1
|
Gao Y, Zhang X, Ding M, Fu Z, Zhong L. Targeting "don't eat me" signal: breast cancer immunotherapy. Breast Cancer Res Treat 2025; 211:277-292. [PMID: 40100495 DOI: 10.1007/s10549-025-07659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE Breast cancer ranks as the most prevalent cancer type impacting women globally, both in terms of incidence and mortality rates, making it a major health concern for females. There's an urgent requirement to delve into new cancer treatment methods to improve patient survival rates. METHODS Immunotherapy has gained recognition as a promising area of research in the treatment of breast cancer, with targeted immune checkpoint therapies demonstrating the potential to yield sustained clinical responses and improve overall survival rates. Presently, the predominant immune checkpoints identified on breast cancer cells include CD47, CD24, PD-L1, MHC-I, and STC-1, among others. Nevertheless, the specific roles of these various immune checkpoints in breast carcinogenesis, metastasis, and immune evasion have yet to be comprehensively elucidated. We conducted a comprehensive review of the existing literature pertaining to breast cancer and immune checkpoint inhibitors, providing a summary of findings and an outlook on future research directions. RESULTS This article reviews the advancements in research concerning each immune checkpoint in breast cancer and their contributions to immune evasion, while also synthesizing immunotherapy strategies informed by these mechanisms. Furthermore, it anticipates future research priorities, thereby providing a theoretical foundation to guide immunotherapy as a potential interventional approach for breast cancer treatment. CONCLUSION Knowledge of immune checkpoints will drive the creation of novel cancer therapies, and future breast cancer research will increasingly emphasize personalized treatments tailored to patients' specific tumor characteristics.
Collapse
Affiliation(s)
- Yue Gao
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyan Zhang
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingqiang Ding
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenkun Fu
- Department of Immunology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China.
| | - Lei Zhong
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Chen B, Huang L, Gui M, Torres-de la Roche LA, De Wilde RL, Shi W, Liu H, Gong Z. High Expression of Complement 3 Enhances the Efficacy of Neoadjuvant Chemotherapy Prior to Oncoplastic Surgery for HER2-Positive Breast Cancer. Cancer Biother Radiopharm 2025. [PMID: 40242863 DOI: 10.1089/cbr.2025.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Background: Neoadjuvant chemotherapy for breast cancer (BC) improves patient prognosis, but its efficacy is hindered by the disease's high heterogeneity. This study enhances effectiveness of targeted therapy to improve clinical outcomes. Methods: This study enrolled 335 patients from three centers. Differentially expressed genes were identified using DESeq2, and Venn analysis was applied to identify hub Complement genes. Hub gene expression was validated through public databases and IHC in real-world samples. In addition, associations between these genes and clinical factors were evaluated. Survival analysis, using the log-rank test, assessed overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) as end points. The authors also locate hub Complement 3 gene position by immunofluorescence. Results: The study identified C3 as a hub Complement gene associated with trastuzumab sensitivity. C3 shows higher expression in normal than tumor tissues. C3 was highly expressed in HER2-negative and early-stage BC, but showed no differences in lymph node or metastasis subgroups. High C3 expression correlated with better OS, DSS, and PFI, particularly in HER2+ patients. IHC analysis confirmed higher C3 expression in normal tissues with the lowest in triple-negative BC. Immunofluorescence findings suggest that C3 recruits complement receptor 2 to enhance trastuzumab efficacy in HER2+ patients. Conclusions: This finding highlights the potential of complement 3 to improve therapeutic outcomes and pave the way for more personalized treatment strategies in BC.
Collapse
Affiliation(s)
- Bo Chen
- Department of Medical Aesthetic Surgery, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lifen Huang
- Clinicopathological Diagnosis & Research Center, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, China
| | - Morui Gui
- Department of Medical Aesthetic Surgery, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| | | | - Rudy Leon De Wilde
- Pius-Hospital, University Hospital for Gynecology, University Medicine Oldenburg, Oldenburg, Germany
| | - Wenjie Shi
- Medical Faculty and University Hospital Magdeburg, Molecular and Experimental Surgery, Clinic for General, Visceral, Vascular and Transplantation Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Hui Liu
- School of Public Health, Guilin Medical University, Guilin, China
| | - Zhenyu Gong
- Department of Medical Aesthetic Surgery, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
3
|
Lim SH, An M, Lee H, Heo YJ, Min BH, Mehta A, Wright S, Kim KM, Kim ST, Klempner SJ, Lee J. Determinants of Response to Sequential Pembrolizumab with Trastuzumab plus Platinum/5-FU in HER2-Positive Gastric Cancer: A Phase II Chemoimmunotherapy Trial. Clin Cancer Res 2025; 31:1476-1490. [PMID: 40100100 PMCID: PMC11995005 DOI: 10.1158/1078-0432.ccr-24-3528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE Adding pembrolizumab to first-line fluoropyrimidine (5-FU)/platinum chemotherapy plus trastuzumab improves outcomes in advanced HER2+ gastroesophageal adenocarcinomas, but the benefit is largely confined to dual HER2+ and PD-L1+ patients. To assess the contributions of components, we conducted a phase II trial evaluating 5-FU/platinum/trastuzumab and added pembrolizumab in cycle 2 in patients with metastatic HER2+ disease. PATIENTS AND METHODS Treatment-naïve patients with advanced HER2+ gastroesophageal cancer underwent a baseline biopsy and received a single dose of 5-FU/platinum with trastuzumab followed by repeat biopsy. Pembrolizumab was added, and a third biopsy was performed after six cycles. The primary endpoint was the objective response rate. Secondary endpoints included progression-free and overall survival. Exploratory biomarker analysis and dynamic changes in HER2 and PD-L1 were prespecified. RESULTS Sixteen patients were enrolled. The objective response rate was 69%, and the median progression-free survival was 11.9 months. Serial whole-exome, single-cell RNA, T-cell receptor sequencing, and spatial transcriptomics from pretreatment and on-treatment samples revealed early trastuzumab-induced NK cell infiltration in HER2+ tumor beds and an increase in Fc receptor gamma III expression in macrophages, suggesting that trastuzumab directs Fc receptor-mediated antibody-dependent cytotoxicity. This favorable remodeling was enhanced by the addition of pembrolizumab, primarily in PD-L1+ samples. We observed TGF-β signaling in HER2-negative tumor regions, which was associated with nonresponder status. CONCLUSIONS These data highlight the biology of intratumoral heterogeneity and the impact of tumor and immune cell features on clinical outcomes and may partly explain the lesser magnitude of pembrolizumab benefit in HER2+ and PD-L1-negative subgroups.
Collapse
Affiliation(s)
- Sung Hee Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Minae An
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyuk Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Byung-Hoon Min
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Arnav Mehta
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Samuel Wright
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Samuel J. Klempner
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Corti C, Binboğa Kurt B, Koca B, Rahman T, Conforti F, Pala L, Bianchini G, Criscitiello C, Curigliano G, Garrido-Castro AC, Kabraji SK, Waks AG, Mittendorf EA, Tolaney SM. Estrogen Signaling in Early-Stage Breast Cancer: Impact on Neoadjuvant Chemotherapy and Immunotherapy. Cancer Treat Rev 2025; 132:102852. [PMID: 39571402 DOI: 10.1016/j.ctrv.2024.102852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/14/2024] [Accepted: 11/10/2024] [Indexed: 01/01/2025]
Abstract
Neoadjuvant chemoimmunotherapy (NACIT) has been shown to improve pathologic complete response (pCR) rates and survival outcomes in stage II-III triple-negative breast cancer (TNBC). Promising pCR rate improvements have also been documented for selected patients with estrogen receptor-positive (ER+) human epidermal growth factor receptor 2-negative (HER2-) breast cancer (BC). However, one size does not fit all and predicting which patients will benefit from NACIT remains challenging. Accurate predictions would be useful to minimize immune-related toxicity, which can be severe, irreversible, and potentially impact fertility and quality of life, and to identify patients in need of alternative treatments. This review aims to capitalize on the existing translational and clinical evidence on predictors of treatment response in patients with early-stage BC treated with neoadjuvant chemotherapy (NACT) and NACIT. It summarizes evidence suggesting that NACT/NACIT effectiveness may correlate with pre-treatment tumor characteristics, including mutational profiles, ER expression and signaling, immune cell presence and spatial organization, specific gene signatures, and the levels of proliferating versus quiescent cancer cells. However, the predominantly qualitative and descriptive nature of many studies highlights the challenges in integrating various potential response determinants into a validated, comprehensive, and multimodal predictive model. The potential of novel multi-modal approaches, such as those based on artificial intelligence, to overcome current challenges remains unclear, as these tools are not free from bias and shortcut learning. Despite these limitations, the rapid evolution of these technologies, coupled with further efforts in basic and translational research, holds promise for improving treatment outcome predictions in early HER2- BC.
Collapse
Affiliation(s)
- Chiara Corti
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology (DIPO), University of Milan, Milan, Italy.
| | - Busem Binboğa Kurt
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Beyza Koca
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Tasnim Rahman
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Fabio Conforti
- Department of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy
| | - Laura Pala
- Department of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy
| | - Giampaolo Bianchini
- Department of Medical Oncology, San Raffaele Hospital, IRCCS, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology (DIPO), University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology (DIPO), University of Milan, Milan, Italy
| | - Ana C Garrido-Castro
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Sheheryar K Kabraji
- Department of Medicine, Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Adrienne G Waks
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Elizabeth A Mittendorf
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Breast Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Sara M Tolaney
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Dailey GP, Rabiola CA, Lei G, Wei J, Yang XY, Wang T, Liu CX, Gajda M, Hobeika AC, Summers A, Marek RD, Morse MA, Lyerly HK, Crosby EJ, Hartman ZC. Vaccines targeting ESR1 activating mutations elicit anti-tumor immune responses and suppress estrogen signaling in therapy resistant ER+ breast cancer. Hum Vaccin Immunother 2024; 20:2309693. [PMID: 38330990 PMCID: PMC10857653 DOI: 10.1080/21645515.2024.2309693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
ER+ breast cancers (BC) are characterized by the elevated expression and signaling of estrogen receptor alpha (ESR1), which renders them sensitive to anti-endocrine therapy. While these therapies are clinically effective, prolonged treatment inevitably results in therapeutic resistance, which can occur through the emergence of gain-of-function mutations in ESR1. The central importance of ESR1 and development of mutated forms of ESR1 suggest that vaccines targeting these proteins could potentially be effective in preventing or treating endocrine resistance. To explore the potential of this approach, we developed several recombinant vaccines encoding different mutant forms of ESR1 (ESR1mut) and validated their ability to elicit ESR1-specific T cell responses. We then developed novel ESR1mut-expressing murine mammary cancer models to test the anti-tumor potential of ESR1mut vaccines. We found that these vaccines could suppress tumor growth, ESR1mut expression and estrogen signaling in vivo. To illustrate the applicability of these findings, we utilize HPLC to demonstrate the presentation of ESR1 and ESR1mut peptides on human ER+ BC cell MHC complexes. We then show the presence of human T cells reactive to ESR1mut epitopes in an ER+ BC patient. These findings support the development of ESR1mut vaccines, which we are testing in a Phase I clinical trial.
