1
|
Obeidat WM, Lahlouh IK. Chitosan Nanoparticles: Approaches to Preparation, Key Properties, Drug Delivery Systems, and Developments in Therapeutic Efficacy. AAPS PharmSciTech 2025; 26:108. [PMID: 40244367 DOI: 10.1208/s12249-025-03100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
The integration of nanotechnology into drug delivery systems holds great promise for enhancing pharmaceutical effectiveness. This approach enables precise targeting, controlled release, improved patient compliance, reduced side effects, and increased bioavailability. Nanoparticles are vital for transporting biomolecules-such as proteins, enzymes, genes, and vaccines-through various administration routes, including oral, intranasal, vaginal, buccal, and pulmonary. Among biodegradable polymers, chitosan, a linear polysaccharide derived from chitin, stands out due to its biocompatibility, safety, biodegradability, mucoadhesive properties, and ability to enhance permeation. Its cationic nature supports strong molecular interactions and provides antimicrobial, anti-inflammatory, and hemostatic benefits. However, its solubility, influenced by pH and ionic sensitivity, poses challenges requiring effective solutions. This review explores chitosan, its modified derivatives and chitosan nanoparticles mainly, focusing on nanoparticles physicochemical properties, drug release mechanisms, preparation methods, and factors affecting their mean hydrodynamic diameter (particle size). It highlights their application in drug delivery systems and disease treatments across various routes. Key considerations include drug loading capacity, zeta potential, and stability, alongside the impact of molecular weight, degree of deacetylation, and drug solubility on nanoparticle properties. Recent advancements and studies underscore chitosan's potential, emphasizing its modified derivatives'versatility in improving therapeutic outcomes.
Collapse
Affiliation(s)
- Wasfy M Obeidat
- Jordan University of Science and Technology, 3030, Irbid, 22110, Jordan.
| | - Ishraq K Lahlouh
- Jordan University of Science and Technology, 3030, Irbid, 22110, Jordan
| |
Collapse
|
2
|
Biswas A, Kumar S, Choudhury AD, Bisen AC, Sanap SN, Agrawal S, Mishra A, Verma SK, Kumar M, Bhatta RS. Polymers and their engineered analogues for ocular drug delivery: Enhancing therapeutic precision. Biopolymers 2024; 115:e23578. [PMID: 38577865 DOI: 10.1002/bip.23578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Ocular drug delivery is constrained by anatomical and physiological barriers, necessitating innovative solutions for effective therapy. Natural polymers like hyaluronic acid, chitosan, and gelatin, alongside synthetic counterparts such as PLGA and PEG, have gained prominence for their biocompatibility and controlled release profiles. Recent strides in polymer conjugation strategies have enabled targeted delivery through ligand integration, facilitating tissue specificity and cellular uptake. This versatility accommodates combined drug delivery, addressing diverse anterior (e.g., glaucoma, dry eye) and posterior segment (e.g., macular degeneration, diabetic retinopathy) afflictions. The review encompasses an in-depth exploration of each natural and synthetic polymer, detailing their individual advantages and disadvantages for ocular drug delivery. By transcending ocular barriers and refining therapeutic precision, these innovations promise to reshape the management of anterior and posterior segment eye diseases.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
3
|
Zhou X, Zhou D, Zhang X, Zhao Y, Liao L, Wu P, Chen B, Duan X. Research progress of nano delivery systems for intraocular pressure lowering drugs. Heliyon 2024; 10:e32602. [PMID: 39005914 PMCID: PMC11239466 DOI: 10.1016/j.heliyon.2024.e32602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024] Open
Abstract
Glaucoma is a chronic ocular disease characterized by optic atrophy and visual field defect. The main risk factor for glaucoma onset and progression is elevated intraocular pressure, which is caused by increased aqueous humor outflow resistance. Currently, the primary method for glaucoma therapy is the use of intraocular pressure lowering drugs. However, these drugs, when administered through eye drops, have low bioavailability, require frequent administration, and often result in adverse effects. To overcome these challenges, the application of nanotechnology for drug delivery has emerged as a promising approach. Nanoparticles can physically adsorb, encapsulate, or chemically graft drugs, thereby improving their efficacy, retention time, and reducing adverse reactions. Moreover, nanotechnology has opened up new avenues for ocular administration. This article provides a comprehensive review of nano systems for intraocular pressure lowering drugs, encompassing cholinergic agonists, β-adrenergic antagonists, α-adrenergic agonists, prostaglandin analogs, carbonic anhydrase inhibitors, Rho kinase inhibitors, and complex preparations. The aim is to offer novel insights for the development of nanotechnology in the field of intraocular pressure lowering drugs.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Dengming Zhou
- Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyue Zhang
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Yang Zhao
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Li Liao
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Ping Wu
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Baihua Chen
- The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xuanchu Duan
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, Hunan, China
| |
Collapse
|
4
|
Sarmento C, Duarte ARC, Rita Jesus A. Can (Natural) deep eutectic systems increase the efficacy of ocular therapeutics? Eur J Pharm Biopharm 2024; 198:114276. [PMID: 38582179 DOI: 10.1016/j.ejpb.2024.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The eye is one of the most complex organs in the human body, with a unique anatomy and physiology, being divided into anterior and posterior segments. Ocular diseases can occur in both segments, but different diseases affect different segments. Glaucoma and cataracts affect the anterior segment, while macular degeneration and diabetic retinopathy occur in the posterior segment. The easiest approach to treat ocular diseases, especially in the anterior segment, is through the administration of topical eye drops, but this route presents many constraints, namely precorneal dynamic and static ocular barriers. On the other hand, the delivery of drugs to the posterior segment of the eye is far more challenging and is mainly performed by the intravitreal route. However, it can lead to severe complications such as retinal detachment, endophthalmitis, increased intraocular pressure and haemorrhage. The design of new drug delivery systems for the anterior segment is very challenging, but targeting the posterior one is even more difficult and little progress has been made. In this review we will discuss various strategies including the incorporation of additives in the formulations, such as viscosity, permeability, and solubility enhancers, namely based on Deep eutectic systems (DES). Natural deep eutectic systems (NADES) have emerged to solve several problems encountered in pharmaceutical industry, regarding the pharmacokinetic and pharmacodynamic properties of drugs. NADES can contribute to the design of advanced technologies for ocular therapeutics, including hydrogels and nanomaterials. Here in, we revise some applications of (NA)DES in the development of new drug delivery systems that can be translated into the ophthalmology field.
Collapse
Affiliation(s)
- Célia Sarmento
- LAQV-REQUIMTE, Chemistry Department, NOVA - School of Science and Technology, 2829-516 Caparica, Portugal
| | - Ana Rita C Duarte
- LAQV-REQUIMTE, Chemistry Department, NOVA - School of Science and Technology, 2829-516 Caparica, Portugal
| | - Ana Rita Jesus
- LAQV-REQUIMTE, Chemistry Department, NOVA - School of Science and Technology, 2829-516 Caparica, Portugal.
| |
Collapse
|
5
|
Li L, Jia F, Wang Y, Liu J, Tian Y, Sun X, Lei Y, Ji J. Trans-corneal drug delivery strategies in the treatment of ocular diseases. Adv Drug Deliv Rev 2023; 198:114868. [PMID: 37182700 DOI: 10.1016/j.addr.2023.114868] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/20/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
The cornea is a remarkable tissue that possesses specialized structures designed to safeguard the eye against foreign objects. However, its unique properties also make it challenging to deliver drugs in a non-invasive manner. This review highlights recent advancements in achieving highly efficient drug transport across the cornea, focusing on nanomaterials. We have classified these strategies into three main categories based on their mechanisms and have analyzed their success and limitations in a systematic manner. The purpose of this review is to examine potential general principles that could improve drug penetration through the cornea and other natural barriers in the eye. We hope it will inspire the development of more effective drug delivery systems that can better treat ocular diseases.
