granule properties that will inform future in vivo investigations using single-cell imaging.
Collapse
Affiliation(s)
- Leonie Bourauel
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Marc Vaisband
- Institute of Life & Medical Sciences, University of Bonn, Bonn, Germany
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Katharina Bermond
- Department of Ophthalmology, Ludwigshafen Hospital, Ludwigshafen, Germany
| | - Ioana Sandra Tarau
- Department of Ophthalmology, Asklepios Klinik Nord - Heidberg, Hamburg, Germany
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Jena, Germany
| | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Christine A. Curcio
- Department of Ophthalmology, University of Alabama at Birmingham, Alabama, Alabama, United States
| | - Jan Hasenauer
- Institute of Life & Medical Sciences, University of Bonn, Bonn, Germany
| | - Thomas Ach
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| |
Collapse
|
19
|
Patel NA, Al-Khersan H, Yannuzzi NA, Lin J, Smiddy WE. A Cost-Effectiveness Analysis of Pegcetacoplan for the Treatment of Geographic Atrophy. Ophthalmol Retina 2024; 8:25-31. [PMID: 37572871 DOI: 10.1016/j.oret.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
PURPOSE To evaluate the cost-effectiveness of the treatment of geography atrophy (GA) with intravitreal pegcetacoplan and to identify utility-measurement surrogates. DESIGN Cost analysis based on data from a published study. SUBJECTS None; based on data from published sham control compared with 2 treatment groups in the index study. METHODS Costs were based on 2022 Medicare reimbursement data. Specific outcomes were extrapolated from the DERBY and OAKS trials. Assumptions were made for the lifetime analysis based on a theoretical logistic growth model of the atrophy. OUTCOME MEASURES Cost, cost utility, cost per quality-adjusted life-year, and cost per area of GA (in US$). RESULTS The costs to treat GA in every month (EM) and every-other-month (EOM) treatment groups over the 2 years as reported were $70 000 and $34 600, respectively. The costs per area of delaying GA for 2 years in all patients were $87 300/mm2 (EM) and $49 200/mm2 (EOM), and in initially extrafoveal patients, $53 900/mm2 (EM) and $32 100/mm2 (EOM). The costs per day of delaying GA for 2 years were $295 (EM) and $170 (EOM); the marginal cost (EM vs. EOM) per retinal pigment epithelium cell saved was $30. The modeled lifetime costs were $350 000 (EM) and $172 000 (EOM), or $309 000/mm2 (EM) and $180 000 (EOM) /mm2. The modeled time to 95% atrophy at 13 years was delayed by 2.5 years (EM) and 2.1 years (EOM). The costs/quality-adjusted life-year gained based on modeled visual loss with 95% atrophy were $706 000 (EM) and $397 000 (EOM). CONCLUSION Treatment of GA with intravitreal pegcetacoplan EOM was more cost effective than EM. Treatment of extrafoveal lesions yielded greater utility than the treatment of the entire group. As atrophy progression approaches an upper limit, the marginal cost/benefit ratios increase. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Nimesh A Patel
- Department of Ophthalmology, Massachusetts Eye and Ear and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Hasenin Al-Khersan
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Nicolas A Yannuzzi
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - James Lin
- Vitreoretinal Consultants of New York, Great Neck, New York
| | - William E Smiddy
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
20
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
21
|
Pfau M, Künzel SH, Pfau K, Schmitz-Valckenberg S, Fleckenstein M, Holz FG. Multimodal imaging and deep learning in geographic atrophy secondary to age-related macular degeneration. Acta Ophthalmol 2023; 101:881-890. [PMID: 37933610 PMCID: PMC11044135 DOI: 10.1111/aos.15796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Geographic atrophy (GA) secondary to age-related macular degeneration is among the most common causes of irreversible vision loss in industrialized countries. Recently, two therapies have been approved by the US FDA. However, given the nature of their treatment effect, which primarily involves a relative decrease in disease progression, discerning the individual treatment response at the individual level may not be readily apparent. Thus, clinical decision-making may have to rely on the quantification of the slope of GA progression before and during treatment. A panel of imaging modalities and artificial intelligence (AI)-based algorithms are available for such quantifications. This article aims to provide a comprehensive overview of the fundamentals of GA imaging, the procedures for diagnosis and classification using these images, and the cutting-edge role of AI algorithms in automatically deriving diagnostic and prognostic insights from imaging data.
Collapse
Affiliation(s)
- Maximilian Pfau
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | | | - Kristina Pfau
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Monika Fleckenstein
- John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| |
Collapse
|
22
|
Lindell M, Kar D, Sedova A, Kim YJ, Packer OS, Schmidt-Erfurth U, Sloan KR, Marsh M, Dacey DM, Curcio CA, Pollreisz A. Volumetric Reconstruction of a Human Retinal Pigment Epithelial Cell Reveals Specialized Membranes and Polarized Distribution of Organelles. Invest Ophthalmol Vis Sci 2023; 64:35. [PMID: 38133501 PMCID: PMC10746928 DOI: 10.1167/iovs.64.15.35] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/04/2023] [Indexed: 12/23/2023] Open
Abstract
Purpose Despite the centrality of the retinal pigment epithelium (RPE) in vision and retinopathy our picture of RPE morphology is incomplete. With a volumetric reconstruction of human RPE ultrastructure, we aim to characterize major membranous features including apical processes and their interactions with photoreceptor outer segments, basolateral infoldings, and the distribution of intracellular organelles. Methods A parafoveal retinal sample was acquired from a 21-year-old male organ donor. With serial block-face scanning electron microscopy, a tissue volume from the inner-outer segment junction to basal RPE was captured. Surface membranes and complete internal ultrastructure of an individual RPE cell were achieved with a combination of manual and automated segmentation methods. Results In one RPE cell, apical processes constitute 69% of the total cell surface area, through a dense network of over 3000 terminal branches. Single processes contact several photoreceptors. Basolateral infoldings facing the choriocapillaris resemble elongated filopodia and comprise 22% of the cell surface area. Membranous tubules and sacs of endoplasmic reticulum represent 20% of the cell body volume. A dense basal layer of mitochondria extends apically to partly overlap electron-dense pigment granules. Pores in the nuclear envelope form a distinct pattern of rows aligned with chromatin. Conclusions Specialized membranes at the apical and basal side of the RPE cell body involved in intercellular uptake and transport represent over 90% of the total surface area. Together with the polarized distribution of organelles within the cell body, these findings are relevant for retinal clinical imaging, therapeutic approaches, and disease pathomechanisms.
Collapse
Affiliation(s)
- Maximilian Lindell
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Aleksandra Sedova
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, Washington, United States
| | - Orin S. Packer
- Department of Biological Structure, University of Washington, Seattle, Washington, United States
| | | | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mike Marsh
- Object Research Systems, Montreal, Quebec, Canada
| | - Dennis M. Dacey
- Department of Biological Structure, University of Washington, Seattle, Washington, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Andreas Pollreisz
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Jo WG, Lee CS, Han J. Clinical and Genetic Findings in Korean Patients with Choroideremia. KOREAN JOURNAL OF OPHTHALMOLOGY 2023; 37:285-291. [PMID: 37336512 PMCID: PMC10427899 DOI: 10.3341/kjo.2023.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
PURPOSE We share and analyze the clinical presentations and genotypes of Korean male patients and female carriers who visited our clinic. METHODS Six male patients and three female carriers with comprehensive ophthalmic examinations and next-generation sequencing were included. Detailed clinical features were identified using visual field (VF) test and multimodal imaging including color fundus photography, fundus autofluorescence (FAF), and optical coherence tomography (OCT). RESULTS Six male patients were diagnosed with choroideremia at the median age of 25 years. Before genetic testing, three patients (50.0%) were clinically diagnosed with choroideremia, while the other three patients (50.0%) with retinitis pigmentosa. Patients showed different types of hemizygous CHM variants, including two nonsense variants, c.715C>T:p.(Arg239*) and c.799C>T:p.(Arg267*); two frameshift variants, c.1584_1587del:p.(Val529Hisfs*7) and c.403_404del:p.(Asp135Phefs*9); one splicing variant c.1511-28_1511-2del; and one exon 2-8 duplication. The latter three variants were novel. Two female carriers had heterozygous exon 2-8 duplication and the other one female carrier had heterozygous nonsense variant c.715C>T:p. (Arg239*). Fundus showed diffuse yellow-whitish scleral reflex and granular pigmented lesions. FAF showed multiple patchy hypofluorescence lesions, sparing macula. OCT showed thinning of outer nuclear layer, ellipsoid zone, retinal pigment epithelium layer, choroid thickness, interlaminar bridges, outer retinal tubulations, and microcysts in the inner nuclear layer. VF showed ring scotoma pattern with small amount of remaining central field. Asymptomatic female carriers showed variable fundus findings and mild changes in OCT. CONCLUSIONS A detailed description of the genotypes with three novel mutations and phenotypes of six choroideremia patients and three CHM mutation female carriers are presented.
