1
|
Mueller C, Hong H, Sharma AA, Qin H, Benveniste EN, Szaflarski JP. Brain temperature, brain metabolites, and immune system phenotypes in temporal lobe epilepsy. Epilepsia Open 2024; 9:2454-2466. [PMID: 39470707 PMCID: PMC11633690 DOI: 10.1002/epi4.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
OBJECTIVE Epileptogenesis is linked to neuroinflammation. We hypothesized that local heat production caused by neuroinflammation can be visualized non-invasively in vivo via brain magnetic resonance spectroscopic imaging (MRSI) and MRSI-thermometry (MRSI-t) and that there is a relationship in patients with temporal lobe epilepsy (TLE) between MRSI-t and brain metabolites choline and myo-inositol and between neuroimaging and cellular and serum biomarkers of inflammation. METHODS Thirty-six (36) participants, 18 with temporal lobe epilepsy (13 females) and 18 age-matched healthy controls (nine females), were enrolled prospectively and underwent MRSI/MRSI-t; TLE participants also provided blood samples. Temperature was measured using creatine as a reference metabolite. Analysis of Functional NeuroImages 3dttest++ tool was used to analyze voxel-level group differences in temperature, choline, and myo-inositol. Associations with immune cell subsets, cytokines, and chemokines related to inflammation were quantified using correlation coefficients with significant relationships as noted. RESULTS Patients with TLE showed elevated temperature, choline, and myo-inositol in the temporal lobes. Higher brain temperature was associated with higher levels of cytokines and chemokines, including GM-CSF, TNF, IL-1β, and IL - 12p70, and lower frequency of immune cells including CD3+ T-cells, CD4+ T-cells, CD8+ T-cells, and classical monocytes. Higher choline was associated with higher levels of the cytokines including LT-α, IL-13, and IL-4, and higher myo-inositol was associated with a higher frequency of CD4+ T-cell and CD19+ B-cell subsets and higher levels of cytokines and chemokines including LT-α, IL-13, and CCL3. SIGNIFICANCE This study, for the first time, showed that in temporal lobes of patients with TLE temperature and metabolite changes correlate with cellular and serum biomarkers of inflammation. Our results provide support for further development of MRSI-t as a measure of neuroinflammation in epilepsy and potentially other neurological disorders and as an investigative and clinical tool. PLAIN LANGUAGE SUMMARY Neuroinflammation is associated with excessive heat production which can be visualized with magnetic resonance spectroscopic imaging and thermometry (MRSI-t). We prospectively investigated the relationship between MRSI-t and cellular and serum measures of peripheral inflammation in patients with temporal lobe epilepsy (TLE); we compared the results of MRSI-t in patients with TLE to healthy controls. We showed a relationship between the temperature elevations in TLE and elevations of various measures of peripheral inflammation. Our results support further development of MRSI-t as a measure of neuroinflammation in epilepsy and potentially other neurological disorders and as an investigative and clinical tool.
Collapse
Affiliation(s)
- Christina Mueller
- Department of NeurologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Huixian Hong
- Department of Cell, Developmental and Integrative BiologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Ayushe A. Sharma
- Department of NeurologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
- Present address:
Department of NeurologyYale School of MedicineNew HavenConnecticutUSA
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative BiologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Etty N. Benveniste
- Department of Cell, Developmental and Integrative BiologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jerzy P. Szaflarski
- Department of NeurologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
2
|
Guerreiro D, Almeida A, Ramalho R. Ketogenic Diet and Neuroinflammation: Implications for Neuroimmunometabolism and Therapeutic Approaches to Refractory Epilepsy. Nutrients 2024; 16:3994. [PMID: 39683388 DOI: 10.3390/nu16233994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Refractory epilepsy, characterized by seizures that do not respond to standard antiseizure medications, remains a significant clinical challenge. The central role of the immune system on the occurrence of epileptic disorders has been long studied, but recent perspectives on immunometabolism and neuroinflammation are reshaping scientific knowledge. The ketogenic diet and its variants have been considered an important medical nutrition therapy for refractory epilepsy and may have a potential modulation effect on the immune system, specifically, on the metabolism of immune cells. In this comprehensive review, we gathered current evidence-based practice, ketogenic diet variants and interventional ongoing clinical trials addressing the role of the ketogenic diet in epilepsy. We also discussed in detail the ketogenic diet metabolism and its anticonvulsant mechanisms, and the potential role of this diet on neuroinflammation and neuroimmunometabolism, highlighting Th17/Treg homeostasis as one of the most interesting aspects of ketogenic diet immune modulation in refractory epilepsy, deserving consideration in future clinical trials.
Collapse
Affiliation(s)
- Daniela Guerreiro
- Nutrition Lab, Egas Moniz Center for Interdisciplinary Research (CiiEM, U4585 FCT), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
- Nutritional Immunology-Clinical and Experimental Lab (NICE Lab), Clinical Research Unit, Egas Moniz Center for Interdisciplinary Research (CiiEM, U4585 FCT), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
| | - Anabela Almeida
- Serviço de Nutrição do Hospital Garcia de Orta (HGO), 2805-267 Almada, Portugal
| | - Renata Ramalho
- Nutrition Lab, Egas Moniz Center for Interdisciplinary Research (CiiEM, U4585 FCT), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
- Nutritional Immunology-Clinical and Experimental Lab (NICE Lab), Clinical Research Unit, Egas Moniz Center for Interdisciplinary Research (CiiEM, U4585 FCT), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
| |
Collapse
|
3
|
Harnett A, Mathoux J, Wilson MM, Heiland M, Mamad O, Srinivas S, Sanfeliu A, Sanz-Rodriguez A, How KLE, Delanty N, Cryan J, Brett FM, Farrell MA, O'Brien DF, Henshall DC, Brennan GP. Impact of JQ1 treatment on seizures, hippocampal gene expression, and gliosis in a mouse model of temporal lobe epilepsy. Eur J Neurosci 2024; 60:5266-5283. [PMID: 39149798 DOI: 10.1111/ejn.16499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Epilepsy is a neurological disease characterised by recurrent seizures with complex aetiology. Temporal lobe epilepsy, the most common form in adults, can be acquired following brain insults including trauma, stroke, infection or sustained status epilepticus. The mechanisms that give rise to the formation and maintenance of hyperexcitable networks following acquired insults remain unknown, yet an extensive body of literature points towards persistent gene and epigenomic dysregulation as a potential mediator of this dysfunction. While much is known about the function of specific classes of epigenetic regulators (writers and erasers) in epilepsy, much less is known about the enzymes, which read the epigenome and modulate gene expression accordingly. Here, we explore the potential role for the epigenetic reader bromodomain and extra-terminal domain (BET) proteins in epilepsy. Using the intra-amygdala kainic acid model of temporal lobe epilepsy, we initially identified widespread dysregulation of important epigenetic regulators including EZH2 and REST as well as altered BRD4 expression in chronically epileptic mice. BRD4 activity was also notably affected by epilepsy-provoking insults as seen by elevated binding to and transcriptional regulation of the immediate early gene Fos. Despite influencing early aspects of epileptogenesis, blocking BET protein activity with JQ1 had no overt effects on epilepsy development in mice but did alter glial reactivity and influence gene expression patterns, promoting various neurotransmitter signalling mechanisms and inflammatory pathways in the hippocampus. Together, these results confirm that epigenetic reader activity is affected by epilepsy-provoking brain insults and that BET activity may exert cell-specific actions on inflammation in epilepsy.
