1
|
Rong H, Yang H, Liu Q, Zhang H, Wang S. Substance P and neurokinin 1 receptor boost the pathogenicity of granulocyte-macrophage colony-stimulating factor-producing T helper cells in dry eye disease. Scand J Immunol 2025; 101:e13434. [PMID: 39789752 DOI: 10.1111/sji.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Dry eye disease (DED) is an inflammatory disorder in which CD4+ T cells play a significant role in its pathogenesis. A CD4+ T cell subset termed granulocyte-macrophage colony-stimulating factor-producing T helper (ThGM) cells would contribute to DED pathogenesis. However, the mechanisms by which the activity of ThGM cells is modulated are not thoroughly understood. In this research, we characterized the effects of neurokinin 1 receptor (NK1R) and neurokinin 2 receptor (NK2R) on ThGM cells and T helper 1 (Th1) cells in a murine DED model. We found that ThGM cells expressed NK1R and NK2R, whereas Th1 cells predominantly expressed NK1R. Furthermore, substance P and neurokinin A (NKA), the ligands of NK1R and NK2R, were upregulated in post-DED LNs and conjunctivae. Substance P significantly promoted granulocyte-macrophage colony-stimulating factor (GM-CSF) expression while mildly upregulating the expression of interferon-gamma (IFN-γ) and interleukin 2 (IL-2) in ThGM cells. By contrast, NKA did not change GM-CSF expression but significantly increased IFN-γ expression in ThGM cells. Importantly, the adoptive transfer of NK1R-expressing ThGM cells significantly exacerbated DED, whereas the transfer of NK1R-knockdown ThGM cells weakly aggravated DED. NK2R knockdown in ThGM cells did not affect DED progression. In conclusion, this study identifies the substance P-NK1R axis as a novel mechanism that reinforces the pathogenicity of ThGM cells in DED.
Collapse
Affiliation(s)
- Hua Rong
- Department of Ophthalmology, Shanghai Jiangong Hospital, Shanghai, China
| | - Hai Yang
- Department of Ophthalmology, Shanghai East Hospital Affiliated to Tongji University, Shanghai, China
| | - Qingqing Liu
- Department of Ophthalmology, Shanghai Jiangong Hospital, Shanghai, China
| | - Hui Zhang
- Department of Ophthalmology, Shanghai Jiangong Hospital, Shanghai, China
| | - Shaolin Wang
- Department of Ophthalmology, Shanghai Jiangong Hospital, Shanghai, China
| |
Collapse
|
2
|
Hall CK, Barr OM, Delamare A, Burkholder A, Tsai A, Tian Y, Felix E Ellett, Li BM, Tanzi RE, Jorfi M. Profiling migration of human monocytes in response to chemotactic and barotactic guidance cues. CELL REPORTS METHODS 2024; 4:100846. [PMID: 39241776 PMCID: PMC11440068 DOI: 10.1016/j.crmeth.2024.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/10/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024]
Abstract
Monocytes are critical to innate immunity, participating in chemotaxis during tissue injury, infection, and inflammatory conditions. However, the migration dynamics of human monocytes under different guidance cues are not well characterized. Here, we developed a microfluidic device to profile the migration characteristics of human monocytes under chemotactic and barotactic guidance cues while also assessing the effects of age and cytokine stimulation. Human monocytes preferentially migrated toward the CCL2 gradient through confined microchannels, regardless of donor age and migration pathway. Stimulation with interferon (IFN)-γ, but not granulocyte-macrophage colony-stimulating factor (GM-CSF), disrupted monocyte navigation through complex paths and decreased monocyte CCL2 chemotaxis, velocity, and CCR2 expression. Additionally, monocytes exhibited a bias toward low-hydraulic-resistance pathways in asymmetric environments, which remained consistent across donor ages, cytokine stimulation, and chemoattractants. This microfluidic system provides insights into the unique migratory behaviors of human monocytes and is a valuable tool for studying peripheral immune cell migration in health and disease.
Collapse
Affiliation(s)
- Clare K Hall
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Olivia M Barr
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Antoine Delamare
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Alex Burkholder
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Alice Tsai
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yuyao Tian
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Felix E Ellett
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Brent M Li
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Mehdi Jorfi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA; Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Wang X, Li N, Zhang J, Wang J, Wei Y, Yang J, Sun D, Liu L, Nian H, Wei R. AS101 regulates the Teff/Treg balance to alleviate rabbit autoimmune dacryoadenitis through modulating NFATc2. Exp Eye Res 2024; 244:109937. [PMID: 38782179 DOI: 10.1016/j.exer.2024.109937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Sjögren's syndrome (SS) dry eye can cause ocular surface inflammation and lacrimal gland (LG) damage, leading to discomfort and potential vision problems. The existing treatment options for SS dry eye are currently constrained. We investigated the possible therapeutic effect and the underlying mechanism of AS101 in autoimmune dry eye. AS101 was injected subconjunctivally into a rabbit model of autoimmune dacryoadenitis and its therapeutic effects were determined by evaluating clinical and histological scores. The expressions of effector T cells (Teff)/regulatory T cells (Treg)-related transcription factors and cytokines, inflammation mediators, and transcription factor NFATc2 were measured by quantitative real-time PCR and/or Western blot both in vivo and in vitro. Additionally, the role of NFATc2 in the immunomodulatory effects of AS101 on T cells was explored by co-culturing activated peripheral blood lymphocytes (PBLs) transfected with NFATc2 overexpression lentiviral plasmid with AS101. AS101 treatment potently ameliorated the clinical severity and reduced the inflammation of LG. Further investigation revealed that AS101 treatment led to decreased expression of Th1-related genes (T-bet and IFN-γ) and Th17-related genes (RORC, IL-17A, IL-17F, and GM-CSF) and increased expression of Treg-related gene Foxp3 in vivo and in vitro. Meanwhile, AS101 suppressed the expression of TNF-α, IL-1β, IL-23, IL-6, MMP-2, and MMP-9. Mechanistically, AS101 downregulated the expression of NFATc2 in inflamed LGs. Overexpression of NFATc2 in activated PBLs partially blunted the effect of AS101 on Teff suppression and Treg promotion. In conclusion, AS101 is a potential regulator of Teff/Treg cell balance and could be an effective treatment agent for SS dry eye.
