1
|
Prömer JJ, Wolske S, Castets P, van Woerden GM, Barresi C, O'Connor KC, Herbst R. MuSK is a substrate for CaMK2β but this interaction is dispensable for MuSK activation in vivo. Sci Rep 2025; 15:14865. [PMID: 40295530 PMCID: PMC12037915 DOI: 10.1038/s41598-025-95053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
The neuromuscular junction (NMJ) is the unique interface between lower motor neurons and skeletal muscle fibers and is indispensable for muscle function. Tight control of its localized formation at the center of every muscle fiber, and maintenance throughout lifetime are sustained by muscle-specific kinase (MuSK). MuSK acts as central regulator of acetylcholine receptor clustering at the postsynapse. Localized and temporally controlled signaling of MuSK is primarily achieved by tyrosine autophosphorylation and inhibition thereof. Previous investigations suggested serine phosphorylation of the activation domain as an additional modulator of MuSK activation. Here we identified calcium/calmodulin dependent protein kinase II (CaMK2) and in particular CaMK2β as novel catalyst of MuSK activation and confirmed its capability to phosphorylate MuSK in heterologous cells. However, whereas CaMK2β absence in muscle cells reduced AChR clustering, MuSK phosphorylation was unchanged. Accordingly, we ruled out MuSK phosphorylation as the cause of synapse fragmentation in a mouse model for myotonic dystrophy type 1, in which the muscle-specific splice-variant of CaMK2β is missing, or as the cause of ataxia or delayed muscle development in CaMK2β knockout animals. Histological characterization of muscles of CaMK2β knockout mice indicated specific roles of CaMK2β in fast glycolytic versus slow oxidative muscle. Taken together, our data shows that MuSK can be phosphorylated by CaMK2β, but loss of CaMK2β is likely compensated by other CaMK2 paralogs at the NMJ.
Collapse
Affiliation(s)
- Jakob J Prömer
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, Vienna, 1090, Austria
| | - Sara Wolske
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, Vienna, 1090, Austria
| | - Perrine Castets
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland
| | - Geeske M van Woerden
- Departments of Clinical Genetics, ENCORE center of expertise, Erasmus, Rotterdam, 3015 GD, MC, The Netherlands
- Neuroscience, ENCORE center of expertise, Erasmus, Rotterdam, 3015 GD, MC, The Netherlands
| | - Cinzia Barresi
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, Vienna, 1090, Austria
| | - Kevin C O'Connor
- Departments of Neurology, Yale School of Medicine, New Haven, Connecticut, 06511, USA
- Immunobiology, Yale School of Medicine, New Haven, Connecticut, 06511, USA
| | - Ruth Herbst
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, Vienna, 1090, Austria.
| |
Collapse
|
2
|
Binks SNM, Morse IM, Ashraghi M, Vincent A, Waters P, Leite MI. Myasthenia gravis in 2025: five new things and four hopes for the future. J Neurol 2025; 272:226. [PMID: 39987373 PMCID: PMC11846739 DOI: 10.1007/s00415-025-12922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/24/2025]
Abstract
The last 10 years has brought transformative developments in the effective treatment of myasthenia gravis (MG). Beginning with the randomized trial of thymectomy in myasthenia gravis that demonstrated efficacy of thymectomy in nonthymomatous MG, several new treatment approaches have completed successful clinical trials and regulatory launch. These modalities, including B cell depletion, complement inhibition, and blockade of the neonatal Fc receptor, are now in use, offering prospects of sustained remission and neuromuscular protection in what is a long-term disease. In this review, we update our clinico-immunological review of 2016 with these important advances, examine their role in treatment algorithms, and focus attention on key issues of biomarkers for prognostication and the growing cohort of older patients, both those with long-term disease, and late-onset MG ('LOMG'). We close by expressing our four hopes for the next 5-10 years: improvements in laboratory medicine to facilitate rapid diagnosis, effective strategies for neuromuscular protection, more research into and better understanding of pathophysiology and treatment response in older individuals, and the potentially transformative role of therapies aimed at delivering a durable response such as chimeric antigen receptor (CAR) T cells. Our postscript summarizes some emerging themes in the field of serological and online biomarkers, which may develop greater stature in the next epoch.
Collapse
Affiliation(s)
- S N M Binks
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
| | - I M Morse
- Medical Sciences Division, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mohammad Ashraghi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - A Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Medical Sciences Division, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - M Isabel Leite
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Department of Neurology, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
3
|
Hu G, Zhao X, Wang Y, Zhu X, Sun Z, Yu X, Wang J, Liu Q, Zhang J, Zhang Y, Yang J, Chang T, Ruan Z, Lv J, Gao F. Advances in B Cell Targeting for Treating Muscle-Specific Tyrosine Kinase-Associated Myasthenia Gravis. Immunotargets Ther 2024; 13:707-720. [PMID: 39678139 PMCID: PMC11646387 DOI: 10.2147/itt.s492062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/30/2024] [Indexed: 12/17/2024] Open
Abstract
Myasthenia gravis (MG) is a typical autoimmune disease of the nervous system. It is characterized by skeletal muscle weakness and fatigue due to impaired neuromuscular junction transmission mediated by IgG autoantibodies. Muscle-specific receptor tyrosine kinase-associated MG (MuSK-MG), a rare and severe subtype of MG, is distinguished by the presence of anti-MuSK antibodies; it responds poorly to traditional therapies. Recent research on MuSK-MG treatment has focused on specific targeted therapies. Since B cells play a critical pathogenic role in producing autoantibodies and inflammatory mediators, they are often considered the preferred target for treating MuSK-MG. Currently, various B cell-targeted drugs have been developed to treat MuSK-MG; they have shown good therapeutic effects. This review explores the evolving landscape of B cell-targeted therapies in MuSK-MG, focusing on their mechanisms, efficacy, and safety, and the current limitations associated with their use. We discuss current B cell-targeted therapies aimed at depleting or modulating B cells via both direct and indirect approaches. Furthermore, we focus on novel and promising strategies such as Chimeric Autoantibody Receptor T cell therapy, which explicitly targets MuSK-specific B cells without compromising general humoral immunity. Finally, this review provides an outlook on the potential benefits and limitations of B cell-targeted therapy in developing new therapies for MuSK-MG. We conclude by discussing future research efforts needed to optimize these therapies, expand treatment options, and improve long-term outcomes in MuSK-MG management.
Collapse
Affiliation(s)
- Guanlian Hu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- BGI College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xue Zhao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yiren Wang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaoyan Zhu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Zhan Sun
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- BGI College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaoxiao Yu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- BGI College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jiahui Wang
- Department of Encephalopathy, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Qian Liu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jing Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yingna Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Junhong Yang
- Department of Encephalopathy, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Ting Chang
- Department of Neurology, Second Affiliated Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Zhe Ruan
- Department of Neurology, Second Affiliated Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Jie Lv
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Feng Gao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
4
|
Keritam O, Vincent A, Zimprich F, Cetin H. A clinical perspective on muscle specific kinase antibody positive myasthenia gravis. Front Immunol 2024; 15:1502480. [PMID: 39703505 PMCID: PMC11655327 DOI: 10.3389/fimmu.2024.1502480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
The discovery of autoantibodies directed against muscle-specific kinase (MuSK) in "seronegative" myasthenia gravis (MG) patients marked a milestone in MG research. In healthy muscle, MuSK regulates a phosphorylation pathway, which is essential for the development and maintenance of acetylcholine receptor (AChR) clusters at the neuromuscular junction. Autoantibodies directed against MuSK are predominantly of the IgG4 subclass, but there is increasing evidence that IgG1-3 could also contribute to the pathology underlying MuSK-MG. MuSK-IgG4 are monovalent and block the binding site for LRP4 on MuSK, thereby inhibiting the downstream phosphorylation pathway and compromising the formation of AChR clusters. Clinically, MuSK-MG is commonly associated with the predominant involvement of bulbar, facial, shoulder and neck muscles. Cholinesterase inhibitors should be avoided in MuSK-MG due to the risk of clinical impairment and cholinergic crisis. Corticosteroids and other non-steroidal immunosuppressants are less effective with the need for higher doses and prolonged treatment. Rituximab, by contrast, has been shown to be particularly effective and is now often used early in the disease course. Its use is associated with a significant improvement in the clinical outcome of MuSK-MG patients over time. This review aims to describe the pathophysiology underlying MuSK-MG and provide a comprehensive overview of the clinical features and therapeutic options.
Collapse
Affiliation(s)
- Omar Keritam
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Li LY, Keles A, Homeyer MA, Prüss H. Antibodies in neurological diseases: Established, emerging, explorative. Immunol Rev 2024; 328:283-299. [PMID: 39351782 PMCID: PMC11659937 DOI: 10.1111/imr.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Within a few years, autoantibodies targeting the nervous system resulted in a novel disease classification. For several of them, which we termed 'established', direct pathogenicity has been proven and now guides diagnostic pathways and early immunotherapy. For a rapidly growing number of further anti-neuronal autoantibodies, the role in disease is less clear. Increasing evidence suggests that they could contribute to disease, by playing a modulating role on brain function. We therefore suggest a three-level classification of neurological autoantibodies according to the degree of experimentally proven pathogenicity and strength of clinical association: established, emerging, explorative. This may facilitate focusing on clinical constellations in which autoantibody-mediated mechanisms have not been assumed previously, including autoimmune psychosis and dementia, cognitive impairment in cancer, and neurodegenerative diseases. Based on recent data reviewed here, humoral autoimmunity may represent an additional "super-system" for brain health. The "brain antibody-ome", that is, the composition of thousands of anti-neuronal autoantibodies, may shape neuronal function not only in disease, but even in healthy aging. Towards this novel concept, extensive research will have to elucidate pathogenicity from the atomic to the clinical level, autoantibody by autoantibody. Such profiling can uncover novel biomarkers, enhance our understanding of underlying mechanisms, and identify selective therapies.