Collapse
Affiliation(s)
- Aileen Harnett
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
| | - Justine Mathoux
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
| | - Marc-Michel Wilson
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
| | - Mona Heiland
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
| | - Omar Mamad
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
| | - Sujithra Srinivas
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Albert Sanfeliu
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
| | - Amaya Sanz-Rodriguez
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
| | - Kelvin Lau E How
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
| | - Norman Delanty
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | | | | | | | | | - David C Henshall
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
| | - Gary P Brennan
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Chen J, Yu H, Liu H, Yu H, Liang S, Wu Q, Zhang X, Zeng R, Diao L. Causal relationship between immune cells and epilepsy mediated by metabolites analyzed through Mendelian randomization. Sci Rep 2024; 14:19644. [PMID: 39179617 PMCID: PMC11343848 DOI: 10.1038/s41598-024-70370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
Our study investigated the causal relationship between immune cells, metabolites, and epilepsy using two-sample Mendelian Randomization (MR) and mediation MR analysis of 731 immune cell traits and 1400 metabolites. Our core methodology centered on inverse-variance weighted MR, supplemented by other methods. This approach was crucial in clarifying the potential intermediary functions of metabolites in the genetic links between traits of immune cells and epilepsy. We found a causal relationship between immune cells and epilepsy. Specifically, the genetically predicted levels of CD64 on CD14-CD16- are positively correlated with the risk of epilepsy (p < 0.001, OR = 1.0826, 95% CI 1.0361-1.1312). Similarly, metabolites also exhibit a causal relationship with both immune cells (OR = 1.0438, 95% CI 1.0087-1.0801, p = 0.0140) and epilepsy (p = 0.0334, OR = 1.0897, 95% CI 1.0068-1.1795), and sensitivity analysis was conducted to further validate these relationships. Importantly, our intermediate MR results suggest that the metabolite Paraxanthine to linoleate (18:2n6) ratio may mediate the causal relationship between immune cell CD64 on CD14-CD16- and epilepsy, with a mediation effect of 5.05%. The results suggest the importance of specific immune cell levels and metabolites in understanding epilepsy's pathogenesis, which is significant for its prevention and treatment.
Collapse
Affiliation(s)
- Jiangwei Chen
- Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Haichun Yu
- Guangxi Technological College of Machinery and Electricity, Nanning, 530007, China
| | - Huihua Liu
- Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, 545005, China
| | - Han Yu
- Harbin Medical University, Harbin, 150086, China
| | - Shuang Liang
- Nanning Traditional Chinese Medicine Hospital, Nanning, 530000, China
| | - Qiong Wu
- Xin Yang Central Hospital, Xinyang, 464000, China
| | - Xian Zhang
- Department of Neurology, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, 545005, China
| | - Rong Zeng
- Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Limei Diao
- Department of Neurology, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, 545005, China.
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, China.
| |
Collapse
|
5
|
Ran H, Chen G, Ran C, He Y, Xie Y, Yu Q, Liu J, Hu J, Zhang T. Altered White-Matter Functional Network in Children with Idiopathic Generalized Epilepsy. Acad Radiol 2024; 31:2930-2941. [PMID: 38350813 DOI: 10.1016/j.acra.2023.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 02/15/2024]
Abstract
RATIONALE AND OBJECTIVES The white matter (WM) functional network changes offers insights into the potential pathological mechanisms of certain diseases, the alterations of WM functional network in idiopathic generalized epilepsy (IGE) remain unclear. We aimed to explore the topological characteristics changes of WM functional network in childhood IGE using resting-state functional Magnetic resonance imaging (MRI) and T1-weighted images. METHODS A total of 84 children (42 IGE and 42 matched healthy controls) were included in this study. Functional and structural MRI data were acquired to construct a WM functional network. Group differences in the global and regional topological characteristics were assessed by graph theory and the correlations with clinical and neuropsychological scores were analyzed. A support vector machine algorithm model was employed to classify individuals with IGE using WM functional connectivity as features, and the model's accuracy was evaluated using leave-one-out cross-validation. RESULTS In IGE group, at the network level, the WM functional network exhibited increased assortativity; at the nodal level, 17 nodes presented nodal disturbances in WM functional network, and nodal disturbances of 11 nodes were correlated with cognitive performance scores, disease duration and age of onset. The classification model achieved the 72.6% accuracy, 0.746 area under the curve, 69.1% sensitivity, 76.2% specificity. CONCLUSION Our study demonstrated that the WM functional network topological properties changes in childhood IGE, which were associated with cognitive function, and WM functional network may help clinical classification for childhood IGE. These findings provide novel information for understanding the pathogenesis of IGE and suggest that the WM function network might be qualified as potential biomarkers.
Collapse
Affiliation(s)
- Haifeng Ran
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Guiqin Chen
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Chunyan Ran
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Yulun He
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Yuxin Xie
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Qiane Yu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Junwei Liu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Jie Hu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China; Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tijiang Zhang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China.
| |
Collapse
|
6
|
Sarchi PV, Gomez Cuautle D, Rossi A, Ramos AJ. Participation of the spleen in the neuroinflammation after pilocarpine-induced status epilepticus: implications for epileptogenesis and epilepsy. Clin Sci (Lond) 2024; 138:555-572. [PMID: 38602323 DOI: 10.1042/cs20231621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/12/2024]
Abstract
Epilepsy, a chronic neurological disorder characterized by recurrent seizures, affects millions of individuals worldwide. Despite extensive research, the underlying mechanisms leading to epileptogenesis, the process by which a normal brain develops epilepsy, remain elusive. We, here, explored the immune system and spleen responses triggered by pilocarpine-induced status epilepticus (SE) focusing on their role in the epileptogenesis that follows SE. Initial examination of spleen histopathology revealed transient disorganization of white pulp, in animals subjected to SE. This disorganization, attributed to immune activation, peaked at 1-day post-SE (1DPSE) but returned to control levels at 3DPSE. Alterations in peripheral blood lymphocyte populations, demonstrated a decrease following SE, accompanied by a reduction in CD3+ T-lymphocytes. Further investigations uncovered an increased abundance of T-lymphocytes in the piriform cortex and choroid plexus at 3DPSE, suggesting a specific mobilization toward the Central Nervous System. Notably, splenectomy mitigated brain reactive astrogliosis, neuroinflammation, and macrophage infiltration post-SE, particularly in the hippocampus and piriform cortex. Additionally, splenectomized animals exhibited reduced lymphatic follicle size in the deep cervical lymph nodes. Most significantly, splenectomy correlated with improved neuronal survival, substantiated by decreased neuronal loss and reduced degenerating neurons in the piriform cortex and hippocampal CA2-3 post-SE. Overall, these findings underscore the pivotal role of the spleen in orchestrating immune responses and neuroinflammation following pilocarpine-induced SE, implicating the peripheral immune system as a potential therapeutic target for mitigating neuronal degeneration in epilepsy.