Collapse
Affiliation(s)
- Xiu Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin China, China
| | - Na Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin China, China
| | - Jiawen Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin China, China
| | - Jiali Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin China, China
| | - Yankai Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin China, China
| | - Jun Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin China, China
| | - Deming Sun
- Doheny Eye Institute, And Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Lin Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin China, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin China, China.
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin China, China.
| |
Collapse
|
4
|
Zhao L, Zhang Y, Duan H, Yang T, Zhou Y, Ma B, Chen Y, Qi H. Clinical Characteristics and Tear Film Biomarkers in Patients With Chronic Dry Eye Disease After Femtosecond Laser-Assisted Laser in Situ Keratomileusis. J Refract Surg 2023; 39:556-563. [PMID: 37578178 DOI: 10.3928/1081597x-20230717-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
PURPOSE To investigate clinical characteristics and tear film biomarkers of patients with chronic dry eye disease (DED) following femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK). METHODS Patients were divided into the chronic DED after FS-LASIK (n = 36), DED without FS-LASIK (n = 39), and normal control (without FS-LASIK; n = 34) groups. Dry eye, pain, and psychological-related symptoms were evaluated using the Ocular Surface Disease Index (OSDI), Numerical Rating Scale (NRS), Neuropathic Pain Symptom Inventory Modified for the Eye (NPSI-Eye), and Hamilton Anxiety Rating Scale (HAMA) questionnaires. Ocular surface parameters, tear cytokines, and neuropeptide concentrations were evaluated with specific tests. RESULTS The DED after FS-LASIK group showed higher corneal fluorescein staining scores, but lower OSDI and NPSI-Eye scores than the DED without FS-LASIK group (all P < .05). Corneal sensitivity and nerve density decreased in the DED after FS-LASIK group (all P < .01). Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-17A, IL-23, alpha-melanocyte stimulating hormone (α-MSH), oxytocin, and substance P levels were highest in the DED after FS-LASIK group, followed by the DED without FS-LASIK and normal control groups (all P < .05). Interferon-γ and neurotensin levels were only significantly higher in the DED after FS-LASIK group (all P < .05). CONCLUSIONS Patients with chronic DED after FS-LASIK showed milder ocular symptoms, greater epithelial damage, and higher levels of tear inflammatory cytokines and neuropeptides than patients with DED without FS-LASIK, indicating that the nervous and immune systems may play significant roles in FS-LASIK-related chronic DED development. [J Refract Surg. 2023;39(8):556-563.].
Collapse
|
5
|
Shanks RMQ, Romanowski EG, Romanowski JE, Davoli K, McNamara NA, Klarlund JK. Extending the use of biologics to mucous membranes by attachment of a binding domain. Commun Biol 2023; 6:477. [PMID: 37130912 PMCID: PMC10154311 DOI: 10.1038/s42003-023-04801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2023] [Indexed: 05/04/2023] Open
Abstract
Biologics are almost exclusively administered systemically, but localized delivery is preferable as it minimizes off-target exposure and allows more aggressive treatments. Topical application of biologics to epithelia is generally ineffective because most are covered with fluids and biologics are washed out too quickly to have significant therapeutic effects. Here we explore the idea that attaching a binding domain can serve as an "anchor" to extend the residency time of biologics on wet epithelia, allowing their effective use even with infrequent applications. We use topical application to the ocular surface as a challenging test since foreign substances are washed out especially efficiently by tear flow and blinking. Our results demonstrate that conjugation of antibodies to wheat germ agglutinin, which binds GlcNAc and sialic acid that are ubiquitously present in tissues, increases their half-life 350-fold upon application to the ocular surface in a mouse model of dry eye, a common and onerous disease in humans. Importantly, antibodies to IL-17A, IL-23, and IL-1β conjugated to the agglutinin reduces manifestations of dry eye, even when applied just once daily. In contrast, unconjugated antibodies are ineffective. Attaching an anchor to biologics is a simple means to overcome washout and to extend their therapeutic use.
Collapse
Affiliation(s)
- Robert M Q Shanks
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric G Romanowski
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - John E Romanowski
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katherine Davoli
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nancy A McNamara
- School of Optometry and Vision Science Graduate Program, University of California, Berkeley, CA, USA
| | - Jes K Klarlund
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Zeng W, Zhou X, Yu S, Liu R, Quek CWN, Yu H, Tay RYK, Lin X, Feng Y. The Future of Targeted Treatment of Primary Sjögren's Syndrome: A Focus on Extra-Glandular Pathology. Int J Mol Sci 2022; 23:ijms232214135. [PMID: 36430611 PMCID: PMC9694487 DOI: 10.3390/ijms232214135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic, systemic autoimmune disease defined by exocrine gland hypofunction resulting in dry eyes and dry mouth. Despite increasing interest in biological therapies for pSS, achieving FDA-approval has been challenging due to numerous complications in the trials. The current literature lacks insight into a molecular-target-based approach to the development of biological therapies. This review focuses on novel research in newly defined drug targets and the latest clinical trials for pSS treatment. A literature search was conducted on ClinicalTrials.gov using the search term "Primary Sjögren's syndrome". Articles published in English between 2000 and 2021 were included. Our findings revealed potential targets for pSS treatment in clinical trials and the most recent advances in understanding the molecular mechanisms underlying the pathogenesis of pSS. A prominent gap in current trials is in overlooking the treatment of extraglandular symptoms such as fatigue, depression, and anxiety, which are present in most patients with pSS. Based on dryness and these symptom-directed therapies, emerging biological agents targeting inflammatory cytokines, signal pathways, and immune reaction have been studied and their efficacy and safety have been proven. Novel therapies may complement existing non-pharmacological methods of alleviating symptoms of pSS. Better grading systems that add extraglandular symptoms to gauge disease activity and severity should be created. The future of pSS therapies may lie in gene, stem-cell, and tissue-engineering therapies.
