1
|
Ajaykumar CB, Rajkumar S, Suresh B, Birappa G, Gowda DAA, Jayachandran A, Kim KS, Hong SH, Ramakrishna S. Advances in applications of the CRISPR/Cas9 system for respiratory diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:127-147. [PMID: 39824578 DOI: 10.1016/bs.pmbts.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Genetic and environmental factors can have an impact on lung and respiratory disorders which are associated with severe symptoms and have high mortality rates. Many respiratory diseases are significantly influenced by genetic or epigenetic factors. Gene therapy offers a powerful approach providing therapeutic treatment for lung diseases. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (CRISPR/Cas9) are promising gene modifying tool that can edit the genome. The utilization of CRISPR/Cas9 systems in the investigation of respiratory disorders has resulted in advancements such as the rectification of deleterious mutations in patient-derived cells and the alteration of genes in multiple mammalian lung disease models. New avenues of treatment for lung disorders have been opened up by advances in CRISPR/Cas9 research. In this chapter, we discuss the known genes and mutations that cause several common respiratory disorders such as COPD, asthma, IPF, and ARDS. We further review the current research using CRISPR/Cas9 in numerous respiratory disorders and possible therapeutic treatments.
Collapse
Affiliation(s)
- C Bindu Ajaykumar
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Sripriya Rajkumar
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Girish Birappa
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - D A Ayush Gowda
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Aparna Jayachandran
- Fiona Elsey Cancer Research Institute, VIC, Australia; Federation University, VIC, Australia
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; College of Medicine, Hanyang University, Seoul, Korea.
| | | | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; College of Medicine, Hanyang University, Seoul, Korea.
| |
Collapse
|
2
|
Robertson JN, Diep H, Pinto AR, Sobey CG, Drummond GR, Vinh A, Jelinic M. Optimization of mouse kidney digestion protocols for single-cell applications. Physiol Genomics 2024; 56:469-482. [PMID: 38525531 PMCID: PMC11368571 DOI: 10.1152/physiolgenomics.00002.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024] Open
Abstract
Single-cell technologies such as flow cytometry and single-cell RNA sequencing have allowed for comprehensive characterization of the kidney cellulome. However, there is a disparity in the various protocols for preparing kidney single-cell suspensions. We aimed to address this limitation by characterizing kidney cellular heterogeneity using three previously published single-cell preparation protocols. Single-cell suspensions were prepared from male and female C57BL/6 kidneys using the following kidney tissue dissociation protocols: a scRNAseq protocol (P1), a multi-tissue digestion kit from Miltenyi Biotec (P2), and a protocol established in our laboratory (P3). Following dissociation, flow cytometry was used to identify known major cell types including leukocytes (myeloid and lymphoid), vascular cells (smooth muscle and endothelial), nephron epithelial cells (intercalating, principal, proximal, and distal tubule cells), podocytes, and fibroblasts. Of the protocols tested, P2 yielded significantly less leukocytes and type B intercalating cells compared with the other techniques. P1 and P3 produced similar yields for most cell types; however, endothelial and myeloid-derived cells were significantly enriched using P1. Significant sex differences were detected in only two cell types: granulocytes (increased in males) and smooth muscle cells (increased in females). Future single-cell studies that aim to enrich specific kidney cell types may benefit from this comparative analysis.NEW & NOTEWORTHY This study is the first to evaluate published single-cell suspension preparation protocols and their ability to produce high-quality cellular yields from the mouse kidney. Three single-cell digestion protocols were compared and each produced significant differences in kidney cellular heterogeneity. These findings highlight the importance of the digestion protocol when using single-cell technologies. This study may help future single-cell science research by guiding researchers to choose protocols that enrich certain cell types of interest.
Collapse
Affiliation(s)
- Jake N Robertson
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Henry Diep
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Alexander R Pinto
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
3
|
Diwan R, Bhatt HN, Dong R, Estevao IL, Varela-Ramirez A, Nurunnabi M. Cell selective BCL-2 inhibition enabled by lipid nanoparticles alleviates lung fibrosis. J Control Release 2024; 370:421-437. [PMID: 38701884 DOI: 10.1016/j.jconrel.2024.04.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/27/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with a high mortality rate due to limited treatment options. Current therapies cannot effectively reverse the damage caused by IPF. Research suggests that promoting programmed cell death (apoptosis) in myofibroblasts, the key cells driving fibrosis, could be a promising strategy. However, inducing apoptosis in healthy cells like epithelial and endothelial cells can cause unwanted side effects. This project addresses this challenge by developing a targeted approach to induce apoptosis specifically in myofibroblasts. We designed liposomes (LPS) decorated with peptides that recognize VCAM-1, a protein highly expressed on myofibroblasts in fibrotic lungs. These VCAM1-targeted LPS encapsulate Venetoclax (VNT), a small molecule drug that inhibits BCL-2, an anti-apoptotic protein. By delivering VNT directly to myofibroblasts, we hypothesize that VCAM1-VNT-LPS can selectively induce apoptosis in these cells, leading to reduced fibrosis and improved lung function. We successfully characterized VCAM1-VNT-LPS for size, surface charge, and drug loading efficiency. Additionally, we evaluated their stability over three months at different temperatures. In vitro and in vivo studies using a bleomycin-induced mouse model of lung fibrosis demonstrated the therapeutic potential of VCAM1-VNT-LPS. These studies showed a reduction in fibrosis-associated proteins (collagen, α-SMA, VCAM1) and BCL-2, while simultaneously increasing apoptosis in myofibroblasts. These findings suggest that VCAM1-targeted delivery of BCL-2 inhibitors using liposomes presents a promising and potentially selective therapeutic approach for IPF.
Collapse
Affiliation(s)
- Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Rui Dong
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, United States
| | - Igor L Estevao
- The Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, United States; Department of Biological Sciences, The University of Texas El Paso, TX 79968, United States
| | - Armando Varela-Ramirez
- The Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, United States; Department of Biological Sciences, The University of Texas El Paso, TX 79968, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, United States; The Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, United States.
| |
Collapse
|
4
|
Peng W, Yang Y, Lu H, Shi H, Jiang L, Liao X, Zhao H, Wang W, Liu J. Network pharmacology combines machine learning, molecular simulation dynamics and experimental validation to explore the mechanism of acetylbinankadsurin A in the treatment of liver fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117682. [PMID: 38169205 DOI: 10.1016/j.jep.2023.117682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/10/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Kadsura coccinea (Lem.) A. C. Smith is known as "Heilaohu" of the Tujia ethnomedicine in China. It has anti-tumor, anti-oxidation, anti-HIV, anti-inflammatory and liver protective effects, used to treat diseases such as rheumatoid arthritis, cancer, gastritis and hepatitis. In this research, we investigated the anti-fibrotic effect and possible mechanisms of acetylbinankadsurin A (ACBA) in vitro and in vivo, which is a natural compound derived from roots of K. coccinea. AIM OF THE STUDY We try to evaluate the efficacy of ACBA in the treatment of liver fibrosis and to explore the underlying mechanisms of ACBA by network pharmacology, machine learning, molecular docking, molecular dynamics simulations, and experimental assessment. MATERIALS AND METHODS ACBA was isolated from the CH2Cl2 layer of the roots of K. coccinea through column chromatographic techniques. The structure of ACBA was determined by using 1D and 2D NMR. CCl4-induced C57BL/6 mouse liver fibrosis models were established to evaluate the anti-fibrosis effects of ACBA in vivo. The molecular targets of ACBA and liver fibrosis were obtained from various databases, then constructed a protein-protein interaction (PPI) networks through the STRING database. Gene ontology (GO) enrichment and kyoto encyclopedia of genes and genomes (KEGG) analysis were applied using the "clusterProfiler" R package. Furthermore, the key genes for ACBA treatment of liver fibrosis were identified by the least absolute shrinkage and selection operator (LASSO). Molecular docking and molecular dynamics simulations were also carried out. Finally, the target and pathway of ACBA were verified by immunofluorescence staining, RT-PCR and Western blot. RESULT First, ACBA attenuated CCl4-induced liver injury and fibrosis in vivo. These findings were accompanied by decreased expression of α-SMA and collagen I. Second, ACBA significantly decreased serum levels of ALT, AST, TNF-α and IL-6. Then, we identified 133 potential targets of ACBA and 7987 targets of liver fibrosis. KEGG analysis showed that ACBA could regulate the drug metabolism - cytochrome P450, fructose and mannose metabolism, IL-17 and NF-κB signaling pathways. Next, six core targets was screened by LASSO analysis including AKR1B1, PFKFB3, EPHA3, CDK1, CCR1 and CYP3A4. Molecular docking showed that ACBA has a good binding affinity for CCR1. Furthermore, compared with CCR1 inhibitor BX-471, The results of molecular simulation dynamics showed that ACBA was stable in binding with CCR1. Consistently, ACBA remarkably downregulated the expression of CCR1, p-NF-κBp65, p-IκBα, p-STAT1 and TNF-α proteins, which were upregulated in CCl4-induced hepatic fibrosis and LPS-THP-1 cells. CONCLUSION Our results suggest that ACBA significantly attenuated CCl4-induced liver fibrosis in histopathological and in serum level. This effect may be mediated by CCR1, NF-κB and STAT1 signalling.
