1
|
Lin J, Wei X, Dai Y, Lu H, Song Y, Ju J, Wu R, Cao Q, Yang H, Rao L. Chaperone-mediated autophagy degrades SERPINA1 E342K/α1-antitrypsin Z variant and alleviates cell stress. Autophagy 2025:1-18. [PMID: 40114294 DOI: 10.1080/15548627.2025.2480037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
Chaperone-mediated autophagy (CMA) is a specific form of autophagy that selectively targets proteins containing a KFERQ-like motif and relies on the chaperone protein HSPA8/HSC70 for substrate recognition. In SERPINA1/a1-antitrypsin deficiency (AATD), a disease characterized by the hepatic buildup of the SERPINA1E342K/ATZ, CMA's role had been unclear. This work demonstrates the critical role that CMA plays in preventing SERPINA1E342K/ATZ accumulation; suppressing CMA worsens SERPINA1E342K/ATZ accumulation while activating it through chemical stimulation or LAMP2A overexpression promotes SERPINA1E342K/ATZ breakdown. Specifically, SERPINA1E342K/ATZ's 121QELLR125 motif is critical for HSPA8/HSC70 recognition and LAMP2A's charged C-terminal cytoplasmic tail is vital for substrate binding, facilitating CMA-mediated degradation of SERPINA1E342K/ATZ. This selective activation of CMA operates independently of other autophagy pathways and alleviates SERPINA1E342K/ATZ aggregate-induced cellular stress. In vivo administration of AR7 promotes hepatic SERPINA1E342K/ATZ elimination and mitigates hepatic SERPINA1E342K/ATZ aggregation pathology. These findings highlight CMA's critical function in cellular protein quality control of SERPINA1E342K/ATZ and place it as a novel target for AATD treatment.Abbreviation: AR7: atypical retinoid 7; ATG16L1: autophagy related 16 like 1; AATD: SERPINA1/alpha-1 antitrypsin deficiency; CHX: cycloheximide; CMA: chaperone-mediated autophagy; CQ: chloroquine; ER: endoplasmic reticulum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; LAMP2A: lysosomal associated membrane protein 2A; LAMP2B: lysosomal associated membrane protein 2B; LAMP2C: lysosomal associated membrane protein 2C; MG132: carbobenzoxy-L-leucyl-L-leucyl-L-leucinal; PAS-D: periodic acid-Schiff plus diastase; SERPINA1/A1AT: serpin family A member 1; SERPINA1E342K/ATZ: Z variant of SERPINA1; TMRE: tetramethyl rhodamine ethyl ester perchlorate.
Collapse
Affiliation(s)
- Jiayu Lin
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xinyue Wei
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Yan Dai
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Haorui Lu
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yajian Song
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Rihan Wu
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia Autonomous Region, China
| | - Qichen Cao
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Hao Yang
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia Autonomous Region, China
| | - Lang Rao
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
2
|
Brzozowska N, Wu LYD, Khodzhaeva V, Griffiths WJ, Duckworth A, Jung H, Coorens THH, Hooks Y, Chambers JE, Campbell PJ, Marciniak SJ, Hoare M. Selection for somatic escape variants in SERPINA1 in the liver of patients with alpha-1 antitrypsin deficiency. Nat Genet 2025; 57:875-883. [PMID: 40065168 PMCID: PMC11985350 DOI: 10.1038/s41588-025-02125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 02/11/2025] [Indexed: 03/28/2025]
Abstract
Somatic variants accumulate in non-malignant tissues with age. Functional variants, leading to clonal advantage of hepatocytes, accumulate in the liver of patients with acquired chronic liver disease (CLD). Whether somatic variants are common to CLD from differing etiologies is unknown. We analyzed liver somatic variants in patients with genetic CLD from alpha-1 antitrypsin (A1AT) deficiency or hemochromatosis. We show that somatic variants in SERPINA1, the gene encoding A1AT, are strongly selected for in A1AT deficiency, with evidence of convergent evolution. Acquired SERPINA1 variants are clustered at the carboxyl terminus of A1AT, leading to truncation. In vitro and in vivo, C-terminal truncation variants reduce disease-associated Z-A1AT polymer accumulation and disruption of the endoplasmic reticulum, supporting the C-terminal domain swap mechanism. Therefore, somatic escape variants from a deleterious germline variant are selected for in A1AT deficiency, suggesting that functional somatic variants are disease-specific in CLD and point to disease-associated mechanisms.
Collapse
Affiliation(s)
| | - Lily Y D Wu
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Vera Khodzhaeva
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Adam Duckworth
- Department of Pathology, Addenbrooke's Hospital, Cambridge, UK
| | | | - Tim H H Coorens
- Wellcome Trust Sanger Institute, Hinxton, UK
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Joseph E Chambers
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | | | - Stefan J Marciniak
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Matthew Hoare
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Early Cancer Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Qin ZX, Zuo L, Zeng Z, Ma R, Xie W, Zhu X, Zhou X. GalNac-siRNA conjugate delivery technology promotes the treatment of typical chronic liver diseases. Expert Opin Drug Deliv 2025; 22:455-469. [PMID: 39939158 DOI: 10.1080/17425247.2025.2466767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION Nucleic acid-based therapeutics have become a key pillar of the 'third wave' of modern medicine, following the eras of small molecule inhibitors and antibody drugs. Their rapid progress is heavily dependent on delivery technologies, with the development of N-acetylgalactosamine (GalNAc) conjugates marking a breakthrough in targeting liver diseases. This technology has gained significant attention for its role in addressing chronic conditions like chronic hepatitis B (CHB) and nonalcoholic steatohepatitis (NASH), which are challenging to treat with conventional methods. AREAS COVERED This review explores the origins, mechanisms, and advantages of GalNAc-siRNA delivery systems, highlighting their ability to target hepatocytes via the asialoglycoprotein receptor (ASGPR). The literature reviewed covers preclinical and clinical advancements, particularly in CHB and NASH. Key developments in stabilization chemistry and conjugation technologies are examined, emphasizing their impact on enhancing therapeutic efficacy and patient compliance. EXPERT OPINION GalNAc-siRNA technology represents a transformative advancement in RNA interference (RNAi) therapies, addressing unmet needs in liver-targeted diseases. While significant progress has been made, challenges remain, including restricted targeting scope and scalability concerns. Continued innovation is expected to expand applications, improve delivery efficiency, and overcome limitations, establishing GalNAc-siRNA as a cornerstone for future nucleic acid-based treatments.