Collapse
Affiliation(s)
- Weizhen Zeng
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - Xinyao Zhou
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijng 100053, China
| | - Sulan Yu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ruihua Liu
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijng 100053, China
| | - Chrystie Wan Ning Quek
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Haozhe Yu
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - Ryan Yong Kiat Tay
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Xiang Lin
- School of Chinese Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Correspondence: (X.L.); (Y.F.)
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
- Correspondence: (X.L.); (Y.F.)
| |
Collapse
|
7
|
Change in Ocular Surface Staining during Eyelid Warming Is Related to Tear Cytokine Levels. J Ophthalmol 2022; 2022:5103231. [PMID: 35967518 PMCID: PMC9365595 DOI: 10.1155/2022/5103231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose To investigate the changes in the tear cytokine profile of patients with meibomian gland dysfunction (MGD) treated with eyelid warming and to correlate these changes with clinical parameters for dry eye disease (DED). Methods Seventy patients with MGD were included and treated with the warming of eyelids. Of these, 61 still used the treatment three months after baseline, while 48 completed the whole treatment period of six months. The concentrations of 39 cytokines in the tear fluid were measured at baseline and after three and six months of treatment. All participants were examined with tests for DED, including tear film break-up time (TBUT), ocular surface staining (OSS), and the self-reporting Ocular Surface Disease Index (OSDI). Changes in cytokine concentrations were assessed from baseline to three months, from three to six months, and from baseline to six months. Correlation analyses were performed between changes in the cytokine concentrations and changes in TBUT, OSS, and OSDI during the same time intervals. Results No significant changes were found in the concentrations of the 39 cytokines during any of the three treatment intervals. However, several correlations were detected between changes in the level of cytokines and OSS from baseline to three months of treatment. Decreasing concentrations of granulocyte chemotactic protein 2 (GCP-2/CXCL6, mean effect 2.36, p=0.042), interleukin 10 (IL-10, mean effect 1.04, p=0.045), and IL-16 (mean effect 1.36, p=0.035) were associated with decreasing OSS. Decreasing concentrations of granulocyte macrophage colony-stimulating factor (GM-CSF, mean effect −2.98, p=0.024), IL-8 (IL-8/CXCL8, mean effect −1.35, p=0.026), and macrophage migration inhibitory factor (MIF, mean effect −2.44, p=0.033) were related to increasing OSS. Conclusions Warming of eyelids did not change the concentration of cytokines in the tear fluid of patients with MGD significantly. However, alterations in the level of several cytokines were associated with changes in the OSS. This finding indicates a close connection between tear cytokines and OSS in MGD patients treated with eyelid warming.
Collapse
|
8
|
Porcine Corneas Incubated at Low Humidity Present Characteristic Features Found in Dry Eye Disease. Int J Mol Sci 2022; 23:ijms23094567. [PMID: 35562958 PMCID: PMC9101159 DOI: 10.3390/ijms23094567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 12/01/2022] Open
Abstract
Dry eye is a multifactorial disease that affects the ocular surface and tear fluid. Current treatment options include lubricant eye drop application several times a day. However, these eye drops often cause local side effects like ocular allergies or blurred vision after the application. To test new treatment options, a robust dry eye model is needed. Here, a porcine ex vivo model was established by means of incubation of porcine corneas in low humidity (LH) and characterized by histological damage evaluation, epithelial thickness and by relevant dry eye markers, such as interleukin 1 beta (IL-1β), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), occludin and galectin-3. In the dry eye model proposed, an increased secretion of IL-1β was observed, as well as an upregulation of NF-κB, occludin and galectin-3 mRNA expression. Moreover, the model presented a higher rate of cell death in comparison to the controls. These effects could be reversed with successful treatment of dexamethasone (dexa) and partially reversed with hyaluronic acid (HA) containing eye drops. Furthermore, medium-molecular-weight HA stimulated an increase in IL-1β in the model proposed. In conclusion, this dry eye model mimics the in vivo condition and hence allows for animal-free testing of novel dry eye treatments.
Collapse
|
9
|
Single-cell transcriptional profiling of murine conjunctival immune cells reveals distinct populations expressing homeostatic and regulatory genes. Mucosal Immunol 2022; 15:620-628. [PMID: 35361907 PMCID: PMC9262780 DOI: 10.1038/s41385-022-00507-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023]
Abstract
Immune cells in the exposed conjunctiva mucosa defend against environmental and microbial stresses. Expression profiling by single-cell RNA sequencing was performed to identify conjunctival immune cell populations expressing homeostatic and regulatory genes. Fourteen distinct clusters were identified, including myeloid cells (neutrophils, monocytes, macrophages), dendritic cells (DC), and lymphoid cells (B, T, γδT, ILC2, and NK) lineages. Novel neutrophil [lipocalin (Lcn2) high and low), and MHCIIlo macrophage (MP) clusters were identified. More than half of the cells map to myeloid and dendritic cell populations with differential expression profiles that include genes with homeostatic and regulatory functions: Serpinb2 (MHCIIlo macrophage), Apoe (monocyte), Cd209a (macrophage), Cst3 (cDC1), and IL4i1 in migratory DC (mDC). ILC2 expresses the goblet cell trophic factor IL-13. Suppressed inflammatory and activated anti-inflammatory/regulatory pathways were observed in certain myeloid and DC populations. Confocal immunolocalization of identity markers showed mDC (CCR7, FASCIN1) located on or within the conjunctival epithelium. Monocyte, macrophage, cDC1 and IL-13/IL-5+ ILC2 were located below the conjunctival epithelium and goblet cells. This study found distinct immune cell populations in the conjunctiva and identified cells expressing genes with known homeostatic and immunoregulatory functions.
