1
|
Kus ME, Sahin C, Kilic E, Askin A, Ozgur MM, Karahanogullari G, Aksit A, O'Connell RM, Ekiz HA. TCGEx: a powerful visual interface for exploring and analyzing cancer gene expression data. EMBO Rep 2025; 26:1863-1890. [PMID: 40033050 PMCID: PMC11976970 DOI: 10.1038/s44319-025-00407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
Analyzing gene expression data from the Cancer Genome Atlas (TCGA) and similar repositories often requires advanced coding skills, creating a barrier for many researchers. To address this challenge, we developed The Cancer Genome Explorer (TCGEx), a user-friendly, web-based platform for conducting sophisticated analyses such as survival modeling, gene set enrichment analysis, unsupervised clustering, and linear regression-based machine learning. TCGEx provides access to preprocessed TCGA data and immune checkpoint inhibition studies while allowing integration of user-uploaded data sets. Using TCGEx, we explore molecular subsets of human melanoma and identify microRNAs associated with intratumoral immunity. These findings are validated with independent clinical trial data on immune checkpoint inhibitors for melanoma and other cancers. In addition, we identify cytokine genes that can be used to predict treatment responses to various immune checkpoint inhibitors prior to treatment. Built on the R/Shiny framework, TCGEx offers customizable features to adapt analyses for diverse research contexts and generate publication-ready visualizations. TCGEx is freely available at https://tcgex.iyte.edu.tr , providing an accessible tool to extract insights from cancer transcriptomics data.
Collapse
Affiliation(s)
- M Emre Kus
- The Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Gulbahce, Izmir, Turkey
| | - Cagatay Sahin
- The Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Gulbahce, Izmir, Turkey
| | - Emre Kilic
- The Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Gulbahce, Izmir, Turkey
| | - Arda Askin
- The Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Gulbahce, Izmir, Turkey
| | - M Mert Ozgur
- The Department of Molecular Biology and Genetics, Bilkent University, 06800, Cankaya, Ankara, Turkey
| | - Gokhan Karahanogullari
- The Department of Mathematics, Izmir Institute of Technology, 35430, Gulbahce, Izmir, Turkey
| | - Ahmet Aksit
- The Department of Information Technologies, Izmir Institute of Technology, 35430, Gulbahce, Izmir, Turkey
| | - Ryan M O'Connell
- The Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - H Atakan Ekiz
- The Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Gulbahce, Izmir, Turkey.
| |
Collapse
|
2
|
Li K, Wang J, Xie Y, Lu Z, Sun W, Wang K, Liang J, Chen X. Reactive oxygen species/glutathione dual sensitive nanoparticles with encapsulation of miR155 and curcumin for synergized cancer immunotherapy. J Nanobiotechnology 2024; 22:400. [PMID: 38972995 PMCID: PMC11229347 DOI: 10.1186/s12951-024-02575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 07/09/2024] Open
Abstract
Considerable attention has been directed towards exploring the potential efficacy of miR-155 in the realm of cancer immunotherapy. Elevated levels of miR-155 in dendritic cells (DCs) have been shown to enhance their maturation, migration, cytokine secretion, and their ability to promote T cell activation. In addition, overexpression of mir155 in M2 macrophages boost the polarization towards the M1 phenotype. Conversely, miR-155 has the propensity to induce the accumulation of immunosuppressive cells like regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) in the tumor tissue. To account for this discrepancy, it is imperative to get help from a drug that could deal with immunosuppressive effect. Curcumin (CUR) exhibits the capacity to prompt Tregs converse into T helper 1 cells, fostering the polarization of M2 tumor-associated macrophage towards the M1 phenotype, and impeding the recruitment and aggregation of MDSCs within the tumor microenvironment. Nonetheless, CUR is known to exert an immunosuppressive impact on DCs by hindering the expression of maturation markers, cytokines, and chemokines, thereby prevent DCs response to immunostimulatory agents. Hence, a reactive oxygen species/glutathione dual responsive drug conveyance platform (CUR/miR155@DssD-Hb NPs) was devised to co-deliver CUR and miR155, with the aim of exploring their synergistic potential in bolstering a sustained and robust anti-tumor immune response. In vitro and in vivo results have suggested that CUR/miR155@DssD-Hb NPs can effectively inhibit the viability of 4T1 and B16F10 tumor cells, trigger the release of damage associated molecular patterns, stimulate DCs maturation, subsequent activation of CD8+ T cells, diminish immunosuppressive cell populations (MDSCs, Tregs, M2 TAMs and exhausted T cells), promote the formation of long-term immunity and lessen the formation of metastatic nodules in the lungs. In summary, the co-delivery system integrating CUR and miR155 (CUR/miR155@DssD-Hb NPs) demonstrates promise as a promising strategy for the immunotherapy of melanoma and triple negative breast cancer.