Collapse
Affiliation(s)
- Wangxia Peng
- Science and Technology Innovation Center of Hunan University of Traditional Chinese Medicine, Innovation Base of Hunan State Key Laboratory of Innovative Medicine and Traditional Chinese Medicine, Changsha, 410208, China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Huaguan Lu
- Science and Technology Innovation Center of Hunan University of Traditional Chinese Medicine, Innovation Base of Hunan State Key Laboratory of Innovative Medicine and Traditional Chinese Medicine, Changsha, 410208, China
| | - Huan Shi
- Science and Technology Innovation Center of Hunan University of Traditional Chinese Medicine, Innovation Base of Hunan State Key Laboratory of Innovative Medicine and Traditional Chinese Medicine, Changsha, 410208, China
| | - Lihong Jiang
- Science and Technology Innovation Center of Hunan University of Traditional Chinese Medicine, Innovation Base of Hunan State Key Laboratory of Innovative Medicine and Traditional Chinese Medicine, Changsha, 410208, China
| | - Xiaolin Liao
- Science and Technology Innovation Center of Hunan University of Traditional Chinese Medicine, Innovation Base of Hunan State Key Laboratory of Innovative Medicine and Traditional Chinese Medicine, Changsha, 410208, China
| | - Hongqing Zhao
- Science and Technology Innovation Center of Hunan University of Traditional Chinese Medicine, Innovation Base of Hunan State Key Laboratory of Innovative Medicine and Traditional Chinese Medicine, Changsha, 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Jianjun Liu
- Science and Technology Innovation Center of Hunan University of Traditional Chinese Medicine, Innovation Base of Hunan State Key Laboratory of Innovative Medicine and Traditional Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
5
|
Xu F, Tong Y, Yang W, Cai Y, Yu M, Liu L, Meng Q. Identifying a survival-associated cell type based on multi-level transcriptome analysis in idiopathic pulmonary fibrosis. Respir Res 2024; 25:126. [PMID: 38491375 PMCID: PMC10941445 DOI: 10.1186/s12931-024-02738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive disease with a five-year survival rate of less than 40%. There is significant variability in survival time among IPF patients, but the underlying mechanisms for this are not clear yet. METHODS AND RESULTS We collected single-cell RNA sequence data of 13,223 epithelial cells taken from 32 IPF patients and bulk RNA sequence data from 456 IPF patients in GEO. Based on unsupervised clustering analysis at the single-cell level and deconvolution algorithm at bulk RNA sequence data, we discovered a special alveolar type 2 cell subtype characterized by high expression of CCL20 (referred to as ATII-CCL20), and found that IPF patients with a higher proportion of ATII-CCL20 had worse prognoses. Furthermore, we uncovered the upregulation of immune cell infiltration and metabolic functions in IPF patients with a higher proportion of ATII-CCL20. Finally, the comprehensive decision tree and nomogram were constructed to optimize the risk stratification of IPF patients and provide a reference for accurate prognosis evaluation. CONCLUSIONS Our study by integrating single-cell and bulk RNA sequence data from IPF patients identified a special subtype of ATII cells, ATII-CCL20, which was found to be a risk cell subtype associated with poor prognosis in IPF patients. More importantly, the ATII-CCL20 cell subtype was linked with metabolic functions and immune infiltration.
Collapse
Affiliation(s)
- Fei Xu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yun Tong
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Wenjun Yang
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yiyang Cai
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Meini Yu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Lei Liu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Qingkang Meng
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
6
|
Szabo I, Badii M, Gaál IO, Szabo R, Sîrbe C, Humiță O, Joosten LAB, Crișan TO, Rednic S. Immune Profiling of Patients with Systemic Sclerosis through Targeted Proteomic Analysis. Int J Mol Sci 2023; 24:17601. [PMID: 38139427 PMCID: PMC10744051 DOI: 10.3390/ijms242417601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
High-throughput proteomic analysis could offer new insights into the pathogenesis of systemic sclerosis (SSc) and reveal non-invasive biomarkers for diagnosis and severity. This study aimed to assess the protein signature of patients with SSc compared to that of healthy volunteers, decipher various disease endotypes using circulating proteins, and determine the diagnostic performance of significantly expressed plasma analytes. We performed targeted proteomic profiling in a cohort of fifteen patients with SSc and eighteen controls using the Olink® (Olink Bioscience, Uppsala, Sweden)Target 96 Inflammation Panels. Seventeen upregulated proteins involved in angiogenesis, innate immunity, and co-stimulatory pathways discriminated between patients with SSc and healthy controls (HCs) and further classified them into two clusters, a low-inflammatory and a high-inflammatory endotype. Younger age, shorter disease duration, and lack of reflux esophagitis characterized patients in the low-inflammatory endotype. TNF, CXCL9, TNFRSF9, and CXCL10 positively correlated with disease progression, while the four-protein panel comprising TNF, CXCL9, CXCL10, and CX3CL1 showed high diagnostic performance. Collectively, this study identified a distinct inflammatory signature in patients with SSc that reflects a persistent T helper type 1 (Th 1) immune response irrespective of disease duration, while the multi-protein panel might improve early diagnosis in SSc.
Collapse
Affiliation(s)
- Iulia Szabo
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.S.)
- Department of Rheumatology, County Emergency Hospital, 400347 Cluj-Napoca, Romania
| | - Medeea Badii
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Ildikó O. Gaál
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Robert Szabo
- 2nd Anesthesia Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Anesthesia and Intensive Care, County Emergency Hospital, 400347 Cluj-Napoca, Romania
| | - Claudia Sîrbe
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- 2nd Pediatric Clinic, Center of Expertise in Pediatric Liver Rare Disorders, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Oana Humiță
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.S.)
| | - Leo A. B. Joosten
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Tania O. Crișan
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Simona Rednic
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.S.)