Collapse
Affiliation(s)
- Paula Virginia Sarchi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155 3er piso (1121) Ciudad de Buenos Aires, Argentina
| | - Dante Gomez Cuautle
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155 3er piso (1121) Ciudad de Buenos Aires, Argentina
| | - Alicia Rossi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155 3er piso (1121) Ciudad de Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155 3er piso (1121) Ciudad de Buenos Aires, Argentina
| |
Collapse
|
7
|
Wen F, Tan Z, Huang D, Xiang J. Molecular mechanism analyses of post-traumatic epilepsy and hereditary epilepsy based on 10× single-cell transcriptome sequencing technology. CNS Neurosci Ther 2024; 30:e14702. [PMID: 38572804 PMCID: PMC10993349 DOI: 10.1111/cns.14702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Single-cell RNA sequencing analysis has been usually conducted on post-traumatic epilepsy (PET) and hereditary epilepsy (HE) patients; however, the transcriptome of patients with traumatic temporal lobe epilepsy has rarely been studied. MATERIALS AND METHODS Hippocampus tissues isolated from one patient with PTE and one patient with HE were used in the present study. Single cell isolates were prepared and captured using a 10× Genomics Chromium Single-Cell 3' kit (V3) according to the manufacturer's instructions. The libraries were sequenced on an Illumina NovaSeq 6000 sequencing system. Raw data were processed, and the cells were filtered and classified using the Seurat R package. Uniform Manifold Approximation and Projection was used for visualization. Differentially expressed genes (DEGs) were identified based on a p-value ≤0.01 and log fold change (FC) ≥0.25. Gene Ontology (GO, http://geneontology.org/) and KEGG (Kyoto Encyclopedia of Genes and Genomes, www.genome.jp/kegg) analyses were performed on the DEGs for enrichment analysis. RESULTS The reads obtained from the 10× genomic platform for PTE and HE were 39.56 M and 30.08 M, respectively. The Q30 score of the RNA reads was >91.6%. After filtering, 7479 PTE cells and 9357 HE cells remained for further study. More than 96.4% of the reads were mapped to GRCh38/GRCm38. The cells were differentially distributed in two groups, with higher numbers of oligodendrocytes (6522 vs. 2532) and astrocytes (133 vs. 52), and lower numbers of microglial cells (2242 vs. 3811), and neurons (3 vs. 203) present in the HE group than in the PTE group. The DEGs in four cell clusters were identified, with 25 being in oligodendrocytes (13 upregulated and 12 downregulated), 87 in microglia cells (42 upregulated and 45 downregulated), 222 in astrocytes (115 upregulated and 107 downregulated), and 393 in neurons (305 upregulated and 88 downregulated). The genes MTND1P23 (downregulated), XIST (downregulated), and RPS4Y1 (upregulated) were commonly expressed in all four cell clusters. The DEGs in microglial cells and astrocytes were enriched in the IL-17 signaling pathway. CONCLUSION Our study explored differences in cells found in a patient with PE compared to a patient with HE, and the transcriptome in the different cells was analyzed for the first time. Studying inflammatory and immune functions might be the best approach for investigating traumatic temporal lobe epilepsy in neurons.
Collapse
Affiliation(s)
- Fang Wen
- Department of NeurologyThe Second Xiang‐Ya Hospital of Central South UniversityChangshaHunanChina
| | - Zhigang Tan
- Department of NeurosurgeryThe Second Xiang‐Ya Hospital of Central South UniversityChangshaHunanChina
| | - Dezhi Huang
- Department of NeurosurgeryThe Second Xiang‐Ya Hospital of Central South UniversityChangshaHunanChina
| | - Jun Xiang
- Department of NeurosurgeryThe Second Xiang‐Ya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
8
|
Tripathi S, Nathan CL, Tate MC, Horbinski CM, Templer JW, Rosenow JM, Sita TL, James CD, Deneen B, Miller SD, Heimberger AB. The immune system and metabolic products in epilepsy and glioma-associated epilepsy: emerging therapeutic directions. JCI Insight 2024; 9:e174753. [PMID: 38193532 PMCID: PMC10906461 DOI: 10.1172/jci.insight.174753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Epilepsy has a profound impact on quality of life. Despite the development of new antiseizure medications (ASMs), approximately one-third of affected patients have drug-refractory epilepsy and are nonresponsive to medical treatment. Nearly all currently approved ASMs target neuronal activity through ion channel modulation. Recent human and animal model studies have implicated new immunotherapeutic and metabolomic approaches that may benefit patients with epilepsy. In this Review, we detail the proinflammatory immune landscape of epilepsy and contrast this with the immunosuppressive microenvironment in patients with glioma-related epilepsy. In the tumor setting, excessive neuronal activity facilitates immunosuppression, thereby contributing to subsequent glioma progression. Metabolic modulation of the IDH1-mutant pathway provides a dual pathway for reversing immune suppression and dampening seizure activity. Elucidating the relationship between neurons and immunoreactivity is an area for the prioritization and development of the next era of ASMs.
Collapse
Affiliation(s)
- Shashwat Tripathi
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
| | | | | | - Craig M. Horbinski
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
- Department of Pathology, and
| | | | | | - Timothy L. Sita
- Department of Neurological Surgery
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Charles D. James
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
| | - Benjamin Deneen
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
| |
Collapse
|
9
|
Li W, Wu J, Zeng Y, Zheng W. Neuroinflammation in epileptogenesis: from pathophysiology to therapeutic strategies. Front Immunol 2023; 14:1269241. [PMID: 38187384 PMCID: PMC10771847 DOI: 10.3389/fimmu.2023.1269241] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Epilepsy is a group of enduring neurological disorder characterized by spontaneous and recurrent seizures with heterogeneous etiology, clinical expression, severity, and prognosis. Growing body of research investigates that epileptic seizures are originated from neuronal synchronized and excessive electrical activity. However, the underlying molecular mechanisms of epileptogenesis have not yet been fully elucidated and 30% of epileptic patients still are resistant to the currently available pharmacological treatments with recurrent seizures throughout life. Over the past two decades years accumulated evidences provide strong support to the hypothesis that neuroinflammation, including microglia and astrocytes activation, a cascade of inflammatory mediator releasing, and peripheral immune cells infiltration from blood into brain, is associated with epileptogenesis. Meanwhile, an increasing body of preclinical researches reveal that the anti-inflammatory therapeutics targeting crucial inflammatory components are effective and promising in the treatment of epilepsy. The aim of the present study is to highlight the current understanding of the potential neuroinflammatory mechanisms in epileptogenesis and the potential therapeutic targets against epileptic seizures.
Collapse
|
10
|
Lu Y, Zhang P, Xu F, Zheng Y, Zhao H. Advances in the study of IL-17 in neurological diseases and mental disorders. Front Neurol 2023; 14:1284304. [PMID: 38046578 PMCID: PMC10690603 DOI: 10.3389/fneur.2023.1284304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Interleukin-17 (IL-17), a cytokine characteristically secreted by T helper 17 (Th17) cells, has attracted increasing attention in recent years because of its importance in the pathogenesis of many autoimmune or chronic inflammatory diseases. Recent studies have shown that neurological diseases and mental disorders are closely related to immune function, and varying degrees of immune dysregulation may disrupt normal expression of immune molecules at critical stages of neural development. Starting from relevant mechanisms affecting immune regulation, this article reviews the research progress of IL-17 in a selected group of neurological diseases and mental disorders (autism spectrum disorder, Alzheimer's disease, epilepsy, and depression) from the perspective of neuroinflammation and the microbiota-gut-brain axis, summarizes the commonalities, and provides a prospective outlook of target application in disease treatment.