Collapse
Affiliation(s)
- Gabrielle P. Dailey
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | | | - Gangjun Lei
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Junping Wei
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Xiao-Yi Yang
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Tao Wang
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Cong-Xiao Liu
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Melissa Gajda
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Amy C. Hobeika
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Amanda Summers
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Robert D. Marek
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | | | - Herbert K. Lyerly
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| | - Erika J. Crosby
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| | - Zachary C. Hartman
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| |
Collapse
|
6
|
Wang B, Cao X, Garcia-Mansfield K, Zhou J, Manousopoulou A, Pirrotte P, Wang Y, Wang LD, Feng M. Phosphoproteomic Profiling Reveals mTOR Signaling in Sustaining Macrophage Phagocytosis of Cancer Cells. Cancers (Basel) 2024; 16:4238. [PMID: 39766137 PMCID: PMC11674635 DOI: 10.3390/cancers16244238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Macrophage-mediated cancer cell phagocytosis has demonstrated considerable therapeutic potential. While the initiation of phagocytosis, facilitated by interactions between cancer cell surface signals and macrophage receptors, has been characterized, the mechanisms underlying its sustentation and attenuation post-initiation remain poorly understood. Methods: Through comprehensive phosphoproteomic profiling, we interrogated the temporal evolution of the phosphorylation profiles within macrophages during cancer cell phagocytosis. Results: Our findings reveal that activation of the mTOR pathway occurs following the initiation of phagocytosis and is crucial in sustaining phagocytosis of cancer cells. mTOR inhibition impaired the phagocytic capacity, but not affinity, of the macrophages toward the cancer cells by delaying phagosome maturation and impeding the transition between non-phagocytic and phagocytic states of macrophages. Conclusions: Our findings delineate the intricate landscape of macrophage phagocytosis and highlight the pivotal role of the mTOR pathway in mediating this process, offering valuable mechanistic insights for therapeutic interventions.
Collapse
Affiliation(s)
- Bixin Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xu Cao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Krystine Garcia-Mansfield
- Cancer and Cell Biology Division, Translational Genomics Institute, Phoenix, AZ 85004, USA
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Jingkai Zhou
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Antigoni Manousopoulou
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Patrick Pirrotte
- Cancer and Cell Biology Division, Translational Genomics Institute, Phoenix, AZ 85004, USA
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Yingyu Wang
- Center for Informatics, City of Hope, Duarte, CA 91010, USA
| | - Leo D. Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Department of Pediatrics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
7
|
Dong H, Han J, Chen X, Sun H, Han M, Wang W. LncRNA ZNF649-AS1 promotes trastuzumab resistance and TAM-dependent PD-L1 expression in breast cancer by regulating EXOC7 alternative splicing. Arch Biochem Biophys 2024; 761:110128. [PMID: 39159899 DOI: 10.1016/j.abb.2024.110128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Trastuzumab resistance is a serious clinical problem in the treatment of HER2-positive breast cancer (BC). The lncRNA ZNF649-AS1 was previously found to promote HER2-positive BC trastuzumab resistance. The study aims to explore the molecular mechanism of ZNF649-AS1 in HER2-positive BC trastuzumab resistance. METHODS Tumor tissue and peripheral blood samples were collected from 20 HER2-positive BC patients with trastuzumab-resistant and non-resistant, respectively. Trastuzumab-resistant BC cell lines SKBR-3-TR and BT474-TR were established. RIP was employed to confirm the binding of ZNF649-AS1, PRPF8 and exocyst complex component 7 (EXOC7). RNA expression of EXOC7-L (Full length of EXOC7) and EXOC7-S (Spliceosome of EXOC7) were detected using agarose gel electrophoresis. Expressions of macrophage markers CD68+ CD206+ were measured by flow cytometry. RESULTS ZNF649-AS1 expression was upregulated in HER2-positive BC trastuzumab resistance. ZNF649-AS1 downregulation inhibited trastuzumab resistance in HER2-positive BC. ZNF649-AS1 regulated EXOC7 alternative splicing by binding with PRPF8. EXOC7-S knockdown suppressed trastuzumab resistance and TAM-dependent PD-L1 expression in HER2-positive BC. EXOC7-S overexpression abolished the effects of ZNF649-AS1 knockdown on trastuzumab resistance and TAM-dependent PD-L1 expression in HER2-positive BC. CONCLUSION ZNF649-AS1 promoted trastuzumab resistance and TAM-dependent PD-L1 expression in HER2-positive BC via promoting alternative splicing of EXOC7 by PRPF8.
Collapse
Affiliation(s)
- Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Jing Han
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Xiang Chen
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Hening Sun
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China.
| | - Wei Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China.
| |
Collapse
|
8
|
Luo X, Wang N, Xing Y, Gao X, Yu Y, Liu T, Jiang S, Dong M. Pharmacokinetics of trastuzumab and its efficacy and safety in HER2-positive cancer patients. Cancer Chemother Pharmacol 2024; 94:721-732. [PMID: 39177768 DOI: 10.1007/s00280-024-04707-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Trastuzumab is a potent targeted therapy drug for HER2-positive cancer patients. A comprehensive understanding of trastuzumab's mechanism of action, pharmacokinetic (PK) parameters, and steady-state exposure in different treatment regimens and administration routes is essential for a thorough evaluation of the drug's safety and effectiveness. Due to the distinctive pharmacokinetics, indications, and administration methods of trastuzumab, this understanding becomes crucial. Drug exposure can be assessed by measuring trastuzumab's peak concentration, trough concentration, or area under the curve through assays like enzyme-linked immunosorbent assay (ELISA) or liquid chromatography-tandem mass spectrometry (LC-MS/MS). The dose-response (D-R) and exposure-response (E-R) relationships establish the correlation between drug dosage/exposure and the therapeutic effect and safety. Additionally, various covariates such as body weight, aspartate transaminase, and albumin levels can influence drug exposure. This review provides a comprehensive overview of trastuzumab's mechanism of action, data on steady-state concentration and PK parameters under multiple administration routes and indications, discussions on factors influencing PK parameters, and evaluations of the effectiveness and safety of E-R and D-R in diverse HER2-positive cancer patients.
Collapse
Affiliation(s)
- Xinyu Luo
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Nan Wang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yue Xing
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xinyue Gao
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yang Yu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Tong Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shuai Jiang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| | - Mei Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
9
|
Panaampon J, Sungwan P, Fujikawa S, Sampattavanich S, Jirawatnotai S, Okada S. Trastuzumab, a monoclonal anti-HER2 antibody modulates cytotoxicity against cholangiocarcinoma via multiple mechanisms. Int Immunopharmacol 2024; 138:112612. [PMID: 38968862 DOI: 10.1016/j.intimp.2024.112612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Cholangiocarcinoma (CCA) is an aggressive and fatal cancer. The prognosis is very poor and no optimal chemotherapy has been established. Human epidermal growth factor receptor 2 (HER2, neu, and erbB2) is highly-expressed in breast cancer and is expressed in many other tumors but poorly expressed in CCA. The anti-HER2 antibody, trastuzumab, has been used for the treatment of HER2-positive breast and gastric cancer. In this study, we examined the surface expression of HER2 on seven Thai liver-fluke-associated CCA cell lines by flow cytometry, and found all of these CCA cells were weakly positive for HER2. MTT assay revealed that trastuzumab directly suppressed the growth of CCA. By using FcR-bearing recombinant Jurkat T-cell-expressing firefly luciferase gene under the control of NFAT response elements, we defined the activities of antibody-dependent cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP). ADCC was confirmed by using expanded NK cells. ADCP was confirmed by using mouse peritoneal macrophages and human monocyte-derived macrophages as effector cells. Rabbit serum was administered to test the complement-dependent cytotoxicity (CDC) activity of trastuzumab. Finally, we evaluated the efficacy of trastuzumab in in vivo patient-derived cell xenograft and patient-derived xenograft (PDX) models. Our results showed that a distinct population of CCA (liver-fluke-associated CCA) expressed HER2. Trastuzumab demonstrated a potent inhibitory effect on even HER2 weakly positive CCA both in vitro and in vivo via multiple mechanisms. Thus, HER2 is a promising target in anti-CCA therapy, and trastuzumab can be considered a promising antibody immunotherapy agent for the treatment of CCA.
Collapse
Affiliation(s)
- Jutatip Panaampon
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan; Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Prin Sungwan
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Sawako Fujikawa
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan; Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
| |
Collapse
|
10
|
Jiang C, Sun H, Jiang Z, Tian W, Cang S, Yu J. Targeting the CD47/SIRPα pathway in malignancies: recent progress, difficulties and future perspectives. Front Oncol 2024; 14:1378647. [PMID: 39040441 PMCID: PMC11261161 DOI: 10.3389/fonc.2024.1378647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Since its initial report in 2015, CD47 has garnered significant attention as an innate immune checkpoint, raising expectations to become the next "PD-1." The optimistic early stages of clinical development spurred a flurry of licensing deals for CD47-targeted molecules and company mergers or acquisitions for related assets. However, a series of setbacks unfolded recently, starting with the July 2023 announcement of discontinuing the phase 3 ENHANCE study on Magrolimab plus Azacitidine for higher-risk myelodysplastic syndromes (MDS). Subsequently, in August 2023, the termination of the ASPEN-02 program, assessing Evorpacept in combination with Azacitidine in MDS patients, was disclosed due to insufficient improvement compared to Azacitidine alone. These setbacks have cast doubt on the feasibility of targeting CD47 in the industry. In this review, we delve into the challenges of developing CD47-SIRPα-targeted drugs, analyze factors contributing to the mentioned setbacks, discuss future perspectives, and explore potential solutions for enhancing CD47-SIRPα-targeted drug development.
Collapse
Affiliation(s)
- Chenyang Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People’s Hospital, Henan University People’s Hospital and Zhengzhou University, Zhengzhou, Henan, China
| | - Hao Sun
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Tian
- ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Shundong Cang
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People’s Hospital, Henan University People’s Hospital and Zhengzhou University, Zhengzhou, Henan, China
| | - Jifeng Yu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Rakoczy K, Kaczor J, Sołtyk A, Szymańska N, Stecko J, Drąg-Zalesińska M, Kulbacka J. The Immune Response of Cancer Cells in Breast and Gynecologic Neoplasms. Int J Mol Sci 2024; 25:6206. [PMID: 38892394 PMCID: PMC11172873 DOI: 10.3390/ijms25116206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer diseases constitute a major health problem which leads to the death of millions of people annually. They are unique among other diseases because cancer cells can perfectly adapt to the environment that they create themselves. This environment is usually highly hostile and for normal cells it would be hugely difficult to survive, however neoplastic cells not only can survive but also manage to proliferate. One of the reasons is that they can alter immunological pathways which allow them to be flexible and change their phenotype to the one needed in specific conditions. The aim of this paper is to describe some of these immunological pathways that play significant roles in gynecologic neoplasms as well as review recent research in this field. It is of high importance to possess extensive knowledge about these processes, as greater understanding leads to creating more specialized therapies which may prove highly effective in the future.
Collapse
Affiliation(s)
- Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Justyna Kaczor
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Adam Sołtyk
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Natalia Szymańska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Małgorzata Drąg-Zalesińska
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubińskiego 6a, 50-368 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
| |
Collapse
|
12
|
Zhang B, Shi J, Shi X, Xu X, Gao L, Li S, Liu M, Gao M, Jin S, Zhou J, Fan D, Wang F, Ji Z, Bian Z, Song Y, Tian W, Zheng Y, Xu L, Li W. Development and evaluation of a human CD47/HER2 bispecific antibody for Trastuzumab-resistant breast cancer immunotherapy. Drug Resist Updat 2024; 74:101068. [PMID: 38402670 DOI: 10.1016/j.drup.2024.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/28/2024] [Accepted: 02/10/2024] [Indexed: 02/27/2024]
Abstract
The treatment for trastuzumab-resistant breast cancer (BC) remains a challenge in clinical settings. It was known that CD47 is preferentially upregulated in HER2+ BC cells, which is correlated with drug resistance to trastuzumab. Here, we developed a novel anti-CD47/HER2 bispecific antibody (BsAb) against trastuzumab-resistant BC, named IMM2902. IMM2902 demonstrated high binding affinity, blocking activity, antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and internalization degradation effects against both trastuzumab-sensitive and trastuzumab-resistant BC cells in vitro. The in vivo experimental data indicated that IMM2902 was more effective than their respective controls in inhibiting tumor growth in a trastuzumab-sensitive BT474 mouse model, a trastuzumab-resistant HCC1954 mouse model, two trastuzumab-resistant patient-derived xenograft (PDX) mouse models and a cord blood (CB)-humanized HCC1954 mouse model. Through spatial transcriptome assays, multiplex immunofluorescence (mIFC) and in vitro assays, our findings provided evidence that IMM2902 effectively stimulates macrophages to generate C-X-C motif chemokine ligand (CXCL) 9 and CXCL10, thereby facilitating the recruitment of T cells and NK cells to the tumor site. Moreover, IMM2902 demonstrated a high safety profile regarding anemia and non-specific cytokines release. Collectively, our results highlighted a novel therapeutic approach for the treatment of HER2+ BCs and this approach exhibits significant anti-tumor efficacy without causing off-target toxicity in trastuzumab-resistant BC cells.