- Department of Rheumatology, County Emergency Hospital, 400347 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Theodoris CV, Xiao L, Chopra A, Chaffin MD, Al Sayed ZR, Hill MC, Mantineo H, Brydon EM, Zeng Z, Liu XS, Ellinor PT. Transfer learning enables predictions in network biology. Nature 2023; 618:616-624. [PMID: 37258680 PMCID: PMC10949956 DOI: 10.1038/s41586-023-06139-9] [Citation(s) in RCA: 247] [Impact Index Per Article: 123.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/27/2023] [Indexed: 06/02/2023]
Abstract
Mapping gene networks requires large amounts of transcriptomic data to learn the connections between genes, which impedes discoveries in settings with limited data, including rare diseases and diseases affecting clinically inaccessible tissues. Recently, transfer learning has revolutionized fields such as natural language understanding1,2 and computer vision3 by leveraging deep learning models pretrained on large-scale general datasets that can then be fine-tuned towards a vast array of downstream tasks with limited task-specific data. Here, we developed a context-aware, attention-based deep learning model, Geneformer, pretrained on a large-scale corpus of about 30 million single-cell transcriptomes to enable context-specific predictions in settings with limited data in network biology. During pretraining, Geneformer gained a fundamental understanding of network dynamics, encoding network hierarchy in the attention weights of the model in a completely self-supervised manner. Fine-tuning towards a diverse panel of downstream tasks relevant to chromatin and network dynamics using limited task-specific data demonstrated that Geneformer consistently boosted predictive accuracy. Applied to disease modelling with limited patient data, Geneformer identified candidate therapeutic targets for cardiomyopathy. Overall, Geneformer represents a pretrained deep learning model from which fine-tuning towards a broad range of downstream applications can be pursued to accelerate discovery of key network regulators and candidate therapeutic targets.
Collapse
Affiliation(s)
- Christina V Theodoris
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School Genetics Training Program, Boston, USA.
| | - Ling Xiao
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Anant Chopra
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, USA
| | - Mark D Chaffin
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zeina R Al Sayed
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew C Hill
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Helene Mantineo
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Zexian Zeng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
8
|
Badaro-Garcia S, Hohmann MS, Coelho AL, Verri WA, Hogaboam CM. Standard of care drugs do not modulate activity of senescent primary human lung fibroblasts. Sci Rep 2023; 13:3654. [PMID: 36871123 PMCID: PMC9985617 DOI: 10.1038/s41598-023-30844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
Cellular senescence is crucial in the progression of idiopathic pulmonary fibrosis (IPF), but it is not evident whether the standard-of-care (SOC) drugs, nintedanib and pirfenidone, have senolytic properties. To address this question, we performed colorimetric and fluorimetric assays, qRT-PCR, and western blotting to evaluate the effect of SOC drugs and D + Q on senescent normal and IPF lung fibroblasts. In this study, we found that SOC drugs did not provoke apoptosis in the absence of death ligand in normal or IPF senescent lung fibroblasts. Nintedanib increased caspase-3 activity in the presence of Fas Ligand in normal but not in IPF senescent fibroblasts. Conversely, nintedanib enhanced B cell lymphoma 2 expression in senescent IPF lung fibroblasts. Moreover, in senescent IPF cells, pirfenidone induced mixed lineage kinase domain-like pseudokinase phosphorylation, provoking necroptosis. Furthermore, pirfenidone increased transcript levels of FN1 and COL1A1 in senescent IPF fibroblasts. Lastly, D + Q augmented growth differentiation factor 15 (GDF15) transcript and protein levels in both normal and IPF senescent fibroblasts. Taken together, these results establish that SOC drugs failed to trigger apoptosis in senescent primary human lung fibroblasts, possibly due to enhanced Bcl-2 levels by nintedanib and the activation of the necroptosis pathway by pirfenidone. Together, these data revealed the inefficacy of SOC drugs to target senescent cells in IPF.
Collapse
Affiliation(s)
- Stephanie Badaro-Garcia
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, USA.,Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Miriam S Hohmann
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Ana Lucia Coelho
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Cory M Hogaboam
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, USA.
| |
Collapse
|
9
|
Subramanian A, Alperovich M, Yang Y, Li B. Biology-inspired data-driven quality control for scientific discovery in single-cell transcriptomics. Genome Biol 2022; 23:267. [PMID: 36575523 PMCID: PMC9793662 DOI: 10.1186/s13059-022-02820-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Quality control (QC) of cells, a critical first step in single-cell RNA sequencing data analysis, has largely relied on arbitrarily fixed data-agnostic thresholds applied to QC metrics such as gene complexity and fraction of reads mapping to mitochondrial genes. The few existing data-driven approaches perform QC at the level of samples or studies without accounting for biological variation. RESULTS We first demonstrate that QC metrics vary with both tissue and cell types across technologies, study conditions, and species. We then propose data-driven QC (ddqc), an unsupervised adaptive QC framework to perform flexible and data-driven QC at the level of cell types while retaining critical biological insights and improved power for downstream analysis. ddqc applies an adaptive threshold based on the median absolute deviation on four QC metrics (gene and UMI complexity, fraction of reads mapping to mitochondrial and ribosomal genes). ddqc retains over a third more cells when compared to conventional data-agnostic QC filters. Finally, we show that ddqc recovers biologically meaningful trends in gradation of gene complexity among cell types that can help answer questions of biological interest such as which cell types express the least and most number of transcripts overall, and ribosomal transcripts specifically. CONCLUSIONS ddqc retains cell types such as metabolically active parenchymal cells and specialized cells such as neutrophils which are often lost by conventional QC. Taken together, our work proposes a revised paradigm to quality filtering best practices-iterative QC, providing a data-driven QC framework compatible with observed biological diversity.
Collapse
Affiliation(s)
- Ayshwarya Subramanian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Brigham and Womens's Hospital, Harvard Medical School, Boston, USA.
| | - Mikhail Alperovich
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT PRIMES, Massachusetts Institute of Technology, Cambridge, MA, USA
- Lexington High School, Lexington, MA, USA
- Present Address: Wake Technical Community College, Raleigh, USA
| | - Yiming Yang
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Present Address: Department of Cellular and Tissue Genomics, Genentech Inc., South San Francisco, CA, USA
| | - Bo Li
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Present Address: Department of Cellular and Tissue Genomics, Genentech Inc., South San Francisco, CA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Pan-Phosphodiesterase Inhibitors Attenuate TGF-β-Induced Pro-Fibrotic Phenotype in Alveolar Epithelial Type II Cells by Downregulating Smad-2 Phosphorylation. Pharmaceuticals (Basel) 2022; 15:ph15040423. [PMID: 35455420 PMCID: PMC9024446 DOI: 10.3390/ph15040423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Airway remodeling is a pathological process that accompanies many chronic lung diseases. One of the important players in this process are epithelial cells, which under the influence of pro-inflammatory and pro-fibrotic factors present in the airway niche, actively participate in the remodeling process by increasing extracellular matrix secretion, acquiring migration properties, and overproducing pro-fibrotic transducers. Here, we investigated the effect of three new 8-arylalkylamino- and 8-alkoxy-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl-N-(5-(tert-butyl)-2-hydroxyphenyl)butanamides (1, 2, and 3), representing prominent pan-phosphodiesterase (pan-PDE) inhibitors on transforming growth factor type β (TGF-β)-induced alveolar epithelial type II cells (A549 cell line) of a pro-fibrotic phenotype. Our results demonstrate for the first time the strong activity of pan-PDE inhibitors in the prevention of TGF-β-induced mesenchymal markers’ expression and A549 cells’ migration. We also showed an increased p-CREB and decreased p-Smad-2 phosphorylation in TGF-β-induced A549 cells treated with 1, 2, and 3 derivatives, thereby confirming a pan-PDE inhibitor mesenchymal phenotype reducing effect in alveolar epithelial type II cells via suppression of the canonical Smad signaling pathway. Our observations confirmed that PDE inhibitors, and especially those active against various isoforms involved in the airway remodeling, constitute an interesting group of compounds modulating the pro-fibrotic response of epithelial cells.