Collapse
Affiliation(s)
- Zhen-Xin Qin
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Ling Zuo
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Ziran Zeng
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Rongguan Ma
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Wenyan Xie
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
4
|
Clark VC, Strnad P, Schluep T. Reply. Gastroenterology 2025; 168:633-634. [PMID: 39653255 DOI: 10.1053/j.gastro.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Affiliation(s)
- Virginia C Clark
- Division of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, Florida
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen University, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | | |
Collapse
|
5
|
Wang H, Ciccocioppo R, Terai S, Shoeibi S, Carnevale G, De Marchi G, Tsuchiya A, Ishii S, Tonouchi T, Furuyama K, Yang Y, Mito M, Abe H, Di Tinco R, Cardinale V. Targeted animal models for preclinical assessment of cellular and gene therapies in pancreatic and liver diseases: regulatory and practical insights. Cytotherapy 2025; 27:259-278. [PMID: 39755978 PMCID: PMC12068232 DOI: 10.1016/j.jcyt.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 01/07/2025]
Abstract
Cellular and gene therapy (CGT) products have emerged as a popular approach in regenerative medicine, showing promise in treating various pancreatic and liver diseases in numerous clinical trials. Before these therapies can be tested in human clinical trials, it is essential to evaluate their safety and efficacy in relevant animal models. Such preclinical testing is often required to obtain regulatory approval for investigational new drugs. However, there is a lack of detailed guidance on selecting appropriate animal models for CGT therapies targeting specific pancreatic and liver conditions, such as pancreatitis and chronic liver diseases. In this review, the gastrointestinal committee for the International Society for Cell and Gene Therapy provides a summary of current recommendations for animal species and disease model selection, as outlined by the US Food and Drug Administration, with references to EU EMA and Japan PMDA. We discuss a range of small and large animal models, as well as humanized models, that are suitable for preclinical testing of CGT products aimed at treating pancreatic and liver diseases. For each model, we cover the associated pathophysiology, commonly used metrics for assessing disease status, the pros and limitations of the models, and the relevance of these models to human conditions. We also summarize the use and application of humanized mouse and other animal models in evaluating the safety and efficacy of CGT products. This review aims to provide comprehensive guidance for selecting appropriate animal species and models to help bridge the gap between the preclinical research and clinical trials using CGT therapies for specific pancreatic and liver diseases.
Collapse
Affiliation(s)
- Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph H Johnson Veteran Medical Center, Charleston, South Carolina, USA.
| | - Rachele Ciccocioppo
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sara Shoeibi
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia De Marchi
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Soichi Ishii
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takafumi Tonouchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kaito Furuyama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuan Yang
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Mito
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Vincenzo Cardinale
- Department of Translational and Precision Medicine, University of Rome, Rome, Italy.
| |
Collapse
|
6
|
Anwar AA, Jalan-Sakrikar N, Huebert RC. LncRNAs, RNA Therapeutics, and Emerging Technologies in Liver Pathobiology. Semin Liver Dis 2025; 45:1-14. [PMID: 39603269 DOI: 10.1055/a-2490-1921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The field of ribonucleic acid (RNA) biology has revealed an array of noncoding RNA species, particularly long noncoding RNAs (lncRNAs), which play crucial roles in liver disease pathogenesis. This review explores the diverse functions of lncRNAs in liver pathology, including metabolic-associated steatotic liver disease, hepatocellular carcinoma, alcohol-related liver disease, and cholangiopathies such as primary sclerosing cholangitis and cholangiocarcinoma. We highlight key lncRNAs that regulate lipid metabolism, inflammation, fibrosis, and oncogenesis in the liver, demonstrating their diagnostic and therapeutic potential. Emerging RNA-based therapies, such as mRNA therapy, RNA interference, and antisense oligonucleotides, offer approaches to modulate lncRNA activity and address liver disease at a molecular level. Advances in sequencing technologies and bioinformatics pipelines are simultaneously enabling the identification and functional characterization of novel lncRNAs, driving innovation in personalized medicine. In conclusion, this review highlights the potential of lncRNAs as biomarkers and therapeutic targets in liver disease and emphasizes the need for further research into their regulatory mechanisms and clinical applications.
Collapse
Affiliation(s)
- Abid A Anwar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
- Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Robert C Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
- Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, Minnesota
| |
Collapse
|
7
|
Ramírez-Cortés F, Ménová P. Hepatocyte targeting via the asialoglycoprotein receptor. RSC Med Chem 2025; 16:525-544. [PMID: 39628900 PMCID: PMC11609720 DOI: 10.1039/d4md00652f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
This review highlights the potential of asialoglycoprotein receptor (ASGPR)-mediated targeting in advancing liver-specific treatments and underscores the ongoing progress in the field. First, we provide a comprehensive examination of the nature of ASGPR ligands, both natural and synthetic. Next, we explore various drug delivery strategies leveraging ASGPR, with a particular emphasis on the delivery of therapeutic nucleic acids such as small interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs). An in-depth analysis of the current status of RNA interference (RNAi) and ASO-based therapeutics is included, detailing approved therapies and those in various stages of clinical development (phases 1 to 3). Afterwards, we give an overview of other ASGPR-targeted conjugates, such as those with peptide nucleic acids or aptamers. Finally, targeted protein degradation of extracellular proteins through ASGPR is briefly discussed.
Collapse
Affiliation(s)
| | - Petra Ménová
- University of Chemistry and Technology, Prague Technická 5 16628 Prague 6 Czech Republic
| |
Collapse
|
8
|
Turner AM, Ficker JH, Vianello A, Clarenbach CF, Janciauskiene S, Chorostowska-Wynimko J, Stolk J, McElvaney NG. Advancing the understanding and treatment of lung pathologies associated with alpha 1 antitrypsin deficiency. Ther Adv Respir Dis 2025; 19:17534666251318841. [PMID: 39980299 PMCID: PMC11843710 DOI: 10.1177/17534666251318841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025] Open
Abstract
Alpha 1 antitrypsin deficiency (AATD) is a genetic disorder that alters the functionality and/or serum levels of alpha 1 antitrypsin (AAT). Dysfunctional forms of AAT, or low levels of serum AAT, predispose affected individuals to pulmonary complications. When AATD-associated lung disease develops, the most common pulmonary pathology is emphysema. The development of emphysema and decline in lung function varies by AATD genotype and is accelerated by risk factors, such as smoking. To improve the understanding and treatment of AATD, emerging knowledge and unresolved questions need to be discussed. Here we focus on developments in the areas of disease pathogenesis, biomarkers, and clinical endpoints for trials in AATD, as well as barriers to treatment. The clinical impact of AATD on lung function is highly variable and highlights the complexity of AATD pathogenesis, in which multiple underlying processes are involved. Reduced levels of functional AAT disrupt the protease-antiprotease homeostasis, leading to a loss of neutrophil elastase inhibition and the breakdown of elastin within the lung interstitium. Inflammatory processes also play a critical role in the development of AATD-associated lung disease, which is not yet fully understood. Biomarkers associated with the disease and its complications may have an important role in helping to address AATD underdiagnosis and evaluating response to treatment. To improve access to treatment, the problem of underdiagnosis needs to be addressed and the provision of therapeutic options needs to become uniform. Patients should also be empowered to play a key role in the self-management of the disease. Advancing our understanding of the disease will ultimately improve the life expectancy and quality of life for patients affected by AATD.