Collapse
Affiliation(s)
- Binglei Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jianxiang Shi
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaojing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaolu Xu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Le Gao
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Song Li
- ImmuneOnco Biopharmaceuticals (Shanghai) Inc, Shanghai 201203, China
| | - Mengmeng Liu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mengya Gao
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jian Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Dandan Fan
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhenyu Ji
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhilei Bian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wenzhi Tian
- ImmuneOnco Biopharmaceuticals (Shanghai) Inc, Shanghai 201203, China
| | - Yichao Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450008, China.
| | - Linping Xu
- Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
13
|
Barreda D, Grinstein S, Freeman SA. Target lysis by cholesterol extraction is a rate limiting step in the resolution of phagolysosomes. Eur J Cell Biol 2024; 103:151382. [PMID: 38171214 DOI: 10.1016/j.ejcb.2023.151382] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
The ongoing phagocytic activity of macrophages necessitates an extraordinary capacity to digest and resolve incoming material. While the initial steps leading to the formation of a terminal phagolysosome are well studied, much less is known about the later stages of this process, namely the degradation and resolution of the phagolysosomal contents. We report that the degradation of targets such as splenocytes and erythrocytes by phagolysosomes occurs in a stepwise fashion, requiring lysis of their plasmalemmal bilayer as an essential initial step. This is achieved by the direct extraction of cholesterol facilitated by Niemann-Pick protein type C2 (NPC2), which in turn hands off cholesterol to NPC1 for export from the phagolysosome. The removal of cholesterol ulimately destabilizes and permeabilizes the membrane of the phagocytic target, allowing access of hydrolases to its internal compartments. In contrast, we found that saposins, which activate the hydrolysis of sphingolipids, are required for lysosomal tubulation, yet are dispensable for the resolution of targets by macrophages. The extraction of cholesterol by NPC2 is therefore envisaged as rate-limiting in the clearance of membrane-bound targets such as apoptotic cells. Selective cholesterol removal appears to be a primary mechanism that enables professional phagocytes to distinguish the target membrane from the phagolysosomal membrane and may be conserved in the resolution of autolysosomes.
Collapse
Affiliation(s)
- Dante Barreda
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry and the University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry and the University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
14
|
Dou T, Li J, Zhang Y, Pei W, Zhang B, Wang B, Wang Y, Jia H. The cellular composition of the tumor microenvironment is an important marker for predicting therapeutic efficacy in breast cancer. Front Immunol 2024; 15:1368687. [PMID: 38487526 PMCID: PMC10937353 DOI: 10.3389/fimmu.2024.1368687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
At present, the incidence rate of breast cancer ranks first among new-onset malignant tumors in women. The tumor microenvironment is a hot topic in tumor research. There are abundant cells in the tumor microenvironment that play a protumor or antitumor role in breast cancer. During the treatment of breast cancer, different cells have different influences on the therapeutic response. And after treatment, the cellular composition in the tumor microenvironment will change too. In this review, we summarize the interactions between different cell compositions (such as immune cells, fibroblasts, endothelial cells, and adipocytes) in the tumor microenvironment and the treatment mechanism of breast cancer. We believe that detecting the cellular composition of the tumor microenvironment is able to predict the therapeutic efficacy of treatments for breast cancer and benefit to combination administration of breast cancer.
Collapse
Affiliation(s)
- Tingyao Dou
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaochen Zhang
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Wanru Pei
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Binyue Zhang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Hongyan Jia
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| |
Collapse
|
15
|
Alaluf E, Shalamov MM, Sonnenblick A. Update on current and new potential immunotherapies in breast cancer, from bench to bedside. Front Immunol 2024; 15:1287824. [PMID: 38433837 PMCID: PMC10905744 DOI: 10.3389/fimmu.2024.1287824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/12/2024] [Indexed: 03/05/2024] Open
Abstract
Impressive advances have been seen in cancer immunotherapy during the last years. Although breast cancer (BC) has been long considered as non-immunogenic, immunotherapy for the treatment of BC is now emerging as a new promising therapeutic approach with considerable potential. This is supported by a plethora of completed and ongoing preclinical and clinical studies in various types of immunotherapies. However, a significant gap between clinical oncology and basic cancer research impairs the understanding of cancer immunology and immunotherapy, hampering cancer therapy research and development. To exploit the accumulating available data in an optimal way, both fundamental mechanisms at play in BC immunotherapy and its clinical pitfalls must be integrated. Then, clinical trials must be critically designed with appropriate combinations of conventional and immunotherapeutic strategies. While there is room for major improvement, this updated review details the immunotherapeutic tools available to date, from bench to bedside, in the hope that this will lead to rethinking and optimizing standards of care for BC patients.
Collapse
Affiliation(s)
- Emmanuelle Alaluf
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Amir Sonnenblick
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
16
|
Deng D, Li G, Xia X, Xu S, Gao L, Zhang L, Yao W, Tian H, Gao X. Nitrated T cell epitope linked vaccine targeting CD47 elicits antitumor immune responses and acts synergistically with vaccine targeting PDL1. Int Immunopharmacol 2024; 128:111374. [PMID: 38181672 DOI: 10.1016/j.intimp.2023.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
Despite the clinical breakthrough made by immune checkpoint blockades (ICB) in cancer immunotherapy, immunosuppressed tumor microenvironment (TME) remains a major impediment in the efficacy of ICB immunotherapy. In this study, we constructed a Nitrated T cell epitope (NitraTh) linked vaccine targeting CD47, namely CD47-NitraTh. CD47-NitraTh could repress the progression of tumor by inducing tumor-specific immune response. Furthermore, combination vaccination with CD47-NitraTh and PDL1-NitraTh could reconstruct tumor associated macrophage, enhance macrophage-mediated phagocytosis for tumor cells, and promote the activation of tumor infiltrating T cells. Notably, by activating chemokine signaling pathway, NitraTh based vaccines reversed immunosuppressed TME, resulting in improved therapeutic outcome for tumor. With the advantage of reversing immunosuppressed TME, NitraTh based vaccine seems an optimal immunotherapy strategy for patients who are not sensitive to antibody based ICB.
Collapse
Affiliation(s)
- Danni Deng
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China; Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, 213003, PR China
| | - Guozhi Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Xuefei Xia
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Shuyang Xu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Le Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Li Zhang
- Department of General Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, 830054, PR China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Hong Tian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
17
|
Batalha S, Gomes CM, Brito C. Immune microenvironment dynamics of HER2 overexpressing breast cancer under dual anti-HER2 blockade. Front Immunol 2023; 14:1267621. [PMID: 38022643 PMCID: PMC10643871 DOI: 10.3389/fimmu.2023.1267621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The clinical prognosis of the HER2-overexpressing (HER2-OE) subtype of breast cancer (BC) is influenced by the immune infiltrate of the tumor. Specifically, monocytic cells, which are promoters of pro-tumoral immunosuppression, and NK cells, whose basal cytotoxic function may be enhanced with therapeutic antibodies. One of the standards of care for HER2+ BC patients includes the combination of the anti-HER2 antibodies trastuzumab and pertuzumab. This dual combination was a breakthrough against trastuzumab resistance; however, this regimen does not yield complete clinical benefit for a large fraction of patients. Further therapy refinement is still hampered by the lack of knowledge on the immune mechanism of action of this antibody-based dual HER2 blockade. Methods To explore how the dual antibody challenge influences the phenotype and function of immune cells infiltrating the HER2-OE BC microenvironment, we developed in vitro 3D heterotypic cell models of this subtype. The models comprised aggregates of HER2+ BC cell lines and human peripheral blood mononuclear cells. Cells were co-encapsulated in a chemically inert alginate hydrogel and maintained in agitation-based culture system for up to 7 days. Results The 3D models of the HER2-OE immune microenvironment retained original BC molecular features; the preservation of the NK cell compartment was achieved upon optimization of culture time and cytokine supplementation. Challenging the models with the standard-of-care combination of trastuzumab and pertuzumab resulted in enhanced immune cytotoxicity compared with trastuzumab alone. Features of the response to therapy within the immune tumor microenvironment were recapitulated, including induction of an immune effector state with NK cell activation, enhanced cell apoptosis and decline of immunosuppressive PD-L1+ immune cells. Conclusions This work presents a unique human 3D model for the study of immune effects of anti-HER2 biologicals, which can be used to test novel therapy regimens and improve anti-tumor immune function.
Collapse
Affiliation(s)
- Sofia Batalha
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Monteiro Gomes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
18
|
Van Wagoner CM, Rivera-Escalera F, Delgadillo NJ, Chu CC, Zent CS, Elliott MR. Antibody-mediated phagocytosis in cancer immunotherapy. Immunol Rev 2023; 319:128-141. [PMID: 37602915 PMCID: PMC10615698 DOI: 10.1111/imr.13265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023]
Abstract
Unconjugated monoclonal antibodies (mAb) have revolutionized the treatment of many types of cancer. Some of these mAbs promote the clearance of malignant cells via direct cytotoxic effects. More recently, antibody-dependent cellular phagocytosis (ADCP) has been appreciated as a major mechanism of action for a number of widely-used mAbs, including anti-CD20 (rituximab, obinutuzumab), anti-HER2 (trazituzumab), and anti-CD38 (daratumumab). However, as a monotherapy these ADCP-inducing mAbs produce insufficient levels of cytotoxicity in vivo and are not curative. As a result, these mAbs are most effectively used in combination therapies. The efficacy of these mAbs is further hampered by the apparent development of drug resistance by many patients. Here we will explore the role of ADCP in cancer immunotherapy and discuss the key factors that could limit the efficacy of ADCP-inducing mAbs in vivo. Finally, we will discuss current insights and approaches being applied to overcome these limitations.
Collapse
Affiliation(s)
- Carly M. Van Wagoner
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Fátima Rivera-Escalera
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | | | - Charles C. Chu
- Division of Hematology/Oncology, University of Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester, NY, USA
| | - Clive S. Zent
- Division of Hematology/Oncology, University of Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester, NY, USA
| | - Michael R. Elliott
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
19
|
Wu X, Huang S, He W, Song M. Emerging insights into mechanisms of trastuzumab resistance in HER2-positive cancers. Int Immunopharmacol 2023; 122:110602. [PMID: 37437432 DOI: 10.1016/j.intimp.2023.110602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/19/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
HER2 is an established therapeutic target in breast, gastric, and gastroesophageal junction carcinomas with HER2 overexpression or genomic alterations. The humanized monoclonal antibody trastuzumab targeting HER2 has substantially improved the clinical outcomes of HER2-positive patients, yet the inevitable intrinsic or acquired resistance to trastuzumab limits its clinical benefit, necessitating the elucidation of resistance mechanisms to develop alternate therapeutic strategies. This review presents an overview of trastuzumab resistance mechanisms involving signaling pathways, cellular metabolism, cell plasticity, and tumor microenvironment, particularly discussing the prospects of developing rational combinations to improve patient outcomes.