Collapse
Affiliation(s)
- Lucie Y. Li
- Department of Neurology and Experimental NeurologyCharité – Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative Diseases (DZNE) BerlinBerlinGermany
| | - Amelya Keles
- Department of Neurology and Experimental NeurologyCharité – Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative Diseases (DZNE) BerlinBerlinGermany
| | - Marie A. Homeyer
- Department of Neurology and Experimental NeurologyCharité – Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative Diseases (DZNE) BerlinBerlinGermany
| | - Harald Prüss
- Department of Neurology and Experimental NeurologyCharité – Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative Diseases (DZNE) BerlinBerlinGermany
| |
Collapse
|
6
|
Severcan F, Ozyurt I, Dogan A, Severcan M, Gurbanov R, Kucukcankurt F, Elibol B, Tiftikcioglu I, Gursoy E, Yangin MN, Zorlu Y. Decoding myasthenia gravis: advanced diagnosis with infrared spectroscopy and machine learning. Sci Rep 2024; 14:19316. [PMID: 39164310 PMCID: PMC11336246 DOI: 10.1038/s41598-024-66501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/02/2024] [Indexed: 08/22/2024] Open
Abstract
Myasthenia Gravis (MG) is a rare neurological disease. Although there are intensive efforts, the underlying mechanism of MG still has not been fully elucidated, and early diagnosis is still a question mark. Diagnostic paraclinical tests are also time-consuming, burden patients financially, and sometimes all test results can be negative. Therefore, rapid, cost-effective novel methods are essential for the early accurate diagnosis of MG. Here, we aimed to determine MG-induced spectral biomarkers from blood serum using infrared spectroscopy. Furthermore, infrared spectroscopy coupled with multivariate analysis methods e.g., principal component analysis (PCA), support vector machine (SVM), discriminant analysis and Neural Network Classifier were used for rapid MG diagnosis. The detailed spectral characterization studies revealed significant increases in lipid peroxidation; saturated lipid, protein, and DNA concentrations; protein phosphorylation; PO2-asym + sym /protein and PO2-sym/lipid ratios; as well as structural changes in protein with a significant decrease in lipid dynamics. All these spectral parameters can be used as biomarkers for MG diagnosis and also in MG therapy. Furthermore, MG was diagnosed with 100% accuracy, sensitivity and specificity values by infrared spectroscopy coupled with multivariate analysis methods. In conclusion, FTIR spectroscopy coupled with machine learning technology is advancing towards clinical translation as a rapid, low-cost, sensitive novel approach for MG diagnosis.
Collapse
Affiliation(s)
- Feride Severcan
- Department of Biophysics, Faculty of Medicine, Altinbas University, Istanbul, Türkiye.
| | - Ipek Ozyurt
- Department of Biophysics, Faculty of Medicine, Altinbas University, Istanbul, Türkiye
| | - Ayca Dogan
- Department of Physiology, Faculty of Medicine, Altinbas University, Istanbul, Türkiye
| | - Mete Severcan
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Türkiye
| | - Rafig Gurbanov
- Department of Bioengineering, Faculty of Engineering, Bilecik Seyh Edebali University, Bilecik, Türkiye
| | - Fulya Kucukcankurt
- Department of Medical Biology, Faculty of Medicine, Altinbas University, Istanbul, Türkiye
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Türkiye
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Türkiye
| | - Irem Tiftikcioglu
- Cigli Training and Research Hospital, Neurology Clinic, Bakircay University, İzmir, Türkiye
| | - Esra Gursoy
- Department of Neurology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Türkiye
- Basaksehir Cam and Sakura City Hospital, Neurology Clinics, Istanbul, Türkiye
| | - Melike Nur Yangin
- Biomedical Sciences Graduate Program, Institute of Graduate Studies, Altinbas University, Istanbul, Türkiye
| | - Yasar Zorlu
- Tepecik Educational and Training Hospital, Neurology Department, University of Health Sciences, Izmir, Türkiye
| |
Collapse
|
7
|
Ünlü S, Sánchez Navarro BG, Cakan E, Berchtold D, Meleka Hanna R, Vural S, Vural A, Meisel A, Fichtner ML. Exploring the depths of IgG4: insights into autoimmunity and novel treatments. Front Immunol 2024; 15:1346671. [PMID: 38698867 PMCID: PMC11063302 DOI: 10.3389/fimmu.2024.1346671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 05/05/2024] Open
Abstract
IgG4 subclass antibodies represent the rarest subclass of IgG antibodies, comprising only 3-5% of antibodies circulating in the bloodstream. These antibodies possess unique structural features, notably their ability to undergo a process known as fragment-antigen binding (Fab)-arm exchange, wherein they exchange half-molecules with other IgG4 antibodies. Functionally, IgG4 antibodies primarily block and exert immunomodulatory effects, particularly in the context of IgE isotype-mediated hypersensitivity reactions. In the context of disease, IgG4 antibodies are prominently observed in various autoimmune diseases combined under the term IgG4 autoimmune diseases (IgG4-AID). These diseases include myasthenia gravis (MG) with autoantibodies against muscle-specific tyrosine kinase (MuSK), nodo-paranodopathies with autoantibodies against paranodal and nodal proteins, pemphigus vulgaris and foliaceus with antibodies against desmoglein and encephalitis with antibodies against LGI1/CASPR2. Additionally, IgG4 antibodies are a prominent feature in the rare entity of IgG4 related disease (IgG4-RD). Intriguingly, both IgG4-AID and IgG4-RD demonstrate a remarkable responsiveness to anti-CD20-mediated B cell depletion therapy (BCDT), suggesting shared underlying immunopathologies. This review aims to provide a comprehensive exploration of B cells, antibody subclasses, and their general properties before examining the distinctive characteristics of IgG4 subclass antibodies in the context of health, IgG4-AID and IgG4-RD. Furthermore, we will examine potential therapeutic strategies for these conditions, with a special focus on leveraging insights gained from anti-CD20-mediated BCDT. Through this analysis, we aim to enhance our understanding of the pathogenesis of IgG4-mediated diseases and identify promising possibilities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Selen Ünlü
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - Blanca G. Sánchez Navarro
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Elif Cakan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Daniel Berchtold
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rafael Meleka Hanna
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Secil Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Dermatology and Venereology, Koç University School of Medicine, İstanbul, Türkiye
| | - Atay Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology, Koç University School of Medicine, İstanbul, Türkiye
| | - Andreas Meisel
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam L. Fichtner
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
He L, Zhong Z, Wen S, Li P, Jiang Q, Liu F. Gut microbiota-derived butyrate restores impaired regulatory T cells in patients with AChR myasthenia gravis via mTOR-mediated autophagy. Cell Commun Signal 2024; 22:215. [PMID: 38570836 PMCID: PMC10988943 DOI: 10.1186/s12964-024-01588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/23/2024] [Indexed: 04/05/2024] Open
Abstract
More than 80% of patients with myasthenia gravis (MG) are positive for anti-acetylcholine receptor (AChR) antibodies. Regulatory T cells (Tregs) suppress overproduction of these antibodies, and patients with AChR antibody-positive MG (AChR MG) exhibit impaired Treg function and reduced Treg numbers. The gut microbiota and their metabolites play a crucial role in maintaining Treg differentiation and function. However, whether impaired Tregs correlate with gut microbiota activity in patients with AChR MG remains unknown. Here, we demonstrate that butyric acid-producing gut bacteria and serum butyric acid level are reduced in patients with AChR MG. Butyrate supplementation effectively enhanced Treg differentiation and their suppressive function of AChR MG. Mechanistically, butyrate activates autophagy of Treg cells by inhibiting the mammalian target of rapamycin. Activation of autophagy increased oxidative phosphorylation and surface expression of cytotoxic T-lymphocyte-associated protein 4 on Treg cells, thereby promoting Treg differentiation and their suppressive function in AChR MG. This observed effect of butyrate was blocked using chloroquine, an autophagy inhibitor, suggesting the vital role of butyrate-activated autophagy in Tregs of patients with AChR MG. We propose that gut bacteria derived butyrate has potential therapeutic efficacy against AChR MG by restoring impaired Tregs.
Collapse
Affiliation(s)
- Long He
- Department of Digestive Endoscopy, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Postdoctoral Research Station of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China
| | - Zhuotai Zhong
- Department of Gastroenterology, Wangjing Hospital, China Academy of Chinese Medical Sciences, No. 6, Wangjing Zhonghuan South Road, Futong East Street, Chaoyang District, Beijing City, China
| | - Shuting Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55, Inner Ring West Road, Panyu District, Guangzhou, Guangzhou, Guangdong Province, 511400, China
| | - Peiwu Li
- Department of Hepatobiliary, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China.
| | - Qilong Jiang
- Department of Myopathies, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China.
| | - Fengbin Liu
- Department of Hepatobiliary, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China.
- Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 2 He Longqi Road, Renhe, Baiyun District, Guangzhou, 510000, China.
- Institute of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 12 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China.
| |
Collapse
|
9
|
Cao M, Liu WW, Maxwell S, Huda S, Webster R, Evoli A, Beeson D, Cossins JA, Vincent A. IgG1-3 MuSK Antibodies Inhibit AChR Cluster Formation, Restored by SHP2 Inhibitor, Despite Normal MuSK, DOK7, or AChR Subunit Phosphorylation. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200147. [PMID: 37582613 PMCID: PMC10427144 DOI: 10.1212/nxi.0000000000200147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND AND OBJECTIVES Up to 50% of patients with myasthenia gravis (MG) without acetylcholine receptor antibodies (AChR-Abs) have antibodies to muscle-specific kinase (MuSK). Most MuSK antibodies (MuSK-Abs) are IgG4 and inhibit agrin-induced MuSK phosphorylation, leading to impaired clustering of AChRs at the developing or mature neuromuscular junction. However, IgG1-3 MuSK-Abs also exist in MuSK-MG patients, and their potential mechanisms have not been explored fully. METHODS C2C12 myotubes were exposed to MuSK-MG plasma IgG1-3 or IgG4, with or without purified agrin. MuSK, Downstream of Kinase 7 (DOK7), and βAChR were immunoprecipitated and their phosphorylation levels identified by immunoblotting. Agrin and agrin-independent AChR clusters were measured by immunofluorescence and AChR numbers by binding of 125I-α-bungarotoxin. Transcriptomic analysis was performed on treated myotubes. RESULTS IgG1-3 MuSK-Abs impaired AChR clustering without inhibiting agrin-induced MuSK phosphorylation. Moreover, the well-established pathway initiated by MuSK through DOK7, resulting in βAChR phosphorylation, was not impaired by MuSK-IgG1-3 and was agrin-independent. Nevertheless, the AChR clusters did not form, and both the number of AChR microclusters that precede full cluster formation and the myotube surface AChRs were reduced. Transcriptomic analysis did not throw light on the pathways involved. However, the SHP2 inhibitor, NSC-87877, increased the number of microclusters and led to fully formed AChR clusters. DISCUSSION MuSK-IgG1-3 is pathogenic but seems to act through a noncanonical pathway. Further studies should throw light on the mechanisms involved at the neuromuscular junction.
