1
|
Li S, Sun M, Liu D, Wang X. Research trajectory of the mechanism of preeclampsia: a scientometric perspective. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2025; 44:142. [PMID: 40302002 PMCID: PMC12042644 DOI: 10.1186/s41043-025-00806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 02/21/2025] [Indexed: 05/01/2025]
Abstract
OBJECTIVE This study aims to conduct a scientometric analysis on the research history and emerging trends of the pathogenesis of preeclampsia using CiteSpace and VOSviewer software. The goal is to provide guidance for future research and clinical practice. METHODS The core collection database of Web of Science was searched for research literature on the mechanism of preeclampsia from January 1980 to March 2024. CiteSpace6. 1. R6, 5. 7. R5 (64-bit), and VOSviewer1.6.19 software were used for visual analysis, including networks of keywords, countries, authors, institutions, funds, and fields. RESULTS A total of 4989 documents were analyzed in this study. The number of published articles has shown a consistent increase from 1990 to 2022, indicating that this topic remains a significant area of research. The countries, institutions, authors, journals, and fields that contributed the most articles include the USA, University of Mississippi, Lamarca, Babbette, Placenta, and the field of OBSTETRICS and GYNECOLOGY. Keyword clustering and emergence analysis identified 7 clusters, while clustering and emergence analysis of cited documents identified 14 clusters. These analyses revealed that current research on the mechanism of preeclampsia primarily focuses on placental ischemia and hypoxia, inflammatory response and immune disorders, angiogenic factor imbalance, abnormal epigenetic modifications, and intestinal flora imbalance. CONCLUSIONS Research on the mechanisms of preeclampsia is rapidly advancing. Given the presence of multiple mechanisms and pathways, further collaborative research is essential to guide clinical treatment effectively and enhance maternal and child outcomes.
Collapse
Affiliation(s)
- Shen Li
- Obstetrics Department, Rizhao People's Hospital, No. 129, Tai'an Road, Rizhao City, Shandong Province, China
| | - Meiling Sun
- Obstetrics Department, Rizhao People's Hospital, No. 129, Tai'an Road, Rizhao City, Shandong Province, China.
| | - Datong Liu
- Clinical Medical College of Jining Medical University, Jining City, Shandong Province, China
| | - Xuanyi Wang
- , 4215 193 Ferry Road, Southport, QLD, Australia
| |
Collapse
|
2
|
Mikhalev SA, Kurtser MA, Radzinsky VE, Orazov MR, Beeraka NM, Mikhaleva LM. Exploring the Role of Lower Genital Tract Microbiota and Cervical-Endometrial Immune Metabolome in Unknown Genesis of Recurrent Pregnancy Loss. Int J Mol Sci 2025; 26:1326. [PMID: 39941094 PMCID: PMC11818274 DOI: 10.3390/ijms26031326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Recurrent pregnancy loss (RPL) of unknown genesis is a complex condition with multifactorial origins, including genetic, hormonal, and immunological factors. However, the specific mechanisms underlying endocervical cell proliferation disorders in women with RPL remain inadequately understood, particularly concerning the role of microbiota and viral infections. The aim of this study was to investigate the mechanisms of endocervical cell proliferation disorders in women with RPL of unknown genesis by examining microbiota, human papillomavirus (HPV) typing, and the expression levels of key molecular biological markers, including p16/Ki-67, BCL-2, miR-145, and miR-34a. A prospective observational comparative study was executed on women with RPL and healthy pregnant controls with full ethical approval. Samples were collected for HPV typing and immunocytochemical analysis to evaluate the expression of p16, Ki-67, BCL-2, and the anti-oncogenic microRNAs (miR-145 and miR-34a). The expression of mRNA for the progesterone receptor (PGR-A) was also assessed, alongside local immune status markers, including proinflammatory T-lymphocytes (Th17/Th1) and regulatory CD4+ Tregs. Overexpression of p16, Ki-67, and BCL-2 was observed in 52.5% of women with RPL who had an ASC-US/LSIL cytogram, with the average double expression of p16/Ki-67 being three times higher than in the healthy pregnant group. A significant decrease in PGR-A mRNA expression in the endocervix of women with RPL was noted, accompanied by a dysregulated local immune status characterized by an increased prevalence of Th17/Th1 cells and a reduction in regulatory CD4+ Tregs. Additionally, the expression of miR-145 and miR-34a in the endocervix and endometrium of women with RPL significantly differed from the physiological pregnancy group, particularly in the context of high-risk HPV infection. The findings describe that disorders of endocervical cell proliferation in women with RPL of unknown genesis are associated with overexpression of specific molecular markers, impaired immune regulation, and altered microRNA profiles. These alterations may contribute to the pathophysiology of RPL, highlighting the need for further research into targeted interventions that could improve reproductive outcomes in affected individuals.
Collapse
Affiliation(s)
- Sergey A. Mikhalev
- Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia; (S.A.M.); (M.A.K.)
- City Clinical Hospital No. 31 Named After Academician G.M. Savelyeva of the Department of Health, 119415 Moscow, Russia
| | - Mark A. Kurtser
- Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia; (S.A.M.); (M.A.K.)
| | - Victor E. Radzinsky
- Department of Obstetrics and Gynecology, Federal State Autonomous Educational Institution of Higher Education «Peoples’ Friendship University of Russia», 117198 Moscow, Russia; (V.E.R.); (M.R.O.)
| | - Mekan R. Orazov
- Department of Obstetrics and Gynecology, Federal State Autonomous Educational Institution of Higher Education «Peoples’ Friendship University of Russia», 117198 Moscow, Russia; (V.E.R.); (M.R.O.)
| | - Narasimha M. Beeraka
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu 515721, Andhra Pradesh, India
- Department of Studies in Molecular Biology, University of Mysore, Mysore 570006, Karnataka, India
| | - Lyudmila M. Mikhaleva
- Scientific Research Institute of Human Morphology Named After Academician A.P. Avtsyn of the Federal State Budgetary Scientific Institution “Russian Scientific Center of Surgery Named After Academician B.V. Petrovsky”, 125315 Moscow, Russia
| |
Collapse
|
3
|
Jahan F, Vasam G, Cariaco Y, Nik-Akhtar A, Green A, Menzies KJ, Bainbridge SA. NAD + depletion is central to placental dysfunction in an inflammatory subclass of preeclampsia. Life Sci Alliance 2024; 7:e202302505. [PMID: 39389781 PMCID: PMC11467044 DOI: 10.26508/lsa.202302505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive disorder of pregnancy and a major cause of maternal/perinatal adverse health outcomes with no effective therapeutic strategies. Our group previously identified distinct subclasses of PE, one of which exhibits heightened placental inflammation (inflammation-driven PE). In non-pregnant populations, chronic inflammation is associated with decreased levels of cellular NAD+, a vitamin B3 derivative involved in energy metabolism and mitochondrial function. Interestingly, specifically in placentas from women with inflammation-driven PE, we observed the increased activity of NAD+-consuming enzymes, decreased NAD+ content, decreased expression of mitochondrial proteins, and increased oxidative damage. HTR8 human trophoblasts likewise demonstrated increased NAD+-dependent ADP-ribosyltransferase (ART) activity, coupled with decreased mitochondrial respiration rates and invasive function under inflammatory conditions. Such adverse effects were attenuated by boosting cellular NAD+ levels with nicotinamide riboside (NR). Finally, in an LPS-induced rat model of inflammation-driven PE, NR administration (200 mg/kg/day) from gestational days 1-19 prevented maternal hypertension and fetal/placental growth restriction, improved placental mitochondrial function, and reduced inflammation and oxidative stress. This study demonstrates the critical role of NAD+ in maintaining placental function and identifies NAD+ boosting as a promising preventative strategy for PE.