Collapse
Affiliation(s)
- Alice M. Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Joachim H. Ficker
- Department of Respiratory Medicine, Allergology and Sleep Medicine, General Hospital Nuernberg and Paracelsus Medical University, Nuernberg, Germany
| | - Andrea Vianello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Christian F. Clarenbach
- Department of Pulmonology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Leiden, Zuid-Holland, Netherlands
| | - Noel Gerard McElvaney
- Department of Medicine, Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Dublin, Ireland
| |
Collapse
|
9
|
Clark VC, Strange C, Strnad P, Sanchez AJ, Kwo P, Pereira VM, van Hoek B, Barjaktarevic I, Corsico AG, Pons M, Goldklang M, Gray M, Kuhn B, Vargas HE, Vierling JM, Vuppalanchi R, Brantly M, Kappe N, Chang T, Schluep T, Zhou R, Hamilton J, San Martin J, Loomba R. Fazirsiran for Adults With Alpha-1 Antitrypsin Deficiency Liver Disease: A Phase 2 Placebo Controlled Trial (SEQUOIA). Gastroenterology 2024; 167:1008-1018.e5. [PMID: 38964420 DOI: 10.1053/j.gastro.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND & AIMS Homozygous ZZ alpha-1 antitrypsin (AAT) deficiency produces mutant AAT (Z-AAT) proteins in hepatocytes, leading to progressive liver fibrosis. We evaluated the safety and efficacy of an investigational RNA interference therapeutic, fazirsiran, that degrades Z-AAT messenger RNA, reducing deleterious protein synthesis. METHODS This ongoing, phase 2 study randomized 40 patients to subcutaneous placebo or fazirsiran 25, 100, or 200 mg. The primary endpoint was percent change in serum Z-AAT concentration from baseline to week 16. Patients with fibrosis on baseline liver biopsy received treatment on day 1, at week 4, and then every 12 weeks and had a second liver biopsy at or after weeks 48, 72, or 96. Patients without fibrosis received 2 doses on day 1 and at week 4. RESULTS At week 16, least-squares mean percent declines in serum Z-AAT concentration were -61%, -83%, and -94% with fazirsiran 25, 100, and 200 mg, respectively, vs placebo (all P < .0001). Efficacy was sustained through week 52. At postdose liver biopsy, fazirsiran reduced median liver Z-AAT concentration by 93% compared with an increase of 26% with placebo. All fazirsiran-treated patients had histologic reduction from baseline in hepatic globule burden. Portal inflammation improved in 5 of 12 and 0 of 8 patients with a baseline score of >0 in the fazirsiran and placebo groups, respectively. Histologic meta-analysis of histologic data in viral hepatitis score improved by >1 point in 7 of 14 and 3 of 8 patients with fibrosis of >F0 at baseline in the fazirsiran and placebo groups, respectively. No adverse events led to discontinuation, and pulmonary function tests remained stable. CONCLUSIONS Fazirsiran reduced serum and liver concentrations of Z-AAT in a dose-dependent manner and reduced hepatic globule burden. (ClinicalTrials.gov, Number NCT03945292).
Collapse
Affiliation(s)
- Virginia C Clark
- Division of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, Florida.
| | - Charlie Strange
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital, Rheinisch-Westfälische Technische Hochschule, Aachen University, Health Care Provider of the European Reference Network on Rare Liver Disorders, Aachen, Germany
| | - Antonio J Sanchez
- Division of Gastroenterology and Hepatology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Paul Kwo
- School of Medicine, Stanford University, Redwood City, California
| | - Vitor Magno Pereira
- Hospital Central do Funchal, Madeira, Portugal; Universidade da Madeira, Madeira, Portugal
| | - Bart van Hoek
- Department of Gastroenterology and Hepatology and LUMC Transplantation Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Angelo Guido Corsico
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy; Division of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Monica Pons
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, CIBERehd, Barcelona, Spain
| | | | - Meagan Gray
- Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brooks Kuhn
- Division of Pulmonary and Critical Care and Sleep Medicine, University of California, Davis, Sacramento, California; University of California, Davis, Alpha-1 Deficiency Clinic, University of California, Davis, Sacramento, California
| | - Hugo E Vargas
- Division of Gastroenterology and Hepatology, Mayo Clinic Arizona, Phoenix, Arizona
| | - John M Vierling
- Departments of Medicine and Surgery, Baylor College of Medicine, Houston, Texas
| | - Raj Vuppalanchi
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark Brantly
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida
| | - Naomi Kappe
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ting Chang
- Arrowhead Pharmaceuticals, Inc, Pasadena, California
| | | | - Rong Zhou
- Arrowhead Pharmaceuticals, Inc, Pasadena, California
| | | | | | - Rohit Loomba
- Division of Gastroenterology and Hepatology, University of California, University of California San Diego School of Medicine, La Jolla, California
| |
Collapse
|
10
|
Li Q, Dong M, Chen P. Advances in structural-guided modifications of siRNA. Bioorg Med Chem 2024; 110:117825. [PMID: 38954918 DOI: 10.1016/j.bmc.2024.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
To date, the US Food and Drug Administration (FDA) has approved six small interfering RNA (siRNA) drugs: patisiran, givosiran, lumasiran, inclisiran, vutrisiran, and nedosiran, serving as compelling evidence of the promising potential of RNA interference (RNAi) therapeutics. The successful implementation of siRNA therapeutics is improved through a combination of various chemical modifications and diverse delivery approaches. The utilization of chemically modified siRNA at specific sites on either the sense strand (SS) or antisense strand (AS) has the potential to enhance resistance to ribozyme degradation, improve stability and specificity, and prolong the efficacy of drugs. Herein, we provide comprehensive analyses concerning the correlation between chemical modifications and structure-guided siRNA design. Various modifications, such as 2'-modifications, 2',4'-dual modifications, non-canonical sugar modifications, and phosphonate mimics, are crucial for the activity of siRNA. We also emphasize the essential strategies for enhancing overhang stability, improving RISC loading efficacy and strand selection, reducing off-target effects, and discussing the future of targeted delivery.
Collapse
Affiliation(s)
- Qiang Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China; Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao, China.
| | - Mingxin Dong
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Pu Chen
- Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao, China; Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
11
|
Guo F, Li Y, Yu W, Fu Y, Zhang J, Cao H. Recent Progress of Small Interfering RNA Delivery on the Market and Clinical Stage. Mol Pharm 2024; 21:2081-2096. [PMID: 38630656 DOI: 10.1021/acs.molpharmaceut.3c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Small interfering RNAs (siRNAs) are promising therapeutic strategies, and five siRNA drugs have been approved by the Food and Drug Administration (FDA) and the European Commission (EC). This marks a significant milestone in the development of siRNA for clinical applications. The approved siRNA agents can effectively deliver siRNAs to the liver and treat liver-related diseases. Currently, researchers have developed diverse delivery platforms for transporting siRNAs to different tissues such as the brain, lung, muscle, and others, and a large number of siRNA drugs are undergoing clinical trials. Here, these delivery technologies and the latest advancements in clinical applications are summarized, and this Review provides a concise overview of the strategies employed for siRNA delivery to both hepatic and extrahepatic tissues.