Collapse
Affiliation(s)
- Woo Gyeong Jo
- Institute of Vision Research, Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Christopher Seungkyu Lee
- Institute of Vision Research, Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| |
Collapse
|
24
|
Maeda T, Takahashi M. iPSC-RPE in Retinal Degeneration: Recent Advancements and Future Perspectives. Cold Spring Harb Perspect Med 2023; 13:a041308. [PMID: 36690464 PMCID: PMC10411862 DOI: 10.1101/cshperspect.a041308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Regenerative medicine is a great hope for patients suffering from diseases for which no effective treatment is available. With the creation of induced pluripotent stem cells (iPSCs) in 2006, research and development has accelerated expeditiously, reaching a practical stage worldwide. The iPSC-regenerative medicine in ophthalmology is one of the pioneers, which has kicked off clinical application ahead of other fields owing to its advantages. The clinical safety issues of iPSC-derived retinal pigment epithelial (iPSC-RPE) transplantation for exudative age-related macular degeneration have been addressed to a certain extent. Preparations are being made for the next clinical study based on the improvement of its therapeutic effects and expansion of indications globally. Steady progress toward the practical applications of regenerative medicine for the treatment of retinal disorders is expected in the future while strengthening global cooperation amid various research areas, clinical fields, and regulations.
Collapse
Affiliation(s)
- Tadao Maeda
- Research Center, Kobe City Eye Hospital, Kobe 6500-047, Japan
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 6500-047, Japan
- Vision Care Cell Therapy, Kobe 650-0047, Japan
| | - Masayo Takahashi
- Research Center, Kobe City Eye Hospital, Kobe 6500-047, Japan
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 6500-047, Japan
- Vision Care Cell Therapy, Kobe 650-0047, Japan
| |
Collapse
|
25
|
Bućan I, Bućan K. Paramacular Choriocapillaris Atrophy. Biomedicines 2023; 11:2074. [PMID: 37509713 PMCID: PMC10377535 DOI: 10.3390/biomedicines11072074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
In this paper, a review of a rare case of paramacular choriocapillaris atrophy with a foveal-sparing phenotype is carried out. The 73-year-old patient stated that they had impaired vision and photophobia in both eyes during a regular ophthalmological examination, denying visual field defects and night blindness. A complete ophthalmological examination (best-corrected visual acuity, applanation tonometry, and biomicroscopy of anterior and posterior segments) and diagnostic tests, including fundus autofluorescence, fluorescein angiography, optical coherence tomography with angiography, computerized perimetry, and electroretinography, were carried out. The underlying genetic pattern is unclear, which points to paramacular choriocapillaris atrophy. According to recent research on histology, pathologies categorized as regional choroidal dystrophies are caused by alterations at the level of the retinal pigment epithelium. Despite the unresolved etiopathogenetic mechanism of foveal sparing in central choroidal and retinal dystrophies, a highly variable disease phenotype with spared fovea and central visual acuity present in a variety of heterogeneous dystrophies supports a disease-independent mechanism that allows the survival of foveal cones. The related preservation of BCVA has implications for individual prognosis and influences how treatment trials for choroidal and retinal dystrophies are designed.
Collapse
Affiliation(s)
- Ivona Bućan
- Eye Clinic, University Hospital Centre Split, 21000 Split, Croatia
| | - Kajo Bućan
- Eye Clinic, University Hospital Centre Split, 21000 Split, Croatia
- Department of Opthalmology, School of Medicine, University of Split, 21000 Split, Croatia
| |
Collapse
|
26
|
Kushwah N, Bora K, Maurya M, Pavlovich MC, Chen J. Oxidative Stress and Antioxidants in Age-Related Macular Degeneration. Antioxidants (Basel) 2023; 12:1379. [PMID: 37507918 PMCID: PMC10376043 DOI: 10.3390/antiox12071379] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress plays a crucial role in aging-related eye diseases, including age-related macular degeneration (AMD), cataracts, and glaucoma. With age, antioxidant reparative capacity decreases, and excess levels of reactive oxygen species produce oxidative damage in many ocular cell types underling age-related pathologies. In AMD, loss of central vision in the elderly is caused primarily by retinal pigment epithelium (RPE) dysfunction and degeneration and/or choroidal neovascularization that trigger malfunction and loss of photo-sensing photoreceptor cells. Along with various genetic and environmental factors that contribute to AMD, aging and age-related oxidative damage have critical involvement in AMD pathogenesis. To this end, dietary intake of antioxidants is a proven way to scavenge free radicals and to prevent or slow AMD progression. This review focuses on AMD and highlights the pathogenic role of oxidative stress in AMD from both clinical and experimental studies. The beneficial roles of antioxidants and dietary micronutrients in AMD are also summarized.
Collapse
Affiliation(s)
| | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
27
|
Zhang KR, Jankowski CSR, Marshall R, Nair R, Más Gómez N, Alnemri A, Liu Y, Erler E, Ferrante J, Song Y, Bell BA, Baumann BH, Sterling J, Anderson B, Foshe S, Roof J, Fazelinia H, Spruce LA, Chuang JZ, Sung CH, Dhingra A, Boesze-Battaglia K, Chavali VRM, Rabinowitz JD, Mitchell CH, Dunaief JL. Oxidative stress induces lysosomal membrane permeabilization and ceramide accumulation in retinal pigment epithelial cells. Dis Model Mech 2023; 16:dmm050066. [PMID: 37401371 PMCID: PMC10399446 DOI: 10.1242/dmm.050066] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of age-related macular degeneration, the leading cause of blindness in older adults, with retinal pigment epithelium (RPE) cells playing a key role. To better understand the cytotoxic mechanisms underlying oxidative stress, we used cell culture and mouse models of iron overload, as iron can catalyze reactive oxygen species formation in the RPE. Iron-loading of cultured induced pluripotent stem cell-derived RPE cells increased lysosomal abundance, impaired proteolysis and reduced the activity of a subset of lysosomal enzymes, including lysosomal acid lipase (LIPA) and acid sphingomyelinase (SMPD1). In a liver-specific Hepc (Hamp) knockout murine model of systemic iron overload, RPE cells accumulated lipid peroxidation adducts and lysosomes, developed progressive hypertrophy and underwent cell death. Proteomic and lipidomic analyses revealed accumulation of lysosomal proteins, ceramide biosynthetic enzymes and ceramides. The proteolytic enzyme cathepsin D (CTSD) had impaired maturation. A large proportion of lysosomes were galectin-3 (Lgals3) positive, suggesting cytotoxic lysosomal membrane permeabilization. Collectively, these results demonstrate that iron overload induces lysosomal accumulation and impairs lysosomal function, likely due to iron-induced lipid peroxides that can inhibit lysosomal enzymes.