Collapse
Affiliation(s)
- Liping Li
- Shanghai Key Laboratory of Visual Impairment and Restoration, Key Laboratory of Myopia of Ministry of Health, Eye and ENT Hospital of Fudan University, Shanghai 200031, PR China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang Province, PR China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang Province, PR China
| | - Jiamin Liu
- Shanghai Key Laboratory of Visual Impairment and Restoration, Key Laboratory of Myopia of Ministry of Health, Eye and ENT Hospital of Fudan University, Shanghai 200031, PR China
| | - Yi Tian
- Shanghai Key Laboratory of Visual Impairment and Restoration, Key Laboratory of Myopia of Ministry of Health, Eye and ENT Hospital of Fudan University, Shanghai 200031, PR China
| | - Xinghuai Sun
- Shanghai Key Laboratory of Visual Impairment and Restoration, Key Laboratory of Myopia of Ministry of Health, Eye and ENT Hospital of Fudan University, Shanghai 200031, PR China.
| | - Yuan Lei
- Shanghai Key Laboratory of Visual Impairment and Restoration, Key Laboratory of Myopia of Ministry of Health, Eye and ENT Hospital of Fudan University, Shanghai 200031, PR China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang Province, PR China.
| |
Collapse
|
6
|
Bigdeli A, Makhmalzadeh BS, Feghhi M, SoleimaniBiatiani E. Cationic liposomes as promising vehicles for timolol/brimonidine combination ocular delivery in glaucoma: formulation development and in vitro/in vivo evaluation. Drug Deliv Transl Res 2023; 13:1035-1047. [PMID: 36477776 DOI: 10.1007/s13346-022-01266-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2022] [Indexed: 12/12/2022]
Abstract
Glaucoma is a chronic eye disease in which the pressure inside the eye increases and leads to damage to the optic nerve, and eventually causes blindness. In this disease, it is often necessary to use a multi-drug treatment system. There is a fixed combination of timolol maleate and brimonidine tartrate among the combination drugs in glaucoma treatment. Liposomes are one of the most important targeted drug delivery systems to eye tissue, which leads to improved drug permeability and durability in ocular tissue. In this study, thin layer hydration was used to make liposomal formulations containing timolol maleate (TM) and brimonidine tartrate (BT). After the necessary evaluations, one of the eight initial formulations was selected as an optimization formulation. Then, characteristics such as drug loading percentage, particle size, pH, zeta potential, and drug release were performed on the optimized formulation. The study of reducing intraocular pressure was performed on the optimized formulation. This study in total was performed on 18 rabbits in three groups. Hydroxypropyl methylcellulose (HPMC) polymer was injected into the anterior chamber to experimental induce glaucoma. The selected formulation was within the acceptable range of ocular products in terms of physical properties. HPMC polymer injection successfully induced glaucoma in the animal model, resulting in a 79% increase in intraocular pressure. The results showed that the liposomal formulation significantly reduced the intraocular pressure compared to the simple formulation of the aqueous solution, and both formulations were able to significantly reduce the intraocular pressure compared to the control group (P < 0.001). The results also showed that liposomal formulation has a therapeutic effect in reducing intraocular pressure. It seems that the selected liposomal formulation made by thin layer hydration can act as a suitable drug carrier to increase the effectiveness of the fixed combination of timolol maleate and brimonidine tartrate and be proposed as a new drug formulation for targeted and controlled drug delivery in the treatment of glaucoma.
Collapse
Affiliation(s)
- Ali Bigdeli
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Ahvaz Jundishapur University of Medical Sciences, Golestan avenue, Ahvaz, Iran
| | - Behzad Sharif Makhmalzadeh
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Ahvaz Jundishapur University of Medical Sciences, Golestan avenue, Ahvaz, Iran.
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mostafa Feghhi
- Department of Ophthalmology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Emad SoleimaniBiatiani
- Department of Ophthalmology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Arcangeli D, Gualandi I, Mariani F, Tessarolo M, Ceccardi F, Decataldo F, Melandri F, Tonelli D, Fraboni B, Scavetta E. Smart Bandaid Integrated with Fully Textile OECT for Uric Acid Real-Time Monitoring in Wound Exudate. ACS Sens 2023; 8:1593-1608. [PMID: 36929744 PMCID: PMC10152490 DOI: 10.1021/acssensors.2c02728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Hard-to-heal wounds (i.e., severe and/or chronic) are typically associated with particular pathologies or afflictions such as diabetes, immunodeficiencies, compression traumas in bedridden people, skin grafts, or third-degree burns. In this situation, it is critical to constantly monitor the healing stages and the overall wound conditions to allow for better-targeted therapies and faster patient recovery. At the moment, this operation is performed by removing the bandages and visually inspecting the wound, putting the patient at risk of infection and disturbing the healing stages. Recently, new devices have been developed to address these issues by monitoring important biomarkers related to the wound health status, such as pH, moisture, etc. In this contribution, we present a novel textile chemical sensor exploiting an organic electrochemical transistor (OECT) configuration based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) for uric acid (UA)-selective monitoring in wound exudate. The combination of special medical-grade textile materials provides a passive sampling system that enables the real-time and non-invasive analysis of wound fluid: UA was detected as a benchmark analyte to monitor the health status of wounds since it represents a relevant biomarker associated with infections or necrotization processes in human tissues. The sensors proved to reliably and reversibly detect UA concentration in synthetic wound exudate in the biologically relevant range of 220-750 μM, operating in flow conditions for better mimicking the real wound bed. This forerunner device paves the way for smart bandages integrated with real-time monitoring OECT-based sensors for wound-healing evaluation.
Collapse
Affiliation(s)
- Danilo Arcangeli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Isacco Gualandi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Federica Mariani
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Marta Tessarolo
- Department of Physics and Astronomy "Augusto Righi", University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Francesca Ceccardi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Francesco Decataldo
- Department of Physics and Astronomy "Augusto Righi", University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Federico Melandri
- Plastod S.p.A., Via Walter Masetti 7, Calderara di Reno, 40012 Bologna, Italy
| | - Domenica Tonelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Beatrice Fraboni
- Department of Physics and Astronomy "Augusto Righi", University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Erika Scavetta
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
8
|
Zhu J, Zhou H, Gerhard EM, Zhang S, Parra Rodríguez FI, Pan T, Yang H, Lin Y, Yang J, Cheng H. Smart bioadhesives for wound healing and closure. Bioact Mater 2023; 19:360-375. [PMID: 35574051 PMCID: PMC9062426 DOI: 10.1016/j.bioactmat.2022.04.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022] Open
Abstract
The high demand for rapid wound healing has spurred the development of multifunctional and smart bioadhesives with strong bioadhesion, antibacterial effect, real-time sensing, wireless communication, and on-demand treatment capabilities. Bioadhesives with bio-inspired structures and chemicals have shown unprecedented adhesion strengths, as well as tunable optical, electrical, and bio-dissolvable properties. Accelerated wound healing has been achieved via directly released antibacterial and growth factors, material or drug-induced host immune responses, and delivery of curative cells. Most recently, the integration of biosensing and treatment modules with wireless units in a closed-loop system yielded smart bioadhesives, allowing real-time sensing of the physiological conditions (e.g., pH, temperature, uric acid, glucose, and cytokine) with iterative feedback for drastically enhanced, stage-specific wound healing by triggering drug delivery and treatment to avoid infection or prolonged inflammation. Despite rapid advances in the burgeoning field, challenges still exist in the design and fabrication of integrated systems, particularly for chronic wounds, presenting significant opportunities for the future development of next-generation smart materials and systems.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Honglei Zhou
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Institute of Flexible Electronics Technology of THU, Zhejiang, Jiaxing, 314000, China
| | - Ethan Michael Gerhard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Senhao Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215011, PR China
| | - Flor Itzel Parra Rodríguez
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Taisong Pan
- School of Materials and Energy, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215011, PR China
| | - Yuan Lin
- School of Materials and Energy, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
9
|
Bhandari M, Nguyen S, Yazdani M, Utheim TP, Hagesaether E. The Therapeutic Benefits of Nanoencapsulation in Drug Delivery to the Anterior Segment of the Eye: A Systematic Review. Front Pharmacol 2022; 13:903519. [PMID: 35645827 PMCID: PMC9136980 DOI: 10.3389/fphar.2022.903519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Although numerous nanoparticle formulations have been developed for ocular administration, concerns are being raised about a possible mismatch between potential promises made by the field of nanoparticle research and demonstration of actual therapeutic benefit. Therefore, the primary focus of this present review was to critically assess to what extent nanoencapsulation of ocular drugs improved the therapeutic outcome when treating conditions in the anterior segment of the eye. Methods: A systematic search was conducted using Medline, PubMed, and Embase databases as well as Google Scholar for published peer-reviewed articles in English focusing on conventional nanoparticles used as drug delivery systems to the anterior segment of the eye in in vivo studies. The major therapeutic outcomes were intraocular pressure, tear secretion, number of polymorphonuclear leucocytes and pupil size. The outcome after encapsulation was compared to the non-encapsulated drug. Results: From the search, 250 results were retrieved. Thirty-eight studies met the inclusion criteria. Rabbits were used as study subjects in all but one study, and the number of animals ranged from 3 to 10. Coated and uncoated liposomes, lipid-based and polymeric nanoparticles, as well as micelles, were studied, varying in both particle size and surface charge, and encapsulating a total of 24 different drugs, including 6 salts. The majority of the in vivo studies demonstrated some improvement after nanoencapsulation, but the duration of the benefit varied from less than 1 h to more than 20 h. The most common in vitro methods performed in the studies were drug release, transcorneal permeation, and mucin interaction. Discussion: Nanoparticles that are small and mucoadhesive, often due to positive surface charge, appeared beneficial. Although in vitro assays can unravel more of the hidden and sophisticated interplay between the encapsulated drug and the nanoparticle structure, they suffered from a lack of in vitro—in vivo correlation. Therefore, more research should be focused towards developing predictive in vitro models, allowing rational design and systematic optimization of ocular nanoparticles with minimal animal experimentation.