Collapse
Affiliation(s)
- Fan Guo
- School of Pharmacy, Binzhou Medical University, Shandong 264003, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| | - Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Wenjun Yu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Yuanlei Fu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Jing Zhang
- School of Pharmacy, Binzhou Medical University, Shandong 264003, China
| | - Haiqiang Cao
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
12
|
Belgrad J, Fakih HH, Khvorova A. Nucleic Acid Therapeutics: Successes, Milestones, and Upcoming Innovation. Nucleic Acid Ther 2024; 34:52-72. [PMID: 38507678 PMCID: PMC11302270 DOI: 10.1089/nat.2023.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/19/2024] [Indexed: 03/22/2024] Open
Abstract
Nucleic acid-based therapies have become the third major drug class after small molecules and antibodies. The role of nucleic acid-based therapies has been strengthened by recent regulatory approvals and tremendous clinical success. In this review, we look at the major obstacles that have hindered the field, the historical milestones that have been achieved, and what is yet to be resolved and anticipated soon. This review provides a view of the key innovations that are expanding nucleic acid capabilities, setting the stage for the future of nucleic acid therapeutics.
Collapse
Affiliation(s)
- Jillian Belgrad
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Hassan H. Fakih
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
13
|
Zhang H, Vandesompele J, Braeckmans K, De Smedt SC, Remaut K. Nucleic acid degradation as barrier to gene delivery: a guide to understand and overcome nuclease activity. Chem Soc Rev 2024; 53:317-360. [PMID: 38073448 DOI: 10.1039/d3cs00194f] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Gene therapy is on its way to revolutionize the treatment of both inherited and acquired diseases, by transferring nucleic acids to correct a disease-causing gene in the target cells of patients. In the fight against infectious diseases, mRNA-based therapeutics have proven to be a viable strategy in the recent Covid-19 pandemic. Although a growing number of gene therapies have been approved, the success rate is limited when compared to the large number of preclinical and clinical trials that have been/are being performed. In this review, we highlight some of the hurdles which gene therapies encounter after administration into the human body, with a focus on nucleic acid degradation by nucleases that are extremely abundant in mammalian organs, biological fluids as well as in subcellular compartments. We overview the available strategies to reduce the biodegradation of gene therapeutics after administration, including chemical modifications of the nucleic acids, encapsulation into vectors and co-administration with nuclease inhibitors and discuss which strategies are applied for clinically approved nucleic acid therapeutics. In the final part, we discuss the currently available methods and techniques to qualify and quantify the integrity of nucleic acids, with their own strengths and limitations.
Collapse
Affiliation(s)
- Heyang Zhang
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
14
|
Gogate A, Belcourt J, Shah M, Wang AZ, Frankel A, Kolmel H, Chalon M, Stephen P, Kolli A, Tawfik SM, Jin J, Bahal R, Rasmussen TP, Manautou JE, Zhong XB. Targeting the Liver with Nucleic Acid Therapeutics for the Treatment of Systemic Diseases of Liver Origin. Pharmacol Rev 2023; 76:49-89. [PMID: 37696583 PMCID: PMC10753797 DOI: 10.1124/pharmrev.123.000815] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
Systemic diseases of liver origin (SDLO) are complex diseases in multiple organ systems, such as cardiovascular, musculoskeletal, endocrine, renal, respiratory, and sensory organ systems, caused by irregular liver metabolism and production of functional factors. Examples of such diseases discussed in this article include primary hyperoxaluria, familial hypercholesterolemia, acute hepatic porphyria, hereditary transthyretin amyloidosis, hemophilia, atherosclerotic cardiovascular diseases, α-1 antitrypsin deficiency-associated liver disease, and complement-mediated diseases. Nucleic acid therapeutics use nucleic acids and related compounds as therapeutic agents to alter gene expression for therapeutic purposes. The two most promising, fastest-growing classes of nucleic acid therapeutics are antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs). For each listed SDLO disease, this article discusses epidemiology, symptoms, genetic causes, current treatment options, and advantages and disadvantages of nucleic acid therapeutics by either ASO or siRNA drugs approved or under development. Furthermore, challenges and future perspectives on adverse drug reactions and toxicity of ASO and siRNA drugs for the treatment of SDLO diseases are also discussed. In summary, this review article will highlight the clinical advantages of nucleic acid therapeutics in targeting the liver for the treatment of SDLO diseases. SIGNIFICANCE STATEMENT: Systemic diseases of liver origin (SDLO) contain rare and common complex diseases caused by irregular functions of the liver. Nucleic acid therapeutics have shown promising clinical advantages to treat SDLO. This article aims to provide the most updated information on targeting the liver with antisense oligonucleotides and small interfering RNA drugs. The generated knowledge may stimulate further investigations in this growing field of new therapeutic entities for the treatment of SDLO, which currently have no or limited options for treatment.
Collapse
Affiliation(s)
- Anagha Gogate
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Jordyn Belcourt
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Milan Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Alicia Zongxun Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Alexis Frankel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Holly Kolmel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Matthew Chalon
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Prajith Stephen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Aarush Kolli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Sherouk M Tawfik
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Jing Jin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Raman Bahal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Theodore P Rasmussen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
15
|
Wu T, Hagiwara M, Gnass E, Barman H, Sasson D, Treem W, Ren K, Marins EG, Karki C, Malhi H. Liver disease progression in patients with alpha-1 antitrypsin deficiency and protease inhibitor ZZ genotype with or without lung disease. Aliment Pharmacol Ther 2023; 58:1075-1085. [PMID: 37718576 DOI: 10.1111/apt.17715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/09/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Alpha-1 antitrypsin deficiency (AATD) is caused by mutations in SERPINA1, which encodes alpha-1 antitrypsin, a protease inhibitor (Pi). Individuals with AATD and the homozygous Pi*ZZ genotype have variable risk of progressive liver disease but the influence of comorbid lung disease is poorly understood. AIMS To characterise patients with AATD Pi*ZZ and liver disease (AATD-LD-Pi*ZZ) with or without lung disease and describe liver disease-related clinical events longitudinally. METHODS This was an observational cohort study of patients in the Mayo Clinic Healthcare System (January 2000-September 2021). Patients were identified using diagnosis codes and natural language processing. Fibrosis stage (F0-F4) was assessed using a hierarchical approach at baseline (90 days before or after the index date) and follow-up. Clinical events associated with liver disease progression were assessed. RESULTS AATD-LD-Pi*ZZ patients with lung disease had a longer median time from AATD diagnosis to liver disease diagnosis versus those without lung disease (2.2 vs. 0.2 years, respectively). Compared to those without lung disease, patients with lung disease had a longer time to liver disease-related clinical events (8.5 years and not reached, respectively). AATD-LD-Pi*ZZ patients without lung disease were more likely to undergo liver transplantation compared with those with lung disease. CONCLUSION In patients with AATD and lung disease, there is a delay in the diagnosis of comorbid liver disease. Our findings suggest that liver disease may progress more rapidly in patients without comorbid lung disease.