Collapse
Affiliation(s)
- Kevin R. Zhang
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connor S. R. Jankowski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rayna Marshall
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rohini Nair
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Néstor Más Gómez
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahab Alnemri
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingrui Liu
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth Erler
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia Ferrante
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brent A. Bell
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bailey H. Baumann
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacob Sterling
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brandon Anderson
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sierra Foshe
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Roof
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Hossein Fazelinia
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Lynn A. Spruce
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anuradha Dhingra
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Venkata R. M. Chavali
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Claire H. Mitchell
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua L. Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Owsley C, Swain TA, McGwin G, Clark ME, Kar D, Curcio CA. Biologically Guided Optimization of Test Target Location for Rod-mediated Dark Adaptation in Age-related Macular Degeneration: Alabama Study on Early Age-related Macular Degeneration 2 Baseline. OPHTHALMOLOGY SCIENCE 2023; 3:100274. [PMID: 36875335 PMCID: PMC9978854 DOI: 10.1016/j.xops.2023.100274] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Purpose We evaluate the impact of test target location in assessing rod-mediated dark adaptation (RMDA) along the transition from normal aging to intermediate age-related macular degeneration (AMD). We consider whether RMDA slows because the test locations are near mechanisms leading to or resulting from high-risk extracellular deposits. Soft drusen cluster under the fovea and extend to the inner ring of the ETDRS grid where rods are sparse. Subretinal drusenoid deposits (SDDs) appear first in the outer superior subfield of the ETDRS grid where rod photoreceptors are maximal and spread toward the fovea without covering it. Design Cross-sectional. Participants Adults ≥ 60 years with normal older maculas, early AMD, or intermediate AMD as defined by the Age-Related Eye Disease Study (AREDS) 9-step and Beckman grading systems. Methods In 1 eye per participant, RMDA was assessed at 5° and at 12° in the superior retina. Subretinal drusenoid deposit presence was identified with multi-modal imaging. Main Outcome Measures Rod intercept time (RIT) as a measure of RMDA rate at 5° and 12°. Results In 438 eyes of 438 persons, RIT was significantly longer (i.e., RMDA is slower) at 5° than at 12° for each AMD severity group. Differences among groups were bigger at 5° than at 12°. At 5°, SDD presence was associated with longer RIT as compared to SDD absence at early and intermediate AMD but not in normal eyes. At 12°, SDD presence was associated with longer RIT in intermediate AMD only, and not in normal or early AMD eyes. Findings were similar in eyes stratified by AREDS 9-step and Beckman systems. Conclusions We probed RMDA in relation to current models of deposit-driven AMD progression organized around photoreceptor topography. In eyes with SDD, slowed RMDA occurs at 5° where these deposits typically do not appear until later in AMD. Even in eyes lacking detectable SDD, RMDA at 5° is slower than at 12°. The effect at 5° may be attributed to mechanisms associated with the accumulation of soft drusen and precursors under the macula lutea throughout adulthood. These data will facilitate the design of efficient clinical trials for interventions that aim to delay AMD progression.
Collapse
Affiliation(s)
- Cynthia Owsley
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Thomas A. Swain
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gerald McGwin
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mark E. Clark
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Deepayan Kar
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christine A. Curcio
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
29
|
Zhang Q, Autterson G, Miller JML. Improved Lipofuscin Models and Quantification of Outer Segment Phagocytosis Capacity in Highly Polarized Human Retinal Pigment Epithelial Cultures. J Vis Exp 2023:10.3791/65242. [PMID: 37125790 PMCID: PMC10306344 DOI: 10.3791/65242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The daily phagocytosis of photoreceptor outer segments by the retinal pigment epithelium (RPE) contributes to the accumulation of an intracellular aging pigment termed lipofuscin. The toxicity of lipofuscin is well established in Stargardt's disease, the most common inherited retinal degeneration, but is more controversial in age-related macular degeneration (AMD), the leading cause of irreversible blindness in the developed world. Determining lipofuscin toxicity in humans has been difficult, and animal models of Stargardt's have limited toxicity. Thus, in vitro models that mimic human RPE in vivo are needed to better understand lipofuscin generation, clearance, and toxicity. The majority of cell culture lipofuscin models to date have been in cell lines or have involved feeding RPE a single component of the complex lipofuscin mixture rather than fragments/tips of the entire photoreceptor outer segment, which generates a more complete and physiologic lipofuscin model. Described here is a method to induce the accumulation of lipofuscin-like material (termed undigestible autofluorescence material, or UAM) in highly differentiated primary human pre-natal RPE (hfRPE) and induced pluripotent stem cell (iPSC) derived RPE. UAM accumulated in cultures by repeated feedings of ultraviolet light-treated OS fragments taken up by the RPE via phagocytosis. The key ways that UAM approximates and differs from lipofuscin in vivo are also discussed. Accompanying this model of lipofuscin-like accumulation, imaging methods to distinguish the broad autofluorescence spectrum of UAM granules from concurrent antibody staining are introduced. Finally, to assess the impact of UAM on RPE phagocytosis capacity, a new method for quantifying outer segment fragment/tips uptake and breakdown has been introduced. Termed "Total Consumptive Capacity", this method overcomes potential misinterpretations of RPE phagocytosis capacity inherent in classic outer segment "pulse-chase" assays. The models and techniques introduced here can be used to study lipofuscin generation and clearance pathways and putative toxicity.
Collapse
Affiliation(s)
- Qitao Zhang
- Kellogg Eye Center, University of Michigan, Ann Arbor
| | | | - Jason M L Miller
- Kellogg Eye Center, University of Michigan, Ann Arbor; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor;
| |
Collapse
|
30
|
Yu H, Wang F, Teodoro G, Chen F, Guo X, Nickerson JM, Kong J. Self-supervised semantic segmentation of retinal pigment epithelium cells in flatmount fluorescent microscopy images. Bioinformatics 2023; 39:btad191. [PMID: 37067486 PMCID: PMC10139776 DOI: 10.1093/bioinformatics/btad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
MOTIVATION Morphological analyses with flatmount fluorescent images are essential to retinal pigment epithelial (RPE) aging studies and thus require accurate RPE cell segmentation. Although rapid technology advances in deep learning semantic segmentation have achieved great success in many biomedical research, the performance of these supervised learning methods for RPE cell segmentation is still limited by inadequate training data with high-quality annotations. RESULTS To address this problem, we develop a Self-Supervised Semantic Segmentation (S4) method that utilizes a self-supervised learning strategy to train a semantic segmentation network with an encoder-decoder architecture. We employ a reconstruction and a pairwise representation loss to make the encoder extract structural information, while we create a morphology loss to produce the segmentation map. In addition, we develop a novel image augmentation algorithm (AugCut) to produce multiple views for self-supervised learning and enhance the network training performance. To validate the efficacy of our method, we applied our developed S4 method for RPE cell segmentation to a large set of flatmount fluorescent microscopy images, we compare our developed method for RPE cell segmentation with other state-of-the-art deep learning approaches. Compared with other state-of-the-art deep learning approaches, our method demonstrates better performance in both qualitative and quantitative evaluations, suggesting its promising potential to support large-scale cell morphological analyses in RPE aging investigations. AVAILABILITY AND IMPLEMENTATION The codes and the documentation are available at: https://github.com/jkonglab/S4_RPE.
Collapse
Affiliation(s)
- Hanyi Yu
- Department of Computer Science, Emory University, Atlanta, GA 30322, USA
| | - Fusheng Wang
- Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA
| | - George Teodoro
- Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte 31270, Brazil
| | - Fan Chen
- Huangpu Branch, Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou 510060, China
| | - Xiaoyuan Guo
- Department of Computer Science, Emory University, Atlanta, GA 30322, USA
| | - John M Nickerson
- Department of Ophthalmology, Emory University, Atlanta, GA 30322, USA
| | - Jun Kong
- Department of Computer Science, Emory University, Atlanta, GA 30322, USA
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
31
|
Piskova T, Kozyrina AN, Di Russo J. Mechanobiological implications of age-related remodelling in the outer retina. BIOMATERIALS ADVANCES 2023; 147:213343. [PMID: 36801797 DOI: 10.1016/j.bioadv.2023.213343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The outer retina consists of the light-sensitive photoreceptors, the pigmented epithelium, and the choroid, which interact in a complex manner to sustain homeostasis. The organisation and function of these cellular layers are mediated by the extracellular matrix compartment named Bruch's membrane, situated between the retinal epithelium and the choroid. Like many tissues, the retina experiences age-related structural and metabolic changes, which are relevant for understanding major blinding diseases of the elderly, such as age-related macular degeneration. Compared with other tissues, the retina mainly comprises postmitotic cells, making it less able to maintain its mechanical homeostasis over the years functionally. Aspects of retinal ageing, like the structural and morphometric changes of the pigment epithelium and the heterogenous remodelling of the Bruch's membrane, imply changes in tissue mechanics and may affect functional integrity. In recent years, findings in the field of mechanobiology and bioengineering highlighted the importance of mechanical changes in tissues for understanding physiological and pathological processes. Here, we review the current knowledge of age-related changes in the outer retina from a mechanobiological perspective, aiming to generate food for thought for future mechanobiology studies in the outer retina.