Collapse
Affiliation(s)
- Madhavi Bhandari
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
- *Correspondence: Madhavi Bhandari,
| | - Sanko Nguyen
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Tor Paaske Utheim
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Ellen Hagesaether
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
10
|
Manna S, Jana S. Marine Polysaccharides in Tailor- Made Drug Delivery. Curr Pharm Des 2022; 28:1046-1066. [DOI: 10.2174/1381612828666220328122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/11/2022] [Indexed: 01/09/2023]
Abstract
Abstract:
Marine sources have attracted much interest as an emerging source of biomaterials in drug delivery applications. Amongst all other marine biopolymers, polysaccharides have been the mostly investigated class of biomaterials. The low cytotoxic behavior, in combination with the newly explored health benefits of marine polysaccharides has made it one of the prime research areas in the pharmaceutical and biomedical fields. In this review, we focused on all available marine polysaccharides, including their classification based on biological sources. The applications of several marine polysaccharides in recent years for tissue-specific novel drug delivery including gastrointestinal, brain tissue, transdermal, ocular, liver, and lung have also been discussed here. The abundant availability in nature, cost-effective extraction, and purification process along with a favorable biodegradable profile will encourage researchers to continue investigating marine polysaccharides for exploring newer applications in targeting specific delivery of therapeutics.
Collapse
Affiliation(s)
- Sreejan Manna
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal -700125, India
| | - Sougata Jana
- Department of Pharmaceutics, Gupta College of Technological Sciences, Ashram More, G.T. Road, Asansol-713301, West Bengal, India
- Department of Health and Family Welfare, Directorate of Health Services, Kolkata, India
| |
Collapse
|
11
|
Zhao Y, Huang C, Zhang Z, Hong J, Xu J, Sun X, Sun J. Sustained release of brimonidine from BRI@SR@TPU implant for treatment of glaucoma. Drug Deliv 2022; 29:613-623. [PMID: 35174743 PMCID: PMC8856066 DOI: 10.1080/10717544.2022.2039806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glaucoma is the leading cause of irreversible vision loss worldwide, and reduction of intraocular pressure (IOP) is the only factor that can be interfered to delay disease progression. As the first line and preferred method to treat glaucoma, eye drops have many shortcomings, such as low bioavailability, poor patient compliance, and unsustainable therapeutic effect. In this study, a highly efficient brimonidine (BRI) silicone rubber implant (BRI@SR@TPU implant) has been designed, prepared, characterized, and administrated for sustained relief of IOP to treat glaucoma. The in vitro BRI release from BRI@SR@TPU implants shows a sustainable release profile for up to 35 d, with decreased burst release and increased immediate drug concentration. The carrier materials are not cytotoxic to human corneal epithelial cells and conjunctival epithelial cells, and show good biocompatibility, which can be safely administrated into rabbit’s conjunctival sac. The BRI@SR@TPU implant sustainably released BRI and effectively reduced IOP for 18 d (72 times) compared to the commercial BRI eye drops (6 h). The BRI@SR@TPU implant is thus a promising noninvasive platform product for long-term IOP-reducing in patients with glaucoma and ocular hypertension.
Collapse
Affiliation(s)
- Yujin Zhao
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Chang Huang
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Zhutian Zhang
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jiaxu Hong
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xinghuai Sun
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jianguo Sun
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Maw PD, Pienpinijtham P, Pruksakorn P, Jansook P. Cyclodextrin-based Pickering nanoemulsions containing amphotericin B: Part II. Formulation, antifungal activity, and chemical stability. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Vaneev A, Tikhomirova V, Chesnokova N, Popova E, Beznos O, Kost O, Klyachko N. Nanotechnology for Topical Drug Delivery to the Anterior Segment of the Eye. Int J Mol Sci 2021; 22:12368. [PMID: 34830247 PMCID: PMC8621153 DOI: 10.3390/ijms222212368] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
Topical drug delivery is one of the most challenging aspects of eye therapy. Eye drops are the most prevalent drug form, especially for widely distributed anterior segment eye diseases (cataracts, glaucoma, dry eye syndrome, inflammatory diseases, etc.), because they are convenient and easy to apply by patients. However, conventional drug formulations are usually characterized by short retention time in the tear film, insufficient contact with epithelium, fast elimination, and difficulties in overcoming ocular tissue barriers. Not more than 5% of the total drug dose administered in eye drops reaches the interior ocular tissues. To overcome the ocular drug delivery barriers and improve drug bioavailability, various conventional and novel drug delivery systems have been developed. Among these, nanosize carriers are the most attractive. The review is focused on the different drug carriers, such as synthetic and natural polymers, as well as inorganic carriers, with special attention to nanoparticles and nanomicelles. Studies in vitro and in vivo have demonstrated that new formulations could help to improve the bioavailability of the drugs, provide sustained drug release, enhance and prolong their therapeutic action. Promising results were obtained with drug-loaded nanoparticles included in in situ gel.
Collapse
Affiliation(s)
- Alexander Vaneev
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119991 Moscow, Russia
| | - Victoria Tikhomirova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
| | - Natalia Chesnokova
- Department of Pathophysiology and Biochemistry, Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (N.C.); (O.B.)
| | - Ekaterina Popova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
| | - Olga Beznos
- Department of Pathophysiology and Biochemistry, Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (N.C.); (O.B.)
| | - Olga Kost
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
| | - Natalia Klyachko
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Research Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia
| |
Collapse
|
14
|
Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery. Int J Pharm 2021; 606:120873. [PMID: 34246741 DOI: 10.1016/j.ijpharm.2021.120873] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Over the last years, the scientific interest about topical ocular delivery targeting the posterior segment of the eye has been increasing. This is probably due to the fact that this is a non-invasive administration route, well tolerated by patients and with fewer local and systemic side effects. However, it is a challenging task due to the external ocular barriers, tear film clearance, blood flow in the conjunctiva and choriocapillaris and due to the blood-retinal barriers, amongst other features. An enhanced intraocular bioavailability of drugs can be achieved by either improving corneal permeability or by improving precorneal retention time. Regarding this last option, increasing residence time in the precorneal area can be achieved using mucoadhesive polymers such as xyloglucan, poly(acrylate), hyaluronic acid, chitosan, and carbomers. On the other hand, colloidal particles can interact with the ocular mucosa and enhance corneal and conjunctival permeability. These nanosystems are able to deliver a wide range of drugs, including macromolecules, providing stability and improving ocular bioavailability. New pharmaceutical approaches based on nanotechnology associated to bioadhesive compounds have emerged as strategies for a more efficient treatment of ocular diseases. Bearing this in mind, this review provides an overview of the current mucoadhesive colloidal nanosystems developed for ocular topical administration, focusing on their advantages and limitations.