Collapse
Affiliation(s)
- Yu Lu
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, China
| | - Piaopiao Zhang
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fenfen Xu
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Zheng
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongyang Zhao
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
11
|
Douglas A, Stevens B, Lynch L. Interleukin-17 as a key player in neuroimmunometabolism. Nat Metab 2023; 5:1088-1100. [PMID: 37488456 PMCID: PMC10440016 DOI: 10.1038/s42255-023-00846-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/14/2023] [Indexed: 07/26/2023]
Abstract
In mammals, interleukin (IL)-17 cytokines are produced by innate and adaptive lymphocytes. However, the IL-17 family has widespread expression throughout evolution, dating as far back as cnidaria, molluscs and worms, which predate lymphocytes. The evolutionary conservation of IL-17 suggests that it is involved in innate defence strategies, but also that this cytokine family has a fundamental role beyond typical host defence. Throughout evolution, IL-17 seems to have a major function in homeostatic maintenance at barrier sites. Most recently, a pivotal role has been identified for IL-17 in regulating cellular metabolism, neuroimmunology and tissue physiology, particularly in adipose tissue. Here we review the emerging role of IL-17 signalling in regulating metabolic processes, which may shine a light on the evolutionary role of IL-17 beyond typical immune responses. We propose that IL-17 helps to coordinate the cross-talk among the nervous, endocrine and immune systems for whole-body energy homeostasis as a key player in neuroimmunometabolism.
Collapse
Affiliation(s)
- Aaron Douglas
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland
| | - Brenneth Stevens
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lydia Lynch
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland.
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Olson KE, Mosley RL, Gendelman HE. The potential for treg-enhancing therapies in nervous system pathologies. Clin Exp Immunol 2023; 211:108-121. [PMID: 36041453 PMCID: PMC10019130 DOI: 10.1093/cei/uxac084] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/28/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
While inflammation may not be the cause of disease, it is well known that it contributes to disease pathogenesis across a multitude of peripheral and central nervous system disorders. Chronic and overactive inflammation due to an effector T-cell-mediated aberrant immune response ultimately leads to tissue damage and neuronal cell death. To counteract peripheral and neuroinflammatory responses, research is being focused on regulatory T cell enhancement as a therapeutic target. Regulatory T cells are an immunosuppressive subpopulation of CD4+ T helper cells essential for maintaining immune homeostasis. The cells play pivotal roles in suppressing immune responses to maintain immune tolerance. In so doing, they control T cell proliferation and pro-inflammatory cytokine production curtailing autoimmunity and inflammation. For nervous system pathologies, Treg are known to affect the onset and tempo of neural injuries. To this end, we review recent findings supporting Treg's role in disease, as well as serving as a therapeutic agent in multiple sclerosis, myasthenia gravis, Guillain-Barre syndrome, Parkinson's and Alzheimer's diseases, and amyotrophic lateral sclerosis. An ever-broader role for Treg in the control of neurologic disease has been shown for traumatic brain injury, stroke, neurotrophic pain, epilepsy, and psychiatric disorders. To such ends, this review serves to examine the role played by Tregs in nervous system diseases with a focus on harnessing their functional therapeutic role(s).
Collapse
Affiliation(s)
- Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - R L Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| |
Collapse
|
13
|
A phase I study of an adenoviral vector delivering a MUC1/CD40-ligand fusion protein in patients with advanced adenocarcinoma. Nat Commun 2022; 13:6453. [PMID: 36307410 PMCID: PMC9616917 DOI: 10.1038/s41467-022-33834-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer vaccines as immunotherapy for solid tumours are currently in development with promising results. We report a phase 1 study of Ad-sig-hMUC1/ecdCD40L (NCT02140996), an adenoviral-vector vaccine encoding the tumour-associated antigen MUC1 linked to CD40 ligand, in patients with advanced adenocarcinoma. The primary objective of this study is safety and tolerability. We also study the immunome in vaccinated patients as a secondary outcome. This trial, while not designed to determine clinical efficacy, reports an exploratory endpoint of overall response rate. The study meets its pre-specified primary endpoint demonstrating safety and tolerability in a cohort of 21 patients with advanced adenocarcinomas (breast, lung and ovary). The maximal dose of the vaccine is 1 ×1011 viral particles, with no dose limiting toxicities. All drug related adverse events are of low grades, most commonly injection site reactions in 15 (71%) patients. Using exploratory high-dimensional analyses, we find both quantitative and relational changes in the cancer immunome after vaccination. Our data highlights the utility of high-dimensional analyses in understanding and predicting effective immunotherapy, underscoring the importance of immune competency in cancer prognosis.
Collapse
|
14
|
Zhang S, Mao C, Li X, Miao W, Teng J. Advances in Potential Cerebrospinal Fluid Biomarkers for Autoimmune Encephalitis: A Review. Front Neurol 2022; 13:746653. [PMID: 35937071 PMCID: PMC9355282 DOI: 10.3389/fneur.2022.746653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Autoimmune encephalitis (AE) is a severe inflammatory disease of the brain. Patients with AE demonstrate amnesia, seizures, and psychosis. Recent studies have identified numerous associated autoantibodies (e.g., against NMDA receptors (NMDARs), LGI1, etc.) involved in the pathogenesis of AE, and the levels of diagnosis and treatment are thus improved dramatically. However, there are drawbacks of clinical diagnosis and treatment based solely on antibody levels, and thus the application of additional biomarkers is urgently needed. Considering the important role of immune mechanisms in AE development, we summarize the relevant research progress in identifying cerebrospinal fluid (CSF) biomarkers with a focus on cytokines/chemokines, demyelination, and nerve damage.
Collapse
|
15
|
Zeng C, Hu J, Chen F, Huang T, Zhang L. The Coordination of mTOR Signaling and Non-Coding RNA in Regulating Epileptic Neuroinflammation. Front Immunol 2022; 13:924642. [PMID: 35898503 PMCID: PMC9310657 DOI: 10.3389/fimmu.2022.924642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy accounts for a significant proportion of the burden of neurological disorders. Neuroinflammation acting as the inflammatory response to epileptic seizures is characterized by aberrant regulation of inflammatory cells and molecules, and has been regarded as a key process in epilepsy where mTOR signaling serves as a pivotal modulator. Meanwhile, accumulating evidence has revealed that non-coding RNAs (ncRNAs) interfering with mTOR signaling are involved in neuroinflammation and therefore articipate in the development and progression of epilepsy. In this review, we highlight recent advances in the regulation of mTOR on neuroinflammatory cells and mediators, and feature the progresses of the interaction between ncRNAs and mTOR in epileptic neuroinflammation.