Collapse
Affiliation(s)
- Tiffany Wu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - May Hagiwara
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | | | | | | | - William Treem
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | - Kaili Ren
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | - Ed G Marins
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | - Chitra Karki
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Kaushal A. Innate immune regulations and various siRNA modalities. Drug Deliv Transl Res 2023; 13:2704-2718. [PMID: 37219704 PMCID: PMC10204684 DOI: 10.1007/s13346-023-01361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 05/24/2023]
Abstract
RNAi therapeutics are designed to produce the precise silencing effects against the gene-linked diseases which were known to be untreatable in the past. The highly immunostimulatory nature of siRNA enhances the off-target effects and easily get attacked by nucleases; hence, their modulation is essentially required for accurate alterations to be made in the structures to intensify the pharmacological attributes. The phosphonate modifications act as shield against undue phosphorylation effects, and the molecular changes in ribose sugar lowers the level of immunogenicity and increases the binding efficacy. When bases are substituted with virtual/or pseudo bases, they eventually reduce the off-target effects. These changes modulate the nucleic acid sensors and control the hyper-activation of innate immune response. Various modification designs based on STC (universal pattern), ESC, ESC + (advanced patterns) and disubstrate have been explored to silence the gene expression of various diseases e.g., hepatitis, HIV, influenza, RSV, CNV and acute kidney injury. This review describes the various innovative siRNA therapeutics and their implications on the developed immune regulations to silence the disease effects. siRNA causes the silencing effects through RISC processing. The innate immune signalling is induced by both TLR-dependent and TLR-independent pathways. Modification chemistries are utilized to modulate the immune response.
Collapse
Affiliation(s)
- Anju Kaushal
- New Zealand Organization for Quality-Member, Auckland, New Zealand.
| |
Collapse
|
17
|
Ruiz M, Lacaille F, Schrader C, Pons M, Socha P, Krag A, Sturm E, Bouchecareilh M, Strnad P. Pediatric and Adult Liver Disease in Alpha-1 Antitrypsin Deficiency. Semin Liver Dis 2023; 43:258-266. [PMID: 37402396 DOI: 10.1055/a-2122-7674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) arises due to inherited variants in SERPINA1, the AAT gene that impairs the production or secretion of this hepatocellular protein and leads to a gain-of-function liver proteotoxicity. Homozygous Pi*Z pathogenic variant (Pi*ZZ genotype) is the leading cause of severe AATD. It manifests in 2 to 10% of carriers as neonatal cholestasis and 20 to 35% of adults as significant liver fibrosis. Both children and adults may develop an end-stage liver disease requiring liver transplantation. Heterozygous Pi*Z pathogenic variant (Pi*MZ genotype) constitutes an established disease modifier. Our review summarizes the natural history and management of subjects with both pediatric and adult AATD-associated liver disease. Current findings from a phase 2 clinical trial indicate that RNA silencing may constitute a viable therapeutic approach for adult AATD. In conclusion, AATD is an increasingly appreciated pediatric and adult liver disorder that is becoming an attractive target for modern pharmacologic strategies.
Collapse
Affiliation(s)
- Mathias Ruiz
- Hépatologie, Gastroentérologie et Nutrition Pédiatriques, Hôpital Femme Mère Enfant, Hospices civils de Lyon, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Lyon, France
| | - Florence Lacaille
- Service de Gastroentérologie-Nutrition Pédiatriques et Unité d'Hépatologie Pédiatrique Hôpital Universitaire Necker-Enfants Malades, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Paris, France
| | - Christina Schrader
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Monica Pons
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Piotr Socha
- The Children's Memorial Health Institute, Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, Al. Dzieci Polskich, Warszawa, Poland
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Ekkehard Sturm
- Pediatric Gastroenterology and Hepatology, University Children's Hospital Tübingen, Member Center of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Tübingen, Germany
| | | | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| |
Collapse
|
18
|
Strnad P, San Martin J. RNAi therapeutics for diseases involving protein aggregation: fazirsiran for alpha-1 antitrypsin deficiency-associated liver disease. Expert Opin Investig Drugs 2023; 32:571-581. [PMID: 37470509 DOI: 10.1080/13543784.2023.2239707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Therapeutic agents that prevent protein misfolding or promote protein clearance are being studied to treat proteotoxic diseases. Among them, alpha-1 antitrypsin deficiency (AATD) is caused by mutations in the alpha-1 antitrypsin (SERPINA1) gene. Fazirsiran is a small interfering RNA (siRNA) that is intended to address the underlying cause of liver disease associated with AATD through the RNA interference (RNAi) mechanism. AREAS COVERED This article describes the role of misfolded proteins and protein aggregates in disease and options for therapeutic approaches. The RNAi mechanism is discussed, along with how the siRNA therapeutic fazirsiran for the treatment of AATD was developed. We also describe the implications of siRNA therapeutics in extrahepatic diseases. EXPERT OPINION Using RNAi as a therapeutic approach is well suited to treat disease in conditions where an excess of a protein or the effect of an abnormal mutated protein causes disease. The results observed for the first few siRNA therapeutics that were approved or are in development provide an important promise for the development of future drugs that can address such conditions in a specific and targeted way. Current developments should enable the use of RNAi therapeutics outside the liver, where there are many more possible diseases to address.
Collapse
Affiliation(s)
- Pavel Strnad
- Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany
| | | |
Collapse
|
19
|
Rademacher L, Fromme M, Strnad P. Cleaning up alpha-1 antitrypsin deficiency related liver disease. Curr Opin Gastroenterol 2023; 39:163-168. [PMID: 37144533 DOI: 10.1097/mog.0000000000000919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW Alpha-1 antitrypsin deficiency (AATD) is one of the most common genetic disorders arising due to mutations in alpha-1 antitrypsin (AAT) gene affecting primarily the lung and the liver. This review summarizes the pathophysiology and clinical manifestation of different AATD genotypes and discusses the recent therapeutic developments. The focus is on the severe, rare homozygous Pi∗ZZ and the common heterozygous Pi∗MZ genotype. RECENT FINDINGS Pi∗ZZ individuals harbor an up to 20 times higher risk of liver fibrosis and cirrhosis than noncarriers and liver transplantation is currently the only available therapeutic option. AATD constitutes a proteotoxic disorder arising from hepatic AAT accumulation and the currently most promising data come from a phase 2, open-label trial of fazirsiran, a hepatocyte-targeted siRNA. Pi∗MZ subjects display an increased risk of advanced liver disease and at the latter stage, a faster deterioration than individuals without AAT mutation. SUMMARY Although the fazirsiran data offer a glimpse of hope to AATD patients, a consensus on appropriate study endpoint, a careful patient selection as well as monitoring of long-term safety will be essential for an approval.
Collapse
Affiliation(s)
- Laura Rademacher
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Healthcare Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | | | | |
Collapse
|
20
|
Iruzubieta P, Bataller R, Arias-Loste MT, Arrese M, Calleja JL, Castro-Narro G, Cusi K, Dillon JF, Martínez-Chantar ML, Mateo M, Pérez A, Rinella ME, Romero-Gómez M, Schattenberg JM, Zelber-Sagi S, Crespo J, Lazarus JV. Research Priorities for Precision Medicine in NAFLD. Clin Liver Dis 2023; 27:535-551. [PMID: 37024222 DOI: 10.1016/j.cld.2023.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
NAFLD is a multisystem condition and the leading cause of chronic liver disease globally. There are no approved NAFLD-specific dugs. To advance in the prevention and treatment of NAFLD, there is a clear need to better understand the pathophysiology and genetic and environmental risk factors, identify subphenotypes, and develop personalized and precision medicine. In this review, we discuss the main NAFLD research priorities, with a particular focus on socioeconomic factors, interindividual variations, limitations of current NAFLD clinical trials, multidisciplinary models of care, and novel approaches in the management of patients with NAFLD.