Collapse
|
11
|
Niwamoto T, Handa T, Murase Y, Nakatsuka Y, Tanizawa K, Taguchi Y, Tomioka H, Tomii K, Kita H, Uyama M, Tsuchiya M, Emura M, Kawamura T, Arai N, Arita M, Uno K, Yoshizawa A, Uozumi R, Yamaguchi I, Matsuda F, Chin K, Hirai T. Cutaneous T-cell-attracting chemokine as a novel biomarker for predicting prognosis of idiopathic pulmonary fibrosis: a prospective observational study. Respir Res 2021; 22:181. [PMID: 34158044 PMCID: PMC8218397 DOI: 10.1186/s12931-021-01779-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/13/2021] [Indexed: 12/31/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic lung disease that leads to respiratory failure and death. Although there is a greater understanding of the etiology of this disease, accurately predicting the disease course in individual patients is still not possible. This study aimed to evaluate serum cytokines/chemokines as potential biomarkers that can predict outcomes in IPF patients. Methods A multi-institutional prospective two-stage discovery and validation design using two independent cohorts was adopted. For the discovery analysis, serum samples from 100 IPF patients and 32 healthy controls were examined using an unbiased, multiplex immunoassay of 48 cytokines/chemokines. The serum cytokine/chemokine values were compared between IPF patients and controls; the association between multiplex measurements and survival time was evaluated in IPF patients. In the validation analysis, the cytokines/chemokines identified in the discovery analysis were examined in serum samples from another 81 IPF patients to verify the ability of these cytokines/chemokines to predict survival. Immunohistochemical assessment of IPF-derived lung samples was also performed to determine where this novel biomarker is expressed. Results In the discovery cohort, 18 cytokines/chemokines were significantly elevated in sera from IPF patients compared with those from controls. Interleukin-1 receptor alpha (IL-1Rα), interleukin-8 (IL-8), macrophage inflammatory protein 1 alpha (MIP-1α), and cutaneous T-cell-attracting chemokine (CTACK) were associated with survival: IL-1Rα, hazard ratio (HR) = 1.04 per 10 units, 95% confidence interval (95% CI) 1.01–1.07; IL-8, HR = 1.04, 95% CI 1.01–1.08; MIP-1α, HR = 1.19, 95% CI 1.00–1.36; and CTACK, HR = 1.12 per 100 units, 95% CI 1.02–1.21. A replication analysis was performed only for CTACK because others were previously reported to be potential biomarkers of interstitial lung diseases. In the validation cohort, CTACK was associated with survival: HR = 1.14 per 100 units, 95% CI 1.01–1.28. Immunohistochemistry revealed the expression of CTACK and CC chemokine receptor 10 (a ligand of CTACK) in airway and type II alveolar epithelial cells of IPF patients but not in those of controls. Conclusions CTACK is a novel prognostic biomarker of IPF. Trial registration None (because of no healthcare intervention) Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01779-9.
Collapse
Affiliation(s)
- Takafumi Niwamoto
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomohiro Handa
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan. .,Department of Advanced Medicine for Respiratory Failure, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Yuko Murase
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshinari Nakatsuka
- Department of Respiratory Care and Sleep Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kiminobu Tanizawa
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshio Taguchi
- Department of Respiratory Medicine, Tenri Hospital, 200 Mishima-cho, Nara, 632-0015, Japan
| | - Hiromi Tomioka
- Department of Respiratory Medicine, Kobe City Medical Center West Hospital, 2-4 Ichiban-cho, Nagata-ku, Hyogo, 653-0013, Japan
| | - Keisuke Tomii
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, 2-1-1 Minatojimaminami-machi, Chuou-ku, Hyogo, 650-0047, Japan
| | - Hideo Kita
- Department of Respiratory Medicine, Takatsuki Red Cross Hospital, 1-1-1 abuno, Osaka, 569-1045, Japan
| | - Michihiro Uyama
- Respiratory Disease Center, Kitano Hospital, Tazuke Kofukai Medical, Research Institute, 2-4-0 Ohgimachi, Kita-ku, Osaka, 530-8480, Japan
| | - Michiko Tsuchiya
- Department of Respiratory Medicine, Otowa Hospital, 2 Otowachinji-cho, Yamashina-ku, Kyoto, 607-8062, Japan
| | - Masahito Emura
- Department of Respiratory Medicine, Kyoto City Hospital, 1-2 Mibuhigasitakada-cho, nakagyo-ku, Kyoto, 604-8845, Japan
| | - Tetsuji Kawamura
- Department of Respiratory Medicine, Himeji Medical Center, 68 Hon-machi, Hyogo, 670-8520, Japan
| | - Naoki Arai
- National Hospital Organization Ibaraki Higashi National Hospital, Terunuma 825, Tokai, Ibaraki, 319-1113, Japan
| | - Machiko Arita
- Department of Respiratory Medicine, Ohara Healthcare Foundation, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki, Okayama, 710-8602, Japan
| | - Kazuko Uno
- Louis Pasteur Center for Medical Research, 103-5 Tanakamonzen-cho, Sakyo-ku, Kyoto, 606-8225, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryuji Uozumi
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Izumi Yamaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazuo Chin
- Department of Respiratory Care and Sleep Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
12
|
Hohmann MS, Habiel DM, Espindola MS, Huang G, Jones I, Narayanan R, Coelho AL, Oldham JM, Noth I, Ma SF, Kurkciyan A, McQualter JL, Carraro G, Stripp B, Chen P, Jiang D, Noble PW, Parks W, Woronicz J, Yarranton G, Murray LA, Hogaboam CM. Antibody-mediated depletion of CCR10+EphA3+ cells ameliorates fibrosis in IPF. JCI Insight 2021; 6:141061. [PMID: 33945505 PMCID: PMC8262321 DOI: 10.1172/jci.insight.141061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant repair that diminishes lung function via mechanisms that remain poorly understood. CC chemokine receptor (CCR10) and its ligand CCL28 were both elevated in IPF compared with normal donors. CCR10 was highly expressed by various cells from IPF lungs, most notably stage-specific embryonic antigen-4-positive mesenchymal progenitor cells (MPCs). In vitro, CCL28 promoted the proliferation of CCR10+ MPCs while CRISPR/Cas9-mediated targeting of CCR10 resulted in the death of MPCs. Following the intravenous injection of various cells from IPF lungs into immunodeficient (NOD/SCID-γ, NSG) mice, human CCR10+ cells initiated and maintained fibrosis in NSG mice. Eph receptor A3 (EphA3) was among the highest expressed receptor tyrosine kinases detected on IPF CCR10+ cells. Ifabotuzumab-targeted killing of EphA3+ cells significantly reduced the numbers of CCR10+ cells and ameliorated pulmonary fibrosis in humanized NSG mice. Thus, human CCR10+ cells promote pulmonary fibrosis, and EphA3 mAb-directed elimination of these cells inhibits lung fibrosis.
Collapse
Affiliation(s)
- Miriam S Hohmann
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David M Habiel
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Milena S Espindola
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Guanling Huang
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Isabelle Jones
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rohan Narayanan
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ana Lucia Coelho
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Justin M Oldham
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Sacramento, California, USA
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Shwu-Fan Ma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Adrianne Kurkciyan
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jonathan L McQualter
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gianni Carraro
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Barry Stripp
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peter Chen
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dianhua Jiang
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Paul W Noble
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - William Parks
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - John Woronicz
- KaloBios Pharmaceuticals, Inc. (now Humanigen, Inc.), Burlingame, California, USA
| | - Geoffrey Yarranton
- KaloBios Pharmaceuticals, Inc. (now Humanigen, Inc.), Burlingame, California, USA
| | | | - Cory M Hogaboam
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
13
|
Kasuya Y, Kim JD, Hatano M, Tatsumi K, Matsuda S. Pathophysiological Roles of Stress-Activated Protein Kinases in Pulmonary Fibrosis. Int J Mol Sci 2021; 22:ijms22116041. [PMID: 34204949 PMCID: PMC8199902 DOI: 10.3390/ijms22116041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is one of the most symptomatic progressive fibrotic lung diseases, in which patients have an extremely poor prognosis. Therefore, understanding the precise molecular mechanisms underlying pulmonary fibrosis is necessary for the development of new therapeutic options. Stress-activated protein kinases (SAPKs), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38) are ubiquitously expressed in various types of cells and activated in response to cellular environmental stresses, including inflammatory and apoptotic stimuli. Type II alveolar epithelial cells, fibroblasts, and macrophages are known to participate in the progression of pulmonary fibrosis. SAPKs can control fibrogenesis by regulating the cellular processes and molecular functions in various types of lung cells (including cells of the epithelium, interstitial connective tissue, blood vessels, and hematopoietic and lymphoid tissue), all aspects of which remain to be elucidated. We recently reported that the stepwise elevation of intrinsic p38 signaling in the lungs is correlated with a worsening severity of bleomycin-induced fibrosis, indicating an importance of this pathway in the progression of pulmonary fibrosis. In addition, a transcriptome analysis of RNA-sequencing data from this unique model demonstrated that several lines of mechanisms are involved in the pathogenesis of pulmonary fibrosis, which provides a basis for further studies. Here, we review the accumulating evidence for the spatial and temporal roles of SAPKs in pulmonary fibrosis.