Collapse
Affiliation(s)
- Chudai Zeng
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jason Hu
- Department of Neonatology, Yale School of Medicine, New Haven, CT, United States
| | - Fenghua Chen
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Fenghua Chen, ; Tianxiang Huang, ; Longbo Zhang,
| | - Tianxiang Huang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Fenghua Chen, ; Tianxiang Huang, ; Longbo Zhang,
| | - Longbo Zhang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Fenghua Chen, ; Tianxiang Huang, ; Longbo Zhang,
| |
Collapse
|
16
|
Liu W, Fan M, Lu W, Zhu W, Meng L, Lu S. Emerging Roles of T Helper Cells in Non-Infectious Neuroinflammation: Savior or Sinner. Front Immunol 2022; 13:872167. [PMID: 35844577 PMCID: PMC9280647 DOI: 10.3389/fimmu.2022.872167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
CD4+ T cells, also known as T helper (Th) cells, contribute to the adaptive immunity both in the periphery and in the central nervous system (CNS). At least seven subsets of Th cells along with their signature cytokines have been identified nowadays. Neuroinflammation denotes the brain’s immune response to inflammatory conditions. In recent years, various CNS disorders have been related to the dysregulation of adaptive immunity, especially the process concerning Th cells and their cytokines. However, as the functions of Th cells are being discovered, it’s also found that their roles in different neuroinflammatory conditions, or even the participation of a specific Th subset in one CNS disorder may differ, and sometimes contrast. Based on those recent and contradictory evidence, the conflicting roles of Th cells in multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, epilepsy, traumatic brain injury as well as some typical mental disorders will be reviewed herein. Research progress, limitations and novel approaches concerning different neuroinflammatory conditions will also be mentioned and compared.
Collapse
Affiliation(s)
- Wenbin Liu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wen Lu
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| |
Collapse
|
17
|
Kumar P, Lim A, Hazirah SN, Chua CJH, Ngoh A, Poh SL, Yeo TH, Lim J, Ling S, Sutamam NB, Petretto E, Low DCY, Zeng L, Tan EK, Arkachaisri T, Yeo JG, Ginhoux F, Chan D, Albani S. Single-cell transcriptomics and surface epitope detection in human brain epileptic lesions identifies pro-inflammatory signaling. Nat Neurosci 2022; 25:956-966. [PMID: 35739273 PMCID: PMC9276529 DOI: 10.1038/s41593-022-01095-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/12/2022] [Indexed: 12/31/2022]
Abstract
Epileptogenic triggers are multifactorial and not well understood. Here we aimed to address the hypothesis that inappropriate pro-inflammatory mechanisms contribute to the pathogenesis of refractory epilepsy (non-responsiveness to antiepileptic drugs) in human patients. We used single-cell cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to reveal the immunotranscriptome of surgically resected epileptic lesion tissues. Our approach uncovered a pro-inflammatory microenvironment, including extensive activation of microglia and infiltration of other pro-inflammatory immune cells. These findings were supported by ligand–receptor (LR) interactome analysis, which demonstrated potential mechanisms of infiltration and evidence of direct physical interactions between microglia and T cells. Together, these data provide insight into the immune microenvironment in epileptic tissue, which may aid the development of new therapeutics. Single-cell analysis of immune cells from surgically resected human epileptic brain tissues showed heterogeneity and pro-inflammatory signaling in microglia and evidence for direct interaction of microglia with T cells.
Collapse
Affiliation(s)
- Pavanish Kumar
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore. .,Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore.
| | - Amanda Lim
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Sharifah Nur Hazirah
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Camillus Jian Hui Chua
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Adeline Ngoh
- Duke-NUS Medical School and Paediatric Neurology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Su Li Poh
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Tong Hong Yeo
- Duke-NUS Medical School and Paediatric Neurology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jocelyn Lim
- Duke-NUS Medical School and Paediatric Neurology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Simon Ling
- Duke-NUS Medical School and Paediatric Neurology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Nursyuhadah Binte Sutamam
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Enrico Petretto
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Singapore, Singapore
| | - David Chyi Yeu Low
- Duke-NUS Medical School and Neurosurgical Service, KK Women's and Children's Hospital, Singapore, Singapore.,Research Department, National Neuroscience Institute, Singapore, Singapore
| | - Li Zeng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Neuroscience & Behavioral Disorders Program, DUKE-NUS Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Neuroscience & Behavioral Disorders Program, DUKE-NUS Medical School, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School and Rheumatology and Immunology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Joo Guan Yeo
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore.,Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School and Rheumatology and Immunology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Florent Ginhoux
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Derrick Chan
- Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School and Paediatric Neurology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore.,Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School and Rheumatology and Immunology Service, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
18
|
Kumar P, Lim A, Poh SL, Hazirah SN, Chua CJH, Sutamam NB, Arkachaisri T, Yeo JG, Kofidis T, Sorokin V, Lam CSP, Richards AM, Albani S. Pro-Inflammatory Derangement of the Immuno-Interactome in Heart Failure. Front Immunol 2022; 13:817514. [PMID: 35371099 PMCID: PMC8964981 DOI: 10.3389/fimmu.2022.817514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/21/2022] [Indexed: 01/07/2023] Open
Abstract
Chronic heart failure (HF) is a syndrome of heterogeneous etiology associated with multiple co-morbidities. Inflammation is increasingly recognized as a key contributor to the pathophysiology of HF. Heterogeneity and lack of data on the immune mechanism(s) contributing to HF may partially underlie the failure of clinical trials targeting inflammatory mediators. We studied the Immunome in HF cohort using mass cytometry and used data-driven systems immunology approach to discover and characterize modulated immune cell subsets from peripheral blood. We showed cytotoxic and inflammatory innate lymphoid and myeloid cells were expanded in HF patients compared to healthy controls. Network analysis showed highly modular and centralized immune cell architecture in healthy control immune cell network. In contrast, the HF immune cell network showed greater inter-cellular communication and less modular structure. Furthermore, we found, as an immune mechanism specific to HF with preserved ejection fraction (HFpEF), an increase in inflammatory MAIT and CD4 T cell subsets.
Collapse
Affiliation(s)
- Pavanish Kumar
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Amanda Lim
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Su Li Poh
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Sharifah Nur Hazirah
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Camillus Jian Hui Chua
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Nursyuhadah Binte Sutamam
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,Rheumatology and Immunology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Joo Guan Yeo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,Rheumatology and Immunology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Theo Kofidis
- National University Heart Centre, Singapore, Singapore.,The National University Health System (NUHS) Cardiovascular Research Institute, Singapore, Singapore
| | | | - Carolyn S P Lam
- Duke-NUS Medical School, Cardiovascular Academic Clinical Program, Singapore, Singapore.,National Heart Centre, Singapore, Singapore
| | - Arthur Mark Richards
- The National University Health System (NUHS) Cardiovascular Research Institute, Singapore, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,Rheumatology and Immunology Service, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
19
|
Zafiriou E, Daponte AI, Siokas V, Tsigalou C, Dardiotis E, Bogdanos DP. Depression and Obesity in Patients With Psoriasis and Psoriatic Arthritis: Is IL-17-Mediated Immune Dysregulation the Connecting Link? Front Immunol 2021; 12:699848. [PMID: 34367160 PMCID: PMC8334867 DOI: 10.3389/fimmu.2021.699848] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
Patients with psoriasis are frequently obese and experience anxiety or suffer from depressive disorders. The immunopathogenesis of psoriasis and indeed psoriatic arthritis is largely based on the pivotal role of IL-17/IL-23 axis, to an extent that currently monoclonal antibodies selectively inhibiting IL-17 or IL-23 are routinely used for the treatment of psoriatic diseases. Emerging data, demonstrating a decisive role for IL-17 and IL-17 producing cell subsets, such as Th17 in the induction and progression of obesity and depression has led authors to suggest that psoriatic disease, obesity and anxiety/depression may indeed be interconnected manifestation of a state of immunedysregulation, the linked being IL-17 and its related cells. We discuss this hypothetical link in depth taking into account the beneficial effects anti-IL17 and anti-IL-17 receptor inhibitors in treating psoriatic disease and the on-going debate as to whether these biologics may exert a direct or indirect effect in ameliorating concomitant obesity and depressive disorders, which are frequently noted in the same patient.