Collapse
Affiliation(s)
- Michelangelo Cao
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Wei-Wei Liu
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Susan Maxwell
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Saif Huda
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Richard Webster
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Amelia Evoli
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - David Beeson
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Judith A Cossins
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Angela Vincent
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy.
| |
Collapse
|
10
|
Oh S, Mao X, Manfredo-Vieira S, Lee J, Patel D, Choi EJ, Alvarado A, Cottman-Thomas E, Maseda D, Tsao PY, Ellebrecht CT, Khella SL, Richman DP, O'Connor KC, Herzberg U, Binder GK, Milone MC, Basu S, Payne AS. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat Biotechnol 2023; 41:1229-1238. [PMID: 36658341 PMCID: PMC10354218 DOI: 10.1038/s41587-022-01637-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023]
Abstract
Muscle-specific tyrosine kinase myasthenia gravis (MuSK MG) is an autoimmune disease that causes life-threatening muscle weakness due to anti-MuSK autoantibodies that disrupt neuromuscular junction signaling. To avoid chronic immunosuppression from current therapies, we engineered T cells to express a MuSK chimeric autoantibody receptor with CD137-CD3ζ signaling domains (MuSK-CAART) for precision targeting of B cells expressing anti-MuSK autoantibodies. MuSK-CAART demonstrated similar efficacy as anti-CD19 chimeric antigen receptor T cells for depletion of anti-MuSK B cells and retained cytolytic activity in the presence of soluble anti-MuSK antibodies. In an experimental autoimmune MG mouse model, MuSK-CAART reduced anti-MuSK IgG without decreasing B cells or total IgG levels, reflecting MuSK-specific B cell depletion. Specific off-target interactions of MuSK-CAART were not identified in vivo, in primary human cell screens or by high-throughput human membrane proteome array. These data contributed to an investigational new drug application and phase 1 clinical study design for MuSK-CAART for the treatment of MuSK autoantibody-positive MG.
Collapse
Affiliation(s)
- Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xuming Mao
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Silvio Manfredo-Vieira
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Eun Jung Choi
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Damian Maseda
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patricia Y Tsao
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph T Ellebrecht
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sami L Khella
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David P Richman
- Department of Neurology, University of California - Davis, Davis, CA, USA
| | - Kevin C O'Connor
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Michael C Milone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Pham MC, Masi G, Patzina R, Obaid AH, Oxendine SR, Oh S, Payne AS, Nowak RJ, O'Connor KC. Individual myasthenia gravis autoantibody clones can efficiently mediate multiple mechanisms of pathology. Acta Neuropathol 2023; 146:319-336. [PMID: 37344701 PMCID: PMC11380498 DOI: 10.1007/s00401-023-02603-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Serum autoantibodies targeting the nicotinic acetylcholine receptor (AChR) in patients with autoimmune myasthenia gravis (MG) can mediate pathology via three distinct molecular mechanisms: complement activation, receptor blockade, and antigenic modulation. However, it is unclear whether multi-pathogenicity is mediated by individual or multiple autoantibody clones. Using an unbiased B cell culture screening approach, we generated a library of 11 human-derived AChR-specific recombinant monoclonal autoantibodies (mAb) and assessed their binding properties and pathogenic profiles using specialized cell-based assays. Five mAbs activated complement, three blocked α-bungarotoxin binding to the receptor, and seven induced antigenic modulation. Furthermore, two clonally related mAbs derived from one patient were each highly efficient at more than one of these mechanisms, demonstrating that pathogenic mechanisms are not mutually exclusive at the monoclonal level. Using novel Jurkat cell lines that individually express each monomeric AChR subunit (α2βδε), these two mAbs with multi-pathogenic capacity were determined to exclusively bind the α-subunit of AChR, demonstrating an association between mAb specificity and pathogenic capacity. These findings provide new insight into the immunopathology of MG, demonstrating that single autoreactive clones can efficiently mediate multiple modes of pathology. Current therapeutic approaches targeting only one autoantibody-mediated pathogenic mechanism may be evaded by autoantibodies with multifaceted capacity.
Collapse
Affiliation(s)
- Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
| | - Gianvito Masi
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Rosa Patzina
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Abeer H Obaid
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76706, USA
| | - Seneca R Oxendine
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Kevin C O'Connor
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA.
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
12
|
Vakrakou AG, Karachaliou E, Chroni E, Zouvelou V, Tzanetakos D, Salakou S, Papadopoulou M, Tzartos S, Voumvourakis K, Kilidireas C, Giannopoulos S, Tsivgoulis G, Tzartos J. Immunotherapies in MuSK-positive Myasthenia Gravis; an IgG4 antibody-mediated disease. Front Immunol 2023; 14:1212757. [PMID: 37564637 PMCID: PMC10410455 DOI: 10.3389/fimmu.2023.1212757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Muscle-specific kinase (MuSK) Myasthenia Gravis (MG) represents a prototypical antibody-mediated disease characterized by predominantly focal muscle weakness (neck, facial, and bulbar muscles) and fatigability. The pathogenic antibodies mostly belong to the immunoglobulin subclass (Ig)G4, a feature which attributes them their specific properties and pathogenic profile. On the other hand, acetylcholine receptor (AChR) MG, the most prevalent form of MG, is characterized by immunoglobulin (Ig)G1 and IgG3 antibodies to the AChR. IgG4 class autoantibodies are impotent to fix complement and only weakly bind Fc-receptors expressed on immune cells and exert their pathogenicity via interfering with the interaction between their targets and binding partners (e.g. between MuSK and LRP4). Cardinal differences between AChR and MuSK-MG are the thymus involvement (not prominent in MuSK-MG), the distinct HLA alleles, and core immunopathological patterns of pathology in neuromuscular junction, structure, and function. In MuSK-MG, classical treatment options are usually less effective (e.g. IVIG) with the need for prolonged and high doses of steroids difficult to be tapered to control symptoms. Exceptional clinical response to plasmapheresis and rituximab has been particularly observed in these patients. Reduction of antibody titers follows the clinical efficacy of anti-CD20 therapies, a feature implying the role of short-lived plasma cells (SLPB) in autoantibody production. Novel therapeutic monoclonal against B cells at different stages of their maturation (like plasmablasts), or against molecules involved in B cell activation, represent promising therapeutic targets. A revolution in autoantibody-mediated diseases is pharmacological interference with the neonatal Fc receptor, leading to a rapid reduction of circulating IgGs (including autoantibodies), an approach already suitable for AChR-MG and promising for MuSK-MG. New precision medicine approaches involve Chimeric autoantibody receptor T (CAAR-T) cells that are engineered to target antigen-specific B cells in MuSK-MG and represent a milestone in the development of targeted immunotherapies. This review aims to provide a detailed update on the pathomechanisms involved in MuSK-MG (cellular and humoral aberrations), fostering the understanding of the latest indications regarding the efficacy of different treatment strategies.
Collapse
Affiliation(s)
- Aigli G. Vakrakou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Karachaliou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Zouvelou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tzanetakos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Salakou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Papadopoulou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Physiotherapy, University of West Attica, Athens, Greece
| | - Socrates Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
- Department of Pharmacy, University of Patras, Patras, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - John Tzartos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Masi G, Pham MC, Karatz T, Oh S, Payne AS, Nowak RJ, Howard JF, Guptill JT, Juel VC, O'Connor KC. Clinicoserological insights into patients with immune checkpoint inhibitor-induced myasthenia gravis. Ann Clin Transl Neurol 2023; 10:825-831. [PMID: 36924454 PMCID: PMC10187728 DOI: 10.1002/acn3.51761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
To compare the immunopathology of immune checkpoint inhibitor-induced myasthenia gravis (ICI-MG) and idiopathic MG, we profiled the respective AChR autoantibody pathogenic properties. Of three ICI-MG patients with AChR autoantibodies, only one showed complement activation and modulation/blocking potency, resembling idiopathic MG. In contrast, AChR autoantibody-mediated effector functions were not detected in the other two patients, questioning the role of their AChR autoantibodies as key mediators of pathology. The contrasting properties of AChR autoantibodies in these cases challenge the accuracy of serological testing in establishing definite ICI-MG diagnoses and underscore the importance of a thorough clinical assessment when evaluating ICI-related adverse events.
Collapse
Affiliation(s)
- Gianvito Masi
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, 06511, USA
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, 06511, USA
| | - Minh C Pham
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, 06511, USA
| | - Tabitha Karatz
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Richard J Nowak
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, 06511, USA
| | - James F Howard
- Department of Neurology, The University of North Carolina at Chapel Hill, CB#7025, Houpt Building, 170 Manning Drive, Chapel Hill, North Carolina, 27599-7025, USA
| | - Jeffrey T Guptill
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Vern C Juel
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Kevin C O'Connor
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, 06511, USA
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, 06511, USA
| |
Collapse
|
14
|
Fitzpatrick KS, Degefu HN, Poljakov K, Bibby MG, Remington AJ, Searles TG, Gray MD, Boonyaratanakornkit J, Rosato PC, Taylor JJ. Validation of Ligand Tetramers for the Detection of Antigen-Specific Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1156-1165. [PMID: 36883850 PMCID: PMC10073333 DOI: 10.4049/jimmunol.2200934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
The study of Ag-specific lymphocytes has been a key advancement in immunology over the past few decades. The development of multimerized probes containing Ags, peptide:MHC complexes, or other ligands was one innovation allowing the direct study of Ag-specific lymphocytes by flow cytometry. Although these types of study are now common and performed by thousands of laboratories, quality control and assessment of probe quality are often minimal. In fact, many of these types of probe are made in-house, and protocols vary between laboratories. Although peptide:MHC multimers can often be obtained from commercial sources or core facilities, few such services exist for Ag multimers. To ensure high quality and consistency with ligand probes, we have developed an easy and robust multiplexed approach using commercially available beads able to bind Abs specific for the ligand of interest. Using this assay, we have sensitively assessed the performance of peptide:MHC and Ag tetramers and have found considerable batch-to-batch variability in performance and stability over time more easily than using murine or human cell-based assays. This bead-based assay can also reveal common production errors such as miscalculation of Ag concentration. This work could set the stage for the development of standardized assays for all commonly used ligand probes to limit laboratory-to-laboratory technical variation and experimental failure caused by probe underperformance.
Collapse
Affiliation(s)
- Kristin S Fitzpatrick
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Molecular Medicine and Mechanisms of Disease PhD Program, University of Washington, Seattle, WA
| | - Hanna N Degefu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH
| | - Katrina Poljakov
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Madeleine G Bibby
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Allison J Remington
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| | - Tyler G Searles
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH
| | - Matthew D Gray
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jim Boonyaratanakornkit
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Pamela C Rosato
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH
| | - Justin J Taylor
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
- Department of Global Health, University of Washington, Seattle, WA
| |
Collapse
|
15
|
Prömer J, Barresi C, Herbst R. From phosphorylation to phenotype - Recent key findings on kinase regulation, downstream signaling and disease surrounding the receptor tyrosine kinase MuSK. Cell Signal 2023; 104:110584. [PMID: 36608736 DOI: 10.1016/j.cellsig.2022.110584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
Muscle-specific kinase (MuSK) is the key regulator of neuromuscular junction development. MuSK acts via several distinct pathways and is responsible for pre- and postsynaptic differentiation. MuSK is unique among receptor tyrosine kinases as activation and signaling are particularly tightly regulated. Initiation of kinase activity requires Agrin, a heparan sulphate proteoglycan derived from motor neurons, the low-density lipoprotein receptor-related protein-4 (Lrp4) and the intracellular adaptor protein Dok-7. There is a great knowledge gap between MuSK activation and downstream signaling. Recent studies using omics techniques have addressed this knowledge gap, thereby greatly contributing to a better understanding of MuSK signaling. Impaired MuSK signaling causes severe muscle weakness as described in congenital myasthenic syndromes or myasthenia gravis but the underlying pathophysiology is often unclear. This review focuses on recent advances in deciphering MuSK activation and downstream signaling. We further highlight latest break-throughs in understanding and treatment of MuSK-related disorders and discuss the role of MuSK in non-muscle tissue.