Collapse
Affiliation(s)
- Kangkang Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Juan Wang
- Pharmacy Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Yi Xie
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ziyao Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wen Sun
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kaixuan Wang
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinxin Liang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Syage AR, Pachow C, Murray KM, Henningfield C, Fernandez K, Du A, Cheng Y, Olivarria G, Kawauchi S, MacGregor GR, Green KN, Lane TE. Cystatin F attenuates neuroinflammation and demyelination following murine coronavirus infection of the central nervous system. J Neuroinflammation 2024; 21:157. [PMID: 38879499 PMCID: PMC11179388 DOI: 10.1186/s12974-024-03153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/12/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Cystatin F is a secreted lysosomal cysteine protease inhibitor that has been implicated in affecting the severity of demyelination and enhancing remyelination in pre-clinical models of immune-mediated demyelination. How cystatin F impacts neurologic disease severity following viral infection of the central nervous system (CNS) has not been well characterized and was the focus of this study. We used cystatin F null-mutant mice (Cst7-/-) with a well-established model of murine coronavirus-induced neurologic disease to evaluate the contributions of cystatin F in host defense, demyelination and remyelination. METHODS Wildtype controls and Cst7-/- mice were intracranially (i.c.) infected with a sublethal dose of the neurotropic JHM strain of mouse hepatitis virus (JHMV), with disease progression and survival monitored daily. Viral plaque assays and qPCR were used to assess viral levels in CNS. Immune cell infiltration into the CNS and immune cell activation were determined by flow cytometry and 10X genomics chromium 3' single cell RNA sequencing (scRNA-seq). Spinal cord demyelination was determined by luxol fast blue (LFB) and Hematoxylin/Eosin (H&E) staining and axonal damage assessed by immunohistochemical staining for SMI-32. Remyelination was evaluated by electron microscopy (EM) and calculation of g-ratios. RESULTS JHMV-infected Cst7-/- mice were able to control viral replication within the CNS, indicating that cystatin F is not essential for an effective Th1 anti-viral immune response. Infiltration of T cells into the spinal cords of JHMV-infected Cst7-/- mice was increased compared to infected controls, and this correlated with increased axonal damage and demyelination associated with impaired remyelination. Single-cell RNA-seq of CD45 + cells enriched from spinal cords of infected Cst7-/- and control mice revealed enhanced expression of transcripts encoding T cell chemoattractants, Cxcl9 and Cxcl10, combined with elevated expression of interferon-g (Ifng) and perforin (Prf1) transcripts in CD8 + T cells from Cst7-/- mice compared to controls. CONCLUSIONS Cystatin F is not required for immune-mediated control of JHMV replication within the CNS. However, JHMV-infected Cst7-/- mice exhibited more severe clinical disease associated with increased demyelination and impaired remyelination. The increase in disease severity was associated with elevated expression of T cell chemoattractant chemokines, concurrent with increased neuroinflammation. These findings support the idea that cystatin F influences expression of proinflammatory gene expression impacting neuroinflammation, T cell activation and/or glia cell responses ultimately impacting neuroinflammation and neurologic disease.
Collapse
Affiliation(s)
- Amber R Syage
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Collin Pachow
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Kaitlin M Murray
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Caden Henningfield
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Kellie Fernandez
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Annie Du
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Yuting Cheng
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Gema Olivarria
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Shimako Kawauchi
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, 92697, USA
| | - Grant R MacGregor
- Department of Developmental & Cell Biology, University of California, Irvine, 92697, USA
| | - Kim N Green
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Thomas E Lane
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA.
- Center for Virus Research, University of California, Irvine, 92697, USA.
| |
Collapse
|
4
|
Han Y, Zhou J, Liu F, Ouyang Y, Yuan R, Chai YQ. pH-Stimulated Self-Locked DNA Nanostructure for the Effective Discrimination of Cancer Cells and Simultaneous Detection and Imaging of Endogenous Dual-MicroRNAs. Anal Chem 2023; 95:12754-12760. [PMID: 37590171 DOI: 10.1021/acs.analchem.3c01470] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
In this study, a pH-stimulated self-locked DNA nanostructure (SLDN) was developed to efficiently distinguish cancer cells from other cells for the simultaneous detection and imaging of endogenous dual-microRNAs (miRNAs). Impressively, the SLDN was specifically unlocked in the acidic environment of cancer cells to form unlocked-SLDN to disengage the i-motif sequence with a labeled fluorophore for the recovery of a fluorescence signal, resulting in the differentiation of cancer cells from normal cells. Meanwhile, unlocked-SLDN could combine and recognize the targets miRNA-21 and miRNA-155 simultaneously to trigger the hybridization chain reaction (HCR) amplification for sensitive dual-miRNA detection, with detection limits of 1.46 pM for miRNA-21 and 0.72 pM for miRNA-155. Significantly, compared with the current miRNA imaging strategy based on the traditional DNA nanostructure, the strategy proposed here remarkably eliminates the interference of normal cells to achieve high-resolution colocation imaging of miRNAs in tumor cells with an ultralow background signal. This work provided a specific differentiation method for tumor cells to materialize sensitive biomarker detection and distinguishable high-definition live-cell imaging for precise cancer diagnosis and multifactor research of tumor progression.
Collapse
Affiliation(s)
- Yichen Han
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jie Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Fang Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yu Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
- The Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
5
|
Thompson JW, Hu R, Huffaker TB, Ramstead AG, Ekiz HA, Bauer KM, Tang WW, Ghazaryan A, Round JL, Fujinami RS, O’Connell RM. MicroRNA-155 Plays Selective Cell-Intrinsic Roles in Brain-Infiltrating Immune Cell Populations during Neuroinflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:926-934. [PMID: 36883849 PMCID: PMC10305808 DOI: 10.4049/jimmunol.2200478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/27/2023] [Indexed: 03/09/2023]
Abstract
The proinflammatory microRNA-155 (miR-155) is highly expressed in the serum and CNS lesions of patients with multiple sclerosis (MS). Global knockout (KO) of miR-155 in mice confers resistance to a mouse model of MS, experimental autoimmune encephalomyelitis (EAE), by reducing the encephalogenic potential of CNS-infiltrating Th17 T cells. However, cell-intrinsic roles for miR-155 during EAE have not been formally determined. In this study, we use single-cell RNA sequencing and cell-specific conditional miR-155 KOs to determine the importance of miR-155 expression in distinct immune cell populations. Time-course single-cell sequencing revealed reductions in T cells, macrophages, and dendritic cells (DCs) in global miR-155 KO mice compared with wild-type controls at day 21 after EAE induction. Deletion of miR-155 in T cells, driven by CD4 Cre, significantly reduced disease severity similar to global miR-155 KOs. CD11c Cre-mediated deletion of miR-155 in DCs also resulted in a modest yet significant reduction in the development of EAE, with both T cell- and DC-specific KOs showing a reduction in Th17 T cell infiltration into the CNS. Although miR-155 is highly expressed in infiltrating macrophages during EAE, deletion of miR-155 using LysM Cre did not impact disease severity. Taken together, these data show that although miR-155 is highly expressed in most infiltrating immune cells, miR-155 has distinct roles and requirements depending on the cell type, and we have demonstrated this using the gold standard conditional KO approach. This provides insights into which functionally relevant cell types should be targeted by the next generation of miRNA therapeutics.