Collapse
Affiliation(s)
- Efterpi Zafiriou
- Academic Department of Dermatology, University General Hospital of Larissa and Faculty of Medicine, School of Health Sciences, University of Thessaly, Thessaly, Greece
| | - Athina I. Daponte
- Academic Department of Dermatology, University General Hospital of Larissa and Faculty of Medicine, School of Health Sciences, University of Thessaly, Thessaly, Greece
- Academic Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Thessaly, Greece
| | - Vasileios Siokas
- Academic Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Thessaly, Greece
| | - Christina Tsigalou
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Efthymios Dardiotis
- Academic Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Thessaly, Greece
| | - Dimitrios P. Bogdanos
- Academic Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Thessaly, Greece
| |
Collapse
|
20
|
Levraut M, Bourg V, Capet N, Delourme A, Honnorat J, Thomas P, Lebrun-Frenay C. Cerebrospinal Fluid IL-17A Could Predict Acute Disease Severity in Non-NMDA-Receptor Autoimmune Encephalitis. Front Immunol 2021; 12:673021. [PMID: 34054854 PMCID: PMC8158812 DOI: 10.3389/fimmu.2021.673021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction Most of our knowledge into autoimmune encephalitis (AE) comes from N-Methyl-D-Aspartate Receptor (NMDAR) encephalitis. The concentrations of cytokines in cerebrospinal fluid (CSF) including IL-17A have been found to be increased and associated with poor outcome. However, data on the cytokine concentration in CSF and its correlation with outcome is lacking for other types of AE. Objective To report the concentrations of CSF sIL-2R, IL-6, IL-8, IL-10 and IL-17A and to correlate it with acute disease severity and the 1-year outcome in non-NMDAR AE. Methods We measured the CSF concentration of each cytokine in 20 AE patients, and compared IL-6 and IL-17A concentrations with 13 patients with CNS demyelinating diseases and 20 non-inflammatory controls. Patients were > 18yr and had at least 1-year clinical follow-up. Intracellular and NMDAR antibody (Ab) -mediated encephalitis were excluded. A mRS ≤ 2 was retained as a 1-year good outcome. Results The IL-17A concentration in CSF was higher in AE patients than in both control groups (p<0.01). No difference was observed in CSF concentration of IL-6 between groups. At disease onset, a high CSF IL-17A concentration correlated with a high modified Rankin Scale (p<0.05), a high Clinical Assessment Scale for Autoimmune Encephalitis score (p<0.001) and ICU admission (p<0.01). There was no correlation between the concentration of all CSF cytokines and the 1-year clinical outcome. Conclusion Our results show that CSF IL-17A could be interesting to assess initial severity in non-NMDAR AE. Thus, CSF IL-17A could be an interesting therapeutic target and be useful to assess early selective immunosuppressive therapy.
Collapse
Affiliation(s)
- Michael Levraut
- URRIS, Unité de Recherche Clinique Cote d'Azur-UR2CA, CRCSEP, Hôpital Pasteur 2, Centre Hospitalier Universitaire de Nice, Nice, France.,Internal Medicine Department, Hôpital l'Archet 1, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Véronique Bourg
- Neurology Department, Hôpital Pasteur 2, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Nicolas Capet
- URRIS, Unité de Recherche Clinique Cote d'Azur-UR2CA, CRCSEP, Hôpital Pasteur 2, Centre Hospitalier Universitaire de Nice, Nice, France.,Neurology Department, Hôpital Pasteur 2, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Adrien Delourme
- Neurology Department, Hôpital Pasteur 2, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Jérôme Honnorat
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Lyon, France.,Synatac Team, NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Pierre Thomas
- Neurology Department, Hôpital Pasteur 2, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Christine Lebrun-Frenay
- URRIS, Unité de Recherche Clinique Cote d'Azur-UR2CA, CRCSEP, Hôpital Pasteur 2, Centre Hospitalier Universitaire de Nice, Nice, France.,Neurology Department, Hôpital Pasteur 2, Centre Hospitalier Universitaire de Nice, Nice, France
| |
Collapse
|
21
|
Links between Immune Cells from the Periphery and the Brain in the Pathogenesis of Epilepsy: A Narrative Review. Int J Mol Sci 2021; 22:ijms22094395. [PMID: 33922369 PMCID: PMC8122797 DOI: 10.3390/ijms22094395] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence has demonstrated that the pathogenesis of epilepsy is linked to neuroinflammation and cerebrovascular dysfunction. Peripheral immune cell invasion into the brain, along with these responses, is implicitly involved in epilepsy. This review explored the current literature on the association between the peripheral and central nervous systems in the pathogenesis of epilepsy, and highlights novel research directions for therapeutic interventions targeting these reactions. Previous experimental and human studies have demonstrated the activation of the innate and adaptive immune responses in the brain. The time required for monocytes (responsible for innate immunity) and T cells (involved in acquired immunity) to invade the central nervous system after a seizure varies. Moreover, the time between the leakage associated with blood–brain barrier (BBB) failure and the infiltration of these cells varies. This suggests that cell infiltration is not merely a secondary disruptive event associated with BBB failure, but also a non-disruptive event facilitated by various mediators produced by the neurovascular unit consisting of neurons, perivascular astrocytes, microglia, pericytes, and endothelial cells. Moreover, genetic manipulation has enabled the differentiation between peripheral monocytes and resident microglia, which was previously considered difficult. Thus, the evidence suggests that peripheral monocytes may contribute to the pathogenesis of seizures.
Collapse
|
22
|
Vieira ÉLM, da Silva MCM, Gonçalves AP, Martins GL, Teixeira AL, de Oliveira ACP, Reis HJ. Serotonin and dopamine receptors profile on peripheral immune cells from patients with temporal lobe epilepsy. J Neuroimmunol 2021; 354:577534. [PMID: 33713941 DOI: 10.1016/j.jneuroim.2021.577534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/27/2021] [Accepted: 02/27/2021] [Indexed: 01/11/2023]
Abstract
The role of inflammation and immune cells has been demonstrated in neurological diseases, including epilepsy. Leukocytes, as well as inflammatory mediators, contribute to abnormal processes that lead to a reduction in seizure threshold and synaptic reorganization. In this sense, identifying different phenotypes of circulating immune cells is essential to understanding the role of these cells in epilepsy. Immune cells can express a variety of surface markers, including neurotransmitter receptors, such as serotonin and dopamine. Alteration in these receptors expression patterns may affect the level of inflammatory mediators and the pathophysiology of epilepsy. Therefore, in the current study, we evaluated the expression of dopamine and serotonin receptors on white blood cells from patients with temporal lobe epilepsy with hippocampal sclerosis (TLE-HS). Blood samples from 17 patients with TLE-HS and 21 controls were collected. PBMC were isolated and stained ex vivo for flow cytometry. We evaluated the expression of serotonin (5-HT1A, 5-HT1B, 5-HT2, 5-HT2B, 5-HT2C, 5-HT3, 5-HT4), and dopamine receptors (D1, D2, D3, D4, and D5) on the cell surface of lymphocytes and innate immune cells (monocytes and granulocytes). Our results demonstrated that innate cells and lymphocytes from patients with TLE-HS showed high mean fluorescent intensity (MFI) for 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 compared to controls. No difference was observed for 5-HT2B. For dopamine receptors, the expression of D1, D2, D4, and D5 receptors was higher on innate cells from patients with TLE-HS when compared to controls for the MFI. Regarding lymphocytes population, D2 expression was increased in patients with TLE-HS. In conclusion, there are alterations in the expression of serotonin and dopamine receptors on immune blood cells of patients with TLE-HS. Although the biological significance of these findings still needs to be further investigated, these changes may contribute to the understanding of TLE-HS pathophysiology.