Collapse
Affiliation(s)
- Beatriz Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Berta São Braz
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Esmeralda Delgado
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
15
|
Mabrouk AA, Tadros MI, El-Refaie WM. Improving the efficacy of Cyclooxegenase-2 inhibitors in the management of oral cancer: Insights into the implementation of nanotechnology and mucoadhesion. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Mustfa SA, Maurizi E, McGrath J, Chiappini C. Nanomedicine Approaches to Negotiate Local Biobarriers for Topical Drug Delivery. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Salman Ahmad Mustfa
- Centre for Craniofacial and Regenerative Biology King's College London London SE1 9RT UK
| | - Eleonora Maurizi
- Dipartimento di Medicina e Chirurgia Università di Parma Parma 43121 Italy
| | - John McGrath
- St John's Institute of Dermatology King's College London London SE1 9RT UK
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology King's College London London SE1 9RT UK
- London Centre for Nanotechnology King's College London London WC2R 2LS UK
| |
Collapse
|
17
|
Ibrahim MM, Maria DN, Wang X, Simpson RN, Hollingsworth T, Jablonski MM. Enhanced Corneal Penetration of a Poorly Permeable Drug Using Bioadhesive Multiple Microemulsion Technology. Pharmaceutics 2020; 12:E704. [PMID: 32722550 PMCID: PMC7463957 DOI: 10.3390/pharmaceutics12080704] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Corneal penetration is a key rate limiting step in the bioavailability of topical ophthalmic formulations that incorporate poorly permeable drugs. Recent advances have greatly aided the ocular delivery of such drugs using colloidal drug delivery systems. Ribavirin, a poorly permeable BCS class-III drug, was incorporated in bioadhesive multiple W/O/W microemulsion (ME) to improve its corneal permeability. The drug-loaded ME was evaluated regarding its physical stability, droplet size, PDI, zeta potential, ultrastructure, viscosity, bioadhesion, in vitro release, transcorneal permeability, cytotoxicity, safety and ocular tolerance. Our ME possessed excellent physical stability, as it successfully passed several cycles of centrifugation and freeze-thaw tests. The formulation has a transparent appearance due to its tiny droplet size (10 nm). TEM confirmed ME droplet size and revealed its multilayered structure. In spite of the high aqueous solubility and the low permeability of ribavirin, this unique formulation was capable of sustaining its release for up to 24 h and improving its corneal permeability by 3-fold. The in vitro safety of our ME was proved by its high percentage cell viability, while its in vivo safety was confirmed by the absence of any sign of toxicity or irritation after either a single dose or 14 days of daily dosing. Our ME could serve as a vehicle for enhanced ocular delivery of drugs with different physicochemical properties, including those with low permeability.
Collapse
Affiliation(s)
- Mohamed Moustafa Ibrahim
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.M.I.); (D.N.M.); (X.W.); (R.N.S.); (T.J.H.)
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Doaa Nabih Maria
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.M.I.); (D.N.M.); (X.W.); (R.N.S.); (T.J.H.)
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - XiangDi Wang
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.M.I.); (D.N.M.); (X.W.); (R.N.S.); (T.J.H.)
| | - Raven N. Simpson
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.M.I.); (D.N.M.); (X.W.); (R.N.S.); (T.J.H.)
| | - T.J. Hollingsworth
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.M.I.); (D.N.M.); (X.W.); (R.N.S.); (T.J.H.)
| | - Monica M. Jablonski
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.M.I.); (D.N.M.); (X.W.); (R.N.S.); (T.J.H.)
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
18
|
Ilochonwu BC, Urtti A, Hennink WE, Vermonden T. Intravitreal hydrogels for sustained release of therapeutic proteins. J Control Release 2020; 326:419-441. [PMID: 32717302 DOI: 10.1016/j.jconrel.2020.07.031] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022]
Abstract
This review highlights how hydrogel formulations can improve intravitreal protein delivery to the posterior segment of the eye in order to increase therapeutic outcome and patient compliance. Several therapeutic proteins have shown excellent clinical successes for the treatment of various intraocular diseases. However, drug delivery to the posterior segment of the eye faces significant challenges due to multiple physiological barriers preventing drugs from reaching the retina, among which intravitreal protein instability and rapid clearance from the site of injection. Hence, frequent injections are required to maintain therapeutic levels. Moreover, because the world population ages, the number of patients suffering from ocular diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR) is increasing and causing increased health care costs. Therefore, there is a growing need for suitable delivery systems able to tackle the current limitations in retinal protein delivery, which also may reduce costs. Hydrogels have shown to be promising delivery systems capable of sustaining release of therapeutic proteins and thus extending their local presence. Here, an extensive overview of preclinically developed intravitreal hydrogels is provided with attention to the rational design of clinically useful intravitreal systems. The currently used polymers, crosslinking mechanisms, in vitro/in vivo models and advancements are discussed together with the limitations and future perspective of these biomaterials.
Collapse
Affiliation(s)
- Blessing C Ilochonwu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Arto Urtti
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
19
|
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules 2020; 25:E2193. [PMID: 32397080 PMCID: PMC7248934 DOI: 10.3390/molecules25092193] [Citation(s) in RCA: 428] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology offers many advantages in various fields of science. In this regard, nanoparticles are the essential building blocks of nanotechnology. Recent advances in nanotechnology have proven that nanoparticles acquire a great potential in medical applications. Formation of stable interactions with ligands, variability in size and shape, high carrier capacity, and convenience of binding of both hydrophilic and hydrophobic substances make nanoparticles favorable platforms for the target-specific and controlled delivery of micro- and macromolecules in disease therapy. Nanoparticles combined with the therapeutic agents overcome problems associated with conventional therapy; however, some issues like side effects and toxicity are still debated and should be well concerned before their utilization in biological systems. It is therefore important to understand the specific properties of therapeutic nanoparticles and their delivery strategies. Here, we provide an overview on the unique features of nanoparticles in the biological systems. We emphasize on the type of clinically used nanoparticles and their specificity for therapeutic applications, as well as on their current delivery strategies for specific diseases such as cancer, infectious, autoimmune, cardiovascular, neurodegenerative, ocular, and pulmonary diseases. Understanding of the characteristics of nanoparticles and their interactions with the biological environment will enable us to establish novel strategies for the treatment, prevention, and diagnosis in many diseases, particularly untreatable ones.
Collapse
Affiliation(s)
- Abuzer Alp Yetisgin
- Materials Science and Nano-Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
| | - Merve Zuvin
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
| | - Ali Kosar
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
20
|
Jumelle C, Gholizadeh S, Annabi N, Dana R. Advances and limitations of drug delivery systems formulated as eye drops. J Control Release 2020; 321:1-22. [PMID: 32027938 DOI: 10.1016/j.jconrel.2020.01.057] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
Topical instillation of eye drops remains the most common and easiest route of ocular drug administration, representing the treatment of choice for many ocular diseases. Nevertheless, low ocular bioavailability of topically applied drug molecules can considerably limit their efficacy. Over the last several decades, numerous drug delivery systems (DDS) have been developed in order to improve drug bioavailability on the ocular surfaces. This review systematically covers the most recent advances of DDS applicable by topical instillation, that have shown better performance in in vivo models compared to standard eye drop formulations. These delivery systems are based on in situ forming gels, nanoparticles and combinations of both. Most of the DDS have been developed using natural or synthetic polymers. Polymers offer many advantageous properties for designing advanced DDS including biocompatibility, gelation properties and/or mucoadhesiveness. However, despite the high number of studies published over the last decade, there are several limitations for clinical translation of DDS. This review article focuses on the recent advances for the development of ocular drug delivery systems. In addtion, the potential challenges for commercialization of new DDS are presented.
Collapse
Affiliation(s)
- Clotilde Jumelle
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shima Gholizadeh
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA, USA.
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Abstract
Glaucoma is the second leading cause of blindness worldwide. Even though significant advances have been made in its management, currently available antiglaucoma therapies suffer from considerable drawbacks. Typically, the success and efficacy of glaucoma medications are undermined by their limited bioavailability to target tissues and the inadequate adherence demonstrated by patients with glaucoma. The latter is due to a gradual decrease in tolerability of lifelong topical therapies and the significant burden to patients of prescribed stepwise antiglaucoma regimens with frequent dosing which impact quality of life. On the other hand, glaucoma surgery is restricted by the inability of antifibrotic agents to efficiently control the wound healing process without causing severe collateral damage and long-term complications. Evolution of the treatment paradigm for patients with glaucoma will ideally include prevention of retinal ganglion cell degeneration by the successful delivery of neurotrophic factors, anti-inflammatory drugs, and gene therapies. Nanotechnology-based treatments may surpass the limitations of currently available glaucoma therapies through optimized targeted drug delivery, increased bioavailability, and controlled release. This review addresses the recent advances in glaucoma treatment strategies employing nanotechnology, including medical and surgical management, neuroregeneration, and neuroprotection.
Collapse
|
22
|
Hathout RM. Particulate Systems in the Enhancement of the Antiglaucomatous Drug Pharmacodynamics: A Meta-Analysis Study. ACS OMEGA 2019; 4:21909-21913. [PMID: 31891069 PMCID: PMC6933800 DOI: 10.1021/acsomega.9b02895] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/03/2019] [Indexed: 05/04/2023]
Abstract
Glaucoma is a very serious disease that can lead to blindness in severe cases. In an attempt to increase the efficacy of the drugs used in treating this disease, many particulate systems (micro/nano and lipid-based/nonlipid-based) have been exploited. In this study, the meta-analysis approach was implemented in order to explore the published studies and extract the literature-based evidence (proof-of-concept studies = 16) that the particulate systems increase the efficiency of the investigated intraocular pressure drugs as demonstrated by the increase in the area under effect curve. Comparison of micron particles versus nanoparticles on the one hand and lipid-based versus nonlipid-based on the other hand, as subgroups of the meta-analysis, was also included in the study where the latter comparison led to insignificant differences, whereas the former has proven the superiority of the nanoparticles over the micronized counterparts.