Collapse
Affiliation(s)
- Fahmida Jahan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Yusmaris Cariaco
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Abolfazl Nik-Akhtar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Alex Green
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Keir J Menzies
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Shannon A Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
4
|
Wang H, Li J, Yu K, Lu Y, Ma M, Li Y. The cellular localization and oncogenic or tumor suppressive effects of angiomiotin-like protein 2 in tumor and normal cells. IUBMB Life 2024; 76:764-779. [PMID: 38717123 DOI: 10.1002/iub.2830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/10/2024] [Indexed: 10/19/2024]
Abstract
Angiomiotin (AMOT) family comprises three members: AMOT, AMOT-like protein 1 (AMOTL1), and AMOT-like protein 2 (AMOTL2). AMOTL2 is widely expressed in endothelial cells, epithelial cells, and various cancer cells. Specifically, AMOTL2 predominantly localizes in the cytoplasm and nucleus in human normal cells, whereas associates with cell-cell junctions and actin cytoskeleton in non-human cells, and locates at cell junctions or within the recycling endosomes in cancer cells. AMOTL2 is implicated in regulation of tube formation, cell polarity, and shape, although the specific impact on tumorigenesis remains to be conclusively determined. It has been shown that AMOTL2 enhances tumor growth and metastasis in pancreatic, breast, and colon cancer, however inhibits cell proliferation and migration in lung, hepatocellular cancer, and glioblastoma. In addition to its role in cell shape and cytoskeletal dynamics through co-localization with F-actin, AMOTL2 modulates the transcription of Yes-associated protein (YAP) by binding to it, thereby affecting its phosphorylation and cellular sequestration. Furthermore, the stability and cellular localization of AMOTL2, influenced by its phosphorylation and ubiquitination mediated by specific proteins, affects its cellular function. Additionally, we observe that AMOTL2 is predominantly downregulated in some tumors, but significantly elevated in colorectal adenocarcinoma (COAD). Moreover, overall analysis, GSEA and ROC curve analysis indicate that AMOTL2 exerts as an oncogenic protein in COAD by modulating Wnt pathway, participating in synthesis of collagen formation, and interacting with extracellular matrix receptor. In addition, AMOTL2 potentially regulates the distribution of immune cells infiltration in COAD. In summary, AMOTL2 probably functions as an oncogene in COAD. Consequently, further in-depth mechanistic research is required to elucidate the precise roles of AMOTL2 in various cancers.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kexun Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yida Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengdi Ma
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Bowman-Gibson S, Chandiramani C, Stone ML, Waker CA, Rackett TM, Maxwell RA, Dhanraj DN, Brown TL. Streamlined Analysis of Maternal Plasma Indicates Small Extracellular Vesicles are Significantly Elevated in Early-Onset Preeclampsia. Reprod Sci 2024; 31:2771-2782. [PMID: 38777947 PMCID: PMC11393201 DOI: 10.1007/s43032-024-01591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Preeclampsia (PE) is a leading cause of maternal and fetal mortality and morbidity. While placental dysfunction is a core underlying issue, the pathogenesis of this disorder is thought to differ between early-onset (EOPE) and late-onset (LOPE) subtypes. As recent reports suggest that small extracellular vesicles (sEVs) contribute to the development of PE, we have compared systemic sEV concentrations between normotensive, EOPE, and LOPE pregnancies. To circumvent lengthy isolation techniques and intermediate filtration steps, a streamlined approach was developed to evaluate circulating plasma sEVs from maternal plasma. Polymer-based precipitation and purification were used to isolate total systemic circulating maternal sEVs, free from bias toward specific surface marker expression or extensive subpurification. Immediate Nanoparticle Tracking Analysis (NTA) of freshly isolated sEV samples afforded a comprehensive analysis that can be completed within hours, avoiding confounding freeze-thaw effects of particle aggregation and degradation.Rather than exosomal subpopulations, our findings indicate a significant elevation in the total number of circulating maternal sEVs in patients with EOPE. This streamlined approach also preserves sEV-bound protein and microRNA (miRNA) that can be used for potential biomarker analysis. This study is one of the first to demonstrate that maternal plasma sEVs harbor full-length hypoxia inducible factor 1 alpha (HIF-1α) protein, with EOPE sEVs carrying higher levels of HIF-1α compared to control sEVs. The detection of HIF-1α and its direct signaling partner microRNA-210 (miR-210) within systemic maternal sEVs lays the groundwork for identifying how sEV signaling contributes to the development of preeclampsia. When taken together, our quantitative and qualitative results provide compelling evidence to support the translational potential of streamlined sEV analysis for future use in the clinical management of patients with EOPE.
Collapse
Affiliation(s)
- Scout Bowman-Gibson
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA
| | - Chandni Chandiramani
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Madison L Stone
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA
| | - Christopher A Waker
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA
| | - Traci M Rackett
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Rose A Maxwell
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - David N Dhanraj
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA.
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
6
|
Wang X, Zhang Q, Ren Y, Liu C, Gao H. Research Progress on Extracellular Matrix Involved in the Development of Preeclampsia. Curr Protein Pept Sci 2024; 25:527-538. [PMID: 38561606 DOI: 10.2174/0113892037284176240302052521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/21/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
Preeclampsia (PE) is a serious pregnancy complication, and its primary clinical manifestations are gestational hypertension and proteinuria. Trophoblasts are responsible for the basic functions of the placenta during placental development; recent studies have revealed that placental "shallow implantation" caused by the decreased invasiveness of placental trophoblasts plays a crucial role in PE pathogenesis. The interaction between the cells and the extracellular matrix (ECM) plays a crucial role in trophoblast proliferation, differentiation, and invasion. Abnormal ECM function can result in insufficient migration and invasion of placental trophoblasts, thus participating in PE. This article summarizes the recent studies on the involvement of ECM components, including small leucine-rich proteoglycans, syndecans, glypicans, laminins, fibronectin, collagen, and hyaluronic acid, in the development of PE. ECM plays various roles in PE development, most notably by controlling the activities of trophoblasts. The ECM is structurally stable and can serve as a biological diagnostic marker and therapeutic target for PE.