Collapse
Affiliation(s)
- Yoshitoshi Kasuya
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.H.); (S.M.)
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Correspondence: ; Tel.: +81-432-262-193; Fax: +81-432-262-196
| | - Jun-Dal Kim
- Department of Research and Development, Institute of Natural Medicine (INM), University of Toyama, Toyama 930-0194, Japan;
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.H.); (S.M.)
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Shuichi Matsuda
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.H.); (S.M.)
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| |
Collapse
|
14
|
Liu X, Qin X, Qin H, Jia C, Yuan Y, Sun T, Chen B, Chen C, Zhang H. Characterization of the heterogeneity of endothelial cells in bleomycin-induced lung fibrosis using single-cell RNA sequencing. Angiogenesis 2021; 24:809-821. [PMID: 34028626 PMCID: PMC8487874 DOI: 10.1007/s10456-021-09795-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
The loss of normal alveolar capillary and deregulated angiogenesis occurs simultaneously in idiopathic pulmonary fibrosis (IPF); however the contributions of specific endothelial subpopulations in the development of pulmonary fibrosis are poorly understood. Herein, we perform single-cell RNA sequencing to characterize the heterogeneity of endothelial cells (ECs) in bleomycin (BLM)-induced lung fibrosis in rats. One subpopulation, characterized by the expression of Nos3 and Cav1, is mostly distributed in non-fibrotic lungs and also highly expresses genes related to the “response to mechanical stimulus” and “lung/heart morphogenesis” processes. Another subpopulation of ECs expanded in BLM-treated lungs, characterized by Cxcl12, is observed to be closely related to the pro-fibrotic process in the transcriptome data, such as “regulation of angiogenesis,” “collagen binding,” and “chemokine activity,” and spatially localized to BLM-induced neovascularization. Using CellPhoneDB software, we generated a complex cell–cell interaction network, which predicts the potential roles of EC subpopulations in recruiting monocytes, inducing the proliferation of fibroblasts and promoting the production and remolding of the extracellular matrix (ECM). Taken together, our data demonstrate the high degree of heterogeneity of ECs in fibrotic lung and it is proposed that the interaction between ECs, macrophages, and stromal cells contributes to pathologic IPF.
Collapse
Affiliation(s)
- Xiucheng Liu
- Thoracic Surgery Laboratory, the First College of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,Department of Thoracic Surgery, Affifiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Xichun Qin
- Department of Thoracic Surgery, Affifiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Hao Qin
- Department of Thoracic Surgery, Affifiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Caili Jia
- Department of Thoracic Surgery, Affifiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Yanliang Yuan
- Department of Thoracic Surgery, Affifiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Teng Sun
- Department of Thoracic Surgery, Affifiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Bi Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Hao Zhang
- Thoracic Surgery Laboratory, the First College of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China. .,Department of Thoracic Surgery, Affifiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China.
| |
Collapse
|
15
|
Espindola MS, Habiel DM, Coelho AL, Stripp B, Parks WC, Oldham J, Martinez FJ, Noth I, Lopez D, Mikels-Vigdal A, Smith V, Hogaboam CM. Differential Responses to Targeting Matrix Metalloproteinase 9 in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2021; 203:458-470. [PMID: 33052708 PMCID: PMC7885832 DOI: 10.1164/rccm.201910-1977oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: Aberrant lung remodeling in idiopathic pulmonary fibrosis (IPF) is characterized by elevated MMP9 (matrix metalloproteinase 9) expression, but the precise role of this matrix metalloproteinase in this disease has yet to be fully elucidated.Objectives: To evaluate antifibrotic effects of MMP9 inhibition on IPF.Methods: Quantitative genomic, proteomic, and functional analyses both in vitro and in vivo were used to determine MMP9 expression in IPF cells and the effects of MMP9 inhibition on profibrotic mechanisms.Measurements and Main Results: In the present study, we demonstrate that MMP9 expression was increased in airway basal cell (ABC)-like cells from IPF lungs compared with ABC cells from normal lungs. The inhibition of MMP9 activity with an anti-MMP9 antibody, andecaliximab, blocked TGF-β1 (transforming growth factor β1)-induced Smad2 phosphorylation. However, in a subset of cells from patients with IPF, TGF-β1 activation in their ABC-like cells was unaffected or enhanced by MMP9 blockade (i.e., nonresponders). Further analysis of nonresponder ABC-like cells treated with andecaliximab revealed an association with type 1 IFN expression, and the addition of IFNα to these cells modulated both MMP9 expression and TGF-β1 activation. Finally, the inhibition of MMP9 ameliorated pulmonary fibrosis induced by responder lung cells but not a nonresponder in a humanized immunodeficient mouse model of IPF.Conclusions: Together, these data demonstrate that MMP9 regulates the activation of ABC-like cells in IPF and that targeting this MMP might be beneficial to a subset of patients with IPF who show sufficient expression of type 1 IFNs.
Collapse
Affiliation(s)
- Milena S. Espindola
- Women’s Guild Lung Institute, Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - David M. Habiel
- Women’s Guild Lung Institute, Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ana Lucia Coelho
- Women’s Guild Lung Institute, Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Barry Stripp
- Women’s Guild Lung Institute, Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - William C. Parks
- Women’s Guild Lung Institute, Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Justin Oldham
- Division of Pulmonary & Critical Care Medicine, University of California at Davis, Sacramento, California
| | | | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia; and
| | - David Lopez
- Department of Biology, Gilead Sciences, Inc., Foster City, California
| | | | - Victoria Smith
- Department of Biology, Gilead Sciences, Inc., Foster City, California
| | - Cory M. Hogaboam
- Women’s Guild Lung Institute, Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
16
|
Sivakumar P, Ammar R, Thompson JR, Luo Y, Streltsov D, Porteous M, McCoubrey C, Cantu E, Beers MF, Jarai G, Christie JD. Integrated plasma proteomics and lung transcriptomics reveal novel biomarkers in idiopathic pulmonary fibrosis. Respir Res 2021; 22:273. [PMID: 34689792 PMCID: PMC8543878 DOI: 10.1186/s12931-021-01860-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/09/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with a significant unmet medical need. Development of transformational therapies for IPF is challenging in part to due to lack of robust predictive biomarkers of prognosis and treatment response. Importantly, circulating biomarkers of IPF are limited and none are in clinical use. METHODS We previously reported dysregulated pathways and new disease biomarkers in advanced IPF through RNA sequencing of lung tissues from a cohort of transplant-stage IPF patients (n = 36) in comparison to normal healthy donors (n = 19) and patients with acute lung injury (n = 11). Here we performed proteomic profiling of matching plasma samples from these cohorts through the Somascan-1300 SomaLogics platform. RESULTS Comparative analyses of lung transcriptomic and plasma proteomic signatures identified a set of 34 differentially expressed analytes (fold change (FC) ≥ ± 1.5, false discovery ratio (FDR) ≤ 0.1) in IPF samples compared to healthy controls. IPF samples showed strong enrichment of chemotaxis, tumor infiltration and mast cell migration pathways and downregulated extracellular matrix (ECM) degradation. Mucosal (CCL25 and CCL28) and Th2 (CCL17 and CCL22) chemokines were markedly upregulated in IPF and highly correlated within the subjects. The mast cell maturation chemokine, CXCL12, was also upregulated in IPF plasma (fold change 1.92, FDR 0.006) and significantly correlated (Pearson r = - 0.38, p = 0.022) to lung function (%predicted FVC), with a concomitant increase in the mast cell Tryptase, TPSB2. Markers of collagen III and VI degradation (C3M and C6M) were significantly downregulated (C3M p < 0.001 and C6M p < 0.0001 IPF vs control) and correlated, Pearson r = 0.77) in advanced IPF consistent with altered ECM homeostasis. CONCLUSIONS Our study identifies a panel of tissue and circulating biomarkers with clinical utility in IPF that can be validated in future studies across larger cohorts.