Collapse
Affiliation(s)
- Rania M. Hathout
- E-mail: , . Phone: +2
(0) 100 5252919, +2 02 22912685. Fax: +2 02 24011507
| |
Collapse
|
23
|
Ibrahim MM, Maria DN, Mishra SR, Guragain D, Wang X, Jablonski MM. Once Daily Pregabalin Eye Drops for Management of Glaucoma. ACS NANO 2019; 13:13728-13744. [PMID: 31714057 PMCID: PMC7785203 DOI: 10.1021/acsnano.9b07214] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Elevated intraocular pressure (IOP) is the most significant risk factor contributing to visual field loss in glaucoma. Unfortunately, the deficiencies associated with current therapies have resulted in reduced efficacy, several daily dosings, and poor patient compliance. Previously, we identified the calcium voltage-gated channel auxiliary subunit alpha2delta 1 gene (Cacna2d1) as a modulator of IOP and demonstrated that pregabalin, a drug with high affinity and selectivity for CACNA2D1, lowered IOP in a dose-dependent manner. Unfortunately, IOP returned to baseline at 6 h after dosing. In the current study, we develop a once daily topical pregabalin-loaded multiple water-in-oil-in-water microemulsion formulation to improve drug efficacy. We characterize our formulations using multiple in vitro and in vivo evaluations. Our lead formulation provides continuous release of pregabalin for up to 24 h. Because of its miniscule droplet size (<20 nm), our microemulsion has a transparent appearance and should not blur vision. It is also stable at one month of storage at temperatures ranging from 5 to 40 °C. Our formulation is nontoxic, as illustrated by a cell toxicity study and slit-lamp biomicroscopic exams. CACNA2D1 is highly expressed in both the ciliary body and the trabecular meshwork, where it functions to modulate IOP. A single drop of our lead pregabalin formulation reduces IOP by greater than 40%, which does not return to baseline until >30 h post-application. Although there were no significant differences in the amplitude of IOP reduction between the formulations we tested, a significant difference was clearly observed in their duration of action. Our multilayered microemulsion is a promising carrier that sustains the release and prolongs the duration of action of pregabalin, a proposed glaucoma therapeutic.
Collapse
Affiliation(s)
- Mohamed Moustafa Ibrahim
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Doaa Nabih Maria
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sanjay R. Mishra
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Deepa Guragain
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - XiangDi Wang
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Monica M. Jablonski
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Corresponding Author:
| |
Collapse
|
24
|
Dubashynskaya N, Poshina D, Raik S, Urtti A, Skorik YA. Polysaccharides in Ocular Drug Delivery. Pharmaceutics 2019; 12:E22. [PMID: 31878298 PMCID: PMC7023054 DOI: 10.3390/pharmaceutics12010022] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023] Open
Abstract
Polysaccharides, such as cellulose, hyaluronic acid, alginic acid, and chitosan, as well as polysaccharide derivatives, have been successfully used to augment drug delivery in the treatment of ocular pathologies. The properties of polysaccharides can be extensively modified to optimize ocular drug formulations and to obtain biocompatible and biodegradable drugs with improved bioavailability and tailored pharmacological effects. This review discusses the available polysaccharide choices for overcoming the difficulties associated with ocular drug delivery, and it explores the reasons for the dependence between the physicochemical properties of polysaccharide-based drug carriers and their efficiency in different formulations and applications. Polysaccharides will continue to be of great interest to researchers endeavoring to develop ophthalmic drugs with improved effectiveness and safety.
Collapse
Affiliation(s)
- Natallia Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
| | - Daria Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
| | - Sergei Raik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, Petrodvorets, 198504 St. Petersburg, Russia;
| | - Arto Urtti
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, Petrodvorets, 198504 St. Petersburg, Russia;
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, Petrodvorets, 198504 St. Petersburg, Russia;
| |
Collapse
|
25
|
Barwal I, Kumar R, Dada T, Yadav SC. Effect of Ultra-Small Chitosan Nanoparticles Doped with Brimonidine on the Ultra-Structure of the Trabecular Meshwork of Glaucoma Patients. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:1352-1366. [PMID: 31018876 DOI: 10.1017/s1431927619000448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Brimonidine, an anti-glaucoma medicine, acts as an adrenergic agonist which decreases the synthesis of aqueous humour and increases the amount of drainage through Schlemm's canal and trabecular meshwork, but shows dose-dependent (0.2% solution thrice daily) toxicity. To reduce the side effects and improve the efficacy, brimonidine was nanoencapsulated on ultra-small-sized chitosan nanoparticles (nanobrimonidine) (28 ± 4 nm) with 39% encapsulation efficiency, monodispersity, freeze-thawing capability, storage stability, and 2% drug loading capacity. This nanocomplex showed burst, half, and complete release at 0.5, 45, and 100 h, respectively. Nanobrimonidine did not show any in vitro toxicity and was taken up by caveolae-mediated endocytosis. The nanobrimonidine-treated trabeculectomy tissue of glaucoma patients showed better dilation of the trabecular meshwork under the electron microscope. This is direct evidence for better bioavailability of nanobrimonidine after topical administration. Thus, the developed nanobrimonidine has the potential to improve the efficacy, reduce dosage and frequency, and improve delivery to the anterior chamber of the eye.
Collapse
Affiliation(s)
- Indu Barwal
- Department of Anatomy, Nanotechnology Lab, Electron Microscope Facility, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rahul Kumar
- Department of Anatomy, Nanotechnology Lab, Electron Microscope Facility, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tanuj Dada
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Subhash Chandra Yadav
- Department of Anatomy, Nanotechnology Lab, Electron Microscope Facility, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
26
|
Gómez-Ballesteros M, Andrés-Guerrero V, Parra FJ, Marinich J, de-Las-Heras B, Molina-Martínez IT, Vázquez-Lasa B, San Román J, Herrero-Vanrell R. Amphiphilic Acrylic Nanoparticles Containing the Poloxamer Star Bayfit® 10WF15 as Ophthalmic Drug Carriers. Polymers (Basel) 2019; 11:E1213. [PMID: 31331090 PMCID: PMC6680529 DOI: 10.3390/polym11071213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Topical application of drops containing ocular drugs is the preferred non-invasive route to treat diseases that affect the anterior segment of the eye. However, the formulation of eye drops is a major challenge for pharmacists since the access of drugs to ocular tissues is restricted by several barriers. Acetazolamide (ACZ) is a carbonic anhydrase inhibitor used orally for the treatment of ocular hypertension in glaucoma. However, large ACZ doses are needed which results in systemic side effects. Recently, we synthesized copolymers based on 2-hydroxyethyl methacrylate (HEMA) and a functionalized three-arm poloxamer star (Bayfit-MA). The new material (HEMA/Bayfit-MA) was engineered to be transformed into nanoparticles without the use of surfactants, which represents a significant step forward in developing new ophthalmic drug delivery platforms. Acetazolamide-loaded nanocarriers (ACZ-NPs) were prepared via dialysis (224 ± 19 nm, -17.2 ± 0.4 mV). The in vitro release rate of ACZ was constant over 24 h (cumulative delivery of ACZ: 83.3 ± 8.4%). Following standard specifications, ACZ-NPs were not cytotoxic in vitro in cornea, conjunctiva, and macrophages. In normotensive rabbits, ACZ-NPs generated a significant intraocular pressure reduction compared to a conventional solution of ACZ (16.4% versus 9.6%) with the same dose of the hypotensive drug (20 µg). In comparison to previously reported studies, this formulation reduced intraocular pressure with a lower dose of ACZ. In summary, HEMA:Bayfit-MA nanoparticles may be a promising system for ocular topical treatments, showing an enhanced ocular bioavailability of ACZ after a single instillation on the ocular surface.
Collapse
Affiliation(s)
- Miguel Gómez-Ballesteros
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, 28029 Madrid, Spain
| | - Francisco Jesús Parra
- Institute of Polymer Science and Technology, ICTP-CSIC, and CIBER-BBN, 28006 Madrid, Spain
| | - Jorge Marinich
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Beatriz de-Las-Heras
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Pharmacology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Irene Teresa Molina-Martínez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, 28029 Madrid, Spain
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, and CIBER-BBN, 28006 Madrid, Spain.
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, and CIBER-BBN, 28006 Madrid, Spain
| | - Rocío Herrero-Vanrell
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain.