Collapse
|
10
|
Barabino S. Is dry eye disease the same in young and old patients? A narrative review of the literature. BMC Ophthalmol 2022; 22:85. [PMID: 35193524 PMCID: PMC8861619 DOI: 10.1186/s12886-022-02269-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/20/2022] [Indexed: 12/30/2022] Open
Abstract
Advanced age is one of the most evident risk factors for dry eye disease (DED), with male/female sex, chronic drug consumption, and prolonged device use. This article aims to review the literature about the changes of the ocular surface associated with DED in the elderly and patients < 40 years. The pathophysiologic changes of the ocular surface responsible for eye dryness are linked with inflammation and neurosensory abnormalities and may occur with a different feature in young patients compared with elders. Peculiar treatment strategies may be needed for young and older subjects with DED.
Collapse
Affiliation(s)
- Stefano Barabino
- Ocular Surface & Dry Eye Center, ASST Fatebenefratelli-Sacco, Ospedale L. Sacco, Università di Milano, via GB Grassi, 57, 20157, Milan, Italy.
| |
Collapse
|
11
|
Hu J, Yao Y, Huang J, Qian J, Xiong Y, Miao W. Erxian Decoction modulates Th17/Treg cells differentiation through LFA-1/ICAM-1/STAT3 pathway in menopausal dry eye disease. Exp Eye Res 2021; 215:108890. [PMID: 34951998 DOI: 10.1016/j.exer.2021.108890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 12/15/2022]
Abstract
With the development of modern societies and the ageing of the population, the treatment of menopausal dry eye disease (MDED) has become a thorny issue for the medical profession. Erxian Decoction (EXD) is a traditional Chinese medicine prescription, which has performed good clinical effect on dry eye disease. In this research, we purposed to investigate the molecular mechanisms of EXD for the treatment of MDED. A MDED rat model was established, the results indicated that high concentration of EXD could significantly improve the tear secretion and tear film stability of the animal model. Next, we found that EXD worked through the LFA-1/ICAM-1/STAT3 pathway in the body, and EXD could regulate IL-17, IL-10, CTLA-4 and TGF-β1 to get Th17/Treg balance. In vitro experiments, the results indicated that EXD affected the differentiation of CD4+ T cells into Th17/Treg cells by inhibiting the expression and activation of LFA-1 on CD4+ T cells, thus exerting immunotherapy effect. Our research provided the experimental basis and associated mechanisms for the clinical application of EXD in dry eye disease.
Collapse
Affiliation(s)
- Jun Hu
- Department of Ophthalmology, Shuguang Hospital, Baoshan Branch, Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, PR China
| | - Yuerong Yao
- Department of Ophthalmology, Shuguang Hospital, Baoshan Branch, Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, PR China
| | - Jie Huang
- Department of Ophthalmology, Shuguang Hospital, Baoshan Branch, Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, PR China
| | - Jin Qian
- Department of Ophthalmology, Shuguang Hospital, Baoshan Branch, Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, PR China
| | - Yi Xiong
- Department of Ophthalmology, Shuguang Hospital, Baoshan Branch, Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, PR China
| | - Wanhong Miao
- Department of Ophthalmology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 2011210, PR China.
| |
Collapse
|
12
|
Therapeutic Potential of „Derived-Multiple Allogeneic Proteins Paracrine Signaling-D-Mapps” in the Treatment of Dry Eye Disease. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2019-0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Abstract
Dry eye disease (DED) is a chronic inflammatory disease of the lacrimal system and ocular surface. Considering the important role of inflammation in DED development, the main treatment strategy has shifted from hydration and lubrication of dry ocular surface to the immunomodulation and immunoregulationapproach that should address the main pathologic processes responsible for disease progression. Due to their capacity for production of immunosuppressive factors, mesenchymal stem cells (MSCs) and their secretome have been considered as potentially new agents in DED therapy. We recently developed an immunomodulatory ophthalmic solution “derived- Multiple Allogeneic Proteins Paracrine Signaling (d-MAPPS)” which activity is relied on immunosuppressive capacity of MSC-derived secretome. d-MAPPS contains MSC-derived exosomes, growth factors and immunosuppressive cytokines that are able to efficiently suppress generation of inflammatory phenotype in T cells and macrophages. Herewith, we demonstrated that d-MAPPS protected human corneal epithelial cells from chemical injury and efficiently alleviated ocular discomfort and pain in 131 DED patients during the 12-month follow-up, indicating d-MAPPS eye drops as potentially new remedy for the treatment of DED patients.
Collapse
|
13
|
Chen Y, Dana R. Autoimmunity in dry eye disease - An updated review of evidence on effector and memory Th17 cells in disease pathogenicity. Autoimmun Rev 2021; 20:102933. [PMID: 34509656 DOI: 10.1016/j.autrev.2021.102933] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022]
Abstract
The classic Th1/Th2 dogma has been significantly reshaped since the subsequent introduction of several new T helper cell subsets, among which the most intensively investigated during the last decade is the Th17 lineage that demonstrates critical pathogenic roles in autoimmunity and chronic inflammation - including the highly prevalent dry eye disease. In this review, we summarize current concepts of Th17-mediated disruption of ocular surface immune homeostasis that leads to autoimmune inflammatory dry eye disease, by discussing the induction, activation, differentiation, migration, and function of effector Th17 cells in disease development, highlighting the phenotypic and functional plasticity of Th17 lineage throughout the disease initiation, perpetuation and sustention. Furthermore, we emphasize the most recent advance in Th17 memory formation and function in the chronic course of dry eye disease, a major area to be better understood for facilitating the development of effective treatments in a broader field of autoimmune diseases that usually present a chronic course with recurrent episodes of flare in the target tissues or organs.