Collapse
Affiliation(s)
- Jakob Prömer
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Cinzia Barresi
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ruth Herbst
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Duong SL, Prüss H. Molecular disease mechanisms of human antineuronal monoclonal autoantibodies. Trends Mol Med 2023; 29:20-34. [PMID: 36280535 DOI: 10.1016/j.molmed.2022.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022]
Abstract
Autoantibodies targeting brain antigens can mediate a wide range of neurological symptoms ranging from epileptic seizures to psychosis to dementia. Although earlier experimental work indicated that autoantibodies can be directly pathogenic, detailed studies on disease mechanisms, biophysical autoantibody properties, and target interactions were hampered by the availability of human material and the paucity of monospecific disease-related autoantibodies. The emerging generation of patient-derived monoclonal autoantibodies (mAbs) provides a novel platform for the detailed characterization of immunobiology and autoantibody pathogenicity in vitro and in animal models. This Feature Review focuses on recent advances in mAb generation and discusses their potential as powerful scientific tools for high-resolution imaging, antigenic target identification, atomic-level structural analyses, and the development of antibody-selective immunotherapies.
Collapse
Affiliation(s)
- Sophie L Duong
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany.
| |
Collapse
|
17
|
Rose N, Holdermann S, Callegari I, Kim H, Fruh I, Kappos L, Kuhle J, Müller M, Sanderson NSR, Derfuss T. Receptor clustering and pathogenic complement activation in myasthenia gravis depend on synergy between antibodies with multiple subunit specificities. Acta Neuropathol 2022; 144:1005-1025. [PMID: 36074148 PMCID: PMC9547806 DOI: 10.1007/s00401-022-02493-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 01/26/2023]
Abstract
Myasthenia gravis is an autoimmune disorder defined by muscle weakness and fatigability associated with antibodies against proteins of the neuromuscular junction (NMJ). The most common autoantibody target is the acetylcholine receptor (AChR). Three mechanisms have been postulated by which autoantibodies might interfere with neurotransmission: direct antagonism of the receptor, complement-mediated destruction of the postsynaptic membrane, and enhanced internalization of the receptor. It is very likely that more than one of these mechanisms act in parallel. Dissecting the mechanisms of autoantibody-mediated pathology requires patient-derived, monoclonal antibodies. Using membrane antigen capture activated cell sorting (MACACS), we isolated AChR-specific B cells from patients with myasthenia gravis, and produced six recombinant antibodies. All AChR-specific antibodies were hypermutated, including isotypes IgG1, IgG3, and IgG4, and recognized different subunits of the AChR. Despite clear binding, none of the individual antibodies showed significant antagonism of the AChR measured in an in vitro neuromuscular synapse model, or AChR-dependent complement activation, and they did not induce myasthenic signs in vivo. However, combinations of antibodies induced strong complement activation in vitro, and severe weakness in a passive transfer myasthenia gravis rat model, associated with NMJ destruction and complement activation in muscle. The strongest complement activation was mediated by combinations of antibodies targeting disparate subunits of the AChR, and such combinations also induced the formation of large clusters of AChR on the surface of live cells in vitro. We propose that synergy between antibodies of different epitope specificities is a fundamental feature of this disease, and possibly a general feature of complement-mediated autoimmune diseases. The importance of synergistic interaction between antibodies targeting different subunits of the receptor can explain the well-known discrepancy between serum anti-AChR titers and clinical severity, and has implications for therapeutic strategies currently under investigation.
Collapse
Affiliation(s)
- Natalie Rose
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sebastian Holdermann
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Ilaria Callegari
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Hyein Kim
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Isabelle Fruh
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Ludwig Kappos
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Matthias Müller
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Nicholas S R Sanderson
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland.
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland.
| | - Tobias Derfuss
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Fichtner ML, Hoehn KB, Ford EE, Mane-Damas M, Oh S, Waters P, Payne AS, Smith ML, Watson CT, Losen M, Martinez-Martinez P, Nowak RJ, Kleinstein SH, O'Connor KC. Reemergence of pathogenic, autoantibody-producing B cell clones in myasthenia gravis following B cell depletion therapy. Acta Neuropathol Commun 2022; 10:154. [PMID: 36307868 PMCID: PMC9617453 DOI: 10.1186/s40478-022-01454-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022] Open
Abstract
Myasthenia gravis (MG) is an autoantibody-mediated autoimmune disorder of the neuromuscular junction. A small subset of patients (<10%) with MG, have autoantibodies targeting muscle-specific tyrosine kinase (MuSK). MuSK MG patients respond well to CD20-mediated B cell depletion therapy (BCDT); most achieve complete stable remission. However, relapse often occurs. To further understand the immunomechanisms underlying relapse, we studied autoantibody-producing B cells over the course of BCDT. We developed a fluorescently labeled antigen to enrich for MuSK-specific B cells, which was validated with a novel Nalm6 cell line engineered to express a human MuSK-specific B cell receptor. B cells (≅ 2.6 million) from 12 different samples collected from nine MuSK MG patients were screened for MuSK specificity. We successfully isolated two MuSK-specific IgG4 subclass-expressing plasmablasts from two of these patients, who were experiencing a relapse after a BCDT-induced remission. Human recombinant MuSK mAbs were then generated to validate binding specificity and characterize their molecular properties. Both mAbs were strong MuSK binders, they recognized the Ig1-like domain of MuSK, and showed pathogenic capacity when tested in an acetylcholine receptor (AChR) clustering assay. The presence of persistent clonal relatives of these MuSK-specific B cell clones was investigated through B cell receptor repertoire tracing of 63,977 unique clones derived from longitudinal samples collected from these two patients. Clonal variants were detected at multiple timepoints spanning more than five years and reemerged after BCDT-mediated remission, predating disease relapse by several months. These findings demonstrate that a reservoir of rare pathogenic MuSK autoantibody-expressing B cell clones survive BCDT and reemerge into circulation prior to manifestation of clinical relapse. Overall, this study provides both a mechanistic understanding of MuSK MG relapse and a valuable candidate biomarker for relapse prediction.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
- Department of Immunobiology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Easton E Ford
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Marina Mane-Damas
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Waters
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melissa L Smith
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Corey T Watson
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Pilar Martinez-Martinez
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA.
- Department of Immunobiology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA.
| |
Collapse
|
19
|
Obaid AH, Zografou C, Vadysirisack DD, Munro-Sheldon B, Fichtner ML, Roy B, Philbrick WM, Bennett JL, Nowak RJ, O'Connor KC. Heterogeneity of Acetylcholine Receptor Autoantibody-Mediated Complement Activity in Patients With Myasthenia Gravis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/4/e1169. [PMID: 35473886 PMCID: PMC9128035 DOI: 10.1212/nxi.0000000000001169] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/08/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Autoantibodies targeting the acetylcholine receptor (AChR), found in patients with myasthenia gravis (MG), mediate pathology through 3 mechanisms: complement-directed tissue damage, blocking of the acetylcholine binding site, and internalization of the AChR. Clinical assays, used to diagnose and monitor patients, measure only autoantibody binding. Consequently, they are limited in providing association with disease burden, understanding of mechanistic heterogeneity, and monitoring therapeutic response. The objective of this study was to develop a cell-based assay that measures AChR autoantibody-mediated complement membrane attack complex (MAC) formation. METHODS An HEK293T cell line-modified using CRISPR/Cas9 genome editing to disrupt expression of the complement regulator genes (CD46, CD55, and CD59)-was used to measure AChR autoantibody-mediated MAC formation through flow cytometry. RESULTS Serum samples (n = 155) from 96 clinically confirmed AChR MG patients, representing a wide range of disease burden and autoantibody titer, were tested along with 32 healthy donor (HD) samples. AChR autoantibodies were detected in 139 of the 155 (89.7%) MG samples through a cell-based assay. Of the 139 AChR-positive samples, autoantibody-mediated MAC formation was detected in 83 (59.7%), whereas MAC formation was undetectable in the HD group or AChR-positive samples with low autoantibody levels. MAC formation was positively associated with autoantibody binding in most patient samples; ratios (mean fluorescence intensity) of MAC formation to AChR autoantibody binding ranged between 0.27 and 48, with a median of 0.79 and an interquartile range of 0.43 (0.58-1.1). However, the distribution of ratios was asymmetric and included extreme values; 16 samples were beyond the 10-90 percentile, with high MAC to low AChR autoantibody binding ratio or the reverse. Correlation between MAC formation and clinical disease scores suggested a modest positive association (rho = 0.34, p = 0.0023), which included a subset of outliers that did not follow this pattern. MAC formation did not associate with exposure to immunotherapy, thymectomy, or MG subtypes defined by age-of-onset. DISCUSSION A novel assay for evaluating AChR autoantibody-mediated complement activity was developed. A subset of patients that lacks association between MAC formation and autoantibody binding or disease burden was identified. The assay may provide a better understanding of the heterogeneous autoantibody molecular pathology and identify patients expected to benefit from complement inhibitor therapy.
Collapse
|
20
|
Huijbers MG, Marx A, Plomp JJ, Le Panse R, Phillips WD. Advances in the understanding of disease mechanisms of autoimmune neuromuscular junction disorders. Lancet Neurol 2022; 21:163-175. [DOI: 10.1016/s1474-4422(21)00357-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 01/19/2023]
|
21
|
Meng X, Zeng Z, Wang Y, Guo S, Wang C, Wang B, Guo S. Efficacy and Safety of Low-Dose Rituximab in Anti-MuSK Myasthenia Gravis Patients: A Retrospective Study. Neuropsychiatr Dis Treat 2022; 18:953-964. [PMID: 35535211 PMCID: PMC9078430 DOI: 10.2147/ndt.s358851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/21/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To evaluate the efficacy and safety of low dosages of rituximab (RTX) in the treatment of MuSK-antibody-positive MG patients. PATIENTS AND METHODS We retrospectively analyzed the data of MuSK-antibody-positive MG patients who were treated with low dosages of RTX from January 2018 to October 2021. The long-term treatment response to RTX was assessed by Myasthenia Gravis Foundation of America (MGFA) post-interventional status (PIS), Myasthenia Gravis Status and Treatment Intensity (MGSTI), dosage of steroid, MG-related activities of daily living (MG-ADL) and myasthenic muscle score (MMS) at the end of follow-up. RESULTS Clinical improvement was observed in all eight patients with follow-up for 8 to 29 months after treatment. At the last visit, complete stable remission had been achieved in one patient, pharmacologic remission in three patients, minimal manifestations status in three patients and improved in one patient based on the MGFA-PIS criteria. MGSTI level 2 or better had been reached in six (75%) patients at the last visit. The steroid dosage decreased from 60 mg at baseline to 15 mg at the last follow-up (p = 0.011). The average MG-ADL score decreased from 11 (range 7 to 15) to 0 (range 0 to 3; p = 0.011), and the MMS improved from 38.5 (range 24 to 60) to 100 (range 90 to 100; p = 0.012). These differences were all statistically significant. During RTX treatment and subsequent follow-up, 1 patient reported minor post-infusion malaise. CONCLUSION Low-dose RTX is effective and safe for treating anti-MuSK antibody positive MG patients. A long-term response is observed after treatment. Larger prospective studies are required to provide further evidence.