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
27
|
Pontillo ARN, Detsi A. Nanoparticles for ocular drug delivery: modified and non-modified chitosan as a promising biocompatible carrier. Nanomedicine (Lond) 2019; 14:1889-1909. [PMID: 31274373 DOI: 10.2217/nnm-2019-0040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The eye is a very important, yet sensitive organ, presenting complex anatomy. To overcome its protective mechanisms, with the aim of improving drug delivery, drug encapsulation in nanocarriers is considered in this review. Chitosan is found to be an excellent drug carrier and its application in ophthalmology is being extensively researched. This mucoadhesive biopolymer can protect the encapsulated molecule, optimize its mode of action and minimize any existent risk. Moreover, chitosan and its derivatives may provide advantageous properties to the system such as thermoresponsivity and pH dependency. Finally, dual systems of chitosan with other carriers, such as poly (lactic-co-glycolic acid) and alginate, are also mentioned in this review, as they may offer additional benefits such as higher permeation due to different interaction of each carrier with the corneal layers.
Collapse
Affiliation(s)
- Antonella Rozaria Nefeli Pontillo
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Politechniou 9, 15780 Athens, Greece
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Politechniou 9, 15780 Athens, Greece
| |
Collapse
|
28
|
Amination degree of gelatin is critical for establishing structure-property-function relationships of biodegradable thermogels as intracameral drug delivery systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:897-909. [DOI: 10.1016/j.msec.2019.01.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 01/01/2019] [Accepted: 01/11/2019] [Indexed: 12/17/2022]
|
29
|
Stevanović M. Biomedical Applications of Nanostructured Polymeric Materials. NANOSTRUCTURED POLYMER COMPOSITES FOR BIOMEDICAL APPLICATIONS 2019:1-19. [DOI: 10.1016/b978-0-12-816771-7.00001-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
30
|
|
31
|
Desbrieres J, Peptu C, Ochiuz L, Savin C, Popa M, Vasiliu S. Application of Chitosan-Based Formulations in Controlled Drug Delivery. SUSTAINABLE AGRICULTURE REVIEWS 36 2019. [DOI: 10.1007/978-3-030-16581-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Fiscella R, Caplan E, Kamble P, Bunniran S, Uribe C, Chandwani H. The Effect of an Educational Intervention on Adherence to Intraocular Pressure-Lowering Medications in a Large Cohort of Older Adults with Glaucoma. J Manag Care Spec Pharm 2018; 24:1284-1294. [PMID: 29848186 PMCID: PMC10397933 DOI: 10.18553/jmcp.2018.17465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Glaucoma is a progressive, irreversible disease that can lead to vision loss and lower quality of life if treatment is not optimized. Effective glaucoma therapies are available to lower intraocular pressure (IOP) and minimize or delay disease progression. Nonetheless, adherence to treatment remains suboptimal for many patients. OBJECTIVE To identify potentially nonadherent patients and evaluate the effect of patient- and physician-centric educational interventions on adherence by using a validated predictive model of nonadherence to glaucoma medication. METHODS This prospective, randomized, controlled, and interventional study included Humana Medicare Advantage Prescription Drug plan patients with a glaucoma diagnosis between May and October 2014, ≥ 1 pharmacy claim for glaucoma medication, and ≥ 50% likelihood of nonadherence. Patients and physicians were randomized to cohorts A (no interventions), B (physician intervention), or C (patient and physician interventions). Physicians in cohorts B and C received information on the model, adherence, and patient profiles at baseline and months 3, 6, and 9. Patients in cohort C received educational materials on glaucoma and adherence (same schedule). The primary outcome was the proportion of days covered (PDC) with medication over 12 months. Adherence was defined as PDC ≥ 0.80. RESULTS Overall, 23,306 patients and 2,955 physicians were eligible. After excluding physicians with < 3 nonadherent patients, each cohort included 200 physicians and 600 patients. Mean PDC was 0.54-0.56 across cohorts. At 12 months, ≥ 90.5% of physicians and ≥ 75.5% of patients remained in the study; mean PDC was 0.53-0.54 across cohorts. No statistically significant between-cohort differences in PDC and adherence were observed. CONCLUSIONS Intensive educational mailings to patients and their physicians did not improve PDC or adherence in this large population of potentially nonadherent patients with glaucoma. Findings highlight the difficulty of improving adherence in a disease that requires lifelong therapy despite being largely asymptomatic and can inform development of future interventions aimed at improving adherence to glaucoma therapy. DISCLOSURES This study was sponsored by Allergan plc (Dublin, Ireland). Fiscella and Chandwani are employees of Allergan plc. Caplan, Kamble, Bunniran, and Uribe are employees of Comprehensive Health Insights, a Humana company. The authors did not receive honoraria or other payments for authorship.
Collapse
|
33
|
Yamada M, Tayeb H, Wang H, Dang N, Mohammed YH, Osseiran S, Belt PJ, Roberts MS, Evans CL, Sainsbury F, Prow TW. Using elongated microparticles to enhance tailorable nanoemulsion delivery in excised human skin and volunteers. J Control Release 2018; 288:264-276. [PMID: 30227159 PMCID: PMC7050638 DOI: 10.1016/j.jconrel.2018.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/19/2018] [Accepted: 09/14/2018] [Indexed: 12/20/2022]
Abstract
This study demonstrates, for the first time, clinical testing of elongated silica microparticles (EMP) combined with tailorable nanoemulsions (TNE) to enhance topical delivery of hydrophobic drug surrogates. Likewise, this is the first report of 6-carboxyfluorescein (a model molecule for topically delivered hydrophobic drugs) AM1 & DAMP4 (novel short peptide surfactants) used in volunteers. The EMP penetrates through the epidermis and stop at the dermal-epidermal junction (DEJ). TNE are unusually stable and useful because the oil core allows high drug loading levels and the surface properties can be easily controlled. At first, we chose alginate as a crosslinking agent between EMP and TNE. We initially incorporated a fluorescent lipophilic dye, DiI, as a hydrophobic drug surrogate into TNE for visualization with microscopy. We compared four different coating approaches to combine EMP and TNE and tested these formulations in freshly excised human skin. The delivery profile characterisation was imaged by dye- free coherent anti-Stoke Raman scattering (CARS) microscopy to detect the core droplet of TNE that was packed with pharmaceutical grade lipid (glycerol) instead of DiI. These data show the EMP penetrating to the DEJ followed by controlled release of the TNE. Freeze-dried formulations with crosslinking resulted in a sustained release profile, whereas a freeze-dried formulation without crosslinking showed an immediate burst-type release profile. Finally, we tested the crosslinked TNE coated EMP formulation in volunteers using multiphoton microscopy (MPM) and fluorescence-lifetime imaging microscopy (FLIM) to document the penetration depth characteristics. These forms of microscopy have limitations in terms of image acquisition speed and imaging area coverage but can detect fluorescent drug delivery through the superficial skin in volunteers. 6-Carboxyfluorescein was selected as the fluorescent drug surrogate for the volunteer study based on the similarity of size, charge and hydrophobicity characteristics to small therapeutic drugs that are difficult to deliver through skin. The imaging data showed a 6-carboxyfluorescein signal deep in volunteer skin supporting the hypothesis that EMP can indeed enhance the delivery of TNE in human skin. There were no adverse events recorded at the time of the study or after the study, supporting the use of 6-carboxyfluorescein as a safe and detectable drug surrogate for topical drug research. In conclusion, dry formulations, with controllable release profiles can be obtained with TNE coated EMP that can effectively enhance hydrophobic payload delivery deep into the human epidermis.