Collapse
Affiliation(s)
- Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Chu C, Huang Y, Ru Y, Lu X, Zeng X, Liu K, Gan L, Zhang Y, Zhao S. α-MSH ameliorates corneal surface dysfunction in scopolamine-induced dry eye rats and human corneal epithelial cells via enhancing EGFR expression. Exp Eye Res 2021; 210:108685. [PMID: 34252414 DOI: 10.1016/j.exer.2021.108685] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 01/02/2023]
Abstract
Dry eye (DE) is a chronic, multifactorial ocular surface disease associated with visual disturbance, tear film instability, hyperosmolarity, ocular surface inflammation and damage. Effective intervention is necessary to control this disease. In this study we topically applied α-melanocyte stimulating hormone (α-MSH) on the ocular surface of scopolamine-induced DE rats and found that it promoted tear secretion, reduced tear breakup time and fluorescein sodium staining and increased the number of conjunctival goblet cells. To investigate the mechanism, protein array was conducted, which showed that α-MSH exerted its effects via epithelial growth factor receptor (EGFR) in the JAK-STAT signaling pathway. Furthermore, in vitro experiments showed that α-MSH protected human corneal epithelial cells (hCECs) by maintaining their migration ability and viability and decreasing apoptosis. However, blockade of EGFR abolished these protective effects. Moreover, α-MSH decreased the level of autophagy in benzalkonium chloride (BAC)-stressed hCECs via EGFR. These results demonstrated that α-MSH ameliorated lesions and restored ocular surface functions by upregulating EGFR expression.
Collapse
Affiliation(s)
- Chenchen Chu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Yue Huang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Yusha Ru
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaoxiao Lu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaoyu Zeng
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Ke Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Lu Gan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
15
|
Alam J, de Paiva CS, Pflugfelder SC. Desiccation Induced Conjunctival Monocyte Recruitment and Activation - Implications for Keratoconjunctivitis. Front Immunol 2021; 12:701415. [PMID: 34305940 PMCID: PMC8297564 DOI: 10.3389/fimmu.2021.701415] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Background Lacrimal gland secretory dysfunction in Sjögren syndrome (SS) causes ocular surface desiccation that is associated with increased cytokine expression and number of antigen-presenting cells (APCs) in the conjunctiva. This study evaluated the hypothesis that desiccating stress (DS) alters the percentage and gene expression of myeloid cell populations in the conjunctiva. Methods DS was induced by pharmacologic suppression of tear secretion and exposure to drafty low humidity environment. Bone marrow chimeras and adoptive transfer of CD45.1+ bone marrow cells to CD45.2+ C-C chemokine receptor 2 knockout (CCR2-/-) mice were used to track DS-induced myeloid cell recruitment to the conjunctiva. Flow cytometry evaluated myeloid cell populations in conjunctivae obtained from non-stressed eyes and those exposed to DS for 5 days. CD11b+ myeloid lineage cells were gated on monocyte (Ly6C), macrophage (CD64, MHCII) and DC (CD11c, MHCII) lineage markers. NanoString immune arrays were performed on sorted MHCII+ and MHCII- monocyte/macrophage cell populations. Results DS significantly increased the recruitment of adoptively transferred MHCII positive and negative myeloid cells to the conjunctiva in a CCR2 dependent fashion. The percentage of resident conjunctival monocytes (Ly6C+CD64-) significantly decreased while CD64+MHCII+ macrophages increased over 5 days of DS (P<0.05 for both). Comparison of gene expression between the MHCII- monocyte and MHCII+ populations in non-stressed conjunctiva revealed a ≥ 2 log2 fold increase in 95 genes and decrease in 46 genes. Upregulated genes are associated with antigen presentation, cytokine/chemokine, M1 macrophage and NLRP3 inflammasome pathways. DS increased innate inflammatory genes in monocytes and MHCII+ cells and increased M1 macrophage (Trem1, Ido1, Il12b, Stat5b) and decreased homeostasis (Mertk) and M2 macrophage (Arg1) genes in MHCII+ cells. Conclusions There are myeloid cell populations in the conjunctiva with distinct phenotype and gene expression patterns. DS recruits myeloid cells from the blood and significantly changes their phenotype in the conjunctiva. DS also alters expression of an array of innate inflammatory genes. Immature monocytes in the unstressed conjunctiva appear to cascade to MHCII+ macrophages during DS, suggesting that DS promotes maturation of monocytes to antigen presenting cells with increased expression of inflammatory genes that may contribute to the pathogenesis of SS keratoconjunctivitis sicca.
Collapse
Affiliation(s)
- Jehan Alam
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Stephen C Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
16
|
Di GH, Qi X, Xu J, Yu CQ, Cao QL, Xing ZJ, Li ZC. Therapeutic effect of secretome from TNF-α stimulated mesenchymal stem cells in an experimental model of corneal limbal stem cell deficiency. Int J Ophthalmol 2021; 14:179-185. [PMID: 33614444 DOI: 10.18240/ijo.2021.02.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
AIM To explore the secretome efficacy in tumor necrosis factor (TNF)-α stimulated mouse mesenchymal stem cells (MSCs) in a murine model of corneal limbal alkali injury. METHODS Corneal limbal stem cell deficiency (LSCD) was created in the eyes of male C57 mice. Concentrated conditioned medium from TNF-α stimulated MSCs (MSC-CMT) was applied topically for 4wk, with basal medium and conditioned medium from MSCs as controls. Corneal opacification, corneal inflammatory response, and corneal neovascularization (NV) were evaluated. Corneal epithelial cell apoptosis, corneal conjunctivation, and inflammatory cell infiltration were assessed with TUNEL staining, CK3 and Muc-5AC immunostaining, and CD11b immunofluorescence staining, respectively. The effect of TSG-6 was further evaluated by knockdown with short hairpin RNA (shRNA). RESULTS Compared to the controls, topical administration of MSC-CMT significantly ameliorated the clinical symptoms of alkali-induced LSCD, with restrained corneal NV, reduced corneal epithelial cell apoptosis, and inhibition of corneal conjunctivation. In addition, MSC-CMT treatment significantly reduced CD11b+ inflammatory cell infiltration, and inhibited the expression of pro-inflammatory cytokines (IL-1β, TNF-α and IL-6). Furthermore, the promotion of corneal epithelial reconstruction by MSC-CMT was largely abolished by TSG-6 knockdown. CONCLUSION Our study provides evidence that MSC-CMT enhances the alleviation of corneal alkali injuries, partially through TSG-6-mediated anti-inflammatory protective mechanisms. MSC-CMT may serve as a potential strategy for treating corneal disorders.