Collapse
Affiliation(s)
- Pitchumani Sivakumar
- grid.419971.30000 0004 0374 8313Translational Early Development, Bristol-Myers Squibb Research and Development, 3551 Lawrenceville Road, Princeton, NJ 08540 USA
| | - Ron Ammar
- grid.419971.30000 0004 0374 8313Informatics and Predictive Sciences, Bristol-Myers Squibb Research and Development, Princeton, NJ USA
| | - John Ryan Thompson
- grid.419971.30000 0004 0374 8313Informatics and Predictive Sciences, Bristol-Myers Squibb Research and Development, Princeton, NJ USA
| | - Yi Luo
- grid.419971.30000 0004 0374 8313Translational Medicine, Bristol-Myers Squibb Research and Development, Princeton, NJ USA
| | - Denis Streltsov
- grid.419971.30000 0004 0374 8313Fibrosis Discovery Biology, Bristol-Myers Squibb Research and Development, Princeton, NJ USA
| | - Mary Porteous
- grid.25879.310000 0004 1936 8972Pulmonary and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Carly McCoubrey
- grid.25879.310000 0004 1936 8972Pulmonary and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Edward Cantu
- grid.25879.310000 0004 1936 8972Department of Surgery, Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, PA USA
| | - Michael F. Beers
- grid.25879.310000 0004 1936 8972Pulmonary and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972PENN Lung Biology Institute, University of Pennsylvania, Philadelphia, PA USA
| | - Gabor Jarai
- grid.419971.30000 0004 0374 8313Fibrosis Discovery Biology, Bristol-Myers Squibb Research and Development, Princeton, NJ USA
| | - Jason D. Christie
- grid.25879.310000 0004 1936 8972Pulmonary and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972PENN Lung Biology Institute, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
17
|
Gao F, Zhang Y, Yang Z, Wang M, Zhou Z, Zhang W, Ren Y, Han X, Wei M, Sun Z, Nie S. Arctigenin Suppressed Epithelial-Mesenchymal Transition Through Wnt3a/β-Catenin Pathway in PQ-Induced Pulmonary Fibrosis. Front Pharmacol 2020; 11:584098. [PMID: 33390951 PMCID: PMC7772408 DOI: 10.3389/fphar.2020.584098] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/20/2020] [Indexed: 11/20/2022] Open
Abstract
Arctigenin (ATG), a major bioactive substance of Fructus Arctii, counters renal fibrosis; however, whether it protects against paraquat (PQ)-induced lung fibrosis remains unknown. The present study was to determine the effect of ATG on PQ-induced lung fibrosis in a mouse model and the underlying mechanism. Firstly, we found that ATG suppressed PQ-induced pulmonary fibrosis by blocking the epithelial-mesenchymal transition (EMT). ATG reduced the expressions of Vimentin and α-SMA (lung fibrosis markers) induced by PQ and restored the expressions of E-cadherin and Occludin (two epithelial markers) in vivo and in vitro. Besides, the Wnt3a/β-catenin signaling pathway was significantly activated in PQ induced pulmonary fibrosis. Further analysis showed that pretreatment of ATG profoundly abrogated PQ-induced EMT-like phenotypes and behaviors in A549 cells. The Wnt3a/β-catenin signaling pathway was repressed by ATG treatment. The overexpression of Wnt3a could weaken the therapeutic effect of ATG in A549 cells. These findings suggested that ATG could serve as a new therapeutic candidate to inhibit or even reverse EMT-like changes in alveolar type II cells during PQ-induced lung fibrosis, and unraveled that the Wnt3a/β-catenin pathway might be a mechanistic tool for ATG to control pulmonary fibrosis.
Collapse
Affiliation(s)
- Fei Gao
- Department of Emergency Medicine, Jinling Clinical College of Nanjing Medical University, Nanjing, China.,Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Emergency Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yun Zhang
- Department of Emergency Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhiyi Zhou
- Department of Pathology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoqin Han
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mei Wei
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Clinical College of Nanjing Medical University, Nanjing, China.,Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Veith C, Hristova M, Danyal K, Habibovic A, Dustin CM, McDonough JE, Vanaudenaerde BM, Kreuter M, Schneider MA, Kahn N, van Schooten FJ, Boots AW, van der Vliet A. Profibrotic epithelial TGF-β1 signaling involves NOX4-mitochondria cross talk and redox-mediated activation of the tyrosine kinase FYN. Am J Physiol Lung Cell Mol Physiol 2020; 320:L356-L367. [PMID: 33325804 DOI: 10.1152/ajplung.00444.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by a disturbed redox balance and increased production of reactive oxygen species (ROS), which is believed to contribute to epithelial injury and fibrotic lung scarring. The main pulmonary sources of ROS include mitochondria and NADPH oxidases (NOXs), of which the NOX4 isoform has been implicated in IPF. Non-receptor SRC tyrosine kinases (SFK) are important for cellular homeostasis and are often dysregulated in lung diseases. SFK activation by the profibrotic transforming growth factor-β (TGF-β) is thought to contribute to pulmonary fibrosis, but the relevant SFK isoform and its relationship to NOX4 and/or mitochondrial ROS in the context of profibrotic TGF-β signaling is not known. Here, we demonstrate that TGF-β1 can rapidly activate the SRC kinase FYN in human bronchial epithelial cells, which subsequently induces mitochondrial ROS (mtROS) production, genetic damage shown by the DNA damage marker γH2AX, and increased expression of profibrotic genes. Moreover, TGF-β1-induced activation of FYN involves initial activation of NOX4 and direct cysteine oxidation of FYN, and both FYN and mtROS contribute to TGF-β-induced induction of NOX4. NOX4 expression in lung tissues of IPF patients is positively correlated with disease severity, although FYN expression is down-regulated in IPF and does not correlate with disease severity. Collectively, our findings highlight a critical role for FYN in TGF-β1-induced mtROS production, DNA damage response, and induction of profibrotic genes in bronchial epithelial cells, and suggest that altered expression and activation of NOX4 and FYN may contribute to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Carmen Veith
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Pharmacology and Toxicology, NUTRIM School of Nutrition, Translational Research and Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - John E McDonough
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven, Belgium
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Marc A Schneider
- Translational Research Unit, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Nicolas Kahn
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Frederik J van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition, Translational Research and Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Agnes W Boots
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition, Translational Research and Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
19
|
Wu B, Tang L, Kapoor M. Fibroblasts and their responses to chronic injury in pulmonary fibrosis. Semin Arthritis Rheum 2020; 51:310-317. [PMID: 33440304 DOI: 10.1016/j.semarthrit.2020.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
The field of pulmonary fibrosis is rapidly expanding as new insights highlight novel mechanisms that influence fibroblast biology and likely promote aberrant and chronic activation of the tissue repair response. Current paradigms suggest repeated epithelial microinjury as a driver for pathology; however, the rapid expansion of pulmonary fibrosis research calls for an overview on how fibroblasts respond to both neighbouring cells and the injury microenvironment. This review seeks to highlight recent discoveries and identify areas that require further research regarding fibroblasts, and their role in pulmonary fibrosis.