Collapse
Affiliation(s)
- Xin Meng
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Ziling Zeng
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Yunda Wang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Shuai Guo
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Chunjuan Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Baojie Wang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Shougang Guo
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
22
|
Vakrakou AG, Tzanetakos D, Evangelopoulos ME, Fragoulis GE, Kazakou P, Lekka E, Kafasi N, Tzartos JS, Andreadou E, Koutsis G, Gialafos E, Dimitrakopoulos A, Zampeli E, Rontogianni D, Theocharis S, Zapanti E, Stathopoulos PA, Anagnostouli M, Stefanis L, Kilidireas C. IgG4-related autoimmune manifestations in Alemtuzumab-treated multiple sclerosis patients. J Neuroimmunol 2021; 361:577759. [PMID: 34742035 DOI: 10.1016/j.jneuroim.2021.577759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
We aimed to determine whether Alemtuzumab-induced immune reconstitution affects immunoglobulin and complement levels in the serum of Relapsing-Remitting Multiple Sclerosis (RRMS) patients. IgG4-levels were increased 24-months after treatment initiation compared to baseline levels in twenty-nine patients. Alemtuzumab-treated patients with the highest IgG4-levels were more prone to thyroid-related autoimmune manifestations and specific autoimmune adverse events such as Crohn's disease, Graves' disease, and hemolytic anemia. Compared to baseline, total IgG-levels showed a trend towards reduced levels following two-courses of Alemtuzumab, but no significant change of C3 and/or C4-levels was observed. In conclusion, monitoring of IgG4-levels can serve as a marker for secondary autoimmunity risk in multiple sclerosis patients treated with Alemtuzumab.
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece.
| | - Dimitrios Tzanetakos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Maria-Eleptheria Evangelopoulos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - George E Fragoulis
- Department of Propaedeutic Internal Medicine, Medical School, Rheumatology Unit, "Laiko" General Hospital, National and Kapodistrian University of Athens, Greece
| | - Paraskevi Kazakou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - Eleni Lekka
- Department of Immunology, Laiko General Hospital, 17 Agiou Thoma str, Athens 11527, Greece
| | - Nikolitsa Kafasi
- Department of Immunology, Laiko General Hospital, 17 Agiou Thoma str, Athens 11527, Greece
| | - John S Tzartos
- Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, "Attikon" University Hospital, Rimini 1, Chaidari, 12462, Athens, Greece; Tzartos NeuroDiagnostics, Neuroimmunology, Eslin street 3, 115 23 Athens, Greece
| | - Elissavet Andreadou
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Georgios Koutsis
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Elias Gialafos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Antonios Dimitrakopoulos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Evanthia Zampeli
- Gastroenterology Department, "Alexandra" Hospital, Athens, Greece
| | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Greece
| | | | - Panos-Alexis Stathopoulos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Maria Anagnostouli
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Leonidas Stefanis
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Constantinos Kilidireas
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
23
|
Abstract
The realization that autoantibodies can contribute to dysfunction of the brain has brought about a paradigm shift in neurological diseases over the past decade, offering up important novel diagnostic and therapeutic opportunities. Detection of specific autoantibodies to neuronal or glial targets has resulted in a better understanding of central nervous system autoimmunity and in the reclassification of some diseases previously thought to result from infectious, 'idiopathic' or psychogenic causes. The most prominent examples, such as aquaporin 4 autoantibodies in neuromyelitis optica or NMDAR autoantibodies in encephalitis, have stimulated an entire field of clinical and experimental studies on disease mechanisms and immunological abnormalities. Also, these findings inspired the search for additional autoantibodies, which has been very successful to date and has not yet reached its peak. This Review summarizes this rapid development at a point in time where preclinical studies have started delivering fundamental new data for mechanistic understanding, where new technologies are being introduced into this field, and - most importantly - where the first specifically tailored immunotherapeutic approaches are emerging.
Collapse
Affiliation(s)
- Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
24
|
Zhao S, Zhang K, Ren K, Lu J, Ma C, Zhao C, Li Z, Guo J. Clinical features, treatment and prognosis of MuSK antibody-associated myasthenia gravis in Northwest China: a single-centre retrospective cohort study. BMC Neurol 2021; 21:428. [PMID: 34732168 PMCID: PMC8567678 DOI: 10.1186/s12883-021-02439-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE To summarize the clinical characteristics of patients with muscle-specific kinase antibody-associated myasthenia gravis (MuSK-MG) and to evaluate the therapeutic responses to different treatment regimes. METHODS Eighteen MuSK-MG patients admitted in our department between October 2017 and September 2020 were included. Clinical parameters were collected and the responses to different immunosuppressive drugs were assessed by MGFA Postintervention Status (MGFA-PIS). Meanwhile, the correlation between QMG scores and MuSK antibody titers were analyzed and MuSK antibody (MuSK-ab) titers were compared before and after therapy based on different immunosuppressive treatment regimes. RESULTS Female predominance (ratio of females to males, 15:3) was evident in the study population, with the average onset age of (40.28 ± 18.57) years and the median disease course of 30.50 months (interquartile range [IQR], 17.50-44.75 months). Ocular manifestation was the most common onset symptom (11/18; 61.11%), and mild symmetrical ptosis was most frequent. Bulbar symptoms had the highest incidence of 88.89% over the entire disease course. Abnormal responses to RNS test were recorded most frequently on the musculus deltoideus (83.33%). All patients were treated with prednisone (Pred) alone or plus azathioprine (AZA), tacrolimus (TAC) or low-dose rituximab (RTX), and 17 (94.44%) of them achieved a favorable outcome defined as minimal manifestation (MM) or better. In general, an obvious positive correlation between QMG score and MuSK-ab titer (r = 0.710, P < 0.001) were found in all patients. A more significant reduction of MuSK-ab titers was observed in patients receiving TAC or RTX plus Pred than those receiving AZA plus Pred. CONCLUSIONS The prominent clinical manifestations of ocular and bulbar muscles involvements, together with abnormal RNS response mostly recorded on the musculus deltoideus and better efficacy associated with TAC or low-dose RTX plus Pred, provide a more exhaustive picture of MuSK-MG, particularly in Northwest China.
Collapse
Affiliation(s)
- Sijia Zhao
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Kai Zhang
- Department of Intensive Care Unit, Xi'an No.3 Hospital, Xi'an, 710018, Shaanxi Province, China
| | - Kaixi Ren
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Jiarui Lu
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Chao Ma
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Cong Zhao
- Department of Neurology, Air Force Medical Center of PLA, Beijing, 100142, China
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China.
| | - Jun Guo
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China.
| |
Collapse
|
25
|
Mandel-Brehm C, Fichtner ML, Jiang R, Winton VJ, Vazquez SE, Pham MC, Hoehn KB, Kelleher NL, Nowak RJ, Kleinstein SH, Wilson MR, DeRisi JL, O'Connor KC. Elevated N-Linked Glycosylation of IgG V Regions in Myasthenia Gravis Disease Subtypes. THE JOURNAL OF IMMUNOLOGY 2021; 207:2005-2014. [PMID: 34544801 DOI: 10.4049/jimmunol.2100225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Elevated N-linked glycosylation of IgG V regions (IgG-VN-Glyc) is an emerging molecular phenotype associated with autoimmune disorders. To test the broader specificity of elevated IgG-VN-Glyc, we studied patients with distinct subtypes of myasthenia gravis (MG), a B cell-mediated autoimmune disease. Our experimental design focused on examining the B cell repertoire and total IgG. It specifically included adaptive immune receptor repertoire sequencing to quantify and characterize N-linked glycosylation sites in the circulating BCR repertoire, proteomics to examine glycosylation patterns of the total circulating IgG, and an exploration of human-derived recombinant autoantibodies, which were studied with mass spectrometry and Ag binding assays to respectively confirm occupation of glycosylation sites and determine whether they alter binding. We found that the frequency of IgG-VN-Glyc motifs was increased in the total BCR repertoire of patients with MG when compared with healthy donors. The elevated frequency was attributed to both biased V gene segment usage and somatic hypermutation. IgG-VN-Glyc could be observed in the total circulating IgG in a subset of patients with MG. Autoantigen binding, by four patient-derived MG autoantigen-specific mAbs with experimentally confirmed presence of IgG-VN-Glyc, was not altered by the glycosylation. Our findings extend prior work on patterns of Ig V region N-linked glycosylation in autoimmunity to MG subtypes.
Collapse
Affiliation(s)
- Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Miriam L Fichtner
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Ruoyi Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Valerie J Winton
- Proteomics Center of Excellence, Northwestern University, Evanston, IL
| | - Sara E Vazquez
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Kenneth B Hoehn
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Neil L Kelleher
- Department of Chemistry, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, IL.,Department of Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, IL
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,Department of Pathology, Yale University School of Medicine, New Haven, CT.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
| | - Michael R Wilson
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA; and
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA.,Chan Zuckerberg Biohub, San Francisco, CA
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, New Haven, CT; .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
26
|
Zografou C, Vakrakou AG, Stathopoulos P. Short- and Long-Lived Autoantibody-Secreting Cells in Autoimmune Neurological Disorders. Front Immunol 2021; 12:686466. [PMID: 34220839 PMCID: PMC8248361 DOI: 10.3389/fimmu.2021.686466] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
As B cells differentiate into antibody-secreting cells (ASCs), short-lived plasmablasts (SLPBs) are produced by a primary extrafollicular response, followed by the generation of memory B cells and long-lived plasma cells (LLPCs) in germinal centers (GCs). Generation of IgG4 antibodies is T helper type 2 (Th2) and IL-4, -13, and -10-driven and can occur parallel to IgE, in response to chronic stimulation by allergens and helminths. Although IgG4 antibodies are non-crosslinking and have limited ability to mobilize complement and cellular cytotoxicity, when self-tolerance is lost, they can disrupt ligand-receptor binding and cause a wide range of autoimmune disorders including neurological autoimmunity. In myasthenia gravis with predominantly IgG4 autoantibodies against muscle-specific kinase (MuSK), it has been observed that one-time CD20+ B cell depletion with rituximab commonly leads to long-term remission and a marked reduction in autoantibody titer, pointing to a short-lived nature of autoantibody-secreting cells. This is also observed in other predominantly IgG4 autoantibody-mediated neurological disorders, such as chronic inflammatory demyelinating polyneuropathy and autoimmune encephalitis with autoantibodies against the Ranvier paranode and juxtaparanode, respectively, and extends beyond neurological autoimmunity as well. Although IgG1 autoantibody-mediated neurological disorders can also respond well to rituximab induction therapy in combination with an autoantibody titer drop, remission tends to be less long-lasting and cases where titers are refractory tend to occur more often than in IgG4 autoimmunity. Moreover, presence of GC-like structures in the thymus of myasthenic patients with predominantly IgG1 autoantibodies against the acetylcholine receptor and in ovarian teratomas of autoimmune encephalitis patients with predominantly IgG1 autoantibodies against the N‐methyl‐d‐aspartate receptor (NMDAR) confers increased the ability to generate LLPCs. Here, we review available information on the short-and long-lived nature of ASCs in IgG1 and IgG4 autoantibody-mediated neurological disorders and highlight common mechanisms as well as differences, all of which can inform therapeutic strategies and personalized medical approaches.