Collapse
Affiliation(s)
- Xin Wang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
- College of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Qi Zhang
- Department of Pharmacy, Shandong First Medical University, Jinan, Shandong, China
| | - Yi Ren
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Chao Liu
- College of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Huijie Gao
- College of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
7
|
Zhang X, Sun L. Inhibiting HNF4A suppresses inflammation whilst promoting trophoblast invasion and migration: A promising target for the treatment of preeclampsia. Chem Biol Interact 2023; 386:110752. [PMID: 37806381 DOI: 10.1016/j.cbi.2023.110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Preeclampsia (PE) is a complex disease of pregnancy, and an important cause of this disease is insufficient trophoblast invasion and migration. However, the underlying mechanism of PE remains largely unknown. Here, transcriptome sequencing analysis found the high expression of hepatocyte nuclear factor 4 alpha (HNF4A) in PE placentas. Meanwhile, we found that HNF4A expression was up-regulated in the placentas of PE patients. Thus, we assumed that HNF4A might be involved in PE progression. To validate our hypothesis, l-arginine methyl ester (l-NAME) or lipopolysaccharide (LPS)-treated rats were used to mimic the pathological status of PE in vivo. Consistently, HTR8/SVneo cells were treated with hypoxia/reoxygenation (H/R) or LPS to simulate PE progression in vitro. The results observed an increase in elevated urine protein levels, systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP), which indicated that the PE-like rat model was successfully established. Meanwhile, the expression of pro-inflammatory cytokines interleukin (IL)-6 and IL-1β was increased in PE placentas. HTR8/SVneo cells were used to further explore the underlying mechanism of PE in vitro. H/R conditions up-regulated the acetylation level of HNF4A. Further analysis showed that HNF4A overexpression inhibited trophoblast invasion and migration, while HNF4A knockdown promoted the progression. Additionally, inhibiting HNF4A was found to reduce the levels of IL-6 and IL-1β secretion in HTR8/SVneo cells following H/R or LPS exposure. Conclusively, these findings suggest that inhibiting HNF4A suppresses inflammation whilst promoting trophoblast invasion and migration in PE, providing a promising target for the treatment of PE.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Lei Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
8
|
Romanowska J, Nustad HE, Page CM, Denault WRP, Lee Y, Magnus MC, Haftorn KL, Gjerdevik M, Novakovic B, Saffery R, Gjessing HK, Lyle R, Magnus P, Håberg SE, Jugessur A. The X-factor in ART: does the use of assisted reproductive technologies influence DNA methylation on the X chromosome? Hum Genomics 2023; 17:35. [PMID: 37085889 PMCID: PMC10122315 DOI: 10.1186/s40246-023-00484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Assisted reproductive technologies (ART) may perturb DNA methylation (DNAm) in early embryonic development. Although a handful of epigenome-wide association studies of ART have been published, none have investigated CpGs on the X chromosome. To bridge this knowledge gap, we leveraged one of the largest collections of mother-father-newborn trios of ART and non-ART (natural) conceptions to date to investigate sex-specific DNAm differences on the X chromosome. The discovery cohort consisted of 982 ART and 963 non-ART trios from the Norwegian Mother, Father, and Child Cohort Study (MoBa). To verify our results from the MoBa cohort, we used an external cohort of 149 ART and 58 non-ART neonates from the Australian 'Clinical review of the Health of adults conceived following Assisted Reproductive Technologies' (CHART) study. The Illumina EPIC array was used to measure DNAm in both datasets. In the MoBa cohort, we performed a set of X-chromosome-wide association studies ('XWASs' hereafter) to search for sex-specific DNAm differences between ART and non-ART newborns. We tested several models to investigate the influence of various confounders, including parental DNAm. We also searched for differentially methylated regions (DMRs) and regions of co-methylation flanking the most significant CpGs. Additionally, we ran an analogous model to our main model on the external CHART dataset. RESULTS In the MoBa cohort, we found more differentially methylated CpGs and DMRs in girls than boys. Most of the associations persisted after controlling for parental DNAm and other confounders. Many of the significant CpGs and DMRs were in gene-promoter regions, and several of the genes linked to these CpGs are expressed in tissues relevant for both ART and sex (testis, placenta, and fallopian tube). We found no support for parental DNAm-dependent features as an explanation for the observed associations in the newborns. The most significant CpG in the boys-only analysis was in UBE2DNL, which is expressed in testes but with unknown function. The most significant CpGs in the girls-only analysis were in EIF2S3 and AMOT. These three loci also displayed differential DNAm in the CHART cohort. CONCLUSIONS Genes that co-localized with the significant CpGs and DMRs associated with ART are implicated in several key biological processes (e.g., neurodevelopment) and disorders (e.g., intellectual disability and autism). These connections are particularly compelling in light of previous findings indicating that neurodevelopmental outcomes differ in ART-conceived children compared to those naturally conceived.
Collapse
Affiliation(s)
- Julia Romanowska
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
| | - Haakon E Nustad
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- DeepInsight, 0154, Oslo, Norway
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - William R P Denault
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Yunsung Lee
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Maria C Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristine L Haftorn
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Miriam Gjerdevik
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Boris Novakovic
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Håkon K Gjessing
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Robert Lyle
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Astanand Jugessur
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Klemetti MM, Alahari S, Post M, Caniggia I. Distinct Changes in Placental Ceramide Metabolism Characterize Type 1 and 2 Diabetic Pregnancies with Fetal Macrosomia or Preeclampsia. Biomedicines 2023; 11:932. [PMID: 36979912 PMCID: PMC10046505 DOI: 10.3390/biomedicines11030932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Disturbances of lipid metabolism are typical in diabetes. Our objective was to characterize and compare placental sphingolipid metabolism in type 1 (T1D) and 2 (T2D) diabetic pregnancies and in non-diabetic controls. Placental samples from T1D, T2D, and control pregnancies were processed for sphingolipid analysis using tandem mass spectrometry. Western blotting, enzyme activity, and immunofluorescence analyses were used to study sphingolipid regulatory enzymes. Placental ceramide levels were lower in T1D and T2D compared to controls, which was associated with an upregulation of the ceramide degrading enzyme acid ceramidase (ASAH1). Increased placental ceramide content was found in T1D complicated by preeclampsia. Similarly, elevated ceramides were observed in T1D and T2D pregnancies with poor glycemic control. The protein levels and activity of sphingosine kinases (SPHK) that produce sphingoid-1-phosphates (S1P) were highest in T2D. Furthermore, SPHK levels were upregulated in T1D and T2D pregnancies with fetal macrosomia. In vitro experiments using trophoblastic JEG3 cells demonstrated increased SPHK expression and activity following glucose and insulin treatments. Specific changes in the placental sphingolipidome characterize T1D and T2D placentae depending on the type of diabetes and feto-maternal complications. Increased exposure to insulin and glucose is a plausible contributor to the upregulation of the SPHK-S1P-axis in diabetic placentae.
Collapse
Affiliation(s)
- Miira M. Klemetti
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland
| | - Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
| | - Martin Post
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
10
|
Alahari S, Ausman J, Porter T, Park C, Pettersson ABV, Klemetti MM, Zhang J, Post M, Caniggia I. Fibronectin and JMJD6 Signature in Circulating Placental Extracellular Vesicles for the Detection of Preeclampsia. Endocrinology 2023; 164:6997871. [PMID: 36683415 PMCID: PMC9939344 DOI: 10.1210/endocr/bqad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Preeclampsia (PE) is a major obstetric complication that is challenging to predict. Currently, there are limited tools to assess placental health/function in crucial gestational periods for diagnosis and early prediction. The glycoprotein fibronectin (FN) is augmented in PE placentae, and associated with reduced activity of JMJD6, an oxygen sensor that regulates placental FN processing. Evidence implicates placenta-derived small extracellular vesicles (sEVs) in the pathogenesis of pregnancy-associated disorders. Here, we examined the utility of FN and JMJD6 in placental sEVs as putative markers for early- and late-onset PE (E-PE and L-PE). Maternal plasma was obtained from venous blood collected longitudinally during pregnancy (10-14, 16-22, and 26-32 weeks of gestation and at delivery) in normotensive term control, preterm control, L-PE, E-PE, and gestational hypertensive individuals. Placenta-derived sEVs were isolated and their FN and JMJD6 content and JMJD6 activity were measured. In women that went on to develop preeclampsia, FN content of circulating placental sEVs was significantly elevated as early as 10 to 14 weeks of gestation and remained augmented until the time of delivery. This was accompanied by a depletion in JMJD6 content. Multivariate receiver operating characteristic analysis revealed high predictive power for FN and JMJD6 as early markers of E-PE and L-PE. In vitro, hypoxia or JMJD6 loss promoted FN accumulation in sEVs that was reverted on restoring cellular iron balance with the natural compound, Hinokitiol. Elevated FN, along with diminished JMJD6 in circulating placental sEVs, serves as an early molecular signature for the detection of different hypertensive disorders of pregnancy and their severity.