Collapse
Affiliation(s)
- Xiaoxue Wu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Shuting Huang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China.
| | - Mei Song
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
20
|
Al-Sudani H, Ni Y, Jones P, Karakilic H, Cui L, Johnson LDS, Rose PG, Olawaiye A, Edwards RP, Uger RA, Lin GHY, Mahdi H. Targeting CD47-SIRPa axis shows potent preclinical anti-tumor activity as monotherapy and synergizes with PARP inhibition. NPJ Precis Oncol 2023; 7:69. [PMID: 37468567 DOI: 10.1038/s41698-023-00418-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
The objective was to correlate CD47 gene expression with resistance to immune checkpoint inhibitors (ICI) in tumor tissue of gynecological cancer (GC). Further, we sought to assess the efficacy of targeting CD47 pathway alone and in combination in pre-clinical ovarian cancer (OC) models. We performed transcriptomic analyses in GC treated with ICI. Signaling pathway enrichment analysis was performed using Ingenuity Pathway Analysis. Immune cell abundance was estimated. CD47 expression was correlated with other pathways, objective response, and progression-free survival (PFS). Anti-tumor efficacy of anti-CD47 therapy alone and in combination was investigated both in-vitro and in-vivo using cell-line derived xenograft (CDX) and patient-derived xenograft (PDX) models. High CD47 expression associated with lower response to ICI and trended toward lower PFS in GC patients. Higher CD47 associated negatively with PDL1 and CTLA4 expression, as well as cytotoxic T-cells and dendritic cells but positively with TGF-β, BRD4 and CXCR4/CXCL12 expression. Anti-CD47 significantly enhanced macrophage-mediated phagocytosis of OC cells in-vitro and exhibited potent anti-tumor activity in-vivo in OC CDX and PDX models. In-vitro treatment with PARPi increased CD47 expression. Anti-CD47 led to significantly enhanced in-vitro phagocytosis, enhanced STING pathway and synergized in-vivo when combined with PARP inhibitors in BRCA-deficient OC models. This study provides insight on the potential role of CD47 in mediating immunotherapy resistance and its association with higher TGF-β, BRD4 and CXCR4/CXCL12 expression. Anti-CD47 showed potent anti-tumor activity and synergized with PARPi in OC models. These data support clinical development of anti-CD47 therapy with PARPi in OC.
Collapse
Affiliation(s)
- Hussein Al-Sudani
- Internal Medicine Department, Einstein Medical Center Montgomery, Philadelphia, PA, USA
| | - Ying Ni
- Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Philip Jones
- Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Huseyin Karakilic
- Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Lei Cui
- Trillium Therapeutics Inc, 2488 Dunwin Dr., Mississauga, ON, L5L 1J9, Canada
| | - Lisa D S Johnson
- Trillium Therapeutics Inc, 2488 Dunwin Dr., Mississauga, ON, L5L 1J9, Canada
| | - Peter G Rose
- Section of Gynecologic Oncology, Women's Health Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Alexander Olawaiye
- Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Magee Women's Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert P Edwards
- Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Magee Women's Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert A Uger
- Trillium Therapeutics Inc, 2488 Dunwin Dr., Mississauga, ON, L5L 1J9, Canada
| | - Gloria H Y Lin
- Trillium Therapeutics Inc, 2488 Dunwin Dr., Mississauga, ON, L5L 1J9, Canada
| | - Haider Mahdi
- Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Magee Women's Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA.
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
21
|
Morse MA, Crosby EJ, Force J, Osada T, Hobeika AC, Hartman ZC, Berglund P, Smith J, Lyerly HK. Clinical trials of self-replicating RNA-based cancer vaccines. Cancer Gene Ther 2023; 30:803-811. [PMID: 36765179 PMCID: PMC9911953 DOI: 10.1038/s41417-023-00587-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 02/12/2023]
Abstract
Therapeutic cancer vaccines, designed to activate immune effectors against tumor antigens, utilize a number of different platforms for antigen delivery. Among these are messenger RNAs (mRNA), successfully deployed in some prophylactic SARS-CoV2 vaccines. To enhance the immunogenicity of mRNA-delivered epitopes, self-replicating RNAs (srRNA) that markedly increase epitope expression have been developed. These vectors are derived from positive-strand RNA viruses in which the structural protein genes have been replaced with heterologous genes of interest, and the structural proteins are provided in trans to create single cycle viral replicon particles (VRPs). Clinical stage srRNA vectors have been derived from alphaviruses, including Venezuelan Equine Encephalitis (VEE), Sindbis, and Semliki Forest virus (SFV) and have encoded the tumor antigens carcinoembryonic antigen (CEA), human epidermal growth factor receptor 2 (HER2), prostate specific membrane antigen (PSMA), and human papilloma virus (HPV) antigens E6 and E7. Adverse events have mainly been grade 1 toxicities and minimal injection site reactions. We review here the clinical experience with these vaccines and our recent safety data from a study combining a VRP encoding HER2 plus an anti-PD1 monoclonal antibody (pembrolizumab). This experience with VRP-based srRNA supports recent development of fully synthetic srRNA technologies, where the viral structural proteins are replaced with protective lipid nanoparticles (LNP), cationic nanoemulsions or polymers.
Collapse
Affiliation(s)
- Michael A Morse
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Erika J Crosby
- Center for Applied Therapeutics, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Jeremy Force
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Takuya Osada
- Center for Applied Therapeutics, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Amy C Hobeika
- Center for Applied Therapeutics, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Zachary C Hartman
- Center for Applied Therapeutics, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | | | - H Kim Lyerly
- Center for Applied Therapeutics, Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
22
|
Hao Y, Zhou X, Li Y, Li B, Cheng L. The CD47-SIRPα axis is a promising target for cancer immunotherapies. Int Immunopharmacol 2023; 120:110255. [PMID: 37187126 DOI: 10.1016/j.intimp.2023.110255] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Cluster of differentiation 47(CD47) is a transmembrane protein that is ubiquitously found on the surface of many cells in the body and uniquely overexpressed by both solid and hematologic malignant cells. CD47 interacts with signal-regulatory protein α (SIRPα), to trigger a "don't eat me" signal and thereby achieve cancer immune escape by inhibiting macrophage-mediated phagocytosis. Thus, blocking the CD47-SIRPα phagocytosis checkpoint, for release of the innate immune system, is a current research focus. Indeed, targeting the CD47-SIRPα axis as a cancer immunotherapy has shown promising efficacies in pre-clinical outcomes. Here, we first reviewed the origin, structure, and function of the CD47-SIRPα axis. Then, we reviewed its role as a target for cancer immunotherapies, as well as the factors regulating CD47-SIRPα axis-based immunotherapies. We specifically focused on the mechanism and progress of CD47-SIRPα axis-based immunotherapies and their combination with other treatment strategies. Finally, we discussed the challenges and directions for future research and identified potential CD47-SIRPα axis-based therapies that are suitable for clinical application.
Collapse
Affiliation(s)
- Yu Hao
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Yiling Li
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
23
|
Ye ZH, Yu WB, Huang MY, Chen J, Lu JJ. Building on the backbone of CD47-based therapy in cancer: Combination strategies, mechanisms, and future perspectives. Acta Pharm Sin B 2023; 13:1467-1487. [PMID: 37139405 PMCID: PMC10149906 DOI: 10.1016/j.apsb.2022.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/10/2022] [Accepted: 11/18/2022] [Indexed: 12/27/2022] Open
Abstract
Described as a "don't eat me" signal, CD47 becomes a vital immune checkpoint in cancer. Its interaction with signal regulatory protein alpha (SIRPα) prevents macrophage phagocytosis. In recent years, a growing body of evidences have unveiled that CD47-based combination therapy exhibits a superior anti-cancer effect. Latest clinical trials about CD47 have adopted the regimen of collaborating with other therapies or developing CD47-directed bispecific antibodies, indicating the combination strategy as a general trend of the future. In this review, clinical and preclinical cases about the current combination strategies targeting CD47 are collected, their underlying mechanisms of action are discussed, and ideas from future perspectives are shared.
Collapse
Affiliation(s)
- Zi-Han Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Wei-Bang Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Mu-Yang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Jun Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao 999078, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Macao 999078, China
| |
Collapse
|
24
|
Mercogliano MF, Bruni S, Mauro FL, Schillaci R. Emerging Targeted Therapies for HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15071987. [PMID: 37046648 PMCID: PMC10093019 DOI: 10.3390/cancers15071987] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Breast cancer is the most common cancer in women and the leading cause of death. HER2 overexpression is found in approximately 20% of breast cancers and is associated with a poor prognosis and a shorter overall survival. Tratuzumab, a monoclonal antibody directed against the HER2 receptor, is the standard of care treatment. However, a third of the patients do not respond to therapy. Given the high rate of resistance, other HER2-targeted strategies have been developed, including monoclonal antibodies such as pertuzumab and margetuximab, trastuzumab-based antibody drug conjugates such as trastuzumab-emtansine (T-DM1) and trastuzumab-deruxtecan (T-DXd), and tyrosine kinase inhibitors like lapatinib and tucatinib, among others. Moreover, T-DXd has proven to be of use in the HER2-low subtype, which suggests that other HER2-targeted therapies could be successful in this recently defined new breast cancer subclassification. When patients progress to multiple strategies, there are several HER2-targeted therapies available; however, treatment options are limited, and the potential combination with other drugs, immune checkpoint inhibitors, CAR-T cells, CAR-NK, CAR-M, and vaccines is an interesting and appealing field that is still in development. In this review, we will discuss the highlights and pitfalls of the different HER2-targeted therapies and potential combinations to overcome metastatic disease and resistance to therapy.
Collapse
|
25
|
Yang T, Kang L, Li D, Song Y. Immunotherapy for HER-2 positive breast cancer. Front Oncol 2023; 13:1097983. [PMID: 37007133 PMCID: PMC10061112 DOI: 10.3389/fonc.2023.1097983] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Immunotherapy is a developing treatment for advanced breast cancer. Immunotherapy has clinical significance for the treatment of triple-negative breast cancers and human epidermal growth factor receptor-2 positive (HER2+) breast cancers. As a proved effective passive immunotherapy, clinical application of the monoclonal antibodies trastuzumab, pertuzumab and T-DM1 (ado-trastuzumab emtansine) has significantly improved the survival of patients with HER2+ breast cancers. Immune checkpoint inhibitors that block programmed death receptor-1 and its ligand (PD-1/PD-L1) have also shown benefits for breast cancer in various clinical trials. Adoptive T-cell immunotherapies and tumor vaccines are emerging as novel approaches to treating breast cancer, but require further study. This article reviews recent advances in immunotherapy for HER2+ breast cancers.
Collapse
|
26
|
Bao X, Wang D, Dai X, Liu C, Zhang H, Jin Y, Tong Z, Li B, Tong C, Xin S, Li X, Wang Y, Liu L, Zhu X, Fu Q, Zheng Y, Deng J, Tian W, Guo T, Zhao P, Cheng W, Fang W. An immunometabolism subtyping system identifies S100A9+ macrophage as an immune therapeutic target in colorectal cancer based on multiomics analysis. CELL REPORTS MEDICINE 2023; 4:100987. [PMID: 36990096 PMCID: PMC10140461 DOI: 10.1016/j.xcrm.2023.100987] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
Immunometabolism in the tumor microenvironment (TME) and its influence on the immunotherapy response remain uncertain in colorectal cancer (CRC). We perform immunometabolism subtyping (IMS) on CRC patients in the training and validation cohorts. Three IMS subtypes of CRC, namely, C1, C2, and C3, are identified with distinct immune phenotypes and metabolic properties. The C3 subtype exhibits the poorest prognosis in both the training cohort and the in-house validation cohort. The single-cell transcriptome reveals that a S100A9+ macrophage population contributes to the immunosuppressive TME in C3. The dysfunctional immunotherapy response in the C3 subtype can be reversed by combination treatment with PD-1 blockade and an S100A9 inhibitor tasquinimod. Taken together, we develop an IMS system and identify an immune tolerant C3 subtype that exhibits the poorest prognosis. A multiomics-guided combination strategy by PD-1 blockade and tasquinimod improves responses to immunotherapy by depleting S100A9+ macrophages in vivo.