Collapse
Affiliation(s)
- B Wu
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Surgery and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - L Tang
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Surgery and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - M Kapoor
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Surgery and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Atabai K, Yang CD, Podolsky MJ. You Say You Want a Resolution (of Fibrosis). Am J Respir Cell Mol Biol 2020; 63:424-435. [PMID: 32640171 DOI: 10.1165/rcmb.2020-0182tr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In pathological fibrosis, aberrant tissue remodeling with excess extracellular matrix leads to organ dysfunction and eventual morbidity. Diseases of fibrosis create significant global health and economic burdens and are often deadly. Although fibrosis has traditionally been thought of as an irreversible process, a growing body of evidence demonstrates that organ fibrosis can reverse in certain circumstances, especially if an underlying cause of injury can be removed. This body of evidence has uncovered more and more contributors to persistent and nonresolving tissue fibrosis. Here, we review the present knowledge on resolution of organ fibrosis and restoration of near-normal tissue architecture. We emphasize three critical areas of tissue homeostasis that are necessary for fibrosis resolution, namely, the elimination of matrix-producing cells, the clearance of excess matrix, and the regeneration of normal tissue constituents. In so doing, we also highlight how profibrotic pathways interact with one another and where there may be therapeutic opportunities to intervene and remediate pathological persistent fibrosis.
Collapse
Affiliation(s)
- Kamran Atabai
- Cardiovascular Research Institute.,Lung Biology Center, and.,Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Michael J Podolsky
- Cardiovascular Research Institute.,Lung Biology Center, and.,Department of Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
21
|
Bharat A, Querrey M, Markov NS, Kim S, Kurihara C, Garza-Castillon R, Manerikar A, Shilatifard A, Tomic R, Politanska Y, Abdala-Valencia H, Yeldandi AV, Lomasney JW, Misharin AV, Budinger GRS. Lung transplantation for pulmonary fibrosis secondary to severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 33140069 DOI: 10.1101/2020.10.26.20218636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lung transplantation can potentially be a life-saving treatment for patients with non-resolving COVID-19 acute respiratory distress syndrome. Concerns limiting transplant include recurrence of SARS-CoV-2 infection in the allograft, technical challenges imposed by viral-mediated injury to the native lung, and potential risk for allograft infection by pathogens associated with ventilator-induced pneumonia in the native lung. Additionally, the native lung might recover, resulting in long-term outcomes preferable to transplant. Here, we report the results of the first two successful lung transplantation procedures in patients with non-resolving COVID-19 associated acute respiratory distress syndrome in the United States. We performed smFISH to detect both positive and negative strands of SARS-CoV-2 RNA in the explanted lung tissue, extracellular matrix imaging using SHIELD tissue clearance, and single cell RNA-Seq on explant and warm post-mortem lung biopsies from patients who died from severe COVID-19 pneumonia. Lungs from patients with prolonged COVID-19 were free of virus but pathology showed extensive evidence of injury and fibrosis which resembled end-stage pulmonary fibrosis. Single cell RNA-Seq of the explanted native lungs from transplant and paired warm post-mortem autopsies showed similarities between late SARS-CoV-2 acute respiratory distress syndrome and irreversible end-stage pulmonary fibrosis requiring lung transplantation. There was no recurrence of SARS-CoV-2 or pathogens associated with pre-transplant ventilator associated pneumonias following transplantation in either patient. Our findings suggest that some patients with severe COVID-19 develop fibrotic lung disease for which lung transplantation is the only option for survival. Single sentence summary Some patients with severe COVID-19 develop end-stage pulmonary fibrosis for which lung transplantation may be the only treatment.
Collapse
|
22
|
Matsuda S, Kim JD, Sugiyama F, Matsuo Y, Ishida J, Murata K, Nakamura K, Namiki K, Sudo T, Kuwaki T, Hatano M, Tatsumi K, Fukamizu A, Kasuya Y. Transcriptomic Evaluation of Pulmonary Fibrosis-Related Genes: Utilization of Transgenic Mice with Modifying p38 Signal in the Lungs. Int J Mol Sci 2020; 21:E6746. [PMID: 32937976 PMCID: PMC7555042 DOI: 10.3390/ijms21186746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing lung disease that is caused by the dysregulation of alveolar epithelial type II cells (AEC II). The mechanisms involved in the progression of IPF remain incompletely understood, although the immune response accompanied by p38 mitogen-activated protein kinase (MAPK) activation may contribute to some of them. This study aimed to examine the association of p38 activity in the lungs with bleomycin (BLM)-induced pulmonary fibrosis and its transcriptomic profiling. Accordingly, we evaluated BLM-induced pulmonary fibrosis during an active fibrosis phase in three genotypes of mice carrying stepwise variations in intrinsic p38 activity in the AEC II and performed RNA sequencing of their lungs. Stepwise elevation of p38 signaling in the lungs of the three genotypes was correlated with increased severity of BLM-induced pulmonary fibrosis exhibiting reduced static compliance and higher collagen content. Transcriptome analysis of these lung samples also showed that the enhanced p38 signaling in the lungs was associated with increased transcription of the genes driving the p38 MAPK pathway and differentially expressed genes elicited by BLM, including those related to fibrosis as well as the immune system. Our findings underscore the significance of p38 MAPK in the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Shuichi Matsuda
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (S.M.); (M.H.)
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (Y.M.); (K.T.)
| | - Jun-Dal Kim
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; (J.-D.K.); (J.I.); (K.M.); (A.F.)
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan;
| | - Yuji Matsuo
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (Y.M.); (K.T.)
| | - Junji Ishida
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; (J.-D.K.); (J.I.); (K.M.); (A.F.)
| | - Kazuya Murata
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; (J.-D.K.); (J.I.); (K.M.); (A.F.)
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan;
| | - Kanako Nakamura
- Graduate School of Sciences and Technology, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan;
| | - Kana Namiki
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan;
| | - Tatsuhiko Sudo
- Chemical Biology Core Facility and Antibiotics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan;
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8544, Japan;
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (S.M.); (M.H.)
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (Y.M.); (K.T.)
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; (J.-D.K.); (J.I.); (K.M.); (A.F.)
| | - Yoshitoshi Kasuya
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (S.M.); (M.H.)
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan;
| |
Collapse
|
23
|
Rao W, Wang S, Duleba M, Niroula S, Goller K, Xie J, Mahalingam R, Neupane R, Liew AA, Vincent M, Okuda K, O'Neal WK, Boucher RC, Dickey BF, Wechsler ME, Ibrahim O, Engelhardt JF, Mertens TCJ, Wang W, Jyothula SSK, Crum CP, Karmouty-Quintana H, Parekh KR, Metersky ML, McKeon FD, Xian W. Regenerative Metaplastic Clones in COPD Lung Drive Inflammation and Fibrosis. Cell 2020; 181:848-864.e18. [PMID: 32298651 PMCID: PMC7294989 DOI: 10.1016/j.cell.2020.03.047] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/26/2019] [Accepted: 03/20/2020] [Indexed: 12/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive condition of chronic bronchitis, small airway obstruction, and emphysema that represents a leading cause of death worldwide. While inflammation, fibrosis, mucus hypersecretion, and metaplastic epithelial lesions are hallmarks of this disease, their origins and dependent relationships remain unclear. Here we apply single-cell cloning technologies to lung tissue of patients with and without COPD. Unlike control lungs, which were dominated by normal distal airway progenitor cells, COPD lungs were inundated by three variant progenitors epigenetically committed to distinct metaplastic lesions. When transplanted to immunodeficient mice, these variant clones induced pathology akin to the mucous and squamous metaplasia, neutrophilic inflammation, and fibrosis seen in COPD. Remarkably, similar variants pre-exist as minor constituents of control and fetal lung and conceivably act in normal processes of immune surveillance. However, these same variants likely catalyze the pathologic and progressive features of COPD when expanded to high numbers.