Collapse
Affiliation(s)
| | - Maria Carolina Machado da Silva
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Ana Paula Gonçalves
- Programa de Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Gabriela Lopes Martins
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Antônio Lúcio Teixeira
- Instituto de Ensino e Pesquisa, Santa Casa BH, Belo Horizonte 30260-070, Brazil; Neuropsychiatry Program and Immuno-Psychiatry Lab, Department of Psychiatry and Behavioral Sciences, UT Health Houston, 1941 East Road, Houston, TX 77054, USA
| | - Antônio Carlos Pinheiro de Oliveira
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; Programa de Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Helton José Reis
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; Programa de Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| |
Collapse
|
23
|
He LY, Hu MB, Li RL, Zhao R, Fan LH, He L, Lu F, Ye X, Huang YL, Wu CJ. Natural Medicines for the Treatment of Epilepsy: Bioactive Components, Pharmacology and Mechanism. Front Pharmacol 2021; 12:604040. [PMID: 33746751 PMCID: PMC7969896 DOI: 10.3389/fphar.2021.604040] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a chronic disease that can cause temporary brain dysfunction as a result of sudden abnormal discharge of the brain neurons. The seizure mechanism of epilepsy is closely related to the neurotransmitter imbalance, synaptic recombination, and glial cell proliferation. In addition, epileptic seizures can lead to mitochondrial damage, oxidative stress, and the disorder of sugar degradation. Although the mechanism of epilepsy research has reached up to the genetic level, the presently available treatment and recovery records of epilepsy does not seem promising. Recently, natural medicines have attracted more researches owing to their low toxicity and side-effects as well as the excellent efficacy, especially in chronic diseases. In this study, the antiepileptic mechanism of the bioactive components of natural drugs was reviewed so as to provide a reference for the development of potential antiepileptic drugs. Based on the different treatment mechanisms of natural drugs considered in this review, it is possible to select drugs clinically. Improving the accuracy of medication and the cure rate is expected to compensate for the shortage of the conventional epilepsy treatment drugs.
Collapse
Affiliation(s)
- Li-Ying He
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mei-Bian Hu
- Institute of Pharmaceutical and Food engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Ruo-Lan Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin-Hong Fan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin He
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Lu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xun Ye
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong-Liang Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun-Jie Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
24
|
Ouédraogo O, Rébillard RM, Jamann H, Mamane VH, Clénet ML, Daigneault A, Lahav B, Uphaus T, Steffen F, Bittner S, Zipp F, Bérubé A, Lapalme-Remis S, Cossette P, Nguyen DK, Arbour N, Keezer MR, Larochelle C. Increased frequency of proinflammatory CD4 T cells and pathological levels of serum neurofilament light chain in adult drug-resistant epilepsy. Epilepsia 2021; 62:176-189. [PMID: 33140401 DOI: 10.1111/epi.16742] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Adult drug-resistant epilepsy (DRE) is associated with significant morbidity. Infiltration of immune cells is observed in DRE epileptic foci; however, the relation between DRE and the peripheral immune cell compartment remains only partially understood. We aimed to investigate differences in immune cell populations, cytokines, and neurodegenerative biomarkers in the peripheral blood of subjects with epilepsy versus healthy controls, and in DRE compared to well-controlled epilepsy (WCE). METHODS Peripheral blood mononuclear cells and serum from >120 age- and sex-matched adults suffering from focal onset epilepsy and controls were analyzed by multipanel flow cytometry, multiplex immunoassays, and ultrasensitive single molecule array. RESULTS Using a data-driven analytical approach, we identified that CD4 T cells in the peripheral blood are present in a higher proportion in DRE patients. Moreover, we observed that the frequency of CD4 T cells expressing proinflammatory cytokines interleukin (IL)-17A, IL-22, tumor necrosis factor, interferon-γ, and granulocyte-macrophage colony-stimulating factor, but not anti-inflammatory cytokines IL-10 and IL-4, is elevated in the peripheral blood of DRE subjects compared to WCE. In parallel, we found that Th17-related circulating proinflammatory cytokines are elevated, but Th2-related cytokine IL-4 is reduced, in the serum of epilepsy and DRE subjects. As Th17 cells can exert neurotoxicity, we measured levels of serum neurofilament light chain (sNfL), a marker of neuronal injury. We found significantly elevated levels of sNfL in DRE compared to controls, especially among older individuals. SIGNIFICANCE Our data support that DRE is associated with an expansion of the CD4 Tcell subset in the peripheral blood and with a shift toward a proinflammatory Th17/Th1 CD4 Tcell immune profile. Our results further show that pathological levels of sNfL are more frequent in DRE, supporting a potential neurodegenerative component in adult DRE. With this work, we provide evidence for novel potential inflammatory and degenerative biomarkers in DRE.
Collapse
Affiliation(s)
- Oumarou Ouédraogo
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Microbiology, Immunology, and Infectiology, University of Montreal, Montreal, QC, Canada
| | - Rose-Marie Rébillard
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Hélène Jamann
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Victoria Hannah Mamane
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Marie-Laure Clénet
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Microbiology, Immunology, and Infectiology, University of Montreal, Montreal, QC, Canada
| | - Audrey Daigneault
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
| | - Boaz Lahav
- University of Montreal Hospital Center, Montreal, QC, Canada
| | - Timo Uphaus
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Arline Bérubé
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Center, Montreal, QC, Canada
| | - Samuel Lapalme-Remis
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Center, Montreal, QC, Canada
| | - Patrick Cossette
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Center, Montreal, QC, Canada
| | - Dang Khoa Nguyen
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Center, Montreal, QC, Canada
| | - Nathalie Arbour
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Mark R Keezer
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, QC, Canada
| | - Catherine Larochelle
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Center, Montreal, QC, Canada
| |
Collapse
|
25
|
Zhang T, Warden AR, Li Y, Ding X. Progress and applications of mass cytometry in sketching immune landscapes. Clin Transl Med 2020; 10:e206. [PMID: 33135337 PMCID: PMC7556381 DOI: 10.1002/ctm2.206] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Recently emerged mass cytometry (cytometry by time-of-flight [CyTOF]) technology permits the identification and quantification of inherently diverse cellular systems, and the simultaneous measurement of functional attributes at the single-cell resolution. By virtue of its multiplex ability with limited need for compensation, CyTOF has led a critical role in immunological research fields. Here, we present an overview of CyTOF, including the introduction of CyTOF principle and advantages that make it a standalone tool in deciphering immune mysteries. We then discuss the functional assays, introduce the bioinformatics to interpret the data yield via CyTOF, and depict the emerging clinical and research applications of CyTOF technology in sketching immune landscape in a wide variety of diseases.