Collapse
Affiliation(s)
- Guo-Hu Di
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China.,Shandong Eye Institute, Qingdao 266071, Shandong Province, China
| | - Xia Qi
- Shandong Eye Institute, Qingdao 266071, Shandong Province, China
| | - Jing Xu
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Chao-Qun Yu
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Qi-Long Cao
- Qingdao Haier Biotech Co. Ltd., Qingdao 266071, Shandong Province, China
| | - Zhi-Jun Xing
- Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao 266033, Shandong Province, China
| | - Zhi-Chao Li
- Department of Gynecology and Obstetrics, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
17
|
Hamilton JA. GM-CSF in inflammation. J Exp Med 2020; 217:jem.20190945. [PMID: 31611249 PMCID: PMC7037240 DOI: 10.1084/jem.20190945] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/09/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
GM-CSF is a potential therapeutic target in inflammation and autoimmunity. This study reviews the literature on the biology of GM-CSF, in particular that describing the research leading to clinical trials targeting GM-CSF and its receptor in numerous inflammatory/autoimmune conditions, such as rheumatoid arthritis. Granulocyte–macrophage colony-stimulating factor (GM-CSF) has many more functions than its original in vitro identification as an inducer of granulocyte and macrophage development from progenitor cells. Key features of GM-CSF biology need to be defined better, such as the responding and producing cell types, its links with other mediators, its prosurvival versus activation/differentiation functions, and when it is relevant in pathology. Significant preclinical data have emerged from GM-CSF deletion/depletion approaches indicating that GM-CSF is a potential target in many inflammatory/autoimmune conditions. Clinical trials targeting GM-CSF or its receptor have shown encouraging efficacy and safety profiles, particularly in rheumatoid arthritis. This review provides an update on the above topics and current issues/questions surrounding GM-CSF biology.
Collapse
Affiliation(s)
- John A Hamilton
- The University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Australian Institute for Musculoskeletal Science, The University of Melbourne and Western Health, St Albans, Victoria, Australia
| |
Collapse
|
18
|
Fan NW, Dohlman TH, Foulsham W, McSoley M, Singh RB, Chen Y, Dana R. The role of Th17 immunity in chronic ocular surface disorders. Ocul Surf 2020; 19:157-168. [PMID: 32470612 DOI: 10.1016/j.jtos.2020.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022]
Abstract
Th17 cells have been implicated in the pathogenesis of numerous inflammatory and autoimmune conditions. At the ocular surface, Th17 cells have been identified as key effector cells in chronic ocular surface disease. Evidence from murine studies indicates that following differentiation and expansion, Th17 cells migrate from the lymphoid tissues to the eye, where they release inflammatory cytokines including, but not limited to, their hallmark cytokine IL-17A. As the acute phase subsides, a population of long-lived memory Th17 cells persist, which predispose hosts both to chronic inflammation and severe exacerbations of disease; of great interest is the small subset of Th17/1 cells that secrete both IL-17A and IFN-γ in acute-on-chronic disease exacerbation. Over the past decade, substantial progress has been made in deciphering how Th17 cells interact with the immune and neuroimmune pathways that mediate chronic ocular surface disease. Here, we review (i) the evidence for Th17 immunity in chronic ocular surface disease, (ii) regulatory mechanisms that constrain the Th17 immune response, and (iii) novel therapeutic strategies targeting Th17 cells.
Collapse
Affiliation(s)
- Nai-Wen Fan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Thomas H Dohlman
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Matthew McSoley
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA; University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Rohan Bir Singh
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Yihe Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
19
|
Kalogeropoulos D, Papoudou-Bai A, Lane M, Goussia A, Charchanti A, Moschos MM, Kanavaros P, Kalogeropoulos C. Antigen-presenting cells in ocular surface diseases. Int Ophthalmol 2020; 40:1603-1618. [PMID: 32107692 DOI: 10.1007/s10792-020-01329-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE To review the role of antigen-presenting cells (APC) in the pathogenesis of ocular surface diseases (OSD). METHODS A thorough literature search was performed in PubMed database. An additional search was made in Google Scholar to complete the collected items. RESULTS APCs have the ability to initiate and direct immune responses and are found in most lymphoid and non-lymphoid tissues. APCs continuously sample their environment, present antigens to T cells and co-ordinate immune tolerance and responses. Many different types of APCs have been described and there is growing evidence that these cells are involved in the pathogenesis of OSD. OSD is a complex term for a myriad of disorders that are often characterized by ocular surface inflammation, tear film instability and impairment of vision. CONCLUSIONS This review summarizes the current knowledge concerning the immunotopographical distribution of APCs in the normal ocular surface. APCs appear to play a critical role in the pathology of a number of conditions associated with OSD including infectious keratitis, ocular allergy, dry eye disease and pterygium.