Collapse
|
27
|
Bruni S, Mauro FL, Proietti CJ, Cordo-Russo RI, Rivas MA, Inurrigarro G, Dupont A, Rocha D, Fernández EA, Deza EG, Lopez Della Vecchia D, Barchuk S, Figurelli S, Lasso D, Friedrich AD, Santilli MC, Regge MV, Lebersztein G, Levit C, Anfuso F, Castiglione T, Elizalde PV, Mercogliano MF, Schillaci R. Blocking soluble TNFα sensitizes HER2-positive breast cancer to trastuzumab through MUC4 downregulation and subverts immunosuppression. J Immunother Cancer 2023; 11:jitc-2022-005325. [PMID: 36889811 PMCID: PMC10016294 DOI: 10.1136/jitc-2022-005325] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND The success of HER2-positive (HER2+) breast cancer treatment with trastuzumab, an antibody that targets HER2, relies on immune response. We demonstrated that TNFα induces mucin 4 (MUC4) expression, which shields the trastuzumab epitope on the HER2 molecule decreasing its therapeutic effect. Here, we used mouse models and samples from HER2+ breast cancer patients to unravel MUC4 participation in hindering trastuzumab effect by fostering immune evasion. METHODS We used a dominant negative TNFα inhibitor (DN) selective for soluble TNFα (sTNFα) together with trastuzumab. Preclinical experiments were performed using two models of conditionally MUC4-silenced tumors to characterize the immune cell infiltration. A cohort of 91 patients treated with trastuzumab was used to correlate tumor MUC4 with tumor-infiltrating lymphocytes. RESULTS In mice bearing de novo trastuzumab-resistant HER2+ breast tumors, neutralizing sTNFα with DN induced MUC4 downregulation. Using the conditionally MUC4-silenced tumor models, the antitumor effect of trastuzumab was reinstated and the addition of TNFα-blocking agents did not further decrease tumor burden. DN administration with trastuzumab modifies the immunosuppressive tumor milieu through M1-like phenotype macrophage polarization and NK cells degranulation. Depletion experiments revealed a cross-talk between macrophages and NK cells necessary for trastuzumab antitumor effect. In addition, tumor cells treated with DN are more susceptible to trastuzumab-dependent cellular phagocytosis. Finally, MUC4 expression in HER2+ breast cancer is associated with immune desert tumors. CONCLUSIONS These findings provide rationale to pursue sTNFα blockade combined with trastuzumab or trastuzumab drug conjugates for MUC4+ and HER2+ breast cancer patients to overcome trastuzumab resistance.
Collapse
Affiliation(s)
- Sofia Bruni
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Florencia L Mauro
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Cecilia J Proietti
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Rosalia I Cordo-Russo
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Martin A Rivas
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | - Agustina Dupont
- Servicio de Patología, Sanatorio Mater Dei, Buenos Aires, Argentina
| | - Dario Rocha
- Bioscience Data Mining Group at CIDIE-CONICET-UCC, Córdoba, Argentina
| | - Elmer A Fernández
- Bioscience Data Mining Group at CIDIE-CONICET-UCC, Córdoba, Argentina
| | | | | | - Sabrina Barchuk
- Sección Patología Mamaria Hospital General de Agudos "Juan A Fernández, Buenos Aires, Argentina
| | - Silvina Figurelli
- Servicio de Patología, Hospital General de Agudos "Juan A. Fernández,", Buenos Aires, Argentina
| | - David Lasso
- Hospital Oncológico Provincial de Córdoba, Córdoba, Argentina
| | - Adrián D Friedrich
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - María C Santilli
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - María V Regge
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | - Claudio Levit
- Servicio de Cirugía, Sanatorio Sagrado Corazón, Buenos Aires, Argentina
| | - Fabiana Anfuso
- Servicio de Cirugía, Sanatorio Sagrado Corazón, Buenos Aires, Argentina
| | | | - Patricia V Elizalde
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Maria F Mercogliano
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
28
|
Attalla S, Taifour T, Muller W. Tailoring therapies to counter the divergent immune landscapes of breast cancer. Front Cell Dev Biol 2023; 11:1111796. [PMID: 36910138 PMCID: PMC9992199 DOI: 10.3389/fcell.2023.1111796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023] Open
Abstract
Breast cancer remains a significant clinical concern affecting millions of women worldwide. Immunotherapy is a rapidly growing drug class that has revolutionized cancer treatment but remains marginally successful in breast cancer. The success of immunotherapy is dependent on the baseline immune responses as well as removing the brakes off pre-existing anti-tumor immunity. In this review, we summarize the different types of immune microenvironment observed in breast cancer as well as provide approaches to target these different immune subtypes. Such approaches have demonstrated pre-clinical success and are currently under clinical evaluation. The impact of combination of these approaches with already approved chemotherapies and immunotherapies may improve patient outcome and survival.
Collapse
Affiliation(s)
- Sherif Attalla
- Department Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.,Goodman Cancer Institute, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Tarek Taifour
- Goodman Cancer Institute, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.,Department Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - William Muller
- Department Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.,Goodman Cancer Institute, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.,Department Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
29
|
Liu M, Liu L, Song Y, Li W, Xu L. Targeting macrophages: a novel treatment strategy in solid tumors. J Transl Med 2022; 20:586. [PMID: 36510315 PMCID: PMC9743606 DOI: 10.1186/s12967-022-03813-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
In the tumor microenvironment (TME), tumor-associated macrophages (TAMs) are the most abundant immune cells, which act as a key regulator in tumorigenesis and progression. Increasing evidence have demonstrated that the TME alters the nature of macrophages to maintain dynamic tissue homeostasis, allowing TAMs to acquire the ability to stimulate angiogenesis, promote tumor metastasis and recurrence, and suppress anti-tumor immune responses. Furthermore, tumors with high TAM infiltration have poor prognoses and are resistant to treatment. In the field of solid tumor, the exploration of tumor-promoting mechanisms of TAMs has attracted much attention and targeting TAMs has emerged as a promising immunotherapeutic strategy. Currently, the most common therapeutic options for targeting TAMs are as follows: the deletion of TAMs, the inhibition of TAMs recruitment, the release of phagocytosis by TAMs, and the reprogramming of macrophages to remodel their anti-tumor capacity. Promisingly, the study of chimeric antigen receptor macrophages (CAR-Ms) may provide even greater benefit for patients with solid tumors. In this review, we discuss how TAMs promote the progression of solid tumors as well as summarize emerging immunotherapeutic strategies that targeting macrophages.
Collapse
Affiliation(s)
- Mengmeng Liu
- grid.414008.90000 0004 1799 4638Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China ,grid.207374.50000 0001 2189 3846Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052 China
| | - Lina Liu
- grid.414008.90000 0004 1799 4638Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Yongping Song
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wei Li
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Linping Xu
- grid.414008.90000 0004 1799 4638Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
30
|
Liu X, Lu Y, Huang J, Xing Y, Dai H, Zhu L, Li S, Feng J, Zhou B, Li J, Xia Q, Li J, Huang M, Gu Y, Su S. CD16 + fibroblasts foster a trastuzumab-refractory microenvironment that is reversed by VAV2 inhibition. Cancer Cell 2022; 40:1341-1357.e13. [PMID: 36379207 DOI: 10.1016/j.ccell.2022.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/16/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
The leukocyte Fcγ receptor (FcγR)-mediated response is important for the efficacy of therapeutic antibodies; however, little is known about the role of FcγRs in other cell types. Here we identify a subset of fibroblasts in human breast cancer that express CD16 (FcγRIII). An abundance of these cells in HER2+ breast cancer patients is associated with poor prognosis and response to trastuzumab. Functionally, upon trastuzumab stimulation, CD16+ fibroblasts reduce drug delivery by enhancing extracellular matrix stiffness. Interaction between trastuzumab and CD16 activates the intracellular SYK-VAV2-RhoA-ROCK-MLC2-MRTF-A pathway, leading to elevated contractile force and matrix production. Targeting of a Rho family guanine nucleotide exchange factor, VAV2, which is indispensable for the function of CD16 in fibroblasts rather than leukocytes, reverses desmoplasia provoked by CD16+ fibroblasts. Collectively, our study reveals a role for the fibroblast FcγR in drug resistance, and suggests that VAV2 is an attractive target to augment the effects of antibody treatments.
Collapse
Affiliation(s)
- Xinwei Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Breast Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Yiwen Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingying Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Huiqi Dai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Liling Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shunrong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingwei Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Boxuan Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qidong Xia
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuanting Gu
- Department of Breast Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Biotherapy Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
31
|
Jing F, Liu X, Chen X, Wu F, Gao Q. Tailoring biomaterials and applications targeting tumor-associated macrophages in cancers. Front Immunol 2022; 13:1049164. [PMID: 36439188 PMCID: PMC9691967 DOI: 10.3389/fimmu.2022.1049164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/25/2022] [Indexed: 04/04/2024] Open
Abstract
Tumor-associated macrophages (TAMs) play a critical role in supporting tumor growth and metastasis, taming host immunosurveillance, and augmenting therapeutic resistance. As the current treatment paradigms for cancers are generally insufficient to exterminate cancer cells, anti-cancer therapeutic strategies targeting TAMs have been developed. Since TAMs are highly heterogeneous and the pro-tumoral functions are mediated by phenotypes with canonical surface markers, TAM-associated materials exert anti-tumor functions by either inhibiting polarization to the pro-tumoral phenotype or decreasing the abundance of TAMs. Furthermore, TAMs in association with the immunosuppressive tumor microenvironment (TME) and tumor immunity have been extensively exploited in mounting evidence, and could act as carriers or accessory cells of anti-tumor biomaterials. Recently, a variety of TAM-based materials with the capacity to target and eliminate cancer cells have been increasingly developed for basic research and clinical practice. As various TAM-based biomaterials, including antibodies, nanoparticles, RNAs, etc., have been shown to have potential anti-tumor effects reversing the TME, in this review, we systematically summarize the current studies to fully interpret the specific properties and various effects of TAM-related biomaterials, highlighting the potential clinical applications of targeting the crosstalk among TAMs, tumor cells, and immune cells in anti-cancer therapy.
Collapse
Affiliation(s)
- Fangqi Jing
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaowei Liu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxuan Chen
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qinghong Gao
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Cao A, Yi J, Tang X, Szeto CW, Wu R, Wan B, Fang X, Li S, Wang L, Wang L, Li J, Ye Q, Huang T, Hsu K, Kabbarah O, Zhou H. CD47-blocking Antibody ZL-1201 Promotes Tumor-associated Macrophage Phagocytic Activity and Enhances the Efficacy of the Therapeutic Antibodies and Chemotherapy. CANCER RESEARCH COMMUNICATIONS 2022; 2:1404-1417. [PMID: 36970051 PMCID: PMC10035405 DOI: 10.1158/2767-9764.crc-22-0266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/24/2022] [Accepted: 09/30/2022] [Indexed: 06/18/2023]
Abstract
UNLABELLED Tumor-associated macrophages (TAM) are the most abundant immune cells in the tumor microenvironment. They consist of various subsets but primarily resemble the M2 macrophage phenotype. TAMs are known to promote tumor progression and are associated with poor clinical outcomes. CD47 on tumor cells and SIRPα on TAMs facilitate a "don't-eat-me" signal which prevents cancer cells from immune clearance. Therefore, blockade of the CD47-SIRPα interaction represents a promising strategy for tumor immunotherapy. Here, we present the results on ZL-1201, a differentiated and potent anti-CD47 antibody with improved hematologic safety profile compared with 5F9 benchmark. ZL-1201 enhanced phagocytosis in combination with standards of care (SoC) therapeutic antibodies in in vitro coculture systems using a panel of tumor models and differentiated macrophages, and these combinational effects are Fc dependent while potently enhancing M2 phagocytosis. In vivo xenograft studies showed that enhanced antitumor activities were seen in a variety of tumor models treated with ZL-1201 in combination with other therapeutic mAbs, and maximal antitumor activities were achieved in the presence of chemotherapy in addition to the combination of ZL-1201 with other mAbs. Moreover, tumor-infiltrating immune cells and cytokine analysis showed that ZL-1201 and chemotherapies remodel the tumor microenvironment, which increases antitumor immunity, leading to augmented antitumor efficacy when combined with mAbs. SIGNIFICANCE ZL-1201 is a novel anti-CD47 antibody that has improved hematologic safety profiles and combines with SoC, including mAbs and chemotherapies, to potently facilitate phagocytosis and antitumor efficacy.