Collapse
Affiliation(s)
- Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jonathan Ausman
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
| | - Tyler Porter
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
| | - Chanho Park
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
| | - Ante B V Pettersson
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Miira M Klemetti
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
| | - Jianhong Zhang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
| | - Martin Post
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Isabella Caniggia
- Correspondence: Isabella Caniggia, MD, PhD, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, 25 Orde Street, Room 6-1004-3, Toronto, ON M5T 3H7, Canada.
| |
Collapse
|
11
|
Sallais J, Park C, Alahari S, Porter T, Liu R, Kurt M, Farrell A, Post M, Caniggia I. HIF1 inhibitor acriflavine rescues early-onset preeclampsia phenotype in mice lacking placental prolyl hydroxylase domain protein 2. JCI Insight 2022; 7:158908. [PMID: 36227697 PMCID: PMC9746916 DOI: 10.1172/jci.insight.158908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia is a serious pregnancy disorder that lacks effective treatments other than delivery. Improper sensing of oxygen changes during placentation by prolyl hydroxylases (PHDs), specifically PHD2, causes placental hypoxia-inducible factor-1 (HIF1) buildup and abnormal downstream signaling in early-onset preeclampsia, yet therapeutic targeting of HIF1 has never been attempted. Here we generated a conditional (placenta-specific) knockout of Phd2 in mice (Phd2-/- cKO) to reproduce HIF1 excess and to assess anti-HIF therapy. Conditional deletion of Phd2 in the junctional zone during pregnancy increased placental HIF1 content, resulting in abnormal placentation, impaired remodeling of the uterine spiral arteries, and fetal growth restriction. Pregnant dams developed new-onset hypertension at midgestation (E9.5) in addition to proteinuria and renal and cardiac pathology, hallmarks of severe preeclampsia in humans. Daily injection of acriflavine, a small molecule inhibitor of HIF1, to pregnant Phd2-/- cKO mice from E7.5 (prior to hypertension) or E10.5 (after hypertension had been established) to E14.5 corrected placental dysmorphologies and improved fetal growth. Moreover, it reduced maternal blood pressure and reverted renal and myocardial pathology. Thus, therapeutic targeting of the HIF pathway may improve placental development and function, as well as maternal and fetal health, in preeclampsia.
Collapse
Affiliation(s)
- Julien Sallais
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Institute of Medical Sciences, and
| | - Chanho Park
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Ontario, Canada
| | - Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Ontario, Canada
| | - Tyler Porter
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Ruizhe Liu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Ontario, Canada
| | - Merve Kurt
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Abby Farrell
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Institute of Medical Sciences, and
| | - Martin Post
- Institute of Medical Sciences, and,Department of Physiology, University of Toronto, Ontario, Canada.,Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Institute of Medical Sciences, and,Department of Physiology, University of Toronto, Ontario, Canada.,Department of Obstetrics & Gynaecology, University of Toronto, Ontario, Canada
| |
Collapse
|
12
|
Cockman ME, Sugimoto Y, Pegg HB, Masson N, Salah E, Tumber A, Flynn HR, Kirkpatrick JM, Schofield CJ, Ratcliffe PJ. Widespread hydroxylation of unstructured lysine-rich protein domains by JMJD6. Proc Natl Acad Sci U S A 2022; 119:e2201483119. [PMID: 35930668 PMCID: PMC9371714 DOI: 10.1073/pnas.2201483119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
The Jumonji domain-containing protein JMJD6 is a 2-oxoglutarate-dependent dioxygenase associated with a broad range of biological functions. Cellular studies have implicated the enzyme in chromatin biology, transcription, DNA repair, mRNA splicing, and cotranscriptional processing. Although not all studies agree, JMJD6 has been reported to catalyze both hydroxylation of lysine residues and demethylation of arginine residues. However, despite extensive study and indirect evidence for JMJD6 catalysis in many cellular processes, direct assignment of JMJD6 catalytic substrates has been limited. Examination of a reported site of proline hydroxylation within a lysine-rich region of the tandem bromodomain protein BRD4 led us to conclude that hydroxylation was in fact on lysine and catalyzed by JMJD6. This prompted a wider search for JMJD6-catalyzed protein modifications deploying mass spectrometric methods designed to improve the analysis of such lysine-rich regions. Using lysine derivatization with propionic anhydride to improve the analysis of tryptic peptides and nontryptic proteolysis, we report 150 sites of JMJD6-catalyzed lysine hydroxylation on 48 protein substrates, including 19 sites of hydroxylation on BRD4. Most hydroxylations were within lysine-rich regions that are predicted to be unstructured; in some, multiple modifications were observed on adjacent lysine residues. Almost all of the JMJD6 substrates defined in these studies have been associated with membraneless organelle formation. Given the reported roles of lysine-rich regions in subcellular partitioning by liquid-liquid phase separation, our findings raise the possibility that JMJD6 may play a role in regulating such processes in response to stresses, including hypoxia.
Collapse
Affiliation(s)
- Matthew E. Cockman
- Hypoxia Biology Laboratory, Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Yoichiro Sugimoto
- Hypoxia Biology Laboratory, Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Hamish B. Pegg
- Hypoxia Biology Laboratory, Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Norma Masson
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Helen R. Flynn
- Hypoxia Biology Laboratory, Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Joanna M. Kirkpatrick
- Hypoxia Biology Laboratory, Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Peter J. Ratcliffe
- Hypoxia Biology Laboratory, Francis Crick Institute, London, NW1 1AT, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| |
Collapse
|
13
|
Wajid A, Todem D, Schleiss MR, Colombo DF, Paneth NS. Gestational Antibodies to C. pneumoniae, H. pylori and CMV in Women with Preeclampsia and in Matched Controls. Matern Child Health J 2022; 26:2040-2049. [PMID: 35932403 DOI: 10.1007/s10995-022-03484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Some research has suggested a possible role for past infection in the development of preeclampsia. The objective of this study was to explore the role of Helicobacter pylori, cytomegalovirus, and Chlamydophila pneumoniae in the development of preeclampsia in a prospective pregnancy sample. METHODS We conducted a nested case-control study in The Archive for Child Health (ARCH), a pregnancy cohort of 867 unselected women enrolled at the first prenatal visit with archived blood and urine in pregnancy. We matched 21 cases of preeclampsia to 52 unaffected controls on maternal age (±4 years), race, parity, and gestational age at blood draw. Using conditional logistic regression, we examined the association between preeclampsia status and immunoglobulins G (IgG) tested by indirect ELISA to each of the three microorganisms, adjusting for potential confounders. RESULTS No significant difference was found between cases and controls. The unadjusted odds ratio was 1.5 (95%CI: 0.2-9.1), 0.6 (95%CI: 0.2-1.9), and 1.9 (95%CI: 0.6-5.6) for H. pylori, cytomegalovirus and C. pneumoniae respectively. After controlling for confounders analysis found increased odds of H. pylori IgG (AOR: 1.9; 95% CI: 0.2-15.3) and C. pneumoniae IgG (AOR: 2.3; 95% CI: 0.6-9.2) for preeclampsia, albeit being not significant. Conversely, cytomegalovirus IgG had lower odds for preeclampsia (AOR: 0.4; 95% CI: 0.1-1.7). CONCLUSIONS Past infection with H. pylori, and C. pneumoniae in early pregnancy showed a higher risk of preeclampsia, but the findings failed to achieve statistical significance. Cytomegalovirus was not associated with preeclampsia in these data. These preliminary findings encourage future research in populations with high prevalence of these infections.