Collapse
Affiliation(s)
- Teodora Piskova
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany; Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Aleksandra N Kozyrina
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany; Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Jacopo Di Russo
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany; Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany.
| |
Collapse
|
32
|
Quantitative Autofluorescence in Non-Neovascular Age Related Macular Degeneration. Biomedicines 2023; 11:biomedicines11020560. [PMID: 36831096 PMCID: PMC9952913 DOI: 10.3390/biomedicines11020560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Quantitative autofluorescence (qAF8) level is a presumed surrogate marker of lipofuscin content in the retina. We investigated the changes in the qAF8 levels in non-neovascular AMD. In this prospective cohort study, Caucasians aged ≥50 years with varying severity of non-neovascular AMD in at least one eye and Snellen visual acuity ≥6/18 were recruited. The qAF8 levels were analysed in the middle eight segments of the Delori pattern (HEYEX software, Heidelberg, Germany). The AMD categories were graded using both the Beckman classification and multimodal imaging (MMI) to include the presence of subretinal drusenoid deposits (SDD). A total of 353 eyes from 231 participants were analyzed. Compared with the age-matched controls, the qAF8 values decreased in the eyes with AMD (adjusted % difference = -19.7% [95% CI -28.8%, -10.4%]; p < 0.001) and across the AMD categories, (adjusted % differences; Early, -13.1% (-24.4%, -1%), p = 0.04; intermediate AMD (iAMD), -22.9% (-32.3%, -13.1%), p < 0.001; geographic atrophy -25.2% (-38.1%, -10.4%), p = 0.002). On MMI, the qAF8 was reduced in the AMD subgroups relative to the controls, (adjusted % differences; Early, -5.8% (-18.9%, 8.3%); p = 0.40; iAMD, -26.7% (-36.2%, -15.6%); p < 0.001; SDD, -23.7% (-33.6%, -12.2%); p < 0.001; atrophy, -26.7% (-39.3%, -11.3%), p = 0.001). The qAF8 levels declined early in AMD and were not significantly different between the severity levels of non-neovascular AMD, suggesting the early and sustained loss of function of the retinal pigment epithelium in AMD.
Collapse
|
33
|
Sivaprasad S, Chandra S, Kwon J, Khalid N, Chong V. Perspectives from clinical trials: is geographic atrophy one disease? Eye (Lond) 2023; 37:402-407. [PMID: 35641821 PMCID: PMC9905504 DOI: 10.1038/s41433-022-02115-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Geographic atrophy (GA) is currently an untreatable condition. Emerging evidence from recent clinical trials show that anti-complement therapy may be a successful treatment option. However, several trials in this therapy area have failed as well. This raises several questions. Firstly, does complement therapy work for all patients with GA? Secondly, is GA one disease? Can we assume that these failed clinical trials are due to ineffective interventions or are they due to flawed clinical trial designs, heterogeneity in GA progression rates or differences in study cohorts? In this article we try to answer these questions by providing an overview of the challenges of designing and interpreting outcomes of randomised controlled trials (RCTs) in GA. These include differing inclusion-exclusion criteria, heterogeneous progression rates of the disease, outcome choices and confounders.
Collapse
Affiliation(s)
- Sobha Sivaprasad
- National Institute of Health Research Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK.
- University College London, Institute of Ophthalmology, London, UK.
| | - Shruti Chandra
- National Institute of Health Research Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK
- University College London, Institute of Ophthalmology, London, UK
| | - Jeha Kwon
- Oxford University Hospitals NHS Trust, Oxford, UK
| | | | - Victor Chong
- University College London, Institute of Ophthalmology, London, UK
| |
Collapse
|
34
|
Weber S, Simon R, Schwanengel LS, Curcio CA, Augsten R, Meller D, Hammer M. Fluorescence Lifetime and Spectral Characteristics of Subretinal Drusenoid Deposits and Their Predictive Value for Progression of Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2022; 63:23. [PMID: 36580310 PMCID: PMC9804024 DOI: 10.1167/iovs.63.13.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose To measure fundus autofluorescence (FAF) lifetimes and peak emission wavelengths (PEW) of subretinal drusenoid deposits (SDD) in age-related macular degeneration (AMD) and their development over time. Methods Fluorescence lifetime imaging ophthalmoscopy (FLIO) was performed in 30 eyes with optical coherence tomography (OCT)-confirmed early or intermediate AMD and SDD. Contrasts of mean lifetimes in short- (SSC) and long-wavelength channels (LSC), PEW, and relative fluorescence intensity were determined as differences of the respective measures at individual SDD and their environment. Measurements were made at baseline and at follow-up intervals 1 (13-36 months) and 2 (37-72 months), respectively. Results Of 423 SDD found at baseline, 259, 47, and 117 were hypoautofluorescent, isoautofluorescent, and hyperautofluorescent, respectively. FAF lifetimes of SDD were significantly longer than those of their environment by 14.5 ps (SSC, 95% confidence interval [CI], 13.3-15.7 ps) and 3.9 ps (LSC, 3.1-4.7 ps). PEW was shorter by 1.53 nm (1.07-1.98 nm, all contrasts P < 0.001) with higher contrasts for hyperfluorescent SDD. Over follow-up, SDD tended to hyperautofluorescence (relative intensities increased by 3.4% [95% CI, 2.9%-4.1%; P < 0.001] in follow-up 2). Hyperautofluorescence was associated with disruption of the ellipsoid zone on OCT. Disease progression to late-stage AMD was associated with higher lifetime contrast in SSC (15.9ps [14.2-17.6 ps] vs. 11.7 ps [9.9-13.5 ps], P < 0.001) at baseline. Conclusions SDD show longer FAF lifetimes and shorter PEW than their environments. A high lifetime contrast of SDD in SSC might predict disease progression to late-stage AMD.
Collapse
Affiliation(s)
- Sebastian Weber
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Rowena Simon
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | | | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Regine Augsten
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Daniel Meller
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany,Center for Medical Optics and Photonics, Univ. of Jena, Jena, Germany
| |
Collapse
|
35
|
Dhirachaikulpanich D, Lagger C, Chatsirisupachai K, de Magalhães JP, Paraoan L. Intercellular communication analysis of the human retinal pigment epithelial and choroidal cells predicts pathways associated with aging, cellular senescence and age-related macular degeneration. Front Aging Neurosci 2022; 14:1016293. [PMID: 36408112 PMCID: PMC9669800 DOI: 10.3389/fnagi.2022.1016293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
The retinal pigment epithelium (RPE) and the choroid are ocular tissues with fundamental roles in supporting neuroretinal function. The pathogenesis of age-related macular degeneration (AMD), a leading cause of irreversible blindness for which aging is the highest risk factor is closely linked with progressive impairment of various functions of these tissues. Cellular senescence, marked by cell cycle arrest and secretion of proinflammatory factors, is known to be associated with aging and has been proposed as a potential driver of AMD. Here, we investigated the role played by intercellular communication in the RPE/choroid within the context of aging, senescence and AMD. We inferred cell–cell interactions in the RPE/choroid by applying CellChat and scDiffCom on a publicly available scRNA-seq dataset from three human donors with and without AMD. We identified age-regulated ligand and receptor genes by using limma on a separate publicly available bulk microarray dataset providing RPE/choroid samples at multiple time points. Cellular senescence was investigated by assigning a score to each cell and each sample of these scRNA-seq and microarray datasets, respectively, based on the expression of key signature genes determined by a previous senescence meta-analysis. We identified VEGF-, BMP-and tenascin-mediated pathways supporting some of the strongest cell–cell interactions between RPE cells, fibroblasts and choroidal endothelial cells and as strong intercellular communication pathways related to both aging and senescence. Their signaling strength was enhanced between subpopulations of cells having high senescence scores. Predominant ligands of these pathways were upregulated with age whereas predominant receptors were downregulated. Globally, we also observed that cells from AMD samples presented slightly bigger senescence scores than normal cells and that the senescence score positively correlated with age in bulk samples (R = 0.26, value of p < 0.01). Hence, our analysis provides novel information on RPE/choroid intercellular communication that gives insights into the connection between aging, senescence and AMD.