Collapse
Affiliation(s)
- Ting Zhang
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Antony R. Warden
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yiyang Li
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Xianting Ding
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
26
|
Alekseeva LA, Zheleznikova GF, Gorelik EY, Sckripchenko NV, Zhirkov AA. Cytokines and neuro-specific proteins in viral encephalitis and convulsive syndrome in children. II. Convulsive syndrome. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2020; 11:433-446. [DOI: 10.15789/2220-7619-can-1449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
In this Section we provide new data on the pathogenetic factors in pediatric convulsive syndrome, including a prominent role of viral infection in developing seizures and epilepsy (EPL) in children, as evidenced by clinical and experimental studies. Various forms of convulsive syndrome associated with viral infection include febrile convulsions and febrile epileptic status, encephalitis-related acute symptomatic seizures, and postencephalitic epilepsy. The human herpesvirus-6 isolated in temporal lobe epilepsy is a frequent causative agent of febrile seizures and febrile epileptic status. Febrile seizures and, especially, febrile epileptic status are associated with further developing epilepsy. Of special note is the febrile infection-related epileptic syndrome (FIRES) more often affecting school-aged children and characterized by extremely severe course and unfavorable outcome. Convulsive syndrome is associated with systemic inflammation and overproduced pro-inflammatory cytokines that increase permeability of the blood-brain barrier and functional activity of brain-resident cells, which are involved in eliciting seizures and maintaining epileptogenesis. Taking into consideration the key role of inflammation underlying convulsive syndrome, in recent decades cytokines and chemokines have been widely studied as possible prognostic criteria for epileptogenesis. Neuron-specific proteins are examined as markers of brain cell damage in various inflammatory diseases of the central nervous system. The first Section of the review presented current understanding on systemic and local cytokine/chemokine response in viral encephalitis. Here we present clinical trials published within the last 5—7 years assessing cytokines/chemokines and neuron-specific proteins in children with various forms of convulsive syndrome, including epilepsy. Association between biomarker level and disease clinical parameters as well as potential for their use to diagnose and predict its further course are discussed.
Collapse
|
27
|
Paleja B, Low AHL, Kumar P, Saidin S, Lajam A, Nur Hazirah S, Chua C, Li Yun L, Albani S. Systemic Sclerosis Perturbs the Architecture of the Immunome. Front Immunol 2020; 11:1602. [PMID: 32849542 PMCID: PMC7423974 DOI: 10.3389/fimmu.2020.01602] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/16/2020] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by excessive fibrosis of skin and internal organs, and vascular dysfunction. Association of T and B cell subsets has been reported in SSc; however, there is lack of systematic studies of functional relations between immune cell subsets in this disease. This lack of mechanistic knowledge hampers targeted intervention. In the current study we sought to determine differential immune cell composition and their interactions in peripheral blood of SSc patients. Mononuclear cells from blood of SSc patients (n = 20) and healthy controls (n = 10) were analyzed by mass cytometry using a 36-marker (cell surface and intracellular) panel. Transcriptome analysis (m-RNA sequencing) was performed on sorted T and B cell subsets. Unsupervised clustering analysis revealed significant differences in the frequencies of T and B cell subsets in patients. Correlation network analysis highlighted an overall dysregulated immune architecture coupled with domination of inflammatory senescent T cell modules in SSc patients. Transcriptome analysis of sorted immune cells revealed an activated phenotype of CD4 and mucosal associated invariant T (MAIT) cells in patients, accompanied by increased expression of inhibitory molecules, reminiscent of phenotype exhibited by functionally adapted, exhausted T cells in response to chronic stimulation. Overall, this study provides an in-depth analysis of the systemic immunome in SSc, highlighting the potential pathogenic role of inflammation and chronic stimulation-mediated “functional adaptation” of immune cells.
Collapse
Affiliation(s)
- Bhairav Paleja
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Andrea Hsiu Ling Low
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Pavanish Kumar
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Suzan Saidin
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Ahmad Lajam
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Sharifah Nur Hazirah
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Camillus Chua
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Lai Li Yun
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
28
|
Bosco DB, Tian DS, Wu LJ. Neuroimmune interaction in seizures and epilepsy: focusing on monocyte infiltration. FEBS J 2020; 287:4822-4837. [PMID: 32473609 DOI: 10.1111/febs.15428] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Epilepsy is a major neurological condition that affects millions of people globally. While a number of interventions have been developed to mitigate this condition, a significant number of patients are refractory to these treatments. Consequently, other avenues of research are needed. One such avenue is modulation of the immune system response to this condition, which has mostly focused on microglia, the resident immune cells of the central nervous system (CNS). However, other immune cells can impact neurological conditions, principally blood-borne monocytes that can infiltrate into brain parenchyma after seizures. As such, this review will first discuss how monocytes can be recruited to the CNS and how they can be distinguished from there immunological cousins, microglia. Then, we will explore what is known about the role monocytes have within seizure pathogenesis and epilepsy. Considering how little is known about monocyte function in seizure- and epilepsy-related pathologies, further studies are warranted that investigate infiltrated blood-borne monocytes as a potential therapeutic target for epilepsy treatment.
Collapse
Affiliation(s)
- Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dai-Shi Tian
- Department of Neurology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
29
|
Low CSF CD4/CD8+ T-cell proportions are associated with blood-CSF barrier dysfunction in limbic encephalitis. Epilepsy Behav 2020; 102:106682. [PMID: 31846897 DOI: 10.1016/j.yebeh.2019.106682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/10/2019] [Accepted: 11/02/2019] [Indexed: 11/23/2022]
Abstract
PURPOSE Investigating immune cells in autoimmune limbic encephalitis (LE) will contribute to our understanding of its pathophysiology and may help to develop appropriate therapies. The aim of the present study was to analyze immune cells to reveal underlying immune signatures in patients with temporal lobe epilepsy (TLE) with LE. METHODS We investigated 68 patients with TLE with LE compared with 7 control patients with TLE with no signs of LE screened from 154 patients with suspected LE. From the patients with TLE-LE, we differentiated early seizure onset (<20 years, n = 9) and late seizure onset group (≥20 years, n = 59) of patients. Patients underwent neuropsychological assessment, electroencephalography (EEG), brain magnetic resonance imaging (MRI), and peripheral blood (PB) and cerebrospinal fluid (CSF) analysis including flow cytometry. RESULTS We identified a higher CD4/8+ T-cell ratio in the PB in all patients with TLE-LE and in patients with late-onset TLE-LE each compared with controls (Kruskal-Wallis one-way ANOVA (analysis of variance) with Dunn's test, p < 0.05). Moreover, a lower CD4/CD8+ T-cell ratio is detected in all patients with TLE-LE with blood-CSF barrier dysfunction, unlike in those with none (Kruskal-Wallis one-way ANOVA with Dunn's test, p < 0.05). CONCLUSIONS These findings suggest that the proportion of CD4+ and CD8+ T-cells in the CSF of patients with LE associated with blood-CSF barrier dysfunction plays a potential role in CNS (central nervous system) inflammation in these patients. Thus, flow cytometry as a methodology reveals novel insights into LE's genesis and symptomatology. The CD4/8+ T-cell ratio in PB as a biomarker for LE requires further investigation.
Collapse
|