Collapse
Affiliation(s)
- Abdul Wajid
- Alberta Health Services, Calgary, AB, T3A 0P6, Canada.
| | - David Todem
- Department of Epidemiology & Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Mark R Schleiss
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - Nigel S Paneth
- Department of Epidemiology & Biostatistics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
14
|
Kojima J, Ono M, Kuji N, Nishi H. Human Chorionic Villous Differentiation and Placental Development. Int J Mol Sci 2022; 23:8003. [PMID: 35887349 PMCID: PMC9325306 DOI: 10.3390/ijms23148003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
In humans, the placenta provides the only fetomaternal connection and is essential for establishing a pregnancy as well as fetal well-being. Additionally, it allows maternal physiological adaptation and embryonic immunological acceptance, support, and nutrition. The placenta is derived from extra-embryonic tissues that develop rapidly and dynamically in the first weeks of pregnancy. It is primarily composed of trophoblasts that differentiate into villi, stromal cells, macrophages, and fetal endothelial cells (FEC). Placental differentiation may be closely related to perinatal diseases, including fetal growth retardation (FGR) and hypertensive disorders of pregnancy (HDP), and miscarriage. There are limited findings regarding human chorionic villous differentiation and placental development because conducting in vivo studies is extremely difficult. Placental tissue varies widely among species. Thus, experimental animal findings are difficult to apply to humans. Early villous differentiation is difficult to study due to the small tissue size; however, a detailed analysis can potentially elucidate perinatal disease causes or help develop novel therapies. Artificial induction of early villous differentiation using human embryonic stem (ES) cells/induced pluripotent stem (iPS) cells was attempted, producing normally differentiated villi that can be used for interventional/invasive research. Here, we summarized and correlated early villous differentiation findings and discussed clinical diseases.
Collapse
Affiliation(s)
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo 160-0023, Japan; (J.K.); (N.K.); (H.N.)
| | | | | |
Collapse
|
15
|
Arbildi P, Rodríguez-Camejo C, Perelmuter K, Bollati-Fogolín M, Sóñora C, Hernández A. Hypoxia and inflammation conditions differentially affect the expression of tissue transglutaminase spliced variants and functional properties of extravillous trophoblast cells. Am J Reprod Immunol 2022; 87:e13534. [PMID: 35263002 DOI: 10.1111/aji.13534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Persistent hypoxia and inflammation beyond early pregnancy are involved in a bad outcome because of defective trophoblast invasiveness. Tissue transglutaminase (TG2) coregulates several cell functions. An aberrant expression and/or transamidation activity could contribute to placental dysfunction. METHOD OF STUDY The first-trimester trophoblast cell line (Swan-71) was used to study TG2 expression and cell functions in the absence or presence of inflammatory cytokines (TNF-α, IL-1β) or chemical hypoxia (CoCl2 ). We analyzed The concentration of cytokines in the supernatant by ELISA; Cell migration by scratch assay; NF-κB activation by detection of nuclear p65 by immunofluorescence or flow cytometry using a Swan-71 NF-κB-hrGFP reporter cell line. Tissue transglutaminase expression was analyzed by immunoblot and confocal microscopy. Expression of spliced mRNA variants of tissue transglutaminase was analyzed by RT-PCR. Transamidation activity was assessed by flow cytometry using 5-(biotinamido)-pentylamine substrate. RESULTS Chemical hypoxia and TGase inhibition, but not inflammatory stimuli, decreased Swan-71 migration. IL-6 production was also decreased by chemical hypoxia, but increased by inflammation. Intracellular TGase activity was increased by all stimuli, but NF-κB activation was observed only in the presence of proinflammatory cytokines. TG2 expression was decreased by CoCl2 and TNF-α. Translocation of TG2 and p65 to nuclei was observed only with TNF-α, without colocalization. Differential relative expression of spliced variants of mRNA was observed between CoCl2 and inflammatory stimuli. CONCLUSION The observed decrease in total TG2 expression and relative increase in short variants under hypoxia conditions could contribute to impaired trophoblast invasion and impact on pregnancy outcome.
Collapse
Affiliation(s)
- Paula Arbildi
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay
| | - Claudio Rodríguez-Camejo
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay
| | - Karen Perelmuter
- Cell Biology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Cecilia Sóñora
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay.,Escuela Universitaria de Tecnología Médica (EUTM)-Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Ana Hernández
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay
| |
Collapse
|
16
|
Dichotomy in hypoxia-induced mitochondrial fission in placental mesenchymal cells during development and preeclampsia: consequences for trophoblast mitochondrial homeostasis. Cell Death Dis 2022; 13:191. [PMID: 35220394 PMCID: PMC8882188 DOI: 10.1038/s41419-022-04641-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/18/2022] [Accepted: 02/04/2022] [Indexed: 12/31/2022]
Abstract
AbstractDynamic changes in physiologic oxygen are required for proper placenta development; yet, when low-oxygen levels persist, placental development is halted, culminating in preeclampsia (PE), a serious complication of pregnancy. Considering mitochondria’s function is intimately linked to oxygen changes, we investigated the impact of oxygen on mitochondrial dynamics in placental mesenchymal stromal cells (pMSCs) that are vital for proper placental development. Transmission electron microscopy, proximity ligation assays for mitochondrial VDAC1 and endoplasmic reticulum IP3R, and immunoanalyses of p-DRP1 and OPA1, demonstrate that low-oxygen conditions in early 1st trimester and PE promote mitochondrial fission in pMSCs. Increased mitochondrial fission of mesenchymal cells was confirmed in whole PE placental tissue sections. Inhibition of DRP1 oligomerization with MDiVi-1 shows that low oxygen-induced mitochondrial fission is a direct consequence of DRP1 activation, likely via HIF1. Mitophagy, a downstream event prompted by mitochondrial fission, is a prominent outcome in PE, but not 1st trimester pMSCs. We also investigated whether mesenchymal–epithelial interactions affect mitochondrial dynamics of trophoblasts in PE placentae. Exposure of trophoblastic JEG3 cells to exosomes of preeclamptic pMSCs caused heightened mitochondrial fission in the cells via a sphingomyelin-dependent mechanism that was restored by MDiVi-1. Our data uncovered dichotomous regulation of mitochondrial fission and health in human placental mesenchymal cells under physiologic and pathologic hypoxic conditions and its impact on neighboring trophoblast cells.