Collapse
Affiliation(s)
- Dhanach Dhirachaikulpanich
- Ocular Molecular Biology and Mechanisms of Disease Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Cyril Lagger
- Integrative Genomics of Ageing Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Kasit Chatsirisupachai
- Integrative Genomics of Ageing Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- *Correspondence: João Pedro de Magalhães,
| | - Luminita Paraoan
- Ocular Molecular Biology and Mechanisms of Disease Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Luminita Paraoan,
| |
Collapse
|
36
|
Wong JHC, Ma JYW, Jobling AI, Brandli A, Greferath U, Fletcher EL, Vessey KA. Exploring the pathogenesis of age-related macular degeneration: A review of the interplay between retinal pigment epithelium dysfunction and the innate immune system. Front Neurosci 2022; 16:1009599. [PMID: 36408381 PMCID: PMC9670140 DOI: 10.3389/fnins.2022.1009599] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2022] [Indexed: 07/30/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in the older population. Classical hallmarks of early and intermediate AMD are accumulation of drusen, a waste deposit formed under the retina, and pigmentary abnormalities in the retinal pigment epithelium (RPE). When the disease progresses into late AMD, vision is affected due to death of the RPE and the light-sensitive photoreceptors. The RPE is essential to the health of the retina as it forms the outer blood retinal barrier, which establishes ocular immune regulation, and provides support for the photoreceptors. Due to its unique anatomical position, the RPE can communicate with the retinal environment and the systemic immune environment. In AMD, RPE dysfunction and the accumulation of drusen drive the infiltration of retinal and systemic innate immune cells into the outer retina. While recruited endogenous or systemic mononuclear phagocytes (MPs) contribute to the removal of noxious debris, the accumulation of MPs can also result in chronic inflammation and contribute to AMD progression. In addition, direct communication and indirect molecular signaling between MPs and the RPE may promote RPE cell death, choroidal neovascularization and fibrotic scarring that occur in late AMD. In this review, we explore how the RPE and innate immune cells maintain retinal homeostasis, and detail how RPE dysfunction and aberrant immune cell recruitment contribute to AMD pathogenesis. Evidence from AMD patients will be discussed in conjunction with data from preclinical models, to shed light on future therapeutic targets for the treatment of AMD.
Collapse
|
37
|
Kowalczuk L, Dornier R, Kunzi M, Iskandar A, Misutkova Z, Gryczka A, Navarro A, Jeunet F, Mantel I, Behar-Cohen F, Laforest T, Moser C. In Vivo Retinal Pigment Epithelium Imaging using Transscleral Optical Imaging in Healthy Eyes. OPHTHALMOLOGY SCIENCE 2022; 3:100234. [PMID: 36545259 PMCID: PMC9762198 DOI: 10.1016/j.xops.2022.100234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
Objective To image healthy retinal pigment epithelial (RPE) cells in vivo using Transscleral OPtical Imaging (TOPI) and to analyze statistics of RPE cell features as a function of age, axial length (AL), and eccentricity. Design Single-center, exploratory, prospective, and descriptive clinical study. Participants Forty-nine eyes (AL: 24.03 ± 0.93 mm; range: 21.9-26.7 mm) from 29 participants aged 21 to 70 years (37.1 ± 13.3 years; 19 men, 10 women). Methods Retinal images, including fundus photography and spectral-domain OCT, AL, and refractive error measurements were collected at baseline. For each eye, 6 high-resolution RPE images were acquired using TOPI at different locations, one of them being imaged 5 times to evaluate the repeatability of the method. Follow-up ophthalmic examination was repeated 1 to 3 weeks after TOPI to assess safety. Retinal pigment epithelial images were analyzed with a custom automated software to extract cell parameters. Statistical analysis of the selected high-contrast images included calculation of coefficient of variation (CoV) for each feature at each repetition and Spearman and Mann-Whitney tests to investigate the relationship between cell features and eye and subject characteristics. Main Outcome Measures Retinal pigment epithelial cell features: density, area, center-to-center spacing, number of neighbors, circularity, elongation, solidity, and border distance CoV. Results Macular RPE cell features were extracted from TOPI images at an eccentricity of 1.6° to 16.3° from the fovea. For each feature, the mean CoV was < 4%. Spearman test showed correlation within RPE cell features. In the perifovea, the region in which images were selected for all participants, longer AL significantly correlated with decreased RPE cell density (R Spearman, Rs = -0.746; P < 0.0001) and increased cell area (Rs = 0.668; P < 0.0001), without morphologic changes. Aging was also significantly correlated with decreased RPE density (Rs = -0.391; P = 0.036) and increased cell area (Rs = 0.454; P = 0.013). Lower circular, less symmetric, more elongated, and larger cells were observed in those > 50 years. Conclusions The TOPI technology imaged RPE cells in vivo with a repeatability of < 4% for the CoV and was used to analyze the influence of physiologic factors on RPE cell morphometry in the perifovea of healthy volunteers. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Key Words
- AF, autofluorescence
- AL, axial length
- AO, adaptive optics
- Adaptive Optics Transscleral Flood Illumination
- BCVA, best-corrected visual acuity
- CCS, center-to-center spacing
- CoV, coefficient of variation
- D, diopters
- FOV, field of view
- Healthy volunteers
- High resolution retinal imaging
- IOP, intraocular pressure
- NIR, near-infrared
- PRL, preferred retinal locus
- QC, quality criterion
- RE, refractive error
- RPE, retinal pigment epithelium
- Retinal Pigment Epithelium
- SD, standard deviation
- SLO, scanning laser ophthalmoscope
- TOPI, transscleral optical imaging
Collapse
Affiliation(s)
- Laura Kowalczuk
- Laboratory of Applied Photonic Devices, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Jules-Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland,Correspondence: Laura Kowalczuk, PhD, École Polytechnique Fédérale de Lausanne, School of Engineering, Institute of Electrical and Micro-engineering, Laboratory of Applied Photonics Devices, BM 4127, Station 17, CH-1015, Lausanne, Switzerland.
| | - Rémy Dornier
- Laboratory of Applied Photonic Devices, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mathieu Kunzi
- Laboratory of Applied Photonic Devices, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Antonio Iskandar
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Jules-Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland
| | - Zuzana Misutkova
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Jules-Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland
| | - Aurélia Gryczka
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Jules-Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland
| | - Aurélie Navarro
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Jules-Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland
| | - Fanny Jeunet
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Jules-Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland
| | - Irmela Mantel
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Jules-Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France,INSERM U1138, USPC, Université de Paris-Cité, Sorbonne Université, Paris, France,Assistance Publique - Hôpitaux de Paris, Ophtalmopôle, Cochin Hospital, Paris, France,Université Paris Cité, Paris, France,Hôpital Foch, Suresnes, France
| | - Timothé Laforest
- Laboratory of Applied Photonic Devices, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christophe Moser
- Laboratory of Applied Photonic Devices, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
38
|
Berlin A, Clark ME, Swain TA, Fischer NA, McGwin G, Sloan KR, Owsley C, Curcio CA. Impact of the Aging Lens and Posterior Capsular Opacification on Quantitative Autofluorescence Imaging in Age-Related Macular Degeneration. Transl Vis Sci Technol 2022; 11:23. [PMID: 36239964 PMCID: PMC9586138 DOI: 10.1167/tvst.11.10.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose The purpose of this study was to investigate quantitative autofluorescence (qAF8) in patients with and without early or intermediate age-related macular degeneration (AMD); to determine the impact of the aged crystalline lens and posterior capsular opacification (PCO). Methods In phakic and pseudophakic eyes ≥60 years, AMD status was determined by the Beckman system. PCO presence and severity was extracted from clinical records. qAF8 was calculated using custom FIJI plugins. Differences in qAF8, stratified by lens status, PCO severity, and AMD status, were analyzed using generalized estimating equations. Results In 210 eyes of 115 individuals (mean age = 75.7 ± 6.6 years), qAF8 was lower in intermediate AMD compared to early AMD (P = 0.05). qAF8 did not differ between phakic and pseudophakic eyes (P = 0.8909). In phakic (n = 83) and pseudophakic (n = 127) eyes considered separately, qAF8 did not differ by AMD status (P = 0.0936 and 0.3494, respectively). Qualitative review of qAF images in phakic eyes illustrated high variability. In pseudophakic eyes, qAF8 did not differ with PCO present versus absent (54.5% vs. 45.5%). Review of implanted intraocular lenses (IOLs) revealed that 43.9% were blue-filter IOLs. Conclusions qAF8 was not associated with AMD status, up to intermediate AMD, considering only pseudophakic eyes to avoid noisy images in phakic eyes. In pseudophakic eyes, qAF8 was not affected by PCO. Because blue-filter IOLs may reduce levels of exciting light for qAF8, future studies investigating qAF in eyes with different IOL types are needed. Translational Relevance To reduce variability in observational studies and clinical trials requiring qAF8, pseudophakic participants without blue-filter IOLs or advanced PCO should be preferentially enrolled.