Collapse
Affiliation(s)
- Jacob W. Thompson
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112
| | - Ruozhen Hu
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112
| | - Thomas B. Huffaker
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112
| | - Andrew G. Ramstead
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112
| | - H. Atakan Ekiz
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112
| | - Kaylyn M. Bauer
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112
| | - William W. Tang
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112
| | - Arevik Ghazaryan
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112
| | - June L. Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Robert S. Fujinami
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112
| | - Ryan M. O’Connell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
6
|
Ren T, Chen C, Danilov AV, Liu S, Guan X, Du S, Wu X, Sherman MH, Spellman PT, Coussens LM, Adey AC, Mills GB, Wu LY, Xia Z. Supervised learning of high-confidence phenotypic subpopulations from single-cell data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533712. [PMID: 36993424 PMCID: PMC10055361 DOI: 10.1101/2023.03.23.533712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Accurately identifying phenotype-relevant cell subsets from heterogeneous cell populations is crucial for delineating the underlying mechanisms driving biological or clinical phenotypes. Here, by deploying a learning with rejection strategy, we developed a novel supervised learning framework called PENCIL to identify subpopulations associated with categorical or continuous phenotypes from single-cell data. By embedding a feature selection function into this flexible framework, for the first time, we were able to select informative features and identify cell subpopulations simultaneously, which enables the accurate identification of phenotypic subpopulations otherwise missed by methods incapable of concurrent gene selection. Furthermore, the regression mode of PENCIL presents a novel ability for supervised phenotypic trajectory learning of subpopulations from single-cell data. We conducted comprehensive simulations to evaluate PENCIĽs versatility in simultaneous gene selection, subpopulation identification and phenotypic trajectory prediction. PENCIL is fast and scalable to analyze 1 million cells within 1 hour. Using the classification mode, PENCIL detected T-cell subpopulations associated with melanoma immunotherapy outcomes. Moreover, when applied to scRNA-seq of a mantle cell lymphoma patient with drug treatment across multiple time points, the regression mode of PENCIL revealed a transcriptional treatment response trajectory. Collectively, our work introduces a scalable and flexible infrastructure to accurately identify phenotype-associated subpopulations from single-cell data.
Collapse
Affiliation(s)
- Tao Ren
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Canping Chen
- Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | | | - Susan Liu
- Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Xiangnan Guan
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, CA, USA
| | - Shunyi Du
- Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Xiwei Wu
- City of Hope National Medical Center, Duarte, CA, USA
| | - Mara H. Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Paul T. Spellman
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Lisa M. Coussens
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Andrew C. Adey
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Gordon B. Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ling-Yun Wu
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Xia
- Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
7
|
The Roles of MiRNAs (MicroRNAs) in Melanoma Immunotherapy. Int J Mol Sci 2022; 23:ijms232314775. [PMID: 36499102 PMCID: PMC9736803 DOI: 10.3390/ijms232314775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer, characterized by life-threatening and rapidly spreading progression. Traditional targeted therapy can alleviate tumors by inactivating hyperactive kinases such as BRAF or MEK but inevitably encounters drug resistance. The advent of immunotherapy has revolutionized melanoma treatment and significantly improved the prognosis of melanoma patients. MicroRNAs (miRNAs) are intricately involved in innate and adaptive immunity and are implicated in melanoma immunotherapy. This systematic review describes the roles of miRNAs in regulating the functions of immune cells in skin and melanoma, as well as the involvement of miRNAs in pharmacology including the effect, resistance and immune-related adverse events of checkpoint inhibitors such as PD-1 and CTLA-4 inhibitors, which are used for treating cutaneous, uveal and mucosal melanoma. The expressions and functions of miRNAs in immunotherapy employing tumor-infiltrating lymphocytes and Toll-like receptor 9 agonists are also discussed. The prospect of innovative therapeutic strategies such as the combined administration of miRNAs and immune checkpoint inhibitors and the nanotechnology-based delivery of miRNAs are also provided. A comprehensive understanding of the interplay between miRNAs and immunotherapy is crucial for the discovery of reliable biomarkers and for the development of novel miRNA-based therapeutics against melanoma.
Collapse
|
8
|
Skinner DD, Syage AR, Olivarria GM, Stone C, Hoglin B, Lane TE. Sustained Infiltration of Neutrophils Into the CNS Results in Increased Demyelination in a Viral-Induced Model of Multiple Sclerosis. Front Immunol 2022; 13:931388. [PMID: 36248905 PMCID: PMC9562915 DOI: 10.3389/fimmu.2022.931388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Intracranial inoculation of the neuroadapted JHM strain of mouse hepatitis virus (JHMV) into susceptible strains of mice results in acute encephalomyelitis followed by a cimmune-mediated demyelination similar to the human demyelinating disease multiple sclerosis (MS). JHMV infection of transgenic mice in which expression of the neutrophil chemoattractant chemokine CXCL1 is under the control of a tetracycline-inducible promoter active within GFAP-positive cells results in sustained neutrophil infiltration in the central nervous system (CNS) that correlates with an increase in spinal cord demyelination. We used single cell RNA sequencing (scRNAseq) and flow cytometry to characterize molecular and cellular changes within the CNS associated with increased demyelination in transgenic mice compared to control animals. These approaches revealed the presence of activated neutrophils as determined by expression of mRNA transcripts associated with neutrophil effector functions, including CD63, MMP9, S100a8, S100a9, and ASPRV1, as well as altered neutrophil morphology and protein expression. Collectively, these findings reveal insight into changes in the profile of neutrophils associated with increased white matter damage in mice persistently infected with a neurotropic coronavirus.