Collapse
Affiliation(s)
- C Zografou
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - A G Vakrakou
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - P Stathopoulos
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
27
|
Gastaldi M, Scaranzin S, Businaro P, Mobilia E, Benedetti L, Pesce G, Franciotta D. Improving laboratory diagnostics in myasthenia gravis. Expert Rev Mol Diagn 2021; 21:579-590. [PMID: 33970749 DOI: 10.1080/14737159.2021.1927715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Myasthenia gravis (MG) is a prototypical autoimmune disease, characterized by pathogenic autoantibodies targeting structures of the neuromuscular junction. Radioimmunoprecipitation assays (RIPAs) represent the gold standard for their detection. However, new methods are emerging to complement, or overcome RIPAs, also with the perspective of eliminating the use of radioactive reagents.Areas covered: We discuss advances in laboratory methods, prompted especially by cell-based assays (CBAs), for the detection of the autoantibodies of MG diagnostics, above all those to the nicotinic acetylcholine receptor (AChR), muscle-specific kinase (MuSK), and low molecular-weight receptor-related low-density lipoprotein-4 (LRP4).Expert opinion: CBA technology makes AChRs aggregate on cell membranes, thus allowing to detect autoantibodies to clustered AChRs, with reduction of seronegative MG cases. The diagnostic relevance of RIPA/CBA-measurable LRP4 antibodies is still unclear, in Caucasian patients at least. Live CBAs for the detection of AChR, MuSK, and LRP4 antibodies might represent an alternative to RIPAs, but first require full validation. CBAs could be used as screening tests, limiting RIPAs for antibody quantification. To this end, ELISAs might be an alternative.Fixation procedures preserving enough degree of antigen conformationality could yield AChR and MuSK CBAs suitable for a wide use in clinical-chemistry laboratories.
Collapse
Affiliation(s)
- Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Scaranzin
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | - Pietro Businaro
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Emanuela Mobilia
- Autoimmunity Laboratory, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Luana Benedetti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giampaola Pesce
- Autoimmunity Laboratory, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine (Dimi), University of Genova, Genova, Italy
| | - Diego Franciotta
- Autoimmunity Laboratory, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
28
|
Functional monovalency amplifies the pathogenicity of anti-MuSK IgG4 in myasthenia gravis. Proc Natl Acad Sci U S A 2021; 118:2020635118. [PMID: 33753489 PMCID: PMC8020787 DOI: 10.1073/pnas.2020635118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An expanding group of autoimmune diseases is now recognized to be hallmarked by pathogenic IgG4 autoantibodies. IgG4 has the unique ability to exchange Fab-arms, rendering it bispecific and functionally monovalent. Here we show that autoantibody functional monovalency significantly amplifies the pathogenicity of IgG4 autoantibodies using patient-derived monoclonal antibodies in an in vivo model of MuSK myasthenia gravis. Therefore, subclass switching to predominant IgG4 autoantibodies is a critical step in the development of MuSK myasthenia gravis. This new mechanism in autoimmunity is also potentially relevant to 29 other IgG4-mediated autoimmune diseases known to date, allergy and other disease settings where IgG4 antibodies contribute to pathology. Human immunoglobulin (Ig) G4 usually displays antiinflammatory activity, and observations of IgG4 autoantibodies causing severe autoimmune disorders are therefore poorly understood. In blood, IgG4 naturally engages in a stochastic process termed “Fab-arm exchange” in which unrelated IgG4s exchange half-molecules continuously. The resulting IgG4 antibodies are composed of two different binding sites, thereby acquiring monovalent binding and inability to cross-link for each antigen recognized. Here, we demonstrate that this process amplifies autoantibody pathogenicity in a classic IgG4-mediated autoimmune disease: muscle-specific kinase (MuSK) myasthenia gravis. In mice, monovalent anti-MuSK IgG4s caused rapid and severe myasthenic muscle weakness, whereas the same antibodies in their parental bivalent form were less potent or did not induce a phenotype. Mechanistically this could be explained by opposing effects on MuSK signaling. Isotype switching to IgG4 in an autoimmune response thereby may be a critical step in the development of disease. Our study establishes functional monovalency as a pathogenic mechanism in IgG4-mediated autoimmune disease and potentially other disorders.
Collapse
|
29
|
Fichtner ML, Vieni C, Redler RL, Kolich L, Jiang R, Takata K, Stathopoulos P, Suarez PA, Nowak RJ, Burden SJ, Ekiert DC, O'Connor KC. Affinity maturation is required for pathogenic monovalent IgG4 autoantibody development in myasthenia gravis. J Exp Med 2021; 217:152036. [PMID: 32820331 PMCID: PMC7953735 DOI: 10.1084/jem.20200513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/04/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
Pathogenic muscle-specific tyrosine kinase (MuSK)–specific IgG4 autoantibodies in autoimmune myasthenia gravis (MG) are functionally monovalent as a result of Fab-arm exchange. The development of these unique autoantibodies is not well understood. We examined MG patient–derived monoclonal autoantibodies (mAbs), their corresponding germline-encoded unmutated common ancestors (UCAs), and monovalent antigen-binding fragments (Fabs) to investigate how affinity maturation contributes to binding and immunopathology. Mature mAbs, UCA mAbs, and mature monovalent Fabs bound to MuSK and demonstrated pathogenic capacity. However, monovalent UCA Fabs bound to MuSK but did not have measurable pathogenic capacity. Affinity of the UCA Fabs for MuSK was 100-fold lower than the subnanomolar affinity of the mature Fabs. Crystal structures of two Fabs revealed how mutations acquired during affinity maturation may contribute to increased MuSK-binding affinity. These findings indicate that the autoantigen drives autoimmunity in MuSK MG through the accumulation of somatic mutations such that monovalent IgG4 Fab-arm–exchanged autoantibodies reach a high-affinity threshold required for pathogenic capacity.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Casey Vieni
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY.,Medical Scientist Training Program, New York University School of Medicine, New York, NY
| | - Rachel L Redler
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Ljuvica Kolich
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Ruoyi Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Kazushiro Takata
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Panos Stathopoulos
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Pablo A Suarez
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Steven J Burden
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Damian C Ekiert
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
30
|
Zou A, Ramanathan S, Dale RC, Brilot F. Single-cell approaches to investigate B cells and antibodies in autoimmune neurological disorders. Cell Mol Immunol 2021; 18:294-306. [PMID: 32728203 PMCID: PMC8027387 DOI: 10.1038/s41423-020-0510-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Autoimmune neurological disorders, including neuromyelitis optica spectrum disorder, anti-N-methyl-D-aspartate receptor encephalitis, anti-MOG antibody-associated disorders, and myasthenia gravis, are clearly defined by the presence of autoantibodies against neurological antigens. Although these autoantibodies have been heavily studied for their biological activities, given the heterogeneity of polyclonal patient samples, the characteristics of a single antibody cannot be definitively assigned. This review details the findings of polyclonal serum and CSF studies and then explores the advances made by single-cell technologies to the field of antibody-mediated neurological disorders. High-resolution single-cell methods have revealed abnormalities in the tolerance mechanisms of several disorders and provided further insight into the B cells responsible for autoantibody production. Ultimately, several factors, including epitope specificity and binding affinity, finely regulate the pathogenic potential of an autoantibody, and a deeper appreciation of these factors may progress the development of targeted immunotherapies for patients.
Collapse
Affiliation(s)
- Alicia Zou
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sudarshini Ramanathan
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Russell C Dale
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia.
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, Discipline of Applied Medical Science, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
31
|
Kim MJ, Kim SW, Kim M, Choi YC, Kim SM, Shin HY. Evaluating an In-House Cell-Based Assay for Detecting Antibodies Against Muscle-Specific Tyrosine Kinase in Myasthenia Gravis. J Clin Neurol 2021; 17:400-408. [PMID: 34184448 PMCID: PMC8242307 DOI: 10.3988/jcn.2021.17.3.400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/11/2023] Open
Abstract
Background and Purpose Detecting antibodies against muscle-specific tyrosine kinase (MuSK Abs) is essential for diagnosing myasthenia gravis (MG). We applied an in-house cell-based assay (CBA) to detect MuSK Abs. Methods A stable cell line was generated using a lentiviral vector, which allowed the expression of MuSK tagged with green fluorescent protein in human embryonic kidney 293 (HEK293) cells. Serum and anti-human IgG antibody conjugated with red fluorescence were added. The presence of MuSK Abs was determined based on the fluorescence intensity and their colocalization in fluorescence microscopy. Totals of 218 serum samples collected from 177 patients with MG, 31 with other neuromuscular diseases, and 10 healthy controls were analyzed. The CBA results were compared with those of a radioimmunoprecipitation assay (RIPA) and an enzyme-linked immunosorbent assay (ELISA). Results The MuSK-HEK293 cell line stably expressed MuSK protein. The CBA detected MuSK Abs in 34 (19.2%) of 177 samples obtained from patients with MG and in none of the participants having other neuromuscular diseases or in the healthy controls. The clinical characteristics of the patients with MuSK MG determined based on the CBA were strongly correlated with known clinical features of MuSK MG. There was an almost perfect agreement between the results of the CBA and those of the RIPA (Cohen's kappa=0.880, p<0.001) and ELISA (Cohen's kappa=0.982, p<0.001). Conclusions The results of the in-house CBA showed excellent agreement with both the RIPA and ELISA. Our in-house CBA can be considered a reliable method for detecting MuSK Abs.