Collapse
Affiliation(s)
| | - Jiaqing Yi
- Zai Lab (US) LLC, Menlo Park, California
| | | | | | - Renyi Wu
- Zai Lab (US) LLC, Menlo Park, California
| | - Bing Wan
- Zai Lab (US) LLC, Menlo Park, California
| | - Xu Fang
- Zai Lab (US) LLC, Menlo Park, California
| | - Shou Li
- Zai Lab (US) LLC, Menlo Park, California
| | - Lei Wang
- Zai Lab (US) LLC, Menlo Park, California
| | - Lina Wang
- Zai Lab (US) LLC, Menlo Park, California
| | - Jing Li
- Zai Lab (US) LLC, Menlo Park, California
| | - Qiuping Ye
- Zai Lab (US) LLC, Menlo Park, California
| | - Tom Huang
- Zai Lab (US) LLC, Menlo Park, California
| | - Karl Hsu
- Zai Lab (US) LLC, Menlo Park, California
| | | | | |
Collapse
|
33
|
Resistance to Trastuzumab. Cancers (Basel) 2022; 14:cancers14205115. [PMID: 36291900 PMCID: PMC9600208 DOI: 10.3390/cancers14205115] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Trastuzumab is a humanized antibody that has significantly improved the management and treatment outcomes of patients with cancers that overexpress HER2. Many research groups, both in academia and industry, have contributed towards understanding the various mechanisms engaged by trastuzumab to mediate its anti-tumor effects. Nevertheless, data from several clinical studies have indicated that a significant proportion of patients exhibit primary or acquired resistance to trastuzumab therapy. In this article, we discuss underlying mechanisms that contribute towards to resistance. Furthermore, we discuss the potential strategies to overcome some of the mechanisms of resistance to enhance the therapeutic efficacy of trastuzumab and other therapies based on it. Abstract One of the most impactful biologics for the treatment of breast cancer is the humanized monoclonal antibody, trastuzumab, which specifically recognizes the HER2/neu (HER2) protein encoded by the ERBB2 gene. Useful for both advanced and early breast cancers, trastuzumab has multiple mechanisms of action. Classical mechanisms attributed to trastuzumab action include cell cycle arrest, induction of apoptosis, and antibody-dependent cell-mediated cytotoxicity (ADCC). Recent studies have identified the role of the adaptive immune system in the clinical actions of trastuzumab. Despite the multiple mechanisms of action, many patients demonstrate resistance, primary or adaptive. Newly identified molecular and cellular mechanisms of trastuzumab resistance include induction of immune suppression, vascular mimicry, generation of breast cancer stem cells, deregulation of long non-coding RNAs, and metabolic escape. These newly identified mechanisms of resistance are discussed in detail in this review, particularly considering how they may lead to the development of well-rationalized, patient-tailored combinations that improve patient survival.
Collapse
|
34
|
Massa D, Tosi A, Rosato A, Guarneri V, Dieci MV. Multiplexed In Situ Spatial Protein Profiling in the Pursuit of Precision Immuno-Oncology for Patients with Breast Cancer. Cancers (Basel) 2022; 14:4885. [PMID: 36230808 PMCID: PMC9562913 DOI: 10.3390/cancers14194885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many solid tumors. In breast cancer (BC), immunotherapy is currently approved in combination with chemotherapy, albeit only in triple-negative breast cancer. Unfortunately, most patients only derive limited benefit from ICIs, progressing either upfront or after an initial response. Therapeutics must engage with a heterogeneous network of complex stromal-cancer interactions that can fail at imposing cancer immune control in multiple domains, such as in the genomic, epigenomic, transcriptomic, proteomic, and metabolomic domains. To overcome these types of heterogeneous resistance phenotypes, several combinatorial strategies are underway. Still, they can be predicted to be effective only in the subgroups of patients in which those specific resistance mechanisms are effectively in place. As single biomarker predictive performances are necessarily suboptimal at capturing the complexity of this articulate network, precision immune-oncology calls for multi-omics tumor microenvironment profiling in order to identify unique predictive patterns and to proactively tailor combinatorial treatments. Multiplexed single-cell spatially resolved tissue analysis, through precise epitope colocalization, allows one to infer cellular functional states in view of their spatial organization. In this review, we discuss-through the lens of the cancer-immunity cycle-selected, established, and emerging markers that may be evaluated in multiplexed spatial protein panels to help identify prognostic and predictive patterns in BC.
Collapse
Affiliation(s)
- Davide Massa
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Anna Tosi
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| |
Collapse
|
35
|
Zhang Y, Wang Y, Zhao Z, Peng W, Wang P, Xu X, Zhao C. Glutaminyl cyclases, the potential targets of cancer and neurodegenerative diseases. Eur J Pharmacol 2022; 931:175178. [DOI: 10.1016/j.ejphar.2022.175178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
|
36
|
Bouwstra R, van Meerten T, Bremer E. CD47‐SIRPα blocking‐based immunotherapy: Current and prospective therapeutic strategies. Clin Transl Med 2022; 12:e943. [PMID: 35908284 PMCID: PMC9339239 DOI: 10.1002/ctm2.943] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 01/22/2023] Open
Abstract
Background The CD47‐signal regulatory protein alpha (SIRPα) ‘don't eat me’ signalling axis is perhaps the most prominent innate immune checkpoint to date. However, from initial clinical trials, it is evident that monotherapy with CD47‐SIRPα blocking has a limited therapeutic effect at the maximum tolerated dose. Furthermore, treatment is associated with severe side effects, most notably anaemia, that are attributable to the ubiquitous expression of CD47. Nevertheless, promising clinical responses have been reported upon combination with the tumour‐targeting antibody rituximab or azacytidine, although toxicity issues still hamper clinical application. Main body Here, we discuss the current state of CD47‐SIRPα blocking therapy with a focus on limitations of current strategies, such as depletion of red blood cells. Subsequently, we focus on innovations designed to overcome these limitations. These include novel antibody formats designed to selectively target CD47 on tumour cells as well as tumour‐targeted bispecific antibodies with improved selectivity. In addition, the rationale and outcome of combinatorial approaches to improve the therapeutic effect of CD47 blockade are discussed. Such combinations include those with tumour‐targeted opsonizing antibodies, systemic therapy, epigenetic drugs, other immunomodulatory T‐cell‐targeted therapeutics or dual immunomodulatory CD47 bispecific antibodies. Conclusion With these advances in the design of CD47‐SIRPα‐targeting therapeutic strategies and increasing insight into the mechanism of action of this innate checkpoint, including the role of adaptive immunity, further advances in the clinical application of this checkpoint can be anticipated.
Collapse
Affiliation(s)
- Renée Bouwstra
- Department of Hematology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Tom van Meerten
- Department of Hematology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Edwin Bremer
- Department of Hematology University Medical Center Groningen University of Groningen Groningen The Netherlands
| |
Collapse
|
37
|
Rossi A, Belmonte B, Carnevale S, Liotti A, De Rosa V, Jaillon S, Piconese S, Tripodo C. Stromal and Immune Cell Dynamics in Tumor Associated Tertiary Lymphoid Structures and Anti-Tumor Immune Responses. Front Cell Dev Biol 2022; 10:933113. [PMID: 35874810 PMCID: PMC9304551 DOI: 10.3389/fcell.2022.933113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid organs that have been observed in chronic inflammatory conditions including cancer, where they are thought to exert a positive effect on prognosis. Both immune and non-immune cells participate in the genesis of TLS by establishing complex cross-talks requiring both soluble factors and cell-to-cell contact. Several immune cell types, including T follicular helper cells (Tfh), regulatory T cells (Tregs), and myeloid cells, may accumulate in TLS, possibly promoting or inhibiting their development. In this manuscript, we propose to review the available evidence regarding specific aspects of the TLS formation in solid cancers, including 1) the role of stromal cell composition and architecture in the recruitment of specific immune subpopulations and the formation of immune cell aggregates; 2) the contribution of the myeloid compartment (macrophages and neutrophils) to the development of antibody responses and the TLS formation; 3) the immunological and metabolic mechanisms dictating recruitment, expansion and plasticity of Tregs into T follicular regulatory cells, which are potentially sensitive to immunotherapeutic strategies directed to costimulatory receptors or checkpoint molecules.
Collapse
Affiliation(s)
- Alessandra Rossi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | | | - Antonietta Liotti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Veronica De Rosa
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Sebastien Jaillon
- RCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Unità di Neuroimmunologia, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Rome, Italy
- *Correspondence: Silvia Piconese,
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
- Histopathology Unit, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
38
|
Chan C, Lustig M, Baumann N, Valerius T, van Tetering G, Leusen JHW. Targeting Myeloid Checkpoint Molecules in Combination With Antibody Therapy: A Novel Anti-Cancer Strategy With IgA Antibodies? Front Immunol 2022; 13:932155. [PMID: 35865547 PMCID: PMC9295600 DOI: 10.3389/fimmu.2022.932155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy with therapeutic antibodies has shown a lack of durable responses in some patients due to resistance mechanisms. Checkpoint molecules expressed by tumor cells have a deleterious impact on clinical responses to therapeutic antibodies. Myeloid checkpoints, which negatively regulate macrophage and neutrophil anti-tumor responses, are a novel type of checkpoint molecule. Myeloid checkpoint inhibition is currently being studied in combination with IgG-based immunotherapy. In contrast, the combination with IgA-based treatment has received minimal attention. IgA antibodies have been demonstrated to more effectively attract and activate neutrophils than their IgG counterparts. Therefore, myeloid checkpoint inhibition could be an interesting addition to IgA treatment and has the potential to significantly enhance IgA therapy.
Collapse
Affiliation(s)
- Chilam Chan
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marta Lustig
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Niklas Baumann
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Geert van Tetering
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Jeanette H. W. Leusen,
| |
Collapse
|
39
|
Chen C, Wang R, Chen X, Hou Y, Jiang J. Targeting CD47 as a Novel Immunotherapy for Breast Cancer. Front Oncol 2022; 12:924740. [PMID: 35860564 PMCID: PMC9289165 DOI: 10.3389/fonc.2022.924740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nowadays, breast cancer has become the most common cancer worldwide with a high mortality rate. Immune checkpoint blockade holds great promise in tumor‐targeted therapy, and CD47 blockade as one immune therapy is undergoing various preclinical studies and clinical trials to demonstrate its safety and efficacy in breast cancer. In this review, we summarized different therapeutic mechanisms targeting CD47 and its prognostic role and therapeutic value in breast cancer.