Collapse
Affiliation(s)
- Dominic D. Skinner
- Department of Pathology, Division of Microbiology and Immunology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Amber R. Syage
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Gema M. Olivarria
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Colleen Stone
- Department of Pathology, Division of Microbiology and Immunology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Bailey Hoglin
- Department of Pathology, Division of Microbiology and Immunology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Thomas E. Lane
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, CA, United States,Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, United States,Center for Virus Research, University of California Irvine, Irvine, CA, United States,*Correspondence: Thomas E. Lane,
| |
Collapse
|
9
|
Tang WW, Bauer KM, Barba C, Ekiz HA, O’Connell RM. miR-aculous new avenues for cancer immunotherapy. Front Immunol 2022; 13:929677. [PMID: 36248881 PMCID: PMC9554277 DOI: 10.3389/fimmu.2022.929677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
The rising toll of cancer globally necessitates ingenuity in early detection and therapy. In the last decade, the utilization of immune signatures and immune-based therapies has made significant progress in the clinic; however, clinical standards leave many current and future patients without options. Non-coding RNAs, specifically microRNAs, have been explored in pre-clinical contexts with tremendous success. MicroRNAs play indispensable roles in programming the interactions between immune and cancer cells, many of which are current or potential immunotherapy targets. MicroRNAs mechanistically control a network of target genes that can alter immune and cancer cell biology. These insights provide us with opportunities and tools that may complement and improve immunotherapies. In this review, we discuss immune and cancer cell-derived miRNAs that regulate cancer immunity and examine miRNAs as an integral part of cancer diagnosis, classification, and therapy.
Collapse
Affiliation(s)
- William W. Tang
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Kaylyn M. Bauer
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Cindy Barba
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Huseyin Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, İzmir, Turkey
| | - Ryan M. O’Connell
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
10
|
Lee MF, Voon GZ, Lim HX, Chua ML, Poh CL. Innate and adaptive immune evasion by dengue virus. Front Cell Infect Microbiol 2022; 12:1004608. [PMID: 36189361 PMCID: PMC9523788 DOI: 10.3389/fcimb.2022.1004608] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Dengue is a mosquito-borne disease which causes significant public health concerns in tropical and subtropical countries. Dengue virus (DENV) has evolved various strategies to manipulate the innate immune responses of the host such as ‘hiding’ in the ultrastructure of the host, interfering with the signaling pathway through RNA modifications, inhibiting type 1 IFN production, as well as inhibiting STAT1 phosphorylation. DENV is also able to evade the adaptive immune responses of the host through antigenic variation, antigen-dependent enhancement (ADE), partial maturation of prM proteins, and inhibition of antigen presentation. miRNAs are important regulators of both innate and adaptive immunity and they have been shown to play important roles in DENV replication and pathogenesis. This makes them suitable candidates for the development of anti-dengue therapeutics. This review discusses the various strategies employed by DENV to evade innate and adaptive immunity. The role of miRNAs and DENV non-structural proteins (NS) are promising targets for the development of anti-dengue therapeutics.
Collapse
|
11
|
Kim JY, Stevens P, Karpurapu M, Lee H, Englert JA, Yan P, Lee TJ, Pabla N, Pietrzak M, Park GY, Christman JW, Chung S. Targeting ETosis by miR-155 inhibition mitigates mixed granulocytic asthmatic lung inflammation. Front Immunol 2022; 13:943554. [PMID: 35958610 PMCID: PMC9360579 DOI: 10.3389/fimmu.2022.943554] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is phenotypically heterogeneous with several distinctive pathological mechanistic pathways. Previous studies indicate that neutrophilic asthma has a poor response to standard asthma treatments comprising inhaled corticosteroids. Therefore, it is important to identify critical factors that contribute to increased numbers of neutrophils in asthma patients whose symptoms are poorly controlled by conventional therapy. Leukocytes release chromatin fibers, referred to as extracellular traps (ETs) consisting of double-stranded (ds) DNA, histones, and granule contents. Excessive components of ETs contribute to the pathophysiology of asthma; however, it is unclear how ETs drive asthma phenotypes and whether they could be a potential therapeutic target. We employed a mouse model of severe asthma that recapitulates the intricate immune responses of neutrophilic and eosinophilic airway inflammation identified in patients with severe asthma. We used both a pharmacologic approach using miR-155 inhibitor-laden exosomes and genetic approaches using miR-155 knockout mice. Our data show that ETs are present in the bronchoalveolar lavage fluid of patients with mild asthma subjected to experimental subsegmental bronchoprovocation to an allergen and a severe asthma mouse model, which resembles the complex immune responses identified in severe human asthma. Furthermore, we show that miR-155 contributes to the extracellular release of dsDNA, which exacerbates allergic lung inflammation, and the inhibition of miR-155 results in therapeutic benefit in severe asthma mice. Our findings show that targeting dsDNA release represents an attractive therapeutic target for mitigating neutrophilic asthma phenotype, which is clinically refractory to standard care.
Collapse
Affiliation(s)
- Ji Young Kim
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Patrick Stevens
- Comprehensive Cancer Center, Biomedical Informatics Shared Resources, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Manjula Karpurapu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Hyunwook Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Joshua A. Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Pearlly Yan
- Comprehensive Cancer Center, Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Tae Jin Lee
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Navjot Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Maciej Pietrzak
- Comprehensive Cancer Center, Biomedical Informatics Shared Resources, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Gye Young Park
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - John W. Christman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Sangwoon Chung
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| |
Collapse
|
12
|
Nguyen MHT, Luo YH, Li AL, Tsai JC, Wu KL, Chung PJ, Ma N. miRNA as a Modulator of Immunotherapy and Immune Response in Melanoma. Biomolecules 2021; 11:1648. [PMID: 34827646 PMCID: PMC8615556 DOI: 10.3390/biom11111648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
Immune checkpoint inhibitors are a promising therapy for the treatment of cancers, including melanoma, that improved benefit clinical outcomes. However, a subset of melanoma patients do not respond or acquire resistance to immunotherapy, which limits their clinical applicability. Recent studies have explored the reasons related to the resistance of melanoma to immune checkpoint inhibitors. Of note, miRNAs are the regulators of not only cancer progression but also of the response between cancer cells and immune cells. Investigation of miRNA functions within the tumor microenvironment have suggested that miRNAs could be considered as key partners in immunotherapy. Here, we reviewed the known mechanism by which melanoma induces resistance to immunotherapy and the role of miRNAs in immune responses and the microenvironment.