Collapse
Affiliation(s)
- Dimitrios Kalogeropoulos
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.
| | - Alexandra Papoudou-Bai
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Mark Lane
- Birmingham and Midland Eye Centre, Birmingham, UK
| | - Anna Goussia
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Antonia Charchanti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Marilita M Moschos
- First Department of Ophthalmology, General Hospital of Athens G. Gennimatas, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Chris Kalogeropoulos
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
20
|
Mecum NE, Cyr D, Malon J, Demers D, Cao L, Meng ID. Evaluation of Corneal Damage After Lacrimal Gland Excision in Male and Female Mice. Invest Ophthalmol Vis Sci 2019; 60:3264-3274. [PMID: 31369671 PMCID: PMC6675517 DOI: 10.1167/iovs.18-26457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Lacrimal gland excision (LGE) has been utilized in several studies to model aqueous tear deficiency, yet sex as a biological variable has not been factored in to these reports. This study compared corneal pathology in male and female mice following LGE-induced dry eye. Methods An LGE of either the extraorbital lacrimal gland (single LGE) or both the extraorbital and intraorbital lacrimal glands (double LGE) was performed in male and female C57BL/6J and Balb/cJ mice to produce dry eye of graded severity. Following excision, tearing was evaluated with phenol red thread, and corneal fluorescein staining was scored to quantify the severity of damage. Corneas were evaluated for apoptosis by the TUNEL assay and for cell proliferation using Ki67 staining. Furthermore, corneas were harvested and analyzed for macrophages via flow cytometry. Results Baseline tearing levels were similar in male and female mice, and LGE resulted in comparable reductions in tearing with the lowest levels recorded after double LGE. As determined by fluorescein staining, LGE produced more severe damage to the cornea in female C57BL/6J and Balb/cJ mice. Double LGE increased TUNEL and Ki67 staining in the cornea, with greater increases found in female mice. Furthermore, LGE produced a greater increase in the total number of corneal macrophages in female mice. Conclusions These results indicate that female mice are more susceptible to LGE-induced corneal damage. The mechanisms involved in producing these sex differences still need to be elucidated but may involve increased inflammation and macrophage infiltration.
Collapse
Affiliation(s)
- Neal E Mecum
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States.,Molecular and Biomedical Sciences, University of Maine, Orono, Maine, United States
| | - Dan Cyr
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, United States
| | - Jennifer Malon
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States
| | - Danielle Demers
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States
| | - Ling Cao
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States.,Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, United States
| | - Ian D Meng
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States.,Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, United States
| |
Collapse
|
21
|
Heidari M, Noorizadeh F, Wu K, Inomata T, Mashaghi A. Dry Eye Disease: Emerging Approaches to Disease Analysis and Therapy. J Clin Med 2019; 8:jcm8091439. [PMID: 31514344 PMCID: PMC6780511 DOI: 10.3390/jcm8091439] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Dry eye disease (DED) is among the most common ocular disorders affecting tens of millions of individuals worldwide; however, the condition remains incompletely understood and treated. Valuable insights have emerged from multidisciplinary approaches, including immunometabolic analyses, microbiome analyses, and bioengineering. Furthermore, we have seen new developments in clinical assessment approaches and treatment strategies in the recent past. Here, we review the emerging frontiers in the pathobiology and clinical management of DED.
Collapse
Affiliation(s)
- Mostafa Heidari
- Basir Eye Health Research Center, Tehran 1418643561, Iran.
- Farabi Eye Hospital, Department of Ophthalmology and Eye Research Center, Tehran University of Medical Sciences, Tehran 133661635, Iran.
| | | | - Kevin Wu
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, Ophthalmic Consultation Service, New York, NY 10029, USA
- New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan.
- Department of Strategic Operating Room Management and Improvement, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan.
| | - Alireza Mashaghi
- Systems Biomedicine and Pharmacology Division, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
- Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai 200000, China.
| |
Collapse
|
22
|
Park JH, Moon SH, Kang DH, Um HJ, Kang SS, Kim JY, Tchah H. Diquafosol Sodium Inhibits Apoptosis and Inflammation of Corneal Epithelial Cells Via Activation of Erk1/2 and RSK: In Vitro and In Vivo Dry Eye Model. Invest Ophthalmol Vis Sci 2019; 59:5108-5115. [PMID: 30372737 DOI: 10.1167/iovs.17-22925] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To evaluate the effect of diquafosol on corneal epithelium in a dry eye model using Transwell culture and a scopolamine-induced dry eye rat model. Methods Desiccation stress induced in an in vitro dry eye model using human corneal epithelial cells was used, and the cells were incubated with or without diquafosol media diluted at 1:100. Reactive oxygen species (ROS) generation was measured using 2',7'-dichlorofluorescein diacetate (DCFH-DA). Apoptosis was analyzed, and levels of phosphorylated Erk1/2, phosphorylated p90RSK, phosphorylated Akt, IκB-α, and NF-κB-p65 were determined. Levels of IL-1β, TNF-α, IL-6, IL-8, and GM-CSF were quantified. To investigate the in vivo effects of diquafosol, we induced dry eye in Wistar rats using scopolamine hydrobromide. The rats were divided into three groups: control, dry eye, and dry eye diquafosol; topical DIQUAS was applied four times daily for 28 days. We used immunohistochemistry to detect the levels of phosphorylated Erk1/2, phosphorylated p90RSK, and IL-1β, and used the TUNEL assay in corneal tissue. Results The distribution of highly fluorescent dichlorofluorescein and the proportion of annexin V- and PI-positive cells decreased in the diquafosol medium. Diquafosol increased the levels of phospho-Erk1/2, phospho-90RSK, phospho-Akt, and IκB-α, whereas it significantly decreased the levels of NF-κB-p65, IL-1β, and TNF-α. In vivo, apoptosis was enhanced in dry eye group. This response was markedly reduced and the level of phosphorylated p90RSK and phosphorylated ERK1/2 were upregulated and IL-1β was downregulated by DIQUAS. Conclusions Diquafosol treatment reduced intracellular ROS levels, apoptosis, and inflammation, all of which were increased in the dry eye model through desiccation.