Collapse
|
17
|
Zhang K, Zhang H, Wang F, Gao S, Sun C. HSPA8 Is Identified as a Novel Regulator of Hypertensive Disorders in Pregnancy by Modulating the β-Arrestin1/A1AR Axis. Reprod Sci 2021; 29:564-577. [PMID: 34582004 DOI: 10.1007/s43032-021-00719-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/14/2021] [Indexed: 11/27/2022]
Abstract
Heat shock protein alpha 8 (HSPA8) was found to be downregulated in the placentas of patients with hypertensive disorders in pregnancy (HDP). We aim to explore the underlying role and mechanism of HSPA8 in HDP progression. Herein, HSPA8 mRNA expression in placentas and peripheral blood of patients with HDP and normal pregnant controls was measured with RT-qPCR. We found that HSPA8 expression was downregulated in placentas and peripheral blood of patients with HDP. HTR8/SVneo human trophoblast cells were transfected with pcDNA-HSPA8 or si-HSPA8. HSPA8 overexpression promoted cell proliferation, migration, and MMP-2 and MMP-9 protein levels, and inhibited apoptosis, while HSPA8 silencing showed the opposite results. Co-immunoprecipitation assay validated the binding between HSPA8 and β-arrestin1, as well as β-arrestin1 and A1AR proteins. HSPA8 bound with β-arrestin1 protein and promoted β-arrestin1 expression. β-arrestin1 bound with A1AR protein and inhibited A1AR expression. Then, HTR8/SVneo cells were transfected with pcDNA-HSPA8 alone or together with si-β-arrestin1, as well as transfected with pcDNA-β-arrestin1 alone or together with pcDNA-A1AR. β-arrestin1 silencing reversed the effects of HSPA8 overexpression on HTR8/SVneo cell functions. β-arrestin1 overexpression promoted cell proliferation migration, and MMP-2 and MMP-9 protein levels, and inhibited apoptosis, while these effects were reversed by A1AR overexpression. Lentivirus HSPA8 overexpression vector (Lv-HSPA8) was injected into a preeclampsia (PE) rat model, which attenuated blood pressure and fetal detrimental changes in PE rats. In conclusion, HSPA8 promoted proliferation and migration and inhibited apoptosis in trophoblast cells, and attenuated the symptoms of PE rats by modulating the β-arrestin1/A1AR axis. Our study provided a novel theoretical evidence and potential strategy for HDP treatment.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, No. 2, Jingba Road, Jinshui District, Zhengzhou, 450014, Henan Province, China.
| | - Hailing Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, No. 2, Jingba Road, Jinshui District, Zhengzhou, 450014, Henan Province, China
| | - Fang Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, No. 2, Jingba Road, Jinshui District, Zhengzhou, 450014, Henan Province, China
| | - Shanshan Gao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, No. 2, Jingba Road, Jinshui District, Zhengzhou, 450014, Henan Province, China
| | - Caiping Sun
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, No. 2, Jingba Road, Jinshui District, Zhengzhou, 450014, Henan Province, China
| |
Collapse
|
18
|
The Downregulation of Placental Lumican Promotes the Progression of Preeclampsia. Reprod Sci 2021; 28:3147-3154. [PMID: 34231169 PMCID: PMC8526455 DOI: 10.1007/s43032-021-00660-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Abstract
Multiple pieces of evidence illustrate that impaired trophoblast function results in preeclampsia (PE), and migration/invasion of human trophoblast cells is stringently regulated by extracellular matrix (ECM) components. Many studies have indicated abnormal expressions of placental ECM components are associated with preeclampsia. However, the change and influence of lumican, a vital member of extracellular matrix (ECM) molecules, on trophoblast cells during preeclampsia remain unclear. This study examines the possibility that the roles of lumican in trophoblast cells contribute to PE. To address this issue, the expression of lumican in human placental tissues was observed using immunohistochemistry, fluorescence quantitative PCR, and Western blot technology. After the HTR-8/SVneo cell line was transfected with pcDNA3.1-human lumican, pGPU6-human lumican shRNA, and their negative controls, the impact of lumican on the HTR-8/SVneo cell line was investigated. Lumican was expressed in human placental tissues. Compared with the control group, its expression was significantly lower in PE placentas. Lumican downregulation inhibited cell proliferation significantly and reduced Bcl-2 expression, but increased P53 expression. These results indicate that the downregulation of placental lumican may drive PE development via promoting the downregulation of Bcl-2 expression and upregulation of P53.
Collapse
|
19
|
Alahari S, Farrell A, Ermini L, Park C, Sallais J, Roberts S, Gillmore T, Litvack M, Post M, Caniggia I. JMJD6 Dysfunction Due to Iron Deficiency in Preeclampsia Disrupts Fibronectin Homeostasis Resulting in Diminished Trophoblast Migration. Front Cell Dev Biol 2021; 9:652607. [PMID: 34055782 PMCID: PMC8149756 DOI: 10.3389/fcell.2021.652607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms contributing to excessive fibronectin in preeclampsia, a pregnancy-related disorder, remain unknown. Herein, we investigated the role of JMJD6, an O2- and Fe2+-dependent enzyme, in mediating placental fibronectin processing and function. MALDI-TOF identified fibronectin as a novel target of JMJD6-mediated lysyl hydroxylation, preceding fibronectin glycosylation, deposition, and degradation. In preeclamptic placentae, fibronectin accumulated primarily in lysosomes of the mesenchyme. Using primary placental mesenchymal cells (pMSCs), we found that fibronectin fibril formation and turnover were markedly impeded in preeclamptic pMSCs, partly due to impaired lysosomal degradation. JMJD6 knockdown in control pMSCs recapitulated the preeclamptic FN phenotype. Importantly, preeclamptic pMSCs had less total and labile Fe2+ and Hinokitiol treatment rescued fibronectin assembly and promoted lysosomal degradation. Time-lapse imaging demonstrated that defective ECM deposition by preeclamptic pMSCs impeded HTR-8/SVneo cell migration, which was rescued upon Hinokitiol exposure. Our findings reveal new Fe2+-dependent mechanisms controlling fibronectin homeostasis/function in the placenta that go awry in preeclampsia.
Collapse
Affiliation(s)
- Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Abby Farrell
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Leonardo Ermini
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Chanho Park
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Julien Sallais
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sarah Roberts
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Taylor Gillmore
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael Litvack
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
| | - Martin Post
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Li Y, Yan J, Chang HM, Chen ZJ, Leung PCK. Roles of TGF-β Superfamily Proteins in Extravillous Trophoblast Invasion. Trends Endocrinol Metab 2021; 32:170-189. [PMID: 33478870 DOI: 10.1016/j.tem.2020.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 01/17/2023]
Abstract
Following embryo implantation, extravillous trophoblasts (EVTs) invade the maternal decidua to a certain extent during early pregnancy, which is critical for normal placentation and successful pregnancy in humans. Although sharing a similar protein structure, the transforming growth factor-β (TGF-β) superfamily members exert divergent functions in regulating EVT invasion, which contributes to a relative balance of TGF-β superfamily proteins in precisely modulating this process at the maternal-fetal interface during the first trimester of pregnancy. This review details recent advances in our understanding of the functions of TGF-β superfamily members and their corresponding receptors, signaling pathways, and downstream molecular targets in regulating human EVT invasion from studies using various in vitro or ex vivo experimental models. Also, the relevance of these discoveries about TGF-β superfamily members to adverse pregnancy outcomes is summarized. The application of 3D culture trophoblast organoids, single-cell sequencing, and microfluidic assays in EVT invasion studies will help better reveal the molecular mechanisms through which TGF-β superfamily members regulate human EVT invasion, shedding light on the development of innovative strategies for predicting, diagnosing, treating, and preventing adverse human pregnancy outcomes related to EVT invasion dysfunction.