Collapse
Affiliation(s)
- Mai-Huong Thi Nguyen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan; (M.-H.T.N.); (A.-L.L.); (K.-L.W.); (P.-J.C.)
| | - Yueh-Hsia Luo
- Department of Life Sciences, National Central University, Taoyuan 320317, Taiwan;
| | - An-Lun Li
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan; (M.-H.T.N.); (A.-L.L.); (K.-L.W.); (P.-J.C.)
| | - Jen-Chieh Tsai
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan;
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 350401, Taiwan
| | - Kun-Lin Wu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan; (M.-H.T.N.); (A.-L.L.); (K.-L.W.); (P.-J.C.)
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325208, Taiwan
| | - Pei-Jung Chung
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan; (M.-H.T.N.); (A.-L.L.); (K.-L.W.); (P.-J.C.)
| | - Nianhan Ma
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan; (M.-H.T.N.); (A.-L.L.); (K.-L.W.); (P.-J.C.)
| |
Collapse
|
13
|
Cui X, Qin F, Yu X, Xiao F, Cai G. SCISSOR™: a single-cell inferred site-specific omics resource for tumor microenvironment association study. NAR Cancer 2021; 3:zcab037. [PMID: 34514416 PMCID: PMC8428296 DOI: 10.1093/narcan/zcab037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 12/04/2022] Open
Abstract
Tumor tissues are heterogeneous with different cell types in tumor microenvironment, which play an important role in tumorigenesis and tumor progression. Several computational algorithms and tools have been developed to infer the cell composition from bulk transcriptome profiles. However, they ignore the tissue specificity and thus a new resource for tissue-specific cell transcriptomic reference is needed for inferring cell composition in tumor microenvironment and exploring their association with clinical outcomes and tumor omics. In this study, we developed SCISSOR™ (https://thecailab.com/scissor/), an online open resource to fulfill that demand by integrating five orthogonal omics data of >6031 large-scale bulk samples, patient clinical outcomes and 451 917 high-granularity tissue-specific single-cell transcriptomic profiles of 16 cancer types. SCISSOR™ provides five major analysis modules that enable flexible modeling with adjustable parameters and dynamic visualization approaches. SCISSOR™ is valuable as a new resource for promoting tumor heterogeneity and tumor–tumor microenvironment cell interaction research, by delineating cells in the tissue-specific tumor microenvironment and characterizing their associations with tumor omics and clinical outcomes.
Collapse
Affiliation(s)
- Xiang Cui
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Fei Qin
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Xuanxuan Yu
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Feifei Xiao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
14
|
Identification of Small Molecule Inhibitors of a Mir155 Transcriptional Reporter in Th17 Cells. Sci Rep 2021; 11:11498. [PMID: 34075120 PMCID: PMC8169650 DOI: 10.1038/s41598-021-90944-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/12/2021] [Indexed: 11/09/2022] Open
Abstract
MicroRNA miR-155 is an important regulatory molecule in the immune system and is highly expressed and functional in Th17 cells, a subset of CD4+ T helper cells which are key players in autoimmune diseases. Small molecules that can modulate miR-155 may potentially provide new therapeutic avenues to inhibit Th17 cell-mediated autoimmune diseases. Here, we present a novel high-throughput screening assay using primary T cells from genetically engineered Mir155 reporter mice, and its use to screen libraries of small molecules to identify novel modulators of Th17 cell function. We have discovered a chemical series of (E)-1-(phenylsulfonyl)-2-styryl-1H-benzo[d] imidazoles as novel down-regulators of Mir155 reporter and cytokine expression in Th17 cells. In addition, we found that FDA approved antiparasitic agents belonging to the 'azole' family also down-regulate Mir155 reporter and cytokine expression in Th17 cells, and thus could potentially be repurposed to treat Th17-driven immunopathologies.
Collapse
|
15
|
Andreatta M, Corria-Osorio J, Müller S, Cubas R, Coukos G, Carmona SJ. Interpretation of T cell states from single-cell transcriptomics data using reference atlases. Nat Commun 2021; 12:2965. [PMID: 34017005 PMCID: PMC8137700 DOI: 10.1038/s41467-021-23324-4] [Citation(s) in RCA: 299] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has revealed an unprecedented degree of immune cell diversity. However, consistent definition of cell subtypes and cell states across studies and diseases remains a major challenge. Here we generate reference T cell atlases for cancer and viral infection by multi-study integration, and develop ProjecTILs, an algorithm for reference atlas projection. In contrast to other methods, ProjecTILs allows not only accurate embedding of new scRNA-seq data into a reference without altering its structure, but also characterizing previously unknown cell states that "deviate" from the reference. ProjecTILs accurately predicts the effects of cell perturbations and identifies gene programs that are altered in different conditions and tissues. A meta-analysis of tumor-infiltrating T cells from several cohorts reveals a strong conservation of T cell subtypes between human and mouse, providing a consistent basis to describe T cell heterogeneity across studies, diseases, and species.