Collapse
Affiliation(s)
- Paula Iruzubieta
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Avenida Valdecilla 25, 39008, Santander, Spain
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, University of Pittsburgh Medical Center, PA, USA
| | - María Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Avenida Valdecilla 25, 39008, Santander, Spain
| | - Marco Arrese
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - José Luis Calleja
- Department of Gastroenterology and Hepatology, Puerta de Hierro University Hospital, Puerta de Hierro Health Research Institute (IDIPHIM), CIBERehd, Universidad Autonoma de Madrid, Calle Joaquín Rodrigo 1, 28222, Majadahonda, Spain
| | - Graciela Castro-Narro
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Department of Hepatology and Transplant, Hospital Médica Sur, Asociación Latinoamericana para el Estudio del Hígado (ALEH), Mexico City, Mexico
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - John F Dillon
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Miguel Mateo
- Pharmacy Organisation and Inspection, Government of Cantabria, Santander, Spain
| | - Antonio Pérez
- Endocrinology and Nutrition Department, Santa Creu I Sant Pau Hospital, Universitat Autónoma de Barcelona, IIB-Sant Pau and Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Mary E Rinella
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Manuel Romero-Gómez
- UCM Digestive Diseases and CIBERehd, Virgen Del Rocío University Hospital, Institute of Biomedicine of Seville, University of Seville, Seville, Spain
| | - Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Centre Mainz, Mainz, Germany
| | - Shira Zelber-Sagi
- University of Haifa, School of Public Health, Mount Carmel, Haifa, Israel; Department of Gastroenterology, Tel- Aviv Medical Centre, Tel- Aviv, Israel
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Avenida Valdecilla 25, 39008, Santander, Spain.
| | - Jeffrey V Lazarus
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Calle del Rossellón 171, ENT-2, Barcelona ES-08036, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; CUNY Graduate School of Public Health and Health Policy (CUNY SPH), New York, NY, USA.
| |
Collapse
|
21
|
Vaillant A. Bepirovirsen/GSK3389404: Antisense or TLR9 agonists? J Hepatol 2023; 78:e107-e108. [PMID: 36116715 DOI: 10.1016/j.jhep.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022]
|
22
|
Kumar V, Turnbull WB. Targeted delivery of oligonucleotides using multivalent protein-carbohydrate interactions. Chem Soc Rev 2023; 52:1273-1287. [PMID: 36723021 PMCID: PMC9940626 DOI: 10.1039/d2cs00788f] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 02/02/2023]
Abstract
Cell surface protein-carbohydrate interactions are essential for tissue-specific recognition and endocytosis of viruses, some bacteria and their toxins, and many glycoproteins. Often protein-carbohydrate interactions are multivalent - multiple copies of glycans bind simultaneously to multimeric receptors. Multivalency enhances both affinity and binding specificity, and is of interest for targeted delivery of drugs to specific cell types. The first such example of carbohydrate-mediated drug delivery to reach the clinic is Givosiran, a small interfering ribonucleic acid (siRNA) that is conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand. This ligand enables efficient uptake of the nucleic acid by the asialoglycoprotein receptor (ASGP-R) on hepatocytes. Synthetic multivalent ligands for ASGP-R were among the first 'cluster glycosides' developed at the birth of multivalent glycoscience around 40 years ago. In this review we trace the history of 'GalNAc targeting' from early academic studies to current pharmaceuticals and consider what other opportunities could follow the success of this delivery technology.
Collapse
Affiliation(s)
- Vajinder Kumar
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab, India.
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
23
|
Çerçi B, Uzay IA, Kara MK, Dinçer P. Clinical trials and promising preclinical applications of CRISPR/Cas gene editing. Life Sci 2022; 312:121204. [PMID: 36403643 DOI: 10.1016/j.lfs.2022.121204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Treatment of genetic disorders by genomic manipulation has been the unreachable goal of researchers for many decades. Although our understanding of the genetic basis of genetic diseases has advanced tremendously in the last few decades, the tools developed for genomic editing were not efficient and practical for their use in the clinical setting until now. The recent advancements in the research of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) systems offered an easy and efficient way to edit the genome and accelerated the research on their potential use in the treatment of genetic disorders. In this review, we summarize the clinical trials that evaluate the CRISPR/Cas systems for treating different genetic diseases and highlight promising preclinical research on CRISPR/Cas mediated treatment of a great diversity of genetic disorders. Ultimately, we discuss the future of CRISPR/Cas mediated genome editing in genetic diseases.
Collapse
Affiliation(s)
- Barış Çerçi
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey.
| | - Ihsan Alp Uzay
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | | | - Pervin Dinçer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
24
|
Yuen MF, Locarnini S, Lim TH, Strasser SI, Sievert W, Cheng W, Thompson AJ, Given BD, Schluep T, Hamilton J, Biermer M, Kalmeijer R, Beumont M, Lenz O, De Ridder F, Cloherty G, Ka-Ho Wong D, Schwabe C, Jackson K, Lai CL, Gish RG, Gane E. Combination treatments including the small-interfering RNA JNJ-3989 induce rapid and sometimes prolonged viral responses in patients with CHB. J Hepatol 2022; 77:1287-1298. [PMID: 35870702 DOI: 10.1016/j.jhep.2022.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS RNA interference therapy has been shown to reduce hepatitis B surface antigen (HBsAg) levels in preclinical models, which could confer functional cure in patients with chronic hepatitis B. This phase IIa trial (ClinicalTrials.gov Identifier: NCT03365947) assessed the safety and efficacy of the small-interfering RNA JNJ-73763989 (JNJ-3989) plus a nucleos(t)ide analogue (NA), with/without the capsid assembly modulator JNJ-56136379 (JNJ-6379) in patients with chronic hepatitis B. METHODS Treatment-naïve and NA-suppressed patients received 3 subcutaneous JNJ-3989 doses every week (QW; 100, 200, or 300 mg), 2 weeks (Q2W; 100 mg) or 4 weeks (Q4W; 25, 50, 100, 200, 300, or 400 mg), or JNJ-3989 Q4W (200 mg) plus oral JNJ-6379 250 mg daily for 12 weeks. Patients received NAs throughout. RESULTS Eighty-four patients were recruited. All treatments were well tolerated, with all 5 serious adverse events considered unrelated to study drugs. JNJ-3989 100 to 400 mg Q4W resulted in HBsAg reductions ≥1 log10 IU/ml from baseline in 39/40 (97.5%) patients at the nadir. All patients receiving the triple combination (n = 12) had HBsAg reductions ≥1 log10 IU/ml from baseline at the nadir. HBsAg reductions were similar for HBeAg-positive (n = 21) and HBeAg-negative (n = 47) patients in all JNJ-3989 Q4W treatment arms, including the triple combination (n = 68). Smaller HBsAg reductions were seen with 25 mg (n = 8) and 50 mg (n = 8) than with 100 to 400 mg (n = 40). Shorter dosing intervals (QW [n = 12] and Q2W [n = 4]) did not improve response vs. Q4W dosing. HBsAg reductions ≥1 log10 IU/ml from baseline persisted in 38% of patients 336 days after the last JNJ-3989 dose. CONCLUSIONS JNJ-3989 plus an NA, with/without JNJ-6379, was well tolerated and resulted in HBsAg reductions up to 336 days after the last JNJ-3989 Q4W dose. CLINICAL TRIAL NUMBER NCT03365947. LAY SUMMARY Hepatitis B virus affects people's livers and produces particles called hepatitis B surface antigen (HBsAg) that damage a person's liver and can help the virus infect a person for a long time, known as chronic hepatitis B (CHB). In this study, a new treatment called JNJ-3989 was assessed (in combination with normal treatment known as nucleos(t)ide analogues), for its safety and effectiveness in reducing the number of HBsAg particles in people with CHB. The results of this study showed that treatment with JNJ-3989 could be safe for people with CHB, lowered their HBsAg levels, and kept HBsAg levels lowered for 336 days in 38% of patients after receiving their last dose of JNJ-3989.