Collapse
Affiliation(s)
- Yan Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Junhao Yan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200000, China; Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200000, China.
| | - Peter C K Leung
- Department of Obstetrics and Gynecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada.
| |
Collapse
|
21
|
Panisi C, Guerini FR, Abruzzo PM, Balzola F, Biava PM, Bolotta A, Brunero M, Burgio E, Chiara A, Clerici M, Croce L, Ferreri C, Giovannini N, Ghezzo A, Grossi E, Keller R, Manzotti A, Marini M, Migliore L, Moderato L, Moscone D, Mussap M, Parmeggiani A, Pasin V, Perotti M, Piras C, Saresella M, Stoccoro A, Toso T, Vacca RA, Vagni D, Vendemmia S, Villa L, Politi P, Fanos V. Autism Spectrum Disorder from the Womb to Adulthood: Suggestions for a Paradigm Shift. J Pers Med 2021; 11:70. [PMID: 33504019 PMCID: PMC7912683 DOI: 10.3390/jpm11020070] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
The wide spectrum of unique needs and strengths of Autism Spectrum Disorders (ASD) is a challenge for the worldwide healthcare system. With the plethora of information from research, a common thread is required to conceptualize an exhaustive pathogenetic paradigm. The epidemiological and clinical findings in ASD cannot be explained by the traditional linear genetic model, hence the need to move towards a more fluid conception, integrating genetics, environment, and epigenetics as a whole. The embryo-fetal period and the first two years of life (the so-called 'First 1000 Days') are the crucial time window for neurodevelopment. In particular, the interplay and the vicious loop between immune activation, gut dysbiosis, and mitochondrial impairment/oxidative stress significantly affects neurodevelopment during pregnancy and undermines the health of ASD people throughout life. Consequently, the most effective intervention in ASD is expected by primary prevention aimed at pregnancy and at early control of the main effector molecular pathways. We will reason here on a comprehensive and exhaustive pathogenetic paradigm in ASD, viewed not just as a theoretical issue, but as a tool to provide suggestions for effective preventive strategies and personalized, dynamic (from womb to adulthood), systemic, and interdisciplinary healthcare approach.
Collapse
Affiliation(s)
- Cristina Panisi
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy;
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
| | | | - Federico Balzola
- Division of Gastroenterology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Turin, 10126 Turin, Italy;
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, 20138 Milan, Italy;
| | - Alessandra Bolotta
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Marco Brunero
- Department of Pediatric Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Ernesto Burgio
- ECERI—European Cancer and Environment Research Institute, Square de Meeus 38-40, 1000 Bruxelles, Belgium;
| | - Alberto Chiara
- Dipartimento Materno Infantile ASST, 27100 Pavia, Italy;
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Luigi Croce
- Centro Domino per l’Autismo, Universita’ Cattolica Brescia, 20139 Milan, Italy;
| | - Carla Ferreri
- National Research Council of Italy, Institute of Organic Synthesis and Photoreactivity (ISOF), 40129 Bologna, Italy;
| | - Niccolò Giovannini
- Department of Obstetrics and Gynecology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Alessandro Ghezzo
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Enzo Grossi
- Autism Research Unit, Villa Santa Maria Foundation, 22038 Tavernerio, Italy;
| | - Roberto Keller
- Adult Autism Centre DSM ASL Città di Torino, 10138 Turin, Italy;
| | - Andrea Manzotti
- RAISE Lab, Foundation COME Collaboration, 65121 Pescara, Italy;
| | - Marina Marini
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Lucia Migliore
- Medical Genetics Laboratories, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.M.); (A.S.)
| | - Lucio Moderato
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy;
| | - Davide Moscone
- Associazione Spazio Asperger ONLUS, Centro Clinico CuoreMenteLab, 00141 Rome, Italy;
| | - Michele Mussap
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Puericulture Institute and Neonatal Section, Azienda Ospedaliera Universitaria, 09100 Cagliari, Italy; (M.M.); (V.F.)
| | - Antonia Parmeggiani
- Child Neurology and Psychiatry Unit, IRCCS ISNB, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Valentina Pasin
- Milan Institute for health Care and Advanced Learning, 20124 Milano, Italy;
| | | | - Cristina Piras
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
| | - Andrea Stoccoro
- Medical Genetics Laboratories, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.M.); (A.S.)
| | - Tiziana Toso
- Unione Italiana Lotta alla Distrofia Muscolare UILDM, 35100 Padova, Italy;
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council of Italy, 70126 Bari, Italy;
| | - David Vagni
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, 98164 Messina, Italy;
| | | | - Laura Villa
- Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini, Italy;
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Puericulture Institute and Neonatal Section, Azienda Ospedaliera Universitaria, 09100 Cagliari, Italy; (M.M.); (V.F.)
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria, 09042 Cagliari, Italy
| |
Collapse
|
22
|
Todd N, McNally R, Alqudah A, Jerotic D, Suvakov S, Obradovic D, Hoch D, Hombrebueno JR, Campos GL, Watson CJ, Gojnic-Dugalic M, Simic TP, Krasnodembskaya A, Desoye G, Eastwood KA, Hunter AJ, Holmes VA, McCance DR, Young IS, Grieve DJ, Kenny LC, Garovic VD, Robson T, McClements L. Role of A Novel Angiogenesis FKBPL-CD44 Pathway in Preeclampsia Risk Stratification and Mesenchymal Stem Cell Treatment. J Clin Endocrinol Metab 2021; 106:26-41. [PMID: 32617576 PMCID: PMC7765643 DOI: 10.1210/clinem/dgaa403] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT Preeclampsia is a leading cardiovascular complication in pregnancy lacking effective diagnostic and treatment strategies. OBJECTIVE To investigate the diagnostic and therapeutic target potential of the angiogenesis proteins, FK506-binding protein like (FKBPL) and CD44. DESIGN AND INTERVENTION FKBPL and CD44 plasma concentration or placental expression were determined in women pre- or postdiagnosis of preeclampsia. Trophoblast and endothelial cell function was assessed following mesenchymal stem cell (MSC) treatment and in the context of FKBPL signaling. SETTINGS AND PARTICIPANTS Human samples prediagnosis (15 and 20 weeks of gestation; n ≥ 57), or postdiagnosis (n = 18 for plasma; n = 4 for placenta) of preeclampsia were used to determine FKBPL and CD44 levels, compared to healthy controls. Trophoblast or endothelial cells were exposed to low/high oxygen, and treated with MSC-conditioned media (MSC-CM) or a FKBPL overexpression plasmid. MAIN OUTCOME MEASURES Preeclampsia risk stratification and diagnostic potential of FKBPL and CD44 were investigated. MSC treatment effects and FKBPL-CD44 signaling in trophoblast and endothelial cells were assessed. RESULTS The CD44/FKBPL ratio was reduced in placenta and plasma following clinical diagnosis of preeclampsia. At 20 weeks of gestation, a high plasma CD44/FKBPL ratio was independently associated with the 2.3-fold increased risk of preeclampsia (odds ratio = 2.3, 95% confidence interval [CI] 1.03-5.23, P = 0.04). In combination with high mean arterial blood pressure (>82.5 mmHg), the risk further increased to 3.9-fold (95% CI 1.30-11.84, P = 0.016). Both hypoxia and MSC-based therapy inhibited FKBPL-CD44 signaling, enhancing cell angiogenesis. CONCLUSIONS The FKBPL-CD44 pathway appears to have a central role in the pathogenesis of preeclampsia, showing promising utilities for early diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Naomi Todd
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - Ross McNally
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - Abdelrahim Alqudah
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
- The School of Pharmacy, The Hashemite University, Amman, Jordan
| | | | - Sonja Suvakov
- Medical Faculty, University of Belgrade, Belgrade, Serbia
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, US
| | | | - Denise Hoch
- Department of Gynaecology and Obstetrics, Medical University Graz, Graz, Austria
| | - Jose R Hombrebueno
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - Guillermo Lopez Campos
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - Chris J Watson
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | | | | | - Anna Krasnodembskaya
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - Gernot Desoye
- Department of Gynaecology and Obstetrics, Medical University Graz, Graz, Austria
| | - Kelly-Ann Eastwood
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
- Royal Jubilee Maternity Hospital, Belfast Health and Social Care Trust, Northern Ireland, UK