Collapse
Affiliation(s)
- Massimo Andreatta
- Department of Oncology, Lausanne Branch, Ludwig Institute for Cancer Research, CHUV and University of Lausanne, Lausanne, Epalinges, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jesus Corria-Osorio
- Department of Oncology, Lausanne Branch, Ludwig Institute for Cancer Research, CHUV and University of Lausanne, Lausanne, Epalinges, Switzerland
| | - Sören Müller
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, USA
| | - Rafael Cubas
- Department of Translational Oncology, Genentech, South San Francisco, CA, USA
| | - George Coukos
- Department of Oncology, Lausanne Branch, Ludwig Institute for Cancer Research, CHUV and University of Lausanne, Lausanne, Epalinges, Switzerland
| | - Santiago J Carmona
- Department of Oncology, Lausanne Branch, Ludwig Institute for Cancer Research, CHUV and University of Lausanne, Lausanne, Epalinges, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
16
|
Huffaker TB, Ekiz HA, Barba C, Lee SH, Runtsch MC, Nelson MC, Bauer KM, Tang WW, Mosbruger TL, Cox JE, Round JL, Voth WP, O'Connell RM. A Stat1 bound enhancer promotes Nampt expression and function within tumor associated macrophages. Nat Commun 2021; 12:2620. [PMID: 33976173 PMCID: PMC8113251 DOI: 10.1038/s41467-021-22923-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 03/30/2021] [Indexed: 02/03/2023] Open
Abstract
Tumor associated macrophage responses are regulated by distinct metabolic states that affect their function. However, the ability of specific signals in the local tumor microenvironment to program macrophage metabolism remains under investigation. Here, we identify NAMPT, the rate limiting enzyme in NAD salvage synthesis, as a target of STAT1 during cellular activation by interferon gamma, an important driver of macrophage polarization and antitumor responses. We demonstrate that STAT1 occupies a conserved element within the first intron of Nampt, termed Nampt-Regulatory Element-1 (NRE1). Through disruption of NRE1 or pharmacological inhibition, a subset of M1 genes is sensitive to NAMPT activity through its impact on glycolytic processes. scRNAseq is used to profile in vivo responses by NRE1-deficient, tumor-associated leukocytes in melanoma tumors through the creation of a unique mouse strain. Reduced Nampt and inflammatory gene expression are present in specific myeloid and APC populations; moreover, targeted ablation of NRE1 in macrophage lineages results in greater tumor burden. Finally, elevated NAMPT expression correlates with IFNγ responses and melanoma patient survival. This study identifies IFN and STAT1-inducible Nampt as an important factor that shapes the metabolic program and function of tumor associated macrophages.
Collapse
Affiliation(s)
- Thomas B Huffaker
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - H Atakan Ekiz
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Cindy Barba
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Soh-Hyun Lee
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Marah C Runtsch
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Morgan C Nelson
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Kaylyn M Bauer
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - William W Tang
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | | | - James E Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
| | - June L Round
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Warren P Voth
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| | - Ryan M O'Connell
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
17
|
Syage AR, Ekiz HA, Skinner DD, Stone C, O'Connell RM, Lane TE. Single-Cell RNA Sequencing Reveals the Diversity of the Immunological Landscape following Central Nervous System Infection by a Murine Coronavirus. J Virol 2020; 94:e01295-20. [PMID: 32999036 PMCID: PMC7925182 DOI: 10.1128/jvi.01295-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/16/2020] [Indexed: 01/12/2023] Open
Abstract
Intracranial (i.c.) infection of susceptible C57BL/6 mice with the neurotropic JHM strain of mouse hepatitis virus (JHMV) (a member of the Coronaviridae family) results in acute encephalomyelitis and viral persistence associated with an immune-mediated demyelinating disease. The present study was undertaken to better understand the molecular pathways evoked during innate and adaptive immune responses as well as the chronic demyelinating stage of disease in response to JHMV infection of the central nervous system (CNS). Using single-cell RNA sequencing analysis (scRNAseq) on flow-sorted CD45-positive (CD45+) cells enriched from brains and spinal cords of experimental mice, we demonstrate the heterogeneity of the immune response as determined by the presence of unique molecular signatures and pathways involved in effective antiviral host defense. Furthermore, we identify potential genes involved in contributing to demyelination as well as remyelination being expressed by both microglia and macrophages. Collectively, these findings emphasize the diversity of the immune responses and molecular networks at defined stages following viral infection of the CNS.IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the molecular signatures of immune cells within the CNS at defined times following infection with a neuroadapted murine coronavirus using scRNAseq. This approach has revealed that the immunological landscape is diverse, with numerous immune cell subsets expressing distinct mRNA expression profiles that are, in part, dictated by the stage of infection. In addition, these findings reveal new insight into cellular pathways contributing to control of viral replication as well as to neurologic disease.
Collapse
Affiliation(s)
- Amber R Syage
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - H Atakan Ekiz
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Dominic D Skinner
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Colleen Stone
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Ryan M O'Connell
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Thomas E Lane
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
18
|
Mangale V, Syage AR, Ekiz HA, Skinner DD, Cheng Y, Stone CL, Brown RM, O'Connell RM, Green KN, Lane TE. Microglia influence host defense, disease, and repair following murine coronavirus infection of the central nervous system. Glia 2020; 68:2345-2360. [PMID: 32449994 PMCID: PMC7280614 DOI: 10.1002/glia.23844] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022]
Abstract
The present study examines functional contributions of microglia in host defense, demyelination, and remyelination following infection of susceptible mice with a neurotropic coronavirus. Treatment with PLX5622, an inhibitor of colony stimulating factor 1 receptor (CSF1R) that efficiently depletes microglia, prior to infection of the central nervous system (CNS) with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in increased mortality compared with control mice that correlated with impaired control of viral replication. Single cell RNA sequencing (scRNASeq) of CD45+ cells isolated from the CNS revealed that PLX5622 treatment resulted in muted CD4+ T cell activation profile that was associated with decreased expression of transcripts encoding MHC class II and CD86 in macrophages but not dendritic cells. Evaluation of spinal cord demyelination revealed a marked increase in white matter damage in PLX5622-treated mice that corresponded with elevated expression of transcripts encoding disease-associated proteins Osteopontin (Spp1), Apolipoprotein E (Apoe), and Triggering receptor expressed on myeloid cells 2 (Trem2) that were enriched within macrophages. In addition, PLX5622 treatment dampened expression of Cystatin F (Cst7), Insulin growth factor 1 (Igf1), and lipoprotein lipase (Lpl) within macrophage populations which have been implicated in promoting repair of damaged nerve tissue and this was associated with impaired remyelination. Collectively, these findings argue that microglia tailor the CNS microenvironment to enhance control of coronavirus replication as well as dampen the severity of demyelination and influence repair.