Collapse
Affiliation(s)
- Andreas Berlin
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA,University Hospital Würzburg, Würzburg, Germany
| | - Mark E. Clark
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas A. Swain
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathan A. Fischer
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
39
|
Bui PTA, Reiter GS, Fabianska M, Waldstein SM, Grechenig C, Bogunovic H, Arikan M, Schmidt-Erfurth U. Fundus autofluorescence and optical coherence tomography biomarkers associated with the progression of geographic atrophy secondary to age-related macular degeneration. Eye (Lond) 2022; 36:2013-2019. [PMID: 34400806 PMCID: PMC9499954 DOI: 10.1038/s41433-021-01747-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES To investigate the impact of qualitatively graded and deep learning quantified imaging biomarkers on growth of geographic atrophy (GA) secondary to age-related macular degeneration. METHODS This prospective study included 1062 visits of 181 eyes of 100 patients with GA. Spectral-domain optical coherence tomography (SD-OCT) and fundus autofluorescence (FAF) images were acquired at each visit. Hyperreflective foci (HRF) were quantitatively assessed in SD-OCT volumes using a validated deep learning algorithm. FAF images were graded for FAF patterns, subretinal drusenoid deposits (SDD), GA lesion configuration and atrophy enlargement. Linear mixed models were calculated to investigate associations between all parameters and GA progression. RESULTS FAF patterns were significantly associated with GA progression (p < 0.001). SDD was associated with faster GA growth (p = 0.005). Eyes with higher HRF concentrations showed a trend towards faster GA progression (p = 0.072) and revealed a significant impact on GA enlargement in interaction with FAF patterns (p = 0.01). The fellow eye status had no significant effect on lesion enlargement (p > 0.05). The diffuse-trickling FAF pattern exhibited significantly higher HRF concentrations than any other pattern (p < 0.001). CONCLUSION Among a wide range of investigated biomarkers, SDD and FAF patterns, particularly in interaction with HRF, significantly impact GA progression. Fully automated quantification of retinal imaging biomarkers such as HRF is both reliable and merited as HRF are indicators of retinal pigment epithelium dysmorphia, a central pathogenetic mechanism in GA. Identifying disease markers using the combination of FAF and SD-OCT is of high prognostic value and facilitates individualized patient management in a clinical setting.
Collapse
Affiliation(s)
- Patricia T A Bui
- Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Gregor S Reiter
- Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Maria Fabianska
- Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Sebastian M Waldstein
- Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Christoph Grechenig
- Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Hrvoje Bogunovic
- Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Mustafa Arikan
- Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Ursula Schmidt-Erfurth
- Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
40
|
von der Emde L, Vaisband M, Hasenauer J, Bourauel L, Bermond K, Saßmannshausen M, Heintzmann R, Holz FG, Curcio CA, Sloan KR, Ach T. Histologic Cell Shape Descriptors for the Retinal Pigment Epithelium in Age-Related Macular Degeneration: A Comparison to Unaffected Eyes. Transl Vis Sci Technol 2022; 11:19. [PMID: 35984669 PMCID: PMC9419462 DOI: 10.1167/tvst.11.8.19] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Phenotype alterations of the retinal pigment epithelium (RPE) are a main characteristic of age-related macular degeneration (AMD). Individual RPE cell shape descriptors may help to delineate healthy from AMD-affected cells in early disease stages. Methods Twenty-two human RPE flatmounts (7 eyes with AMD [early, 3; geographic atrophy, 1; neovascular, 3); 15 unaffected eyes [8 aged ≤51 years; 7 aged >80 years)] were imaged at the fovea, perifovea, and near periphery (predefined sample locations) using a laser-scanning confocal fluorescence microscope. RPE cell boundaries were manually marked with computer assistance. For each cell, 11 shape descriptors were calculated and correlated with donor age, cell autofluorescence (AF) intensity, and retinal location. Statistical analysis was performed using an ensemble classifier based on logistic regression. Results In AMD, RPE was altered at all locations (most pronounced at the fovea), with area, solidity, and form factor being the most discriminatory descriptors. In the unaffected macula, aging had no significant effect on cell shape factors; however, with increasing distance to the fovea, area, solidity, and convexity increased while form factor decreased. Reduced AF in AMD was significantly associated with decreased roundness and solidity. Conclusions AMD results in an altered RPE with enlarged and deformed cells that could precede clinically visible lesions and thus serve as early biomarkers for AMD onset. Our data may also help guide the interpretation of RPE morphology in in vivo studies utilizing high-resolution single-cell imaging. Translational Relevance Our histologic RPE cell shape data have the ability to identify robust biomarkers for the early detection of AMD-affected cells, which also could serve as a basis for automated segmentation of RPE sheets.
Collapse
Affiliation(s)
- Leon von der Emde
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Marc Vaisband
- University of Bonn, Life & Medical Sciences Institute, Bonn, Germany
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center; Salzburg Cancer Research Institute–Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Paracelsus Medical University, Salzburg, Austria, Cancer Cluster Salzburg, Austria
| | - Jan Hasenauer
- University of Bonn, Life & Medical Sciences Institute, Bonn, Germany
- Helmholtz Center Munich- German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
| | - Leonie Bourauel
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Katharina Bermond
- Department of Ophthalmology, Ludwigshafen Hospital, Ludwigshafen, Germany
| | | | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Jena, Germany
| | - Frank G. Holz
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, AL, USA
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, AL, USA
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
41
|
Yu H, Wang F, Teodoro G, Nickerson J, Kong J. MultiHeadGAN: A deep learning method for low contrast retinal pigment epithelium cell segmentation with fluorescent flatmount microscopy images. Comput Biol Med 2022; 146:105596. [PMID: 35617723 DOI: 10.1016/j.compbiomed.2022.105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/12/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Retinal pigment epithelium (RPE) aging is an important cause of vision loss. As RPE aging is accompanied by changes in cell morphological features, an accurate segmentation of RPE cells is a prerequisite to such morphology analyses. Due the overwhelmingly large cell number, manual annotations of RPE cell borders are time-consuming. Computer based methods do not work well on cells with weak or missing borders in the impaired RPE sheet regions. METHOD To address such a challenge, we develop a semi-supervised deep learning approach, namely MultiHeadGAN, to segment low contrast cells from impaired regions in RPE flatmount images. The developed deep learning model has a multi-head structure that allows model training with only a small scale of human annotated data. To strengthen model learning, we further train our model with RPE cells without ground truth cell borders by generative adversarial networks. Additionally, we develop a new shape loss to guide the network to produce closed cell borders in the segmentation results. RESULTS In this study, 155 annotated and 1,640 unlabeled image patches are included for model training. The testing dataset consists of 200 image patches presenting large impaired RPE regions. The average RPE segmentation performance of the developed model MultiHeadGAN is 85.4 (correct rate), 88.8 (weighted correct rate), 87.3 (precision), and 80.1 (recall), respectively. Compared with other state-of-the-art deep learning approaches, our method demonstrates its superior qualitative and quantitative performance. CONCLUSIONS Suggested by our extensive experimental results, our developed deep learning method can accurately segment cells in RPE flatmount microscopy images and is promising to support large scale cell morphological analyses for RPE aging investigations.
Collapse
Affiliation(s)
- Hanyi Yu
- Department of Computer Science, Emory University, Atlanta, 30322, GA, USA.
| | - Fusheng Wang
- Department of Computer Science, Stony Brook University, Stony Brook, 11794, NY, USA.
| | - George Teodoro
- Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, 31270, Minas Gerais, Brazil.
| | - John Nickerson
- Department of Ophthalmology, Emory University, Atlanta, 30322, GA, USA.
| | - Jun Kong
- Department of Computer Science, Emory University, Atlanta, 30322, GA, USA; Department of Mathematics and Statistics, Georgia State University, Atlanta, 30303, GA, USA.
| |
Collapse
|
42
|
Shao W, Yi J. Non-interferometric volumetric imaging in living human retina by confocal oblique scanning laser ophthalmoscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:3576-3592. [PMID: 35781976 PMCID: PMC9208584 DOI: 10.1364/boe.457408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Three-dimensional (3D) imaging of the human retina is instrumental in vision science and ophthalmology. While interferometric retinal imaging is well established by optical coherence tomography (OCT), non-interferometric volumetric imaging in the human retina has been challenging up to date. Here, we report confocal oblique scanning laser ophthalmoscopy (CoSLO) to fill that void and harness non-interferometric optical contrast in 3D. CoSLO decouples the illumination and detection by utilizing oblique laser scanning and oblique imaging to achieve ∼4x better axial resolution than conventional SLO. By combining remote focusing, CoSLO permits the acquisition of depth signals in parallel and over a large field of view. Confocal gating is introduced by a linear sensor array to improve the contrast and resolution. For the first time, we reported non-interferometric 3D human retinal imaging with >20° viewing angle, and revealed detailed features in the inner, outer retina, and choroid. CoSLO shows potential to be another useful technique by offering 3D non-interferometric contrasts.