Collapse
Affiliation(s)
- Min Ju Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Graduate Program of Nanoscience and Technology, Yonsei University, Seoul, Korea
| | - Seung Woo Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - MinGi Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Chul Choi
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Min Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
32
|
Frykman H, Kumar P, Oger J. Immunopathology of Autoimmune Myasthenia Gravis: Implications for Improved Testing Algorithms and Treatment Strategies. Front Neurol 2020; 11:596621. [PMID: 33362698 PMCID: PMC7755715 DOI: 10.3389/fneur.2020.596621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is a heterogeneous condition, characterized by autoantibodies (Abs) that target functionally important structures within neuromuscular junctions (NMJ), thus affecting nerve-to-muscle transmission. MG patients are more often now subgrouped based on the profile of serum autoantibodies, which segregate with clinical presentation, immunopathology, and their response to therapies. The serological testing plays an essential role in confirming MG diagnosis and guiding disease management, although a small percentage of MG patients remain negative for antibodies. With the advancements in new highly effective pathophysiologically-specific immunotherapeutic options, it has become increasingly important to identify the specific Abs responsible for the pathogenicity in individual MG patients. There are several new assays and protocols being developed for the improved detection of Abs in MG patients. This review focuses on the divergent immunopathological mechanisms in MG, and discusses their relevance to improved diagnostic and treatment. We propose a comprehensive "reflex testing," algorithm for the presence of MG autoantibodies, and foresee that in the near future, the convenience and specificity of novel assays will permit the clinicians to consider them into routine systematic testing, thus stimulating laboratories to make these tests available. Moreover, adopting treatment driven testing algorithms will be crucial to identify subgroups of patients potentially benefiting from novel immunotherapies for MG.
Collapse
Affiliation(s)
- Hans Frykman
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Neuroimmunology Lab, University of British Columbia, Vancouver, BC, Canada
| | - Pankaj Kumar
- BC Neuroimmunology Lab, University of British Columbia, Vancouver, BC, Canada
| | - Joel Oger
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Neuroimmunology Lab, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
33
|
Cao M, Koneczny I, Vincent A. Myasthenia Gravis With Antibodies Against Muscle Specific Kinase: An Update on Clinical Features, Pathophysiology and Treatment. Front Mol Neurosci 2020; 13:159. [PMID: 32982689 PMCID: PMC7492727 DOI: 10.3389/fnmol.2020.00159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022] Open
Abstract
Muscle Specific Kinase myasthenia gravis (MuSK-MG) is an autoimmune disease that impairs neuromuscular transmission leading to generalized muscle weakness. Compared to the more common myasthenia gravis with antibodies against the acetylcholine receptor (AChR), MuSK-MG affects mainly the bulbar and respiratory muscles, with more frequent and severe myasthenic crises. Treatments are usually less effective with the need for prolonged, high doses of steroids and other immunosuppressants to control symptoms. Under physiological condition, MuSK regulates a phosphorylation cascade which is fundamental for the development and maintenance of postsynaptic AChR clusters at the neuromuscular junction (NMJ). Agrin, secreted by the motor nerve terminal into the synaptic cleft, binds to low density lipoprotein receptor-related protein 4 (LRP4) which activates MuSK. In MuSK-MG, monovalent MuSK-IgG4 autoantibodies block MuSK-LRP4 interaction preventing MuSK activation and leading to the dispersal of AChR clusters. Lower levels of divalent MuSK IgG1, 2, and 3 antibody subclasses are also present but their contribution to the pathogenesis of the disease remains controversial. This review aims to provide a detailed update on the epidemiological and clinical features of MuSK-MG, focusing on the pathophysiological mechanisms and the latest indications regarding the efficacy and safety of different treatment options.
Collapse
Affiliation(s)
- Michelangelo Cao
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Sun B, Ramberger M, O'Connor KC, Bashford-Rogers RJM, Irani SR. The B cell immunobiology that underlies CNS autoantibody-mediated diseases. Nat Rev Neurol 2020; 16:481-492. [PMID: 32724223 PMCID: PMC9364389 DOI: 10.1038/s41582-020-0381-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2020] [Indexed: 12/17/2022]
Abstract
A rapidly expanding and clinically distinct group of CNS diseases are caused by pathogenic autoantibodies that target neuroglial surface proteins. Despite immunotherapy, patients with these neuroglial surface autoantibody (NSAb)-mediated diseases often experience clinical relapse, high rates of long-term morbidity and adverse effects from the available medications. Fundamentally, the autoantigen-specific B cell lineage leads to production of the pathogenic autoantibodies. These autoantigen-specific B cells have been consistently identified in the circulation of patients with NSAb-mediated diseases, accompanied by high serum levels of autoantigen-specific antibodies. Early evidence suggests that these cells evade well-characterized B cell tolerance checkpoints. Nearer to the site of pathology, cerebrospinal fluid from patients with NSAb-mediated diseases contains high levels of autoantigen-specific B cells that are likely to account for the intrathecal synthesis of these autoantibodies. The characteristics of their immunoglobulin genes offer insights into the underlying immunobiology. In this Review, we summarize the emerging knowledge of B cells across the NSAb-mediated diseases. We review the evidence for the relative contributions of germinal centres and long-lived plasma cells as sources of autoantibodies, discuss data that indicate migration of B cells into the CNS and summarize insights into the underlying B cell pathogenesis that are provided by therapeutic effects.
Collapse
Affiliation(s)
- Bo Sun
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Melanie Ramberger
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kevin C O'Connor
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, USA
| | | | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
35
|
Jiang R, Fichtner ML, Hoehn KB, Pham MC, Stathopoulos P, Nowak RJ, Kleinstein SH, O'Connor KC. Single-cell repertoire tracing identifies rituximab-resistant B cells during myasthenia gravis relapses. JCI Insight 2020; 5:136471. [PMID: 32573488 DOI: 10.1172/jci.insight.136471] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Rituximab, a B cell-depleting therapy, is indicated for treating a growing number of autoantibody-mediated autoimmune disorders. However, relapses can occur after treatment, and autoantibody-producing B cell subsets may be found during relapses. It is not understood whether these autoantibody-producing B cell subsets emerge from the failed depletion of preexisting B cells or are generated de novo. To further define the mechanisms that cause postrituximab relapse, we studied patients with autoantibody-mediated muscle-specific kinase (MuSK) myasthenia gravis (MG) who relapsed after treatment. We carried out single-cell transcriptional and B cell receptor profiling on longitudinal B cell samples. We identified clones present before therapy that persisted during relapse. Persistent B cell clones included both antibody-secreting cells and memory B cells characterized by gene expression signatures associated with B cell survival. A subset of persistent antibody-secreting cells and memory B cells were specific for the MuSK autoantigen. These results demonstrate that rituximab is not fully effective at eliminating autoantibody-producing B cells and provide a mechanistic understanding of postrituximab relapse in MuSK MG.
Collapse
Affiliation(s)
| | - Miriam L Fichtner
- Department of Immunobiology and.,Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Panos Stathopoulos
- Department of Immunobiology and.,Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Richard J Nowak
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Steven H Kleinstein
- Department of Immunobiology and.,Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, Connecticut, USA.,Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kevin C O'Connor
- Department of Immunobiology and.,Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
36
|
Vergoossen DLE, Augustinus R, Huijbers MG. MuSK antibodies, lessons learned from poly- and monoclonality. J Autoimmun 2020; 112:102488. [PMID: 32505442 DOI: 10.1016/j.jaut.2020.102488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 11/25/2022]
Abstract
Muscle-specific kinase (MuSK) plays a critical role in establishing and maintaining neuromuscular synapses. Antibodies derived from immunizing animals with MuSK were important tools to help detect MuSK and its activity. The role of antibodies in MuSK-related research got an extra dimension when autoantibodies to MuSK were found to cause myasthenia gravis (MG) in 2001. Active immunization with MuSK or passive transfer of polyclonal purified IgG(4) fractions from patients reproduced myasthenic muscle weakness in a range of animal models. Polyclonal patient-purified autoantibodies were furthermore found to block agrin-Lrp4-MuSK signaling, explaining the synaptic disassembly, failure of neuromuscular transmission and ultimately muscle fatigue observed in vivo. MuSK autoantibodies are predominantly of the IgG4 subclass. Low levels of other subclass MuSK antibodies coexist, but their role in the pathogenesis is unclear. Patient-derived monoclonal antibodies revealed that MuSK antibody subclass and valency alters their functional effects and possibly their pathogenicity. Interestingly, recombinant functional bivalent MuSK antibodies might even have therapeutic potential for a variety of neuromuscular disorders, due to their agonistic nature on the MuSK signaling cascade. Thus, MuSK antibodies have proven to be helpful tools to study neuromuscular junction physiology, contributed to our understanding of the pathophysiology of MuSK MG and might be used to treat neuromuscular disorders. The source of MuSK antibodies and consequently their (mixed) polyclonal or monoclonal nature were important confounding factors in these experiments. Here we review the variety of MuSK antibodies described thus far, the insights they have given us and their potential for the future.
Collapse
Affiliation(s)
- Dana L E Vergoossen
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, the Netherlands
| | - Roy Augustinus
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, the Netherlands
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, the Netherlands; Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| |
Collapse
|
37
|
Albazli K, Kaminski HJ, Howard JF. Complement Inhibitor Therapy for Myasthenia Gravis. Front Immunol 2020; 11:917. [PMID: 32582144 PMCID: PMC7283905 DOI: 10.3389/fimmu.2020.00917] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Complement activation as a driver of pathology in myasthenia gravis (MG) has been appreciated for decades. The terminal complement component [membrane attack complex (MAC)] is found at the neuromuscular junctions of patients with MG. Animals with experimental autoimmune MG are dependent predominantly on an active complement system to develop weakness. Mice deficient in intrinsic complement regulatory proteins demonstrate a significant increase in the destruction of the neuromuscular junction. As subtypes of MG have been better defined, it has been appreciated that acetylcholine receptor antibody-positive disease is driven by complement activation. Preclinical assessments have confirmed that complement inhibition would be a viable therapeutic approach. Eculizumab, an antibody directed toward the C5 component of complement, was demonstrated to be effective in a Phase 3 trial with subsequent approval by the Federal Drug Administration of the United States and other worldwide regulatory agencies for its use in acetylcholine receptor antibody-positive MG. Second- and third-generation complement inhibitors are in development and approaching pivotal efficacy evaluations. This review will summarize the history and present the state of knowledge of this new therapeutic modality.