Collapse
Affiliation(s)
- Vrushali Mangale
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Amber R. Syage
- Department of Neurobiology & Behavior, School of Biological SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| | - H. Atakan Ekiz
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Dominic D. Skinner
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Yuting Cheng
- Department of Neurobiology & Behavior, School of Biological SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| | - Colleen L. Stone
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - R. Marshall Brown
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Ryan M. O'Connell
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Kim N. Green
- Department of Neurobiology & Behavior, School of Biological SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| | - Thomas E. Lane
- Department of Neurobiology & Behavior, School of Biological SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
19
|
He Y, Wang X. Identification of molecular features correlating with tumor immunity in gastric cancer by multi-omics data analysis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1050. [PMID: 33145269 PMCID: PMC7575957 DOI: 10.21037/atm-20-922] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Although immunotherapy has achieved success in treating various refractory malignancies including gastric cancers (GCs) with DNA mismatch repair deficiency, only a subset of cancer patients are responsive to immunotherapy. Therefore, the identification of useful biomarkers or interventional targets for improving cancer immunotherapy response is urgently needed. Methods We investigated the associations between various molecular features and immune signatures using three multi-omics GC datasets. These molecular features included genes, microRNAs (miRNAs), long non-coding RNAs (lncRNAs), proteins, and pathways, and the immune signatures included CD8+ T cell infiltration, immune cytolytic activity (ICA), and PD-L1 expression. Moreover, we investigated the association between gene mutations and survival prognosis in a gastrointestinal (GI) cancer cohort receiving immunotherapy and two GC cohorts not receiving such a therapy. Results The mutations of some important oncogenes and tumor suppressor genes were appreciably associated with immune signatures in GC, including PIK3CA, MTOR, RNF213, TP53, ARID1A, PTEN, ATM, and CDH1. Moreover, a number of genes exhibited a significant expression correlation with immune signatures in GC, including CXCL9, CXCL13, CXCR6, CCL5, GUCY2C, MAP3K9, NEK3, PAK6, STK35, and WNK2. We identified several proteins whose expression had a significant positive correlation with immune signatures in GC. These proteins included caspase-7, PI3K-p85, PREX1, Lck, Bcl-2, and transglutaminase. In contrast, acetyl-CoA carboxylase (ACC) had a significant inverse expression correlation with immune signatures in GC, suggesting that inhibiting ACC could enhance antitumor immunity in GC. Furthermore, we identified numerous miRNAs and lncRNAs with a significant expression correlation with GC immunity, including hsa-miR-150, 155, 142, 342, 146, 101, 511, 29, AC022706.1, LINC01871, and AC006033.2. We also identified numerous cancer-associated pathways whose activity was associated with GC immunity, including mTOR, PI3K-AKT, MAPK, HIF-1, and VEGF signaling pathways. Interestingly, we found seven genes (ARID1A, BCOR, MTOR, CREBBP, SPEN, NOTCH4, and TET1) whose mutations were associated with better OS in GI cancer patients receiving anti-PD-1/PD-L1 immunotherapy but were not associated with OS in GC patients without immunotherapy. Conclusions The molecular features significantly associated with GC immunity could be useful biomarkers for stratifying GC patients responsive to immunotherapy or intervention targets for promoting antitumor immunity and immunotherapy response in GC.
Collapse
Affiliation(s)
- Yin He
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
20
|
Daveri E, Vergani E, Shahaj E, Bergamaschi L, La Magra S, Dosi M, Castelli C, Rodolfo M, Rivoltini L, Vallacchi V, Huber V. microRNAs Shape Myeloid Cell-Mediated Resistance to Cancer Immunotherapy. Front Immunol 2020; 11:1214. [PMID: 32793185 PMCID: PMC7387687 DOI: 10.3389/fimmu.2020.01214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy with immune checkpoint inhibitors can achieve long-term tumor control in subsets of patients. However, its effect can be blunted by myeloid-induced resistance mechanisms. Myeloid cells are highly plastic and physiologically devoted to wound healing and to immune homeostasis maintenance. In cancer, their physiological activities can be modulated, leading to an expansion of pro-inflammatory and immunosuppressive cells, the myeloid-derived suppressor cells (MDSCs), with detrimental consequences. The involvement of MDSCs in tumor development and progression has been widely investigated and MDSC-induced immunosuppression is acknowledged as a mechanism hindering effective immune checkpoint blockade. Small non-coding RNA molecules, the microRNAs (miRs), contribute to myeloid cell regulation at different levels, comprising metabolism and function, as well as their skewing to a MDSC phenotype. miR expression can be indirectly induced by cancer-derived factors or through direct miR import via extracellular vesicles. Due to their structural stability and their presence in body fluids miRs represent promising predictive biomarkers of resistance, as we recently found by investigating plasma samples of melanoma patients undergoing immune checkpoint blockade. Dissection of the miR-driven involved mechanisms would pave the way for the identification of new druggable targets. Here, we discuss the role of these miRs in shaping myeloid resistance to immunotherapy with a special focus on immunosuppression and immune escape.