Collapse
Affiliation(s)
- Wenjun Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, 21231, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland, 21231, USA
| | - Ji Yi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, 21231, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland, 21231, USA
| |
Collapse
|
43
|
Kotnala A, Senthilkumari S, Wu G, Stewart TG, Curcio CA, Halder N, Singh SB, Kumar A, Velpandian T. Retinal Pigment Epithelium in Human Donor Eyes Contains Higher Levels of Bisretinoids Including A2E in Periphery than Macula. Invest Ophthalmol Vis Sci 2022; 63:6. [PMID: 35671050 PMCID: PMC9187938 DOI: 10.1167/iovs.63.6.6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose With age, human retinal pigment epithelium (RPE) accumulates bisretinoid fluorophores that may impact cellular function and contribute to age-related macular degeneration (AMD). Bisretinoids are comprised of a central pyridinium, dihydropyridinium, or cyclohexadiene ring. The pyridinium bisretinoid A2E has been extensively studied, and its quantity in the macula has been questioned. Age-changes and distributions of other bisretinoids are not well characterized. We measured levels of three bisretinoids and oxidized A2E in macula and periphery in human donor eyes of different ages. Methods Eyes (N = 139 donors, 61 women and 78 men, aged 40–80 years) were dissected into 8 mm diameter macular and temporal periphery punches. Using liquid chromatography – electrospray ionization – mass spectrometry (LC-ESI-MS) and an authentic synthesized standard, we quantified A2E (ng). Using LC-ESI-MS and a 50-eye-extract of A2E, we semiquantified A2E and 3 other compounds (eye extract equivalent units [EEEUs): A2-glycerophosphoethanolamine (A2GPE), dihydropyridine phosphatidyl ethanolamine (A2DHPE), and monofuranA2E (MFA2E). Results A2E quantities in ng and EEEUs were highly correlated (r = 0.97, P < 0.001). From 262 eyes, 5 to 9-fold higher levels were observed in the peripheral retina than in the macula for all assayed compounds. A2E, A2DHPE, and MFA2E increased with age, whereas A2GPE remained unaffected. No significant right-left or male-female differences were detected. Conclusions Significantly higher levels were observed in the periphery than in the macula for all assayed compounds signifying biologic differences between these regions. Levels of oxidized A2E parallel native A2E and not the distribution of retinal illuminance. Data will assist with the interpretion of clinical trial outcomes of agents targeting bisretinoid-related pathways.
Collapse
Affiliation(s)
- Ankita Kotnala
- Ocular Pharmacology & Pharmacy Division, All India Institute of Medical Sciences, New Delhi, India
| | - Srinivasan Senthilkumari
- Department of Ocular Pharmacology, Aravind Medical Research Foundation (AMRF), Dr. G. Venkataswamy Eye Research Institute, #1, Anna Nagar, Madurai -20, Tamilnadu, India
| | - Gong Wu
- Department of Biostatics, Vanderbilt University Medical Centre, Nashville, Tennessee, United States
| | - Thomas G Stewart
- Department of Biostatics, Vanderbilt University Medical Centre, Nashville, Tennessee, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Nabanita Halder
- Ocular Pharmacology & Pharmacy Division, All India Institute of Medical Sciences, New Delhi, India
| | | | - Atul Kumar
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Thirumurthy Velpandian
- Ocular Pharmacology & Pharmacy Division, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
44
|
Trinh M, Kalloniatis M, Alonso-Caneiro D, Nivison-Smith L. High-Density Optical Coherence Tomography Analysis Provides Insights Into Early/Intermediate Age-Related Macular Degeneration Retinal Layer Changes. Invest Ophthalmol Vis Sci 2022; 63:36. [PMID: 35622354 PMCID: PMC9150835 DOI: 10.1167/iovs.63.5.36] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose To topographically map all of the thickness differences in individual retinal layers between early/intermediate age-related macular degeneration (AMDearly/AMDint) and normal eyes and to determine interlayer relationships. Methods Ninety-six AMDtotal (48 AMDearly and 48 AMDint) and 96 normal eyes from 192 participants were propensity-score matched by age, sex, and refraction. Retrospective optical coherence tomography (OCT) macular cube scans were acquired, and high-density (60 × 60 0.01-mm2) grid thicknesses were custom extracted for comparison between AMDtotal and normal eyes corrected for confounding. Resultant "normal differences" underwent cluster, interlayer correlation, and dose-response analyses for the retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer + Henle's fiber layer (ONL+HFL), inner and outer segment (IS/OS) thickness, and retinal pigment epithelium (RPE) to Bruch's membrane (BM) thickness. Results AMDtotal inner retinal clusters demonstrated extensively thinned RNFL, GCL, IPL, and paracentral INL and thickened INL elsewhere, with normal difference means ranging from -8.13 µm (95% confidence interval [CI], -11.12 to -5.13) to 1.58 µm (95% CI, 1.07-2.09) (P < 0.0001 to P < 0.05). Outer retinal clusters displayed thinned paracentral OPL/ONL+HFL, central IS/OS, and peripheral RPE-BM and thickened central RPE-BM, with means ranging from -1.31 µm (95% CI, -2.06 to -0.55) to 2.99 µm (95% CI, 0.97-5.01] (P < 0.0001 to P <0.05). Effect sizes (-2.56 to 9.93 SD), cluster sizes, and eccentricity effects varied. All interlayer correlations were negligible to moderate regardless of AMD severity. Only the RPE-BM was partly thicker with greater AMD severity (up to 5.44 µm; 95% CI, 4.88-6.00; P < 0.01). Conclusions From the early stage, AMD eyes demonstrate thickness differences compared to normal with unique topographies across all retinal layers. Poor interlayer correlations highlight that the outer retina inadequately reflects complete retinal health. The clinical importance of OCT assessment across all individual retinal layers in early/intermediate AMD requires further investigation.
Collapse
Affiliation(s)
- Matt Trinh
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Kalloniatis
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - David Alonso-Caneiro
- Contact Lens and Visual Optics Laboratory, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Lisa Nivison-Smith
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
45
|
Rizzolo LJ, Nasonkin IO, Adelman RA. Retinal Cell Transplantation, Biomaterials, and In Vitro Models for Developing Next-generation Therapies of Age-related Macular Degeneration. Stem Cells Transl Med 2022; 11:269-281. [PMID: 35356975 PMCID: PMC8968686 DOI: 10.1093/stcltm/szac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022] Open
Abstract
Retinal pigment epithelium (RPE) cells grown on a scaffold, an RPE patch, have potential to ameliorate visual impairment in a limited number of retinal degenerative conditions. This tissue-replacement therapy is suited for age-related macular degeneration (AMD), and related diseases. RPE cells must be transplanted before the disease reaches a point of no return, represented by the loss of photoreceptors. Photoreceptors are specialized, terminally differentiated neurosensory cells that must interact with RPE's apical processes to be functional. Human photoreceptors are not known to regenerate. On the RPE's basal side, the RPE transplant must induce the reformation of the choriocapillaris, thereby re-establishing the outer blood-retinal barrier. Because the scaffold is positioned between the RPE and choriocapillaris, it should ideally degrade and be replaced by the natural extracellular matrix that separates these tissues. Besides biodegradable, the scaffolds need to be nontoxic, thin enough to not affect the focal length of the eye, strong enough to survive the transplant procedure, yet flexible enough to conform to the curvature of the retina. The challenge is patients with progressing AMD treasure their remaining vision and fear that a risky surgical procedure will further degrade their vision. Accordingly, clinical trials only treat eyes with severe impairment that have few photoreceptors to interact with the transplanted patch. Although safety has been demonstrated, the cell-replacement mechanism and efficacy remain difficult to validate. This review covers the structure of the retina, the pathology of AMD, the limitations of cell therapy approaches, and the recent progress in developing retinal therapies using biomaterials.