Collapse
Affiliation(s)
- Wei Rao
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Shan Wang
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Marcin Duleba
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Suchan Niroula
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Kristina Goller
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Jingzhong Xie
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Rajasekaran Mahalingam
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Rahul Neupane
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Audrey-Ann Liew
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | | | - Kenichi Okuda
- Marsico Lung Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Wanda K O'Neal
- Marsico Lung Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Richard C Boucher
- Marsico Lung Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Burton F Dickey
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Omar Ibrahim
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Tinne C J Mertens
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Soma S K Jyothula
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Christopher P Crum
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kalpaj R Parekh
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Surgery, Division of Cardiothoracic Surgery, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Mark L Metersky
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Frank D McKeon
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA.
| | - Wa Xian
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA.
| |
Collapse
|
24
|
Greiffo FR, Viteri-Alvarez V, Frankenberger M, Dietel D, Ortega-Gomez A, Lee JS, Hilgendorff A, Behr J, Soehnlein O, Eickelberg O, Fernandez IE. CX3CR1-fractalkine axis drives kinetic changes of monocytes in fibrotic interstitial lung diseases. Eur Respir J 2020; 55:13993003.00460-2019. [PMID: 31744836 DOI: 10.1183/13993003.00460-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/31/2019] [Indexed: 12/21/2022]
Abstract
Circulating immune cell populations have been shown to contribute to interstitial lung disease (ILD). In this study, we analysed circulating and lung resident monocyte populations, and assessed their phenotype and recruitment from the blood to the lung in ILD. Flow cytometry analysis of blood samples for quantifying circulating monocytes was performed in 105 subjects: 83 with ILD (n=36, n=28 and n=19 for nonspecific interstitial pneumonia, hypersensitivity pneumonitis and connective-tissue disease-associated ILD, respectively), as well as 22 controls. Monocyte localisation and abundance were assessed using immunofluorescence and flow cytometry of lung tissue. Monocyte populations were cultured either alone or with endothelial cells to assess fractalkine-dependent transmigration pattern. We show that circulating classical monocytes (CM) were increased in ILD compared with controls, while nonclassical monocytes (NCM) were decreased. CM abundance correlated inversely with lung function, while NCM abundance correlated positively. Both CCL2 and CX3CL1 concentrations were increased in plasma and lungs of ILD patients. Fractalkine co-localised with ciliated bronchial epithelial cells, thereby creating a chemoattractant gradient towards the lung. Fractalkine enhanced endothelial transmigration of NCM in ILD samples only. Immunofluorescence, as well as flow cytometry, showed an increased presence of NCM in fibrotic niches in ILD lungs. Moreover, NCM in the ILD lungs expressed increased CX3CR1, M2-like and phagocytic markers. Taken together, our data support that in ILD, fractalkine drives the migration of CX3CR1+ NCM to the lungs, thereby perpetuating the local fibrotic process.
Collapse
Affiliation(s)
- Flavia R Greiffo
- Comprehensive Pneumology Center, Ludwig-Maximilians University (LMU), University Hospital Grosshadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Valeria Viteri-Alvarez
- Comprehensive Pneumology Center, Ludwig-Maximilians University (LMU), University Hospital Grosshadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Marion Frankenberger
- Comprehensive Pneumology Center, Ludwig-Maximilians University (LMU), University Hospital Grosshadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Daniela Dietel
- Comprehensive Pneumology Center, Ludwig-Maximilians University (LMU), University Hospital Grosshadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Almudena Ortega-Gomez
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University (LMU), Munich, Germany
| | - Joyce S Lee
- Division of Pulmonary Sciences and Critical Care Medicine, Dept of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Anne Hilgendorff
- Comprehensive Pneumology Center, Ludwig-Maximilians University (LMU), University Hospital Grosshadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Dept of Neonatalogy, Perinatal Center Grosshadern Ludwig-Maximilians University, Munich, Germany.,Center for Comprehensive Developmental Care, Dr von Haunersches Children's Hospital University, Hospital Ludwig-Maximilians University, Munich, Germany.,CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jürgen Behr
- Asklepios Fachkliniken München-Gauting, Munich, Germany.,Comprehensive Pneumology Center, Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians Universität (LMU), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University (LMU), Munich, Germany.,Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Dept of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Ludwig-Maximilians University (LMU), University Hospital Grosshadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Division of Pulmonary Sciences and Critical Care Medicine, Dept of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA.,These authors contributed equally
| | - Isis E Fernandez
- Comprehensive Pneumology Center, Ludwig-Maximilians University (LMU), University Hospital Grosshadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany .,CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,These authors contributed equally
| |
Collapse
|
25
|
Selman M, Pardo A. The leading role of epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis. Cell Signal 2020; 66:109482. [DOI: 10.1016/j.cellsig.2019.109482] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
|
26
|
Single-Cell Expression Variability Implies Cell Function. Cells 2019; 9:cells9010014. [PMID: 31861624 PMCID: PMC7017299 DOI: 10.3390/cells9010014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
As single-cell RNA sequencing (scRNA-seq) data becomes widely available, cell-to-cell variability in gene expression, or single-cell expression variability (scEV), has been increasingly appreciated. However, it remains unclear whether this variability is functionally important and, if so, what are its implications for multi-cellular organisms. Here, we analyzed multiple scRNA-seq data sets from lymphoblastoid cell lines (LCLs), lung airway epithelial cells (LAECs), and dermal fibroblasts (DFs) and, for each cell type, selected a group of homogenous cells with highly similar expression profiles. We estimated the scEV levels for genes after correcting the mean-variance dependency in that data and identified 465, 466, and 364 highly variable genes (HVGs) in LCLs, LAECs, and DFs, respectively. Functions of these HVGs were found to be enriched with those biological processes precisely relevant to the corresponding cell type’s function, from which the scRNA-seq data used to identify HVGs were generated—e.g., cytokine signaling pathways were enriched in HVGs identified in LCLs, collagen formation in LAECs, and keratinization in DFs. We repeated the same analysis with scRNA-seq data from induced pluripotent stem cells (iPSCs) and identified only 79 HVGs with no statistically significant enriched functions; the overall scEV in iPSCs was of negligible magnitude. Our results support the “variation is function” hypothesis, arguing that scEV is required for cell type-specific, higher-level system function. Thus, quantifying and characterizing scEV are of importance for our understating of normal and pathological cellular processes.
Collapse
|
27
|
Wu B, Rockel JS, Lagares D, Kapoor M. Ephrins and Eph Receptor Signaling in Tissue Repair and Fibrosis. Curr Rheumatol Rep 2019; 21:23. [PMID: 30980212 DOI: 10.1007/s11926-019-0825-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Fibrosis is a pathological feature of many human diseases that affect multiple organs. The development of anti-fibrotic therapies has been a difficult endeavor due to the complexity of signaling pathways associated with fibrogenic processes, complicating the identification and modulation of specific targets. Evidence suggests that ephrin ligands and Eph receptors are crucial signaling molecules that contribute to physiological wound repair and the development of tissue fibrosis. Here, we discuss recent advances in the understanding of ephrin and Eph signaling in tissue repair and fibrosis. RECENT FINDINGS Ephrin-B2 is implicated in fibrosis of multiple organs. Intercepting its signaling may help counteract fibrosis. Ephrins and Eph receptors are candidate mediators of fibrosis. Ephrin-B2, in particular, promotes fibrogenic processes in multiple organs. Thus, therapeutic strategies targeting Ephrin-B2 signaling could yield new ways to treat organ fibrosis.
Collapse
Affiliation(s)
- Brian Wu
- The Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jason S Rockel
- The Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Mohit Kapoor
- The Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. .,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|