Collapse
Affiliation(s)
- Man-Fung Yuen
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Stephen Locarnini
- Victorian Infectious Diseases Reference Laboratory, Victoria, Australia
| | - Tien Huey Lim
- Department of Gastroenterology, Middlemore Hospital, Auckland, New Zealand
| | - Simone I Strasser
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | - William Sievert
- Department of Gastroenterology, Monash Health and Monash University, Melbourne, Australia
| | - Wendy Cheng
- Department of Gastroenterology and Hepatology, Royal Perth Hospital, Perth, Australia; Linear Clinical Research, Perth, Australia
| | - Alex J Thompson
- Department of Gastroenterology, St. Vincent's Hospital, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | - Danny Ka-Ho Wong
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - Kathy Jackson
- Victorian Infectious Diseases Reference Laboratory, Victoria, Australia
| | - Ching Lung Lai
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - Edward Gane
- Auckland Clinical Studies, Auckland, New Zealand
| |
Collapse
|
25
|
Vaillant A. Oligonucleotide-Based Therapies for Chronic HBV Infection: A Primer on Biochemistry, Mechanisms and Antiviral Effects. Viruses 2022; 14:v14092052. [PMID: 36146858 PMCID: PMC9502277 DOI: 10.3390/v14092052] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
Three types of oligonucleotide-based medicines are under clinical development for the treatment of chronic HBV infection. Antisense oligonucleotides (ASOs) and synthetic interfering RNA (siRNA) are designed to degrade HBV mRNA, and nucleic acid polymers (NAPs) stop the assembly and secretion of HBV subviral particles. Extensive clinical development of ASOs and siRNA for a variety of liver diseases has established a solid understanding of their pharmacodynamics, accumulation in different tissue types in the liver, pharmacological effects, off-target effects and how chemical modifications and delivery approaches affect these parameters. These effects are highly conserved for all ASO and siRNA used in human studies to date. The clinical assessment of several ASO and siRNA compounds in chronic HBV infection in recent years is complicated by the different delivery approaches used. Moreover, these assessments have not considered the large clinical database of ASO/siRNA function in other liver diseases and known off target effects in other viral infections. The goal of this review is to summarize the current understanding of ASO/siRNA/NAP pharmacology and integrate these concepts into current clinical results for these compounds in the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| |
Collapse
|
26
|
Trudzinski FC, Presotto MA, Buck E, Herth FJF, Ries M. Orphan drug development in alpha-1 antitypsin deficiency. Sci Rep 2022; 12:15497. [PMID: 36109566 PMCID: PMC9477815 DOI: 10.1038/s41598-022-19707-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD, OMIM #613490) is a rare metabolic disorder affecting lungs and liver. The purpose of this study is to assess the impact of the US orphan drug act on AATD by providing a quantitative clinical-regulatory insight into the status of FDA orphan drug approvals and designations for compounds intended to treat AATD. This is across-sectional analysis of the FDA database for orphan drug designations. Primary endpoint: orphan drug approvals. Secondary endpoint: orphan drug designations by the FDA. Close of database was 16 July 2021. STROBE criteria were respected. Primary outcome: one compound, alpha-1-proteinase inhibitor (human) was approved as an orphan drug in 1987 with market exclusivity until 1994. Secondary outcome: sixteen compounds received FDA orphan drug designation including protein, anti-inflammatory, mucolytic, gene, or cell therapy. Drug development activities in AATD were comparable to other rare conditions and led to the FDA-approval of one compound, based on a relatively simple technological platform. The current unmet medical need to be addressed are extrapulmonary manifestations, in this case the AATD-associated liver disease. Orphan drug development is actually focusing on (1) diversified recombinant AAT production platforms, and (2) innovative gene therapies, which may encompass a more holistic therapeutic approach.
Collapse
|
27
|
Abstract
The highly specific induction of RNA interference-mediated gene knockdown, based on the direct application of small interfering RNAs (siRNAs), opens novel avenues towards innovative therapies. Two decades after the discovery of the RNA interference mechanism, the first siRNA drugs received approval for clinical use by the US Food and Drug Administration and the European Medicines Agency between 2018 and 2022. These are mainly based on an siRNA conjugation with a targeting moiety for liver hepatocytes, N-acetylgalactosamine, and cover the treatment of acute hepatic porphyria, transthyretin-mediated amyloidosis, hypercholesterolemia, and primary hyperoxaluria type 1. Still, the development of siRNA therapeutics faces several challenges and issues, including the definition of optimal siRNAs in terms of target, sequence, and chemical modifications, siRNA delivery to its intended site of action, and the absence of unspecific off-target effects. Further siRNA drugs are in clinical studies, based on different delivery systems and covering a wide range of different pathologies including metabolic diseases, hematology, infectious diseases, oncology, ocular diseases, and others. This article reviews the knowledge on siRNA design and chemical modification, as well as issues related to siRNA delivery that may be addressed using different delivery systems. Details on the mode of action and clinical status of the various siRNA therapeutics are provided, before giving an outlook on issues regarding the future of siRNA drugs and on their potential as one emerging standard modality in pharmacotherapy. Notably, this may also cover otherwise un-druggable diseases, the definition of non-coding RNAs as targets, and novel concepts of personalized and combination treatment regimens.