Collapse
Affiliation(s)
- Miko Yamada
- Future Industries Institute, University of South Australia, Adelaide, Australia; Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute at the Princess Alexandra Hospital, Brisbane, Australia
| | - Hossam Tayeb
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia; Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hequn Wang
- Wellman Centre for Photomedicine, Massachusetts General Hospital, Harvard Medical School, MA, USA
| | - Nhung Dang
- Future Industries Institute, University of South Australia, Adelaide, Australia; Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute at the Princess Alexandra Hospital, Brisbane, Australia
| | - Yousuf H Mohammed
- Therapeutic Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Sam Osseiran
- Wellman Centre for Photomedicine, Massachusetts General Hospital, Harvard Medical School, MA, USA; Harvard-MIT Division of Health Sciences and Technology, MA, USA
| | - Paul J Belt
- Department of Plastic and Reconstructive Surgery and Orthopaedic Surgery, Princess Alexandra Hospital, Brisbane, Australia
| | - Michael S Roberts
- Therapeutic Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Australia; School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
| | - Conor L Evans
- Wellman Centre for Photomedicine, Massachusetts General Hospital, Harvard Medical School, MA, USA
| | - Frank Sainsbury
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia.
| | - Tarl W Prow
- Future Industries Institute, University of South Australia, Adelaide, Australia; Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute at the Princess Alexandra Hospital, Brisbane, Australia.
| |
Collapse
|
34
|
Polymer-based carriers for ophthalmic drug delivery. J Control Release 2018; 285:106-141. [DOI: 10.1016/j.jconrel.2018.06.031] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
|
35
|
Lancina MG, Wang J, Williamson GS, Yang H. DenTimol as A Dendrimeric Timolol Analogue for Glaucoma Therapy: Synthesis and Preliminary Efficacy and Safety Assessment. Mol Pharm 2018; 15:2883-2889. [PMID: 29767982 DOI: 10.1021/acs.molpharmaceut.8b00401] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, we report the synthesis and characterization of DenTimol, a dendrimer-based polymeric timolol analog, as a glaucoma medication. A timolol precursor ( S)-4-[4-(oxiranylmethoxy)-1,2,5-thiadiazol-3-yl]morpholine (OTM) was reacted with the heterobifunctional amine polyethylene glycol acetic acid (amine-PEG-acetic acid, Mn = 2000 g/mol) via a ring opening reaction of an epoxide by an amine to form the OTM-PEG conjugate. OTM-PEG was then coupled to an ethylenediamine (EDA) core polyamidoamine (PAMAM) dendrimer G3 to generate DenTimol using the N-(3-(dimethylamino)propyl)- N'-ethylcarbodiimide hydrochloride (EDC)/ N-hydroxysuccinimide (NHS) coupling reaction. MALDI mass spectrometry, 1H NMR spectroscopy, and HPLC were applied to characterize the intermediate and final products. Ex vivo corneal permeation of DenTimol was assessed using the Franz diffusion cell system mounted with freshly extracted rabbit cornea. The cytotoxicity of DenTimol was assessed using the WST-1 assay. Our results show that DenTimol is nontoxic up to an OTM equivalent concentration of 100 μM. DenTimol is efficient at crossing the cornea. About 8% of the dendrimeric drug permeated through the cornea in 4 h. Its IOP-lowering effect was observed in normotensive adult Brown Norway male rats. Compared to the undosed eye, an IOP reduction by an average of 7.3 mmHg (∼30% reduction from baseline) was observed in the eye topically treated with DenTimol (2 × 5 μL, 0.5% w/v timolol equivalent) in less than 30 min. Daily dosing of DenTimol for a week did not cause any irritation or toxicity as confirmed by the histological examination of ocular tissues, including the cornea, ciliary body, and retina.
Collapse
Affiliation(s)
- Michael G Lancina
- Department of Biomedical Engineering , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Juan Wang
- Department of Chemical & Life Science Engineering , Virginia Commonwealth University , Richmond , Virginia 23219 , United States
| | - Geoffrey S Williamson
- Department of Biomedical Engineering , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Hu Yang
- Department of Chemical & Life Science Engineering , Virginia Commonwealth University , Richmond , Virginia 23219 , United States.,Department of Pharmaceutics , Virginia Commonwealth University , Richmond , Virginia 23298 , United States.,Massey Cancer Center , Virginia Commonwealth University , Richmond , Virginia 23298 , United States
| |
Collapse
|
36
|
Maniar KH, Jones IA, Gopalakrishna R, Vangsness CT. Lowering side effects of NSAID usage in osteoarthritis: recent attempts at minimizing dosage. Expert Opin Pharmacother 2017; 19:93-102. [PMID: 29212381 DOI: 10.1080/14656566.2017.1414802] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Osteoarthritis is a burdensome disease that causes progressive damage to articular cartilage. Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the preferred treatments for symptomatic relief. However, NSAIDs can cause serious dose-dependent side effects, which has prompted experts to recommend the minimization of NSAID dosage. AREAS COVERED This review focuses on three broad strategies that are currently being investigated or implemented to minimize NSAID dosage: nano-formulation, encapsulation, and topical delivery. The benefits, challenges and current status of these methods are discussed. EXPERT OPINION Multiple strategies are under investigation to lower NSAID dosage. There is great potential in developing formulations that utilize more than one of these strategies together. However, there are challenges to developing these lower dose preparations. In order to maximize the clinical potential of the abundance of NSAIDs that are both available and being developed, there is a major need for additional clinical studies directly comparing safety and efficacy of different preparations.
Collapse
Affiliation(s)
- Kevin H Maniar
- a Keck School of Medicine of USC , Los Angeles , CA , USA
| | - Ian A Jones
- b Department of Orthopaedic Surgery , Keck School of Medicine of USC , Los Angeles , CA , USA
| | - Rayudu Gopalakrishna
- c Department of Integrative Anatomical Sciences , Keck School of Medicine of USC , Los Angeles , CA , USA
| | - C Thomas Vangsness
- b Department of Orthopaedic Surgery , Keck School of Medicine of USC , Los Angeles , CA , USA
| |
Collapse
|
37
|
Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility. Nat Commun 2017; 8:1755. [PMID: 29176626 PMCID: PMC5701146 DOI: 10.1038/s41467-017-00837-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/28/2017] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is a multi-factorial blinding disease in which genetic factors play an important role. Elevated intraocular pressure is a highly heritable risk factor for primary open angle glaucoma and currently the only target for glaucoma therapy. Our study helps to better understand underlying genetic and molecular mechanisms that regulate intraocular pressure, and identifies a new candidate gene, Cacna2d1, that modulates intraocular pressure and a promising therapeutic, pregabalin, which binds to CACNA2D1 protein and lowers intraocular pressure significantly. Because our study utilizes a genetically diverse population of mice with known sequence variants, we are able to determine that the intraocular pressure-lowering effect of pregabalin is dependent on the Cacna2d1 haplotype. Using human genome-wide association study (GWAS) data, evidence for association of a CACNA2D1 single-nucleotide polymorphism and primary open angle glaucoma is found. Importantly, these results demonstrate that our systems genetics approach represents an efficient method to identify genetic variation that can guide the selection of therapeutic targets. Elevated intraocular pressure (IOP) is a heritable risk factor for primary open angle glaucoma. Using forward mouse genetics, cell biology, pharmacology and human genetic data, the authors identify CACNA2D1 as an IOP risk gene that can be therapeutically targeted by the drug pregabalin in animal models.
Collapse
|
38
|
Mir M, Ishtiaq S, Rabia S, Khatoon M, Zeb A, Khan GM, Ur Rehman A, Ud Din F. Nanotechnology: from In Vivo Imaging System to Controlled Drug Delivery. NANOSCALE RESEARCH LETTERS 2017; 12:500. [PMID: 28819800 PMCID: PMC5560318 DOI: 10.1186/s11671-017-2249-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/26/2017] [Indexed: 05/31/2023]
Abstract
Science and technology have always been the vitals of human's struggle, utilized exclusively for the development of novel tools and products, ranging from micro- to nanosize. Nanotechnology has gained significant attention due to its extensive applications in biomedicine, particularly related to bio imaging and drug delivery. Various nanodevices and nanomaterials have been developed for the diagnosis and treatment of different diseases. Herein, we have described two primary aspects of the nanomedicine, i.e., in vivo imaging and drug delivery, highlighting the recent advancements and future explorations. Tremendous advancements in the nanotechnology tools for the imaging, particularly of the cancer cells, have recently been observed. Nanoparticles offer a suitable medium to carryout molecular level modifications including the site-specific imaging and targeting. Invention of radionuclides, quantum dots, magnetic nanoparticles, and carbon nanotubes and use of gold nanoparticles in biosensors have revolutionized the field of imaging, resulting in easy understanding of the pathophysiology of disease, improved ability to diagnose and enhanced therapeutic delivery. This high specificity and selectivity of the nanomedicine is important, and thus, the recent advancements in this field need to be understood for a better today and a more prosperous future.