Collapse
Affiliation(s)
- Can Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Runlu Wang
- Respiratory Division, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xi Chen
- Department of Dermatology, First People’s Hospital, Huzhou, China
| | - Yulong Hou
- Department of Surgery, Huzhou Central Hospital, Huzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- *Correspondence: Jingting Jiang,
| |
Collapse
|
40
|
Moasser MM. Inactivating amplified HER2: challenges, dilemmas, and future directions. Cancer Res 2022; 82:2811-2820. [PMID: 35731927 DOI: 10.1158/0008-5472.can-22-1121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/10/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
The pharmaceutical inactivation of driver oncogenes has revolutionized the treatment of cancer replacing cytotoxic chemotherapeutic approaches with kinase inhibitor therapies for many types of cancers. This approach has not yet been realized for the treatment of HER2-amplified cancers. The monotherapy activities associated with HER2-targeting antibodies and kinase inhibitors are modest, and their clinical use has been in combination with, and not in replacement of cytotoxic chemotherapies. This stands in sharp contrast to achievements in the treatment of many other oncogene-driven cancers. The mechanism-based treatment hypothesis regarding the inactivation of HER2 justifies expectations far beyond what is currently realized. Overcoming this barrier requires mechanistic insights that can fuel new directions for pursuit, but scientific investigation of this treatment hypothesis, particularly with regards to trastuzumab, has been complicated by conflicting and confusing data sets, ironclad dogma, and mechanistic conclusions that have repeatedly failed to translate clinically. We are now approaching a point of convergence regarding the challenges and resiliency in this tumor driver, and I will provide here a review and opinion to inform where we currently stand with this treatment hypothesis and where the future potential lies.
Collapse
Affiliation(s)
- Mark M Moasser
- University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
41
|
Xin S, Sun X, Jin L, Li W, Liu X, Zhou L, Ye L. The Prognostic Signature and Therapeutic Value of Phagocytic Regulatory Factors in Prostate Adenocarcinoma (PRAD). Front Genet 2022; 13:877278. [PMID: 35706452 PMCID: PMC9190300 DOI: 10.3389/fgene.2022.877278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 01/03/2023] Open
Abstract
There is growing evidence that phagocytosis regulatory factors (PRFs) play important roles in tumor progression, and therefore, identifying and characterizing these factors is crucial for understanding the mechanisms of cellular phagocytosis in tumorigenesis. Our research aimed to comprehensively characterize PRFs in prostate adenocarcinoma (PRAD) and to screen and determine important PRFs in PRAD which may help to inform tumor prognostic and therapeutic signatures based on these key PRFs. Here, we first systematically described the expression of PRFs in PRAD and evaluated their expression patterns and their prognostic value. We then analyzed prognostic phagocytic factors by Cox and Lasso analysis and constructed a phagocytic factor-mediated risk score. We then divided the samples into two groups with significant differences in overall survival (OS) based on the risk score. Then, we performed correlation analysis between the risk score and clinical features, immune infiltration levels, immune characteristics, immune checkpoint expression, IC50 of several classical sensitive drugs, and immunotherapy efficacy. Finally, the Human Protein Atlas (HPA) database was used to determine the protein expression of 18 PRF characteristic genes. The aforementioned results confirmed that multilayer alterations of PRFs were associated with the prognosis of patients with PRAD and the degree of macrophage infiltration. These findings may provide us with potential new therapies for PRAD.
Collapse
Affiliation(s)
- Shiyong Xin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianchao Sun
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liang Jin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weiyi Li
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang Liu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liqing Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
42
|
Shen Q, Zhao L, Pan L, Li D, Chen G, Chen Z, Jiang Z. Soluble SIRP-Alpha Promotes Murine Acute Lung Injury Through Suppressing Macrophage Phagocytosis. Front Immunol 2022; 13:865579. [PMID: 35634325 PMCID: PMC9133620 DOI: 10.3389/fimmu.2022.865579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Soluble signal regulatory protein-alpha (SIRP-alpha) is elevated in bronchoalveolar lavage (BAL) of mice with lipopolysaccharides (LPS)-induced acute lung injury (ALI). To define the role of soluble SIRP-alpha in the pathogenesis of ALI, we established murine ALI in wild-type (WT) and SIRP-alpha knock-out (KO) mice by intratracheal administration of LPS. The results indicated that lack of SIRP-alpha significantly reduced the pathogenesis of ALI, in association with attenuated lung inflammation, infiltration of neutrophils and expression of pro-inflammatory cytokines in mice. In addition, lack of SIRP-alpha reduced the expression of pro-inflammatory cytokines in LPS-treated bone marrow-derived macrophages (BMDMs) from KO mice, accompanied with improved macrophage phagocytosis. Blockade of soluble SIRP-alpha activity in ALI BAL by anti-SIRP-alpha antibody (aSIRP) effectively reduced the expression of TNF-alpha and IL-6 mRNA transcripts and proteins, improved macrophage phagocytosis in vitro. In addition, lack of SIRP-alpha reduced activation of Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) and improved activation of signal transducer and activator of transcription-3 (STAT3) and STAT6. Suppression of SHP-1 activity by tyrosine phosphatase inhibitor 1 (TPI-1) increased activation of STAT3 and STAT6, and improved macrophage phagocytosis, that was effectively reversed by STAT3 and STAT6 inhibitors. Thereby, SIRP-alpha suppressed macrophage phagocytosis through activation of SHP-1, subsequently inhibiting downstream STAT3 and STAT6 signaling. Lack of SIRP-alpha attenuated murine ALI possibly through increasing phagocytosis, and improving STAT3 and STAT6 signaling in macrophages. SIRP-alpha would be promising biomarker and molecular target in the treatment of murine ALI and patients with acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Qinjun Shen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Zhao
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Linyue Pan
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dandan Li
- Department of Pulmonary and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihong Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhilong Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Zhang B, Li W, Fan D, Tian W, Zhou J, Ji Z, Song Y. Advances in the study of CD47-based bispecific antibody in cancer immunotherapy. Immunology 2022; 167:15-27. [PMID: 35575882 DOI: 10.1111/imm.13498] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/13/2022] [Indexed: 11/28/2022] Open
Abstract
Tumor therapy has entered the era of immunotherapy. Monoclonal antibodies (mAb), immune checkpoint inhibitors, chimeric antigen receptor T-cell (CAR-T), cytokine-induced killer (CIK),tumor-infiltrating lymphocytes (TIL) and other cellular immunotherapies have become the focus of current research. The CD47/SIRPα target is becoming another popular tumor immunotherapy target following the PDCD1/CD247(PD1/PD-L1) checkpoint inhibitor. In recent years, a large number of CD47/SIRPα mAbs, fusion proteins, and CD47/SIRPα-based bispecific antibodies (BsAbs) are undergoing preclinical and clinical trials and have good curative effects in the treatment of hematological tumors and solid tumors. They bring new vitality and hope for the treatment of patients with advanced tumors. This review summarizes the research progress of CD47/SIRPα-based BsAbs with different targets for tumor treatment. There are 12 and 9 BsAbs in clinical trials and pre-clinical research, respectively. We report on the mechanism of 15 BsAb molecules with different target and analyze the efficacy and safety of preclinical and clinical trials, discuss the issues that may be faced in the development of CD47-based BsAbs, and dual target molecules, and summarize their development prospects. This review provides a reference for the safety and effectiveness of BsAbs in clinical application and in the future development of antibodies.
Collapse
Affiliation(s)
- Binglei Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China.,Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dandan Fan
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenzhi Tian
- ImmuneOnco Biopharmaceuticals (Shanghai) Co., Ltd., Shanghai, China
| | - Jian Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zhenyu Ji
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
44
|
Nakamura A, Grossman S, Song K, Xega K, Zhang Y, Cvet D, Berger A, Shapiro G, Huszar D. The SUMOylation inhibitor subasumstat potentiates rituximab activity by IFN1-dependent macrophage and NK cell stimulation. Blood 2022; 139:2770-2781. [PMID: 35226739 PMCID: PMC11022956 DOI: 10.1182/blood.2021014267] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/07/2022] [Indexed: 11/20/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) is a member of a ubiquitin-like protein superfamily. SUMOylation is a reversible posttranslational modification that has been implicated in the regulation of various cellular processes including inflammatory responses and expression of type 1 interferons (IFN1). In this report, we have explored the activity of the selective small molecule SUMOylation inhibitor subasumstat (TAK-981) in promoting antitumor innate immune responses. We demonstrate that treatment with TAK-981 results in IFN1-dependent macrophage and natural killer (NK) cell activation, promoting macrophage phagocytosis and NK cell cytotoxicity in ex vivo assays. Furthermore, pretreatment with TAK-981 enhanced macrophage phagocytosis or NK cell cytotoxicity against CD20+ target cells in combination with the anti-CD20 antibody rituximab. In vivo studies demonstrated enhanced antitumor activity of TAK-981 and rituximab in CD20+ lymphoma xenograft models. Combination of TAK-981 with anti-CD38 antibody daratumumab also resulted in enhanced antitumor activity. TAK-981 is currently being studied in phase 1 clinical trials (#NCT03648372, #NCT04074330, #NCT04776018, and #NCT04381650; www.clinicaltrials.gov) for the treatment of patients with lymphomas and solid tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Allison Berger
- Oncology Therapeutic Area Unit, Takeda Development Center Americas, Inc., Cambridge, MA
| | | | | |
Collapse
|
45
|
Hwang BJ, Tsao LC, Acharya CR, Trotter T, Agarwal P, Wei J, Wang T, Yang XY, Lei G, Osada T, Lyerly HK, Morse MA, Hartman ZC. Sensitizing immune unresponsive colorectal cancers to immune checkpoint inhibitors through MAVS overexpression. J Immunother Cancer 2022; 10:e003721. [PMID: 35361727 PMCID: PMC8971789 DOI: 10.1136/jitc-2021-003721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The majority of colorectal carcinomas (CRCs) are insensitive to programmed death protein-1/programmed death-ligand 1 (anti-PD-1/PD-L1) immune checkpoint inhibitor (ICI) antibodies. While there are many causes for ICI insensitivity, recent studies suggest that suppression of innate immune gene expression in tumor cells could be a root cause of this insensitivity and an important factor in the evolution of tumor immunosuppression. METHODS We first assessed the reduction of mitochondrial antiviral signaling gene (MAVS) and related RIG-I pathway gene expression in several patient RNA expression datasets. We then engineered MAVS expressing tumor cells and tested their ability to elicit innate and adaptive anti-tumor immunity using both in vitro and in vivo approaches, which we then confirmed using MAVS expressing viral vectors. Finally, we observed that MAVS stimulated PD-L1 expression in multiple cell types and then assessed the combination of PD-L1 ICI antibodies with MAVS tumor expression in vivo. RESULTS MAVS was significantly downregulated in CRCs, but its re-expression could stimulate broad cellular interferon-related responses, in both murine and patient-derived CRCs. In vivo, local MAVS expression elicited significant anti-tumor responses in both immune-sensitive and insensitive CRC models, through the stimulation of an interferon responsive axis that provoked tumor antigen-specific adaptive immunity. Critically, we found that tumor-intrinsic MAVS expression triggered systemic adaptive immune responses that enabled abscopal CD8 +T cell cytotoxicity against distant CRCs. As MAVS also induced PD-L1 expression, we further found synergistic anti-tumor responses in combination with anti-PD-L1 ICIs. CONCLUSION These data demonstrate that intratumoral MAVS expression results in local and systemic tumor antigen-specific T cell responses, which could be combined with PD-L1 ICI to permit effective anti-tumor immunotherapy in ICI resistant cancers.