Collapse
Affiliation(s)
- Khaled Albazli
- Department of Neurology, George Washington University, Washington, DC, United States
| | - Henry J. Kaminski
- Department of Neurology, George Washington University, Washington, DC, United States
| | - James F. Howard
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
38
|
Takamori M. Myasthenia Gravis: From the Viewpoint of Pathogenicity Focusing on Acetylcholine Receptor Clustering, Trans-Synaptic Homeostasis and Synaptic Stability. Front Mol Neurosci 2020; 13:86. [PMID: 32547365 PMCID: PMC7272578 DOI: 10.3389/fnmol.2020.00086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
Myasthenia gravis (MG) is a disease of the postsynaptic neuromuscular junction (NMJ) where nicotinic acetylcholine (ACh) receptors (AChRs) are targeted by autoantibodies. Search for other pathogenic antigens has detected the antibodies against muscle-specific tyrosine kinase (MuSK) and low-density lipoprotein-related protein 4 (Lrp4), both causing pre- and post-synaptic impairments. Agrin is also suspected as a fourth pathogen. In a complex NMJ organization centering on MuSK: (1) the Wnt non-canonical pathway through the Wnt-Lrp4-MuSK cysteine-rich domain (CRD)-Dishevelled (Dvl, scaffold protein) signaling acts to form AChR prepatterning with axonal guidance; (2) the neural agrin-Lrp4-MuSK (Ig1/2 domains) signaling acts to form rapsyn-anchored AChR clusters at the innervated stage of muscle; (3) adaptor protein Dok-7 acts on MuSK activation for AChR clustering from “inside” and also on cytoskeleton to stabilize AChR clusters by the downstream effector Sorbs1/2; (4) the trans-synaptic retrograde signaling contributes to the presynaptic organization via: (i) Wnt-MuSK CRD-Dvl-β catenin-Slit 2 pathway; (ii) Lrp4; and (iii) laminins. The presynaptic Ca2+ homeostasis conditioning ACh release is modified by autoreceptors such as M1-type muscarinic AChR and A2A adenosine receptors. The post-synaptic structure is stabilized by: (i) laminin-network including the muscle-derived agrin; (ii) the extracellular matrix proteins (including collagen Q/perlecan and biglycan which link to MuSK Ig1 domain and CRD); and (iii) the dystrophin-associated glycoprotein complex. The study on MuSK ectodomains (Ig1/2 domains and CRD) recognized by antibodies suggested that the MuSK antibodies were pathologically heterogeneous due to their binding to multiple functional domains. Focussing one of the matrix proteins, biglycan which functions in the manner similar to collagen Q, our antibody assay showed the negative result in MG patients. However, the synaptic stability may be impaired by antibodies against MuSK ectodomains because of the linkage of biglycan with MuSK Ig1 domain and CRD. The pathogenic diversity of MG is discussed based on NMJ signaling molecules.
Collapse
|
39
|
Fichtner ML, Jiang R, Bourke A, Nowak RJ, O'Connor KC. Autoimmune Pathology in Myasthenia Gravis Disease Subtypes Is Governed by Divergent Mechanisms of Immunopathology. Front Immunol 2020; 11:776. [PMID: 32547535 PMCID: PMC7274207 DOI: 10.3389/fimmu.2020.00776] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is a prototypical autoantibody mediated disease. The autoantibodies in MG target structures within the neuromuscular junction (NMJ), thus affecting neuromuscular transmission. The major disease subtypes of autoimmune MG are defined by their antigenic target. The most common target of pathogenic autoantibodies in MG is the nicotinic acetylcholine receptor (AChR), followed by muscle-specific kinase (MuSK) and lipoprotein receptor-related protein 4 (LRP4). MG patients present with similar symptoms independent of the underlying subtype of disease, while the immunopathology is remarkably distinct. Here we highlight these distinct immune mechanisms that describe both the B cell- and autoantibody-mediated pathogenesis by comparing AChR and MuSK MG subtypes. In our discussion of the AChR subtype, we focus on the role of long-lived plasma cells in the production of pathogenic autoantibodies, the IgG1 subclass mediated pathology, and contributions of complement. The similarities underlying the immunopathology of AChR MG and neuromyelitis optica (NMO) are highlighted. In contrast, MuSK MG is caused by autoantibody production by short-lived plasmablasts. MuSK MG autoantibodies are mainly of the IgG4 subclass which can undergo Fab-arm exchange (FAE), a process unique to this subclass. In FAE IgG4, molecules can dissociate into two halves and recombine with other half IgG4 molecules resulting in bispecific antibodies. Similarities between MuSK MG and other IgG4-mediated autoimmune diseases, including pemphigus vulgaris (PV) and chronic inflammatory demyelinating polyneuropathy (CIDP), are highlighted. Finally, the immunological distinctions are emphasized through presentation of biological therapeutics that provide clinical benefit depending on the MG disease subtype.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Ruoyi Jiang
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Aoibh Bourke
- Trinity Hall, University of Cambridge, Cambridge, United Kingdom
| | - Richard J Nowak
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States
| | - Kevin C O'Connor
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
40
|
Marino M, Basile U, Spagni G, Napodano C, Iorio R, Gulli F, Todi L, Provenzano C, Bartoccioni E, Evoli A. Long-Lasting Rituximab-Induced Reduction of Specific-But Not Total-IgG4 in MuSK-Positive Myasthenia Gravis. Front Immunol 2020; 11:613. [PMID: 32431692 PMCID: PMC7214629 DOI: 10.3389/fimmu.2020.00613] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
The use of rituximab (RTX), an anti-CD20 monoclonal antibody (Ab), in refractory myasthenia gravis (MG) is associated with a better response in patients with Abs to the muscle-specific tyrosine kinase (MuSK) than in other MG subgroups. Anti-MuSK Abs are mostly IgG4 with proven pathogenicity and positive correlation with clinical severity. The rapid and sustained response to RTX may be related to MuSK Ab production by short-lived Ab-secreting cells derived from specific CD20+ B cells. Here, we investigated the long-term effects of RTX in nine refractory MuSK-MG patients with a follow-up ranging from 17 months to 13 years. In patients' sera, we titrated MuSK-specific IgG (MuSK-IgG) and MuSK-IgG4, along with total IgG and IgG4 levels. Optimal response to RTX was defined as the achievement and maintenance of the status of minimal manifestations (MM)-or-better together with a ≥ 50% steroid reduction, withdrawal of immunosuppressants, and no need for plasma-exchange or intravenous immunoglobulin. After a course of RTX, eight patients improved, with optimal response in six, while only one patient did not respond. At baseline, MuSK-IgG and MuSK-IgG4 serum titers were positive in all patients, ranging from 2.15 to 49.5 nmol/L and from 0.33 to 46.2 nmol/L, respectively. MuSK Abs mostly consisted of IgG4 (range 63.80-98.86%). RTX administration was followed by a marked reduction of MuSK Abs at 2-7 months and at 12-30 months (p < 0.02 for MuSK-IgG and p < 0.01 for MuSK-IgG4). In patients with a longer follow-up, MuSK Ab titers remained suppressed, paralleling clinical response. In the patient who achieved long-term complete remission, MuSK-IgG4 was no longer detectable within 2 years, while MuSK-IgG remained positive at very low titers up to 10 years after RTX. In the patient who did not respond, MuSK-IgG and MuSK-IgG4 remained unchanged. In this patient series, total IgG and IgG4 transiently decreased (p < 0.05) at 2-7 months after RTX. The different trends of reduction between MuSK-IgG4 and total IgG4 after RTX support the view that short-lived Ab-secreting cells are the main producers of MuSK Abs. The ratio between short-lived Ab-secreting cells and long-lived plasma cells may influence the response to RTX, and B-cell severe depletion may reduce self-maintaining autoimmune reactivity.
Collapse
Affiliation(s)
- Mariapaola Marino
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Umberto Basile
- Area Diagnostica di Laboratorio, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Gregorio Spagni
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento di Neuroscienze, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Cecilia Napodano
- Istituto di Medicina Interna, Università Cattolica del Sacro Cuore, Rome, Italy.,Area di Gastroenterologia e Oncologia Medica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Raffaele Iorio
- Dipartimento di Neuroscienze, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Francesca Gulli
- Dipartimento di Medicina di Laboratorio, Ospedale Madre Giuseppina Vannini, Rome, Italy
| | - Laura Todi
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Carlo Provenzano
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Emanuela Bartoccioni
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Amelia Evoli
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento di Neuroscienze, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
41
|
Takata K, Kinoshita M, Mochizuki H, Okuno T. Antigen specific B cells in myasthenia gravis patients. Immunol Med 2020; 43:65-71. [DOI: 10.1080/25785826.2020.1724756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Kazushiro Takata
- Department of Neurology, Japan Community Health care Organization (JCHO) Hoshigaoka medical center, Hirakata, Japan
| | - Makoto Kinoshita
- Department of Neurology, Osaka university Graduate school of Medicine, Suita, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka university Graduate school of Medicine, Suita, Japan
| | - Tatsusada Okuno
- Department of Neurology, Osaka university Graduate school of Medicine, Suita, Japan
| |
Collapse
|
42
|
Huda S, Cao M, De Rosa A, Woodhall M, Rodriguez Cruz PM, Cossins J, Maestri M, Ricciardi R, Evoli A, Beeson D, Vincent A. SHP2 inhibitor protects AChRs from effects of myasthenia gravis MuSK antibody. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 7:7/1/e645. [PMID: 31831571 PMCID: PMC6935836 DOI: 10.1212/nxi.0000000000000645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/08/2019] [Indexed: 11/30/2022]
Abstract
Objective To determine whether an SRC homology 2 domain-containing phosphotyrosine phosphatase 2 (SHP2) inhibitor would increase muscle-specific kinase (MuSK) phosphorylation and override the inhibitory effect of MuSK-antibodies (Abs). Methods The effect of the SHP2 inhibitor NSC-87877 on MuSK phosphorylation and AChR clustering was tested in C2C12 myotubes with 31 MuSK-myasthenia gravis (MG) sera and purified MuSK-MG IgG4 preparations. Results In the absence of MuSK-MG Abs, NSC-87877 increased MuSK phosphorylation and the number of AChR clusters in C2C12 myotubes in vitro and in DOK7-overexpressing C2C12 myotubes that form spontaneous AChR clusters. In the presence of MuSK-MG sera, the AChR clusters were reduced, as expected, but NSC-87877 was able to protect or restore the clusters. Two purified MuSK-MG IgG4 preparations inhibited both MuSK phosphorylation and AChR cluster formation, and in both, clusters were restored with NSC-87877. Conclusions Stimulating the agrin-LRP4-MuSK-DOK7 AChR clustering pathway with NSC-87877, or other drugs, could represent a novel therapeutic approach for MuSK-MG and could potentially improve other NMJ disorders with reduced AChR numbers or disrupted NMJs.
Collapse
Affiliation(s)
- Saif Huda
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Michelangelo Cao
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Anna De Rosa
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Mark Woodhall
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Pedro M Rodriguez Cruz
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Judith Cossins
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Michelangelo Maestri
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Roberta Ricciardi
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Amelia Evoli
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - David Beeson
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Angela Vincent
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy.
| |
Collapse
|