Collapse
Affiliation(s)
- Jin Hyoung Park
- Miso Eye Clinic, Gyeonggi-do, Republic of Korea.,Research Institute for Biomacromolecules, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Seong-Ho Moon
- Research Institute for Biomacromolecules, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Dong Hyun Kang
- Research Institute for Biomacromolecules, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hyun Jun Um
- Research Institute for Biomacromolecules, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Soon-Suk Kang
- Research Institute for Biomacromolecules, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jae Yong Kim
- Research Institute for Biomacromolecules, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.,Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hungwon Tchah
- Research Institute for Biomacromolecules, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.,Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
23
|
Maruoka S, Inaba M, Ogata N. Activation of Dendritic Cells in Dry Eye Mouse Model. Invest Ophthalmol Vis Sci 2019; 59:3269-3277. [PMID: 29971446 DOI: 10.1167/iovs.17-22550] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The immune system plays a major role in the pathogenesis of dry eye diseases (DED), and dendritic cells (DCs) are known to be important initiators of acquired immunity. Thus, the purpose of this study was to determine the contribution of DCs to the development of DED. Methods Mouse dry eye model was induced by subcutaneous injections of scopolamine and was euthanized at the baseline, and 2, 4, and 7 days postinjection. The activation of the DCs was determined by the mixed leukocyte reaction (MLR), and the number of activated CD86+ DCs in the lymph nodes was determined by flow cytometry. Upregulation of cytokines in the culture supernatant of MLR was determined by ELISA. Results Significantly increased superficial corneal punctate lesions and decreased number of goblet cells in the conjunctiva were observed in scopolamine-injected mice. The number of activated CD86+ DCs was significantly increased in the cervical lymph nodes but not in the inguinal lymph nodes of the dry eye mice. The stimulatory activity of the DCs derived from the cervical lymph nodes of dry eye mice was significantly higher than that of control mice, and upregulations of IL-17, IL-2, and IL-4 were observed in the culture supernatant of MLR. These results indicate that the DCs of the cervical lymph nodes were activated by the scopolamine injections. Conclusions Our results indicate that DCs in our dry eye model were sufficiently activated to stimulate the T cells that participate in the onset and progression of DED.
Collapse
Affiliation(s)
- Shinji Maruoka
- Department of Ophthalmology, Nara Medical University, Nara, Japan
| | - Muneo Inaba
- Department of Ophthalmology, Nara Medical University, Nara, Japan.,Department of Internal Medicine I, Kansai Medical University, Osaka, Japan
| | - Nahoko Ogata
- Department of Ophthalmology, Nara Medical University, Nara, Japan
| |
Collapse
|
24
|
Li M, Mittal SK, Foulsham W, Amouzegar A, Sahu SK, Chauhan SK. Mast cells contribute to the induction of ocular mucosal alloimmunity. Am J Transplant 2019; 19:662-673. [PMID: 30129280 PMCID: PMC7941346 DOI: 10.1111/ajt.15084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/05/2018] [Accepted: 08/12/2018] [Indexed: 01/25/2023]
Abstract
Beyond their historical role as the effector cells in allergic disorders, mast cells have been implicated in regulating both innate and adaptive immune responses. Possessing considerable functional plasticity, mast cells are abundant at mucosal surfaces, where the host and external environments interface. The purpose of this study was to evaluate the contribution of mast cells to allograft rejection at the ocular surface. Using a well-characterized murine model of corneal transplantation, we report that mast cells promote allosensitization. Our data show mast cell frequencies and activation are increased following transplantation. We demonstrate that mast cell inhibition (a) limits the infiltration of inflammatory cells and APC maturation at the graft site; (b) reduces allosensitization and the generation of Th1 cells in draining lymphoid tissues; (c) decreases graft infiltration of alloimmune-inflammatory cells; and (d) prolongs allograft survival. Our data demonstrate a novel function of mast cells in promoting allosensitization at the ocular surface.
Collapse
Affiliation(s)
- Mingshun Li
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA,Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Sharad K. Mittal
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Srikant K. Sahu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA,L.V. Prasad Eye Institute, Bhubaneswar, Odisha, India
| | - Sunil K. Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Innate and Adaptive Cell Populations Driving Inflammation in Dry Eye Disease. Mediators Inflamm 2018; 2018:2532314. [PMID: 30158831 PMCID: PMC6109495 DOI: 10.1155/2018/2532314] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/15/2018] [Accepted: 06/28/2018] [Indexed: 12/19/2022] Open
Abstract
Dry eye disease (DED) is the most common ocular disease and affects millions of individuals worldwide. DED encompasses a heterogeneous group of diseases that can be generally divided into two forms including aqueous-deficient and evaporative DED. Evidence suggests that these conditions arise from either failure of lacrimal gland secretion or low tear film quality. In its secondary form, DED is often associated with autoimmune diseases such as Sjögren's syndrome and rheumatoid arthritis. Current treatment strategies for DED are limited to anti-inflammatory medications that target the immune system as the source of deleterious inflammation and tissue injury. However, there is a lack of understanding of the underlying pathogenesis of DED, and subsequently, there are very few effective treatment strategies. The gap in our knowledge of the etiology of primary DED is in part because the majority of research in DED focused on secondary autoimmune causes. This review focuses on what is currently understood about the contribution of innate and adaptive immune cell populations in the pathogenesis of DED and highlights the need to continue investigating the central role of immunity driving DED.
Collapse
|
26
|
Foulsham W, Coco G, Amouzegar A, Chauhan SK, Dana R. When Clarity Is Crucial: Regulating Ocular Surface Immunity. Trends Immunol 2018; 39:288-301. [PMID: 29248310 PMCID: PMC5880704 DOI: 10.1016/j.it.2017.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/23/2022]
Abstract
The ocular surface is a unique mucosal immune compartment in which anatomical, physiological, and immunological features act in concert to foster a particularly tolerant microenvironment. These mechanisms are vital to the functional competence of the eye, a fact underscored by the devastating toll of excessive inflammation at the cornea - blindness. Recent data have elucidated the contributions of specific anatomical components, immune cells, and soluble immunoregulatory factors in promoting homeostasis at the ocular surface. We highlight research trends at this distinctive mucosal barrier and identify crucial gaps in our current knowledge.
Collapse
Affiliation(s)
- William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; University College London (UCL) Institute of Ophthalmology, University College London, London, UK
| | - Giulia Coco
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|