Collapse
Affiliation(s)
- Bin-Jin Hwang
- Surgery, Duke University, Durham, North Carolina, USA
| | - Li-Chung Tsao
- Surgery, Duke University, Durham, North Carolina, USA
| | | | | | | | - Junping Wei
- Surgery, Duke University, Durham, North Carolina, USA
| | - Tao Wang
- Surgery, Duke University, Durham, North Carolina, USA
| | - Xiao-Yi Yang
- Surgery, Duke University, Durham, North Carolina, USA
| | - Gangjun Lei
- Surgery, Duke University, Durham, North Carolina, USA
| | - Takuya Osada
- Surgery, Duke University, Durham, North Carolina, USA
| | - Herbert Kim Lyerly
- Surgery, Duke University, Durham, North Carolina, USA
- Immunology, Duke University, Durham, North Carolina, USA
- Pathology, Duke University, Durham, North Carolina, USA
| | - Michael A Morse
- Surgery, Duke University, Durham, North Carolina, USA
- Medicine, Duke University, Durham, NC, USA
| | - Zachary Conrad Hartman
- Surgery, Duke University, Durham, North Carolina, USA
- Pathology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
46
|
Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. The Impact of Obesity, Adipose Tissue, and Tumor Microenvironment on Macrophage Polarization and Metastasis. BIOLOGY 2022; 11:339. [PMID: 35205204 PMCID: PMC8869089 DOI: 10.3390/biology11020339] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022]
Abstract
Tumor metastasis is a major cause of death in cancer patients. It involves not only the intrinsic alterations within tumor cells, but also crosstalk between these cells and components of the tumor microenvironment (TME). Tumorigenesis is a complex and dynamic process, involving the following three main stages: initiation, progression, and metastasis. The transition between these stages depends on the changes within the extracellular matrix (ECM), in which tumor and stromal cells reside. This matrix, under the effect of growth factors, cytokines, and adipokines, can be morphologically altered, degraded, or reorganized. Many cancers evolve to form an immunosuppressive TME locally and create a pre-metastatic niche in other tissue sites. TME and pre-metastatic niches include myofibroblasts, immuno-inflammatory cells (macrophages), adipocytes, blood, and lymphatic vascular networks. Several studies have highlighted the adipocyte-macrophage interaction as a key driver of cancer progression and dissemination. The following two main classes of macrophages are distinguished: M1 (pro-inflammatory/anti-tumor) and M2 (anti-inflammatory/pro-tumor). These cells exhibit distinct microenvironment-dependent phenotypes that can promote or inhibit metastasis. On the other hand, obesity in cancer patients has been linked to a poor prognosis. In this regard, tumor-associated adipocytes modulate TME through the secretion of inflammatory mediators, which modulate and recruit tumor-associated macrophages (TAM). Hereby, this review describes the cellular and molecular mechanisms that link inflammation, obesity, and cancer. It provides a comprehensive overview of adipocytes and macrophages in the ECM as they control cancer initiation, progression, and invasion. In addition, it addresses the mechanisms of tumor anchoring and recruitment for M1, M2, and TAM macrophages, specifically highlighting their origin, classification, polarization, and regulatory networks, as well as their roles in the regulation of angiogenesis, invasion, metastasis, and immunosuppression, specifically highlighting the role of adipocytes in this process.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, ECREIN, f-63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie moléculaire et anticancéreuse, Faculté des Sciences II, Université libanaise Fanar, Beyrouth 1500, Liban;
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, ECREIN, f-63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, ECREIN, f-63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| |
Collapse
|
47
|
Xiao M, He J, Yin L, Chen X, Zu X, Shen Y. Tumor-Associated Macrophages: Critical Players in Drug Resistance of Breast Cancer. Front Immunol 2022; 12:799428. [PMID: 34992609 PMCID: PMC8724912 DOI: 10.3389/fimmu.2021.799428] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Drug resistance is one of the most critical challenges in breast cancer (BC) treatment. The occurrence and development of drug resistance are closely related to the tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs), the most important immune cells in TIME, are essential for drug resistance in BC treatment. In this article, we summarize the effects of TAMs on the resistance of various drugs in endocrine therapy, chemotherapy, targeted therapy, and immunotherapy, and their underlying mechanisms. Based on the current overview of the key role of TAMs in drug resistance, we discuss the potential possibility for targeting TAMs to reduce drug resistance in BC treatment, By inhibiting the recruitment of TAMs, depleting the number of TAMs, regulating the polarization of TAMs and enhancing the phagocytosis of TAMs. Evidences in our review support it is important to develop novel therapeutic strategies to target TAMs in BC to overcome the treatment of resistance.
Collapse
Affiliation(s)
- Maoyu Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liyang Yin
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiguan Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
48
|
Tsao LC, Crosby EJ, Trotter TN, Wei J, Wang T, Yang X, Summers AN, Lei G, Rabiola CA, Chodosh LA, Muller WJ, Lyerly HK, Hartman ZC. Trastuzumab/Pertuzumab combination therapy stimulates anti-tumor responses through complement-dependent cytotoxicity and phagocytosis. JCI Insight 2022; 7:155636. [PMID: 35167491 PMCID: PMC8986081 DOI: 10.1172/jci.insight.155636] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Standard-of-care treatment for advanced HER2+ breast cancers (BC) is comprised of two HER2-specific monoclonal antibodies (mAb), Trastuzumab (T) and Pertuzumab (P) with chemotherapy. While this combination (T+P) is highly effective, its synergistic mechanism of action (MOA) is not completely known. Initial studies had demonstrated that Pertuzumab suppressed HER2 hetero-dimerization as the potential therapeutic MOA, thus the improved outcome associated with the T+P combination MOA compared to Trastuzumab alone has been widely reported as being due to Pertuzumab-mediated suppression of HER2 signaling in combination with Trastuzumab-mediated induction of anti-tumor immunity. Unraveling this MOA may be critical to extend this combination strategy to other antigens or other cancers, as well as improving this current treatment modality. Using novel murine and human versions of Pertuzumab, we found it induced both Antibody-Dependent-Cellular-Phagocytosis (ADCP) by tumor-associated macrophages and suppression of HER2 oncogenic signaling. Most significantly, we identified that only T+P combination therapy, but not when either antibody used in isolation, allows for the activation of the classical complement pathway, resulting in both direct complement-dependent cytotoxicity (CDC) as well as complement-dependent cellular phagocytosis (CDCP) of HER2+ BC cells. Notably, we show that tumor expression of C1q was positively associated with survival outcome in HER2+ BC patients, whereas expression of complement regulators CD55 and CD59 were inversely correlated, suggesting the importance of complement activity in clinical outcomes. Accordingly, inhibition of C1 activity in mice abolished the synergistic therapeutic activity of T+P therapy, whereas knockdown of CD55 and CD59 expression enhanced T+P efficacy. In summary, our study identifies classical complement activation as a significant anti-tumor MOA for T+P therapy that may be functionally enhanced to augment therapeutic efficacy in the clinic.
Collapse
Affiliation(s)
- Li-Chung Tsao
- Department of Surgery, Duke University, Durham, United States of America
| | - Erika J Crosby
- Department of Surgery, Duke University, Durham, United States of America
| | - Timothy N Trotter
- Department of Surgery, Duke University, Durham, United States of America
| | - Junping Wei
- Department of Surgery, Duke University, Durham, United States of America
| | - Tao Wang
- Department of Surgery, Duke University, Durham, United States of America
| | - Xiao Yang
- Department of Surgery, Duke University, Durham, United States of America
| | - Amanda N Summers
- Department of Surgery, Duke University, Durham, United States of America
| | - Gangjun Lei
- Department of Surgery, Duke University, Durham, United States of America
| | | | - Lewis A Chodosh
- Department of Cancer Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, United States of America
| | | | - Herbert Kim Lyerly
- Department of Surgery, Duke University, Durham, United States of America
| | - Zachary C Hartman
- Department of Surgery, Duke University, Durham, United States of America
| |
Collapse
|
49
|
Lin M, Xiong W, Wang S, Li Y, Hou C, Li C, Li G. The Research Progress of Trastuzumab-Induced Cardiotoxicity in HER-2-Positive Breast Cancer Treatment. Front Cardiovasc Med 2022; 8:821663. [PMID: 35097033 PMCID: PMC8789882 DOI: 10.3389/fcvm.2021.821663] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
In recent years, the incidence of breast cancer has been increasing on an annual basis. Human epidermal growth factor receptor-2 (HER-2) is overexpressed in 15-20% human breast cancers, which is associated with poor prognosis and a high recurrence rate. Trastuzumab is the first humanized monoclonal antibody against HER-2. The most significant adverse effect of trastuzumab is cardiotoxicity, which has become an important factor in limiting the safe use of the drug. Unfortunately, the mechanism causing this cardiotoxicity is still not completely understood, and the use of preventive interventions remains controversial. This article focuses on trastuzumab-induced cardiotoxicity, reviewing the clinical application, potential cardiotoxicity, mechanism and discussing the potential interventions through summarizing related researches over the past tens of years.
Collapse
Affiliation(s)
- Mengmeng Lin
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiping Xiong
- Department of Cardiology, Shanghai Putuo District Liqun Hospital, Shanghai, China
| | - Shiyuan Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingying Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunying Hou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunyu Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guohui Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
Abe S, Nagata H, Crosby EJ, Inoue Y, Kaneko K, Liu CX, Yang X, Wang T, Acharya CR, Agarwal P, Snyder J, Gwin W, Morse MA, Zhong P, Lyerly HK, Osada T. Combination of ultrasound-based mechanical disruption of tumor with immune checkpoint blockade modifies tumor microenvironment and augments systemic antitumor immunity. J Immunother Cancer 2022; 10:jitc-2021-003717. [PMID: 35039461 PMCID: PMC8765068 DOI: 10.1136/jitc-2021-003717] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 02/02/2023] Open
Abstract
Background Despite multimodal adjuvant management with radiotherapy, chemotherapy and hormonal therapies, most surgically resected primary breast cancers relapse or metastasize. A potential solution to late and distant recurrence is to augment systemic antitumor immunity, in part by appropriately presenting tumor antigens, but also by modulating the immunosuppressive tumor microenvironment (TME). We previously validated this concept in models of murine carcinoma treated with a novel predominately microcavitating version of high-intensity focused ultrasound (HIFU), mechanical high-intensity focused ultrasound (M-HIFU). Here we elucidated the mechanisms of enhanced antitumor immunity by M-HIFU over conventional thermal high-intensity focused ultrasound (T-HIFU) and investigated the potential of the combinatorial strategy with an immune checkpoint inhibitor, anti-PD-L1 antibody. Methods The antitumor efficacy of treatments was investigated in syngeneic murine breast cancer models using triple-negative (E0771) or human ErbB-2 (HER2) expressing (MM3MG-HER2) tumors in C57BL/6 or BALB/c mice, respectively. Induction of systemic antitumor immunity by the treatments was tested using bilateral tumor implantation models. Flow cytometry, immunohistochemistry, and single-cell RNA sequencing were performed to elucidate detailed effects of HIFU treatments or combination treatment on TME, including the activation status of CD8 T cells and polarization of tumor-associated macrophages (TAMs). Results More potent systemic antitumor immunity and tumor growth suppression were induced by M-HIFU compared with T-HIFU. Molecular characterization of the TME after M-HIFU by single-cell RNA sequencing demonstrated repolarization of TAM to the immunostimulatory M1 subtype compared with TME post-T-HIFU. Concurrent anti-PD-L1 antibody administration or depletion of CD4+ T cells containing a population of regulatory T cells markedly increased T cell-mediated antitumor immunity and tumor growth suppression at distant, untreated tumor sites in M-HIFU treated mice compared with M-HIFU monotherapy. CD8 T and natural killer cells played major roles as effector cells in the combination treatment. Conclusions Physical disruption of the TME by M-HIFU repolarizes TAM, enhances T-cell infiltration, and, when combined with anti-PD-L1 antibody, mediates superior systemic antitumor immune responses and distant tumor growth suppression. These findings suggest M-HIFU combined with anti-PD-L1 may be useful in reducing late recurrence or metastasis when applied to primary tumors.
Collapse
Affiliation(s)
- Shinya Abe
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA.,Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Nagata
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA.,Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Erika J Crosby
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Yoshiyuki Inoue
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA.,Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kensuke Kaneko
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA.,Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Cong-Xiao Liu
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Xiao Yang
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Tao Wang
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Chaitanya R Acharya
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Pankaj Agarwal
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Joshua Snyder
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - William Gwin
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Michael A Morse
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA.,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Pei Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Herbert Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Takuya Osada
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|