Collapse
Affiliation(s)
- Maria Mir
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Saba Ishtiaq
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Samreen Rabia
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Maryam Khatoon
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Ahmad Zeb
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan.
| |
Collapse
|
39
|
Sun J, Lei Y, Dai Z, Liu X, Huang T, Wu J, Xu ZP, Sun X. Sustained Release of Brimonidine from a New Composite Drug Delivery System for Treatment of Glaucoma. ACS APPLIED MATERIALS & INTERFACES 2017; 9:7990-7999. [PMID: 28198606 DOI: 10.1021/acsami.6b16509] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A novel layered double hydroxide (LDH) nanoparticle/thermogel composite drug delivery system (DDS) for sustained release of brimonidine (Bri) has been designed, prepared, and characterized in this study for treatment of severe glaucoma. Brimonidine is first loaded onto LDH (Bri@LDH) nanoparticles, which are then dispersed in the thermogel consisting of plenty of micelles based on poly(dl-lactic acid-co-coglycolic acid)-polyethylene glycol-poly(dl-lactic acid-co-coglycolic acid) (PLGA-PEG-PLGA) copolymer. The Bri@LDH/Thermogel DDS containing 125.0 μg/g of brimonidine has been found to sustainably release the drug for up to 144 h, significantly extending the drug release period compared to that from Bri@LDH nanoparticles. The Bri@LDH/Thermogel DDS is not cytotoxic to human corneal epithelial cells and shows good biocompatibility. In vivo drug release from the special contact lens made of Bri@LDH/Thermogel DDS has been sustained for at least 7 days, which more effectively modulates the relief of intraocular pressure (IOP). Thus, the Bri@LDH/Thermogel DDS is a promising drug delivery alternative that can be used for treatment of severe glaucoma.
Collapse
Affiliation(s)
- Jianguo Sun
- Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence for Functional Nanomaterials, The University of Queensland , Brisbane, Queensland 4072, Australia
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, China
| | | | | | | | | | - Jihong Wu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University , Shanghai 200032, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence for Functional Nanomaterials, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Xinghuai Sun
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University , Shanghai 200032, China
| |
Collapse
|
40
|
Szigiato AA, Podbielski DW, Ahmed IIK. Sustained drug delivery for the management of glaucoma. EXPERT REVIEW OF OPHTHALMOLOGY 2017. [DOI: 10.1080/17469899.2017.1280393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Dominik W. Podbielski
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Iqbal Ike K. Ahmed
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J Control Release 2016; 240:77-92. [PMID: 26518723 PMCID: PMC4896846 DOI: 10.1016/j.jconrel.2015.10.049] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/11/2023]
Abstract
This review provides the first comprehensive overview of the use of both nanoparticles and nanofibers for topical drug delivery. Researchers have explored the use of nanotechnology, specifically nanoparticles and nanofibers, as drug delivery systems for topical and transdermal applications. This approach employs increased drug concentration in the carrier, in order to increase drug flux into and through the skin. Both nanoparticles and nanofibers can be used to deliver hydrophobic and hydrophilic drugs and are capable of controlled release for a prolonged period of time. The examples presented provide significant evidence that this area of research has - and will continue to have - a profound impact on both clinical outcomes and the development of new products.
Collapse
Affiliation(s)
- Ritu Goyal
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Lauren K Macri
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Hilton M Kaplan
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
42
|
Stability and Ocular Pharmacokinetics of Celecoxib-Loaded Nanoparticles Topical Ophthalmic Formulations. J Pharm Sci 2016; 105:3691-3701. [PMID: 27789031 DOI: 10.1016/j.xphs.2016.09.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/22/2016] [Indexed: 11/22/2022]
Abstract
A spontaneous emulsification and/or solvent diffusion method was used for the preparation of celecoxib-loaded nanoparticles (NPs) using polymers, including chitosan (CS), sodium alginate, poly-ε-caprolactone (PCL), poly-l-lactide, and poly-d,l-lactide-co-glycolide. NPs were incorporated into vehicles (eye drops, in situ gelling system, and gel). Formulations were subjected to an accelerated stability study by storing them at elevated temperatures of 30, 35, and 45°C for 6 months. Formulations were evaluated monthly for general appearance, pH, viscosity, particle size, polydispersity index, zeta potential, and drug content. Gels containing CS-NPs and PCL-NPs were selected for an ocular pharmacokinetics study using Sprague-Dawley rats due to their high stability and long shelf lives (24.56 and 33.76 months, respectively). The gel improved NP stability by keeping it inside its network structure, which protected them from aggregation and interacting with water. Our formulations improved celecoxib bioavailability due to their bioadhesivness, thus preventing their rapid removal. Also, NPs acted as drug reservoirs that adhered to eye surface and continuously released the drug. The availability of celecoxib in all eye tissues and its absence in plasma suggests that our formulation could be used for anterior eye disorders and also for treatment of diseases associated with the posterior eye with no systemic side effects.
Collapse
|
43
|
A role for antimetabolites in glaucoma tube surgery: current evidence and future directions. Curr Opin Ophthalmol 2016; 27:164-9. [PMID: 26720778 DOI: 10.1097/icu.0000000000000244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Glaucoma is the leading cause of irreversible blindness worldwide. The main treatment modality for glaucoma is the reduction and control of the intraocular pressure (IOP). Glaucoma filtration surgery, including trabeculectomy and/or implantation of a glaucoma drainage device (GDD), is warranted if IOP remains medically uncontrolled. However, postoperative scarring remains a critical determinant of long-term bleb survival and IOP control after drainage surgery. Antimetabolites, such as mitomycin C and 5-fluorouracil, have been used for many years to increase survival time of filtration surgeries by preventing bleb fibrosis and scarring. The aim of this study is to provide an overview of: the current usage of these antimetabolites in GDD, the recent advancements of these antimetabolites in combination with other technologies, and the role of future antimetabolites. RECENT FINDINGS Mitomycin C and 5-fluorouracil have been used in GDD and trabeculectomy to prevent the exaggerated cellular reaction that leads to fibrosis. The adjunctive administration of these drugs intraoperatively and postoperatively has resulted in a lower rate of the hypertensive phase, and possibly a better long-term success rate in Ahmed valve surgeries. However, the application of these antimetabolites and their multiple-dosing applications are associated with nonspecific cytotoxicity and potentially severe complications such as bleb leak and conjunctival erosion over the tube. Recent studies are thus focusing on different medications, targeting new molecular pathways, and designing new delivery vehicles to minimize current antimetabolites side-effects and increase their efficacy. Promising results of these studies have led to development of new collaborative medications and advanced drug delivery systems for better modulation of GDD surgeries' predictable outcomes. SUMMARY The development of small molecule therapeutics, combination therapies, and innovative drug vehicles to prevent postsurgical fibrosis and achieve better surgical outcome in glaucoma filtration surgeries is promising.
Collapse
|
44
|
De Souza JF, Maia KN, De Oliveira Patrício PS, Fernandes-Cunha GM, Da Silva MG, De Matos Jensen CE, Da Silva GR. Ocular inserts based on chitosan and brimonidine tartrate: Development, characterization and biocompatibility. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Chiang B, Kim YC, Doty AC, Grossniklaus HE, Schwendeman SP, Prausnitz MR. Sustained reduction of intraocular pressure by supraciliary delivery of brimonidine-loaded poly(lactic acid) microspheres for the treatment of glaucoma. J Control Release 2016; 228:48-57. [PMID: 26930266 DOI: 10.1016/j.jconrel.2016.02.041] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/12/2016] [Accepted: 02/24/2016] [Indexed: 01/28/2023]
Abstract
Although effective drugs that lower intraocular pressure (IOP) in the management of glaucoma exist, their efficacy is limited by poor patient adherence to the prescribed eye drop regimen. To replace the need for eye drops, in this study we tested the hypothesis that IOP can be reduced for one month after a single targeted injection using a microneedle for administration of a glaucoma medication (i.e., brimonidine) formulated for sustained release in the supraciliary space of the eye adjacent to the drug's site of action at the ciliary body. To test this hypothesis, brimonidine-loaded microspheres were formulated using poly(lactic acid) (PLA) to release brimonidine at a constant rate for 35 days and microneedles were designed to penetrate through the sclera, without penetrating into the choroid/retina, in order to target injection into the supraciliary space. A single administration of these microspheres using a hollow microneedle was performed in the eye of New Zealand White rabbits and was found to reduce IOP initially by 6 mmHg and then by progressively smaller amounts for more than one month. All administrations were well tolerated without significant adverse events, although histological examination showed a foreign-body reaction to the microspheres. This study demonstrates, for the first time, that the highly-targeted delivery of brimonidine-loaded microspheres into the supraciliary space using a microneedle is able to reduce IOP for one month as an alternative to daily eye drops.
Collapse
Affiliation(s)
- B Chiang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta GA 30332, USA
| | - Y C Kim
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta GA 30332, USA
| | - A C Doty
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor MI 48109, USA
| | - H E Grossniklaus
- Department of Ophthalmology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - S P Schwendeman
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor MI 48109, USA
| | - M R Prausnitz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta GA 30332, USA; School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta GA 30332, USA.
| |
Collapse
|