Collapse
Affiliation(s)
- Elena Daveri
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Vergani
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eriomina Shahaj
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Bergamaschi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano La Magra
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michela Dosi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Rodolfo
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Viviana Vallacchi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
21
|
CIPR: a web-based R/shiny app and R package to annotate cell clusters in single cell RNA sequencing experiments. BMC Bioinformatics 2020; 21:191. [PMID: 32414321 PMCID: PMC7227235 DOI: 10.1186/s12859-020-3538-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 05/06/2020] [Indexed: 01/05/2023] Open
Abstract
Background Single cell RNA sequencing (scRNAseq) has provided invaluable insights into cellular heterogeneity and functional states in health and disease. During the analysis of scRNAseq data, annotating the biological identity of cell clusters is an important step before downstream analyses and it remains technically challenging. The current solutions for annotating single cell clusters generally lack a graphical user interface, can be computationally intensive or have a limited scope. On the other hand, manually annotating single cell clusters by examining the expression of marker genes can be subjective and labor-intensive. To improve the quality and efficiency of annotating cell clusters in scRNAseq data, we present a web-based R/Shiny app and R package, Cluster Identity PRedictor (CIPR), which provides a graphical user interface to quickly score gene expression profiles of unknown cell clusters against mouse or human references, or a custom dataset provided by the user. CIPR can be easily integrated into the current pipelines to facilitate scRNAseq data analysis. Results CIPR employs multiple approaches for calculating the identity score at the cluster level and can accept inputs generated by popular scRNAseq analysis software. CIPR provides 2 mouse and 5 human reference datasets, and its pipeline allows inter-species comparisons and the ability to upload a custom reference dataset for specialized studies. The option to filter out lowly variable genes and to exclude irrelevant reference cell subsets from the analysis can improve the discriminatory power of CIPR suggesting that it can be tailored to different experimental contexts. Benchmarking CIPR against existing functionally similar software revealed that our algorithm is less computationally demanding, it performs significantly faster and provides accurate predictions for multiple cell clusters in a scRNAseq experiment involving tumor-infiltrating immune cells. Conclusions CIPR facilitates scRNAseq data analysis by annotating unknown cell clusters in an objective and efficient manner. Platform independence owing to Shiny framework and the requirement for a minimal programming experience allows this software to be used by researchers from different backgrounds. CIPR can accurately predict the identity of a variety of cell clusters and can be used in various experimental contexts across a broad spectrum of research areas.
Collapse
|
22
|
Ekiz HA, Ramstead AG, Lee SH, Nelson MC, Bauer KM, Wallace JA, Hu R, Round JL, Rutter J, Drummond MJ, Rao DS, O'Connell RM. T Cell-Expressed microRNA-155 Reduces Lifespan in a Mouse Model of Age-Related Chronic Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2064-2075. [PMID: 32161096 PMCID: PMC7325601 DOI: 10.4049/jimmunol.1901484] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/31/2020] [Indexed: 01/13/2023]
Abstract
Aging-related chronic inflammation is a risk factor for many human disorders through incompletely understood mechanisms. Aged mice deficient in microRNA (miRNA/miR)-146a succumb to life-shortening chronic inflammation. In this study, we report that miR-155 in T cells contributes to shortened lifespan of miR-146a-/- mice. Using single-cell RNA sequencing and flow cytometry, we found that miR-155 promotes the activation of effector T cell populations, including T follicular helper cells, and increases germinal center B cells and autoantibodies in mice aged over 15 months. Mechanistically, aerobic glycolysis genes are elevated in T cells during aging, and upon deletion of miR-146a, in a T cell miR-155-dependent manner. Finally, skewing T cell metabolism toward aerobic glycolysis by deleting mitochondrial pyruvate carrier recapitulates age-dependent T cell phenotypes observed in miR-146a-/- mice, revealing the sufficiency of metabolic reprogramming to influence immune cell functions during aging. Altogether, these data indicate that T cell-specific miRNAs play pivotal roles in regulating lifespan through their influences on inflammaging.
Collapse
Affiliation(s)
- H Atakan Ekiz
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Andrew G Ramstead
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Soh-Hyun Lee
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Morgan C Nelson
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Kaylyn M Bauer
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Jared A Wallace
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Ruozhen Hu
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - June L Round
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Jared Rutter
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Micah J Drummond
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT 84112
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112; and
| | - Dinesh S Rao
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Ryan M O'Connell
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112;
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
23
|
Ramstead AG, Wallace JA, Lee SH, Bauer KM, Tang WW, Ekiz HA, Lane TE, Cluntun AA, Bettini ML, Round JL, Rutter J, O'Connell RM. Mitochondrial Pyruvate Carrier 1 Promotes Peripheral T Cell Homeostasis through Metabolic Regulation of Thymic Development. Cell Rep 2020; 30:2889-2899.e6. [PMID: 32130894 PMCID: PMC7170217 DOI: 10.1016/j.celrep.2020.02.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/10/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic pathways regulate T cell development and function, but many remain understudied. Recently, the mitochondrial pyruvate carrier (MPC) was identified as the transporter that mediates pyruvate entry into mitochondria, promoting pyruvate oxidation. Here we find that deleting Mpc1, an obligate MPC subunit, in the hematopoietic system results in a specific reduction in peripheral αβ T cell numbers. MPC1-deficient T cells have defective thymic development at the β-selection, intermediate single positive (ISP)-to-double-positive (DP), and positive selection steps. We find that early thymocytes deficient in MPC1 display alterations to multiple pathways involved in T cell development. This results in preferred escape of more activated T cells. Finally, mice with hematopoietic deletion of Mpc1 are more susceptible to experimental autoimmune encephalomyelitis. Altogether, our study demonstrates that pyruvate oxidation by T cell precursors is necessary for optimal αβ T cell development and that its deficiency results in reduced but activated peripheral T cell populations.
Collapse
Affiliation(s)
- Andrew G Ramstead
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jared A Wallace
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Soh-Hyun Lee
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Kaylyn M Bauer
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - William W Tang
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - H Atakan Ekiz
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas E Lane
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ahmad A Cluntun
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew L Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - June L Round
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan M O'Connell
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|