| | - Alyson J Hunter
- Royal Jubilee Maternity Hospital, Belfast Health and Social Care Trust, Northern Ireland, UK
| | - Valerie A Holmes
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - David R McCance
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
- Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland, UK
| | - Ian S Young
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
- Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland, UK
| | - David J Grieve
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - Louise C Kenny
- The Irish Centre for Foetal and Neonatal Translational Research (INFANT) and Department of Obstetrics and Gynaecology, University College Cork, Cork, Republic of Ireland
- Department of Women’s and Children’s Health, Institute of Translational Research, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Vesna D Garovic
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, US
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland (RCSI), Dublin, Republic of Ireland
| | - Lana McClements
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
- Correspondence and Reprint Requests: Lana McClements, School of Life Sciences, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, NSW, 2007, Australia. E-mail:
| |
Collapse
|
23
|
Basak T, Dey AK, Banerjee R, Paul S, Maiti TK, Ain R. Sequestration of eIF4A by angiomotin: A novel mechanism to restrict global protein synthesis in trophoblast cells. STEM CELLS (DAYTON, OHIO) 2020; 39:210-226. [PMID: 33237582 DOI: 10.1002/stem.3305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/13/2020] [Indexed: 11/10/2022]
Abstract
Enrichment of angiomotin (AMOT) in the ectoplacental cone of E7.5 murine placenta prompted our investigation on the role of AMOT in trophoblast differentiation. We show here that AMOT levels increased in mouse placenta during gestation and also upon induction of differentiation in trophoblast stem cell ex vivo. Proteomic data unravelling AMOT-interactome in trophoblast cells indicated a majority of AMOT interactors to be involved in protein translation. In-depth analysis of AMOT-interactome led to identification of eukaryotic translation initiation factor 4A (eIF4A) as the most plausible AMOT interactor. Loss of function of AMOT enhanced, whereas, gain in function resulted in decline of global protein synthesis in trophoblast cells. Bioinformatics analysis evaluating the potential energy of AMOT-eIF4A binding suggested a strong AMOT-eIF4A interaction using a distinct groove encompassing amino acid residue positions 238 to 255 of AMOT. Co-immunoprecipitation of AMOT with eIF4A reaffirmed AMOT-eIF4A association in trophoblast cells. Deletion of 238 to 255 amino acids of AMOT resulted in abrogation of AMOT-eIF4A interaction. In addition, 238 to 255 amino acid deletion of AMOT was ineffective in eliciting AMOT's function in reducing global protein synthesis. Interestingly, AMOT-dependent sequestration of eIF4A dampened its loading to the m7 -GTP cap and hindered its interaction with eIF4G. Furthermore, enhanced AMOT expression in placenta was associated with intrauterine growth restriction in both rats and humans. These results not only highlight a hitherto unknown novel function of AMOT in trophoblast cells but also have broad biological implications as AMOT might be an inbuilt switch to check protein synthesis in developmentally indispensable trophoblast cells.
Collapse
Affiliation(s)
- Trishita Basak
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Rachana Banerjee
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sandip Paul
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
24
|
Abbade J, Klemetti MM, Farrell A, Ermini L, Gillmore T, Sallais J, Tagliaferro A, Post M, Caniggia I. Increased placental mitochondrial fusion in gestational diabetes mellitus: an adaptive mechanism to optimize feto-placental metabolic homeostasis? BMJ Open Diabetes Res Care 2020; 8:8/1/e000923. [PMID: 32144130 PMCID: PMC7059528 DOI: 10.1136/bmjdrc-2019-000923] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/07/2020] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM), a common pregnancy disorder, increases the risk of fetal overgrowth and later metabolic morbidity in the offspring. The placenta likely mediates these sequelae, but the exact mechanisms remain elusive. Mitochondrial dynamics refers to the joining and division of these organelles, in attempts to maintain cellular homeostasis in stress conditions or alterations in oxygen and fuel availability. These remodeling processes are critical to optimize mitochondrial function, and their disturbances characterize diabetes and obesity. METHODS AND RESULTS Herein we show that placental mitochondrial dynamics are tilted toward fusion in GDM, as evidenced by transmission electron microscopy and changes in the expression of key mechanochemical enzymes such as OPA1 and active phosphorylated DRP1. In vitro experiments using choriocarcinoma JEG-3 cells demonstrated that increased exposure to insulin, which typifies GDM, promotes mitochondrial fusion. As placental ceramide induces mitochondrial fission in pre-eclampsia, we also examined ceramide content in GDM and control placentae and observed a reduction in placental ceramide enrichment in GDM, likely due to an insulin-dependent increase in ceramide-degrading ASAH1 expression. CONCLUSIONS Placental mitochondrial fusion is enhanced in GDM, possibly as a compensatory response to maternal and fetal metabolic derangements. Alterations in placental insulin exposure and sphingolipid metabolism are among potential contributing factors. Overall, our results suggest that GDM has profound impacts on placental mitochondrial dynamics and metabolism, with plausible implications for the short-term and long-term health of the offspring.
Collapse
Affiliation(s)
- Joelcio Abbade
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Departamento de Ginecologia e Obstetrícia Faculdade de Medicina de Botucatu, Sao Paulo, Brazil
| | - Miira Marjuska Klemetti
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Abby Farrell
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Leonardo Ermini
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Taylor Gillmore
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Department of Physiology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Julien Sallais
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Department of Physiology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Martin Post
- Department of Physiology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Hospital for Sick Children SickKids Learning Institute, Toronto, Ontario, Canada
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Treissman J, Yuan V, Baltayeva J, Le HT, Castellana B, Robinson WP, Beristain AG. Low oxygen enhances trophoblast column growth by potentiating differentiation of the extravillous lineage and promoting LOX activity. Development 2020; 147:dev.181263. [PMID: 31871275 DOI: 10.1242/dev.181263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
Early placental development and the establishment of the invasive trophoblast lineage take place within a low oxygen environment. However, conflicting and inconsistent findings have obscured the role of oxygen in regulating invasive trophoblast differentiation. In this study, the effect of hypoxic, normoxic and atmospheric oxygen on invasive extravillous pathway progression was examined using a human placental explant model. Here, we show that exposure to low oxygen enhances extravillous column outgrowth and promotes the expression of genes that align with extravillous trophoblast (EVT) lineage commitment. By contrast, supra-physiological atmospheric levels of oxygen promote trophoblast proliferation while simultaneously stalling EVT progression. Low oxygen-induced EVT differentiation coincided with elevated transcriptomic levels of lysyl oxidase (LOX) in trophoblast anchoring columns, in which functional experiments established a role for LOX activity in promoting EVT column outgrowth. The findings of this work support a role for low oxygen in potentiating the differentiation of trophoblasts along the extravillous pathway. In addition, these findings generate insight into new molecular processes controlled by oxygen during early placental development.
Collapse
Affiliation(s)
- Jenna Treissman
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Victor Yuan
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Jennet Baltayeva
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Hoa T Le
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Barbara Castellana
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Wendy P Robinson
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Alexander G Beristain
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada .,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| |
Collapse
|