Collapse
Affiliation(s)
- Lawrence J Rizzolo
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA
- Department of Surgery, Yale University, New Haven, CT, USA
| | | | - Ron A Adelman
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA
| |
Collapse
|
46
|
Tang JAH, Granger CE, Kunala K, Parkins K, Huynh KT, Bowles-Johnson K, Yang Q, Hunter JJ. Adaptive optics fluorescence lifetime imaging ophthalmoscopy of in vivo human retinal pigment epithelium. BIOMEDICAL OPTICS EXPRESS 2022; 13:1737-1754. [PMID: 35414970 PMCID: PMC8973160 DOI: 10.1364/boe.451628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 05/18/2023]
Abstract
The intrinsic fluorescence properties of lipofuscin - naturally occurring granules that accumulate in the retinal pigment epithelium - are a potential biomarker for the health of the eye. A new modality is described here which combines adaptive optics technology with fluorescence lifetime detection, allowing for the investigation of functional and compositional differences within the eye and between subjects. This new adaptive optics fluorescence lifetime imaging ophthalmoscope was demonstrated in 6 subjects. Repeated measurements between visits had a minimum intraclass correlation coefficient of 0.59 Although the light levels were well below maximum permissible exposures, the safety of the imaging paradigm was tested using clinical measures; no concerns were raised. This new technology allows for in vivo adaptive optics fluorescence lifetime imaging of the human RPE mosaic.
Collapse
Affiliation(s)
- Janet A. H. Tang
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Contributed equally
| | - Charles E. Granger
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Contributed equally
| | - Karteek Kunala
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Keith Parkins
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Khang T. Huynh
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Kristen Bowles-Johnson
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14627, USA
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Jennifer J. Hunter
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
47
|
Baraas RC, Pedersen HR, Knoblauch K, Gilson SJ. Human Foveal Cone and RPE Cell Topographies and Their Correspondence With Foveal Shape. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 35113142 PMCID: PMC8819292 DOI: 10.1167/iovs.63.2.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To characterize the association between foveal shape and cone and retinal pigment epithelium (RPE) cell topographies in healthy humans. Methods Multimodal adaptive scanning light ophthalmoscopy and optical coherence tomography (OCT) were used to acquire images of foveal cones, RPE cells, and retinal layers in eyes of 23 healthy participants with normal foveas. Distributions of cone and RPE cell densities were fitted with nonlinear mixed-effects models. A linear mixed-effects model was used to examine the relationship between cone and RPE inter-cell distances and foveal shape as obtained from the OCT scans of retinal thickness. Results The best-fit model to the cone densities was a power function with a nasal–temporal asymmetry. There was a significant linear relationship among cone and RPE cell spacing, foveal shape, and foveal cell topography. The model predictions of the central 10° show that the contributions of both the cones and RPE cells are necessary to account for foveal shape. Conclusions The results indicate that there is a strong relationship between cone and RPE cell spacing and the shape of the human adolescent and adult fovea. This finding adds to the existing evidence of the critical role that the RPE serves in fetal foveal development and through adolescence, possibly via the imposition of constraints on the number and distribution of foveal cones.
Collapse
Affiliation(s)
- Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Kenneth Knoblauch
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway.,Stem Cell and Brain Research Institute, INSERM U1208, Bron, France.,Université de Lyon, Lyon, France
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
48
|
Różanowska MB, Różanowski B. Photodegradation of Lipofuscin in Suspension and in ARPE-19 Cells and the Similarity of Fluorescence of the Photodegradation Product with Oxidized Docosahexaenoate. Int J Mol Sci 2022; 23:ijms23020922. [PMID: 35055111 PMCID: PMC8778276 DOI: 10.3390/ijms23020922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Retinal lipofuscin accumulates with age in the retinal pigment epithelium (RPE), where its fluorescence properties are used to assess retinal health. It was observed that there is a decrease in lipofuscin fluorescence above the age of 75 years and in the early stages of age-related macular degeneration (AMD). The purpose of this study was to investigate the response of lipofuscin isolated from human RPE and lipofuscin-laden cells to visible light, and to determine whether an abundant component of lipofuscin, docosahexaenoate (DHA), can contribute to lipofuscin fluorescence upon oxidation. Exposure of lipofuscin to visible light leads to a decrease in its long-wavelength fluorescence at about 610 nm, with a concomitant increase in the short-wavelength fluorescence. The emission spectrum of photodegraded lipofuscin exhibits similarity with that of oxidized DHA. Exposure of lipofuscin-laden cells to light leads to a loss of lipofuscin granules from cells, while retaining cell viability. The spectral changes in fluorescence in lipofuscin-laden cells resemble those seen during photodegradation of isolated lipofuscin. Our results demonstrate that fluorescence emission spectra, together with quantitation of the intensity of long-wavelength fluorescence, can serve as a marker useful for lipofuscin quantification and for monitoring its oxidation, and hence useful for screening the retina for increased oxidative damage and early AMD-related changes.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, UK
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff CF10 3NB, UK
- Correspondence: ; Tel.: +44-2920875057
| | - Bartosz Różanowski
- Institute of Biology, Pedagogical University of Kraków, 30-084 Kraków, Poland;
| |
Collapse
|
49
|
Bermond K, von der Emde L, Tarau IS, Bourauel L, Heintzmann R, Holz FG, Curcio CA, Sloan KR, Ach T. Autofluorescent Organelles Within the Retinal Pigment Epithelium in Human Donor Eyes With and Without Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2022; 63:23. [PMID: 35050307 PMCID: PMC8787573 DOI: 10.1167/iovs.63.1.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Human retinal pigment epithelium (RPE) cells contain lipofuscin, melanolipofuscin, and melanosome organelles that impact clinical autofluorescence (AF) imaging. Here, we quantified the effect of age-related macular degeneration (AMD) on granule count and histologic AF of RPE cell bodies. Methods Seven AMD-affected human RPE-Bruch's membrane flatmounts (early and intermediate = 3, late dry = 1, and neovascular = 3) were imaged at fovea, perifovea, and near periphery using structured illumination and confocal AF microscopy (excitation 488 nm) and compared to RPE-flatmounts with unremarkable macula (n = 7, >80 years). Subsequently, granules were marked with computer assistance, and classified by their AF properties. The AF/cell was calculated from confocal images. The total number of granules and AF/cell was analyzed implementing a mixed effect analysis of covariance (ANCOVA). Results A total of 152 AMD-affected RPE cells were analyzed (fovea = 22, perifovea = 60, and near-periphery = 70). AMD-affected RPE cells showed increased variability in size and a significantly increased granule load independent of the retinal location (fovea: P = 0.02, perifovea: P = 0.04, and near periphery: P < 0.01). The lipofuscin fraction of total organelles decreased and the melanolipofuscin fraction increased in AMD, at all locations (especially the fovea). AF was significantly lower in AMD-affected cells (fovea: <0.01, perifovea: <0.01, and near periphery: 0.02). Conclusions In AMD RPE, lipofuscin was proportionately lowest in the fovea, a location also known to be affected by accumulation of soft drusen and preservation of cone-mediated visual acuity. Enlarged RPE cell bodies displayed increased net granule count but diminished total AF. Future studies should also assess the impact on AF imaging of RPE apical processes containing melanosomes.
Collapse
Affiliation(s)
- Katharina Bermond
- Department of Ophthalmology, Ludwigshafen Hospital, Ludwigshafen, Germany
| | - Leon von der Emde
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Ioana-Sandra Tarau
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Leonie Bourauel
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Jena, Germany
| | - Frank G Holz
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Christine A Curcio
- Department of Ophthalmology, University of Alabama at Birmingham, Alabama, AL, United States
| | - Kenneth R Sloan
- Department of Ophthalmology, University of Alabama at Birmingham, Alabama, AL, United States
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
50
|
Kim J, Lee YJ, Won JY. Molecular Mechanisms of Retinal Pigment Epithelium Dysfunction in Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:ijms222212298. [PMID: 34830181 PMCID: PMC8624542 DOI: 10.3390/ijms222212298] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023] Open
Abstract
The retinal pigment epithelium (RPE), situated upon Bruch’s membrane, plays multiple roles in the ocular system by interacting with photoreceptors and. Therefore, dysfunction of the RPE causes diseases related to vision loss, such as age-related macular degeneration (AMD). Despite AMD being a global cause of blindness, the pathogenesis remains unclear. Understanding the pathogenesis of AMD is the first step for its prevention and treatment. This review summarizes the common pathways of RPE dysfunction and their effect in AMD. Potential treatment strategies for AMD based on targeting the RPE have also been discussed.
Collapse
Affiliation(s)
- Jongmin Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Yeo Jin Lee
- Department of Ophthalmology and Visual Science, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03312, Korea;
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 14662, Korea
| | - Jae Yon Won
- Department of Ophthalmology and Visual Science, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03312, Korea;
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 14662, Korea
- Correspondence:
| |
Collapse
|