Collapse
Affiliation(s)
- Maik Friedrich
- Faculty of Leipzig, Institute of Clinical Immunology, Max-Bürger-Forschungszentrum (MBFZ), University of Leipzig, Leipzig, Germany.,Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany.
| |
Collapse
|
28
|
Novel Gene-Correction-Based Therapeutic Modalities for Monogenic Liver Disorders. Bioengineering (Basel) 2022; 9:bioengineering9080392. [PMID: 36004917 PMCID: PMC9404740 DOI: 10.3390/bioengineering9080392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The majority of monogenic liver diseases are autosomal recessive disorders, with few being sex-related or co-dominant. Although orthotopic liver transplantation (LT) is currently the sole therapeutic option for end-stage patients, such an invasive surgical approach is severely restricted by the lack of donors and post-transplant complications, mainly associated with life-long immunosuppressive regimens. Therefore, the last decade has witnessed efforts for innovative cellular or gene-based therapeutic strategies. Gene therapy is a promising approach for treatment of many hereditary disorders, such as monogenic inborn errors. The liver is an organ characterized by unique features, making it an attractive target for in vivo and ex vivo gene transfer. The current genetic approaches for hereditary liver diseases are mediated by viral or non-viral vectors, with promising results generated by gene-editing tools, such as CRISPR-Cas9 technology. Despite massive progress in experimental gene-correction technologies, limitations in validated approaches for monogenic liver disorders have encouraged researchers to refine promising gene therapy protocols. Herein, we highlighted the most common monogenetic liver disorders, followed by proposed genetic engineering approaches, offered as promising therapeutic modalities.
Collapse
|
29
|
Strnad P, Mandorfer M, Choudhury G, Griffiths W, Trautwein C, Loomba R, Schluep T, Chang T, Yi M, Given BD, Hamilton JC, San Martin J, Teckman JH. Fazirsiran for Liver Disease Associated with Alpha 1-Antitrypsin Deficiency. N Engl J Med 2022; 387:514-524. [PMID: 35748699 DOI: 10.1056/nejmoa2205416] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alpha1-antitrypsin (AAT) deficiency results from carriage of a homozygous SERPINA1 "Z" mutation (proteinase inhibitor [PI] ZZ). The Z allele produces a mutant AAT protein called Z-AAT, which accumulates in hepatocytes and can lead to progressive liver disease and fibrosis. This open-label, phase 2 trial investigated the safety and efficacy of fazirsiran, an RNA interference therapeutic, in patients with liver disease associated with AAT deficiency. METHODS We assigned adults with the PI ZZ genotype and liver fibrosis to receive fazirsiran at a dose of 200 mg (cohorts 1 [4 patients] and 2 [8 patients]) or 100 mg (cohort 1b [4 patients]) subcutaneously on day 1 and week 4 and then every 12 weeks. The primary end point was the change from baseline to week 24 (cohorts 1 and 1b) or week 48 (cohort 2) in liver Z-AAT concentrations, which were measured by means of liquid chromatography-mass spectrometry. RESULTS All the patients had reduced accumulation of Z-AAT in the liver (median reduction, 83% at week 24 or 48). The nadir in serum was a reduction of approximately 90%, and treatment was also associated with a reduction in histologic globule burden (from a mean score of 7.4 [scores range from 0 to 9, with higher scores indicating a greater globule burden] at baseline to 2.3 at week 24 or 48). All cohorts had reductions in liver enzyme concentrations. Fibrosis regression was observed in 7 of 15 patients and fibrosis progression in 2 of 15 patients after 24 or 48 weeks. There were no adverse events leading to trial or drug discontinuation. Four serious adverse events (viral myocarditis, diverticulitis, dyspnea, and vestibular neuronitis) resolved. CONCLUSIONS In this small trial, fazirsiran was associated with a strong reduction of Z-AAT concentrations in the serum and liver and concurrent improvements in liver enzyme concentrations. (Funded by Arrowhead Pharmaceuticals; AROAAT-2002 ClinicalTrials.gov number, NCT03946449.).
Collapse
Affiliation(s)
- Pavel Strnad
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Mattias Mandorfer
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Gourab Choudhury
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - William Griffiths
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Christian Trautwein
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Rohit Loomba
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Thomas Schluep
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Ting Chang
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Min Yi
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Bruce D Given
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - James C Hamilton
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Javier San Martin
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Jeffery H Teckman
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| |
Collapse
|
30
|
Abstract
Liver disease in homozygous ZZ alpha-1 antitrypsin (AAT) deficiency occurs due to the accumulation of large quantities of AAT mutant Z protein polymers in the liver. The mutant Z protein folds improperly during biogenesis and is retained within the hepatocytes rather than appropriately secreted. These intracellular polymers trigger an injury cascade, which leads to liver injury. However, the clinical liver disease is highly variable and not all patients with this same homozygous ZZ genotype develop liver disease. Evidence suggests that genetic determinants of intracellular protein processing, among other unidentified genetic and environmental factors, likely play a role in liver disease susceptibility. Advancements made in development of new treatment strategies using siRNA technology, and other novel approaches, are promising, and multiple human liver disease trials are underway.
Collapse
Affiliation(s)
- Anandini Suri
- Division of Pediatric Gastroenetrology, Hepatology and Nutrition, Department of Pediatrics, Saint Louis University School of Medicine, SSM Health Cardinal Glennon Children's Hospital, 1465 S Grand Boulevard, St. Louis, MO 63104, USA.
| | - Dhiren Patel
- Division of Pediatric Gastroenetrology, Hepatology and Nutrition, Department of Pediatrics, Saint Louis University School of Medicine, SSM Health Cardinal Glennon Children's Hospital, 1465 S Grand Boulevard, St. Louis, MO 63104, USA
| | - Jeffrey H Teckman
- Division of Pediatric Gastroenetrology, Hepatology and Nutrition, Department of Pediatrics, Saint Louis University School of Medicine, SSM Health Cardinal Glennon Children's Hospital, 1465 S Grand Boulevard, St. Louis, MO 63104, USA
| |
Collapse
|
31
|
Fan Y, Yang Z. Inhaled siRNA Formulations for Respiratory Diseases: From Basic Research to Clinical Application. Pharmaceutics 2022; 14:1193. [PMID: 35745766 PMCID: PMC9227582 DOI: 10.3390/pharmaceutics14061193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022] Open
Abstract
The development of siRNA technology has provided new opportunities for gene-specific inhibition and knockdown, as well as new ideas for the treatment of disease. Four siRNA drugs have already been approved for marketing. However, the instability of siRNA in vivo makes systemic delivery ineffective. Inhaled siRNA formulations can deliver drugs directly to the lung, showing great potential for treating respiratory diseases. The clinical applications of inhaled siRNA formulations still face challenges because effective delivery of siRNA to the lung requires overcoming the pulmonary and cellular barriers. This paper reviews the research progress for siRNA inhalation formulations for the treatment of various respiratory diseases and summarizes the chemical structural modifications and the various delivery systems for siRNA. Finally, we conclude the latest clinical application research for inhaled siRNA formulations and discuss the potential difficulty in efficient clinical application.
Collapse
Affiliation(s)
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, 224 Waterloo Rd., Kowloon Tong, Hong Kong, China;
| |
Collapse
|
32
|
Sasso J, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, Zhou QA. The Progress and Promise of RNA Medicine─An Arsenal of Targeted Treatments. J Med Chem 2022; 65:6975-7015. [PMID: 35533054 PMCID: PMC9115888 DOI: 10.1021/acs.jmedchem.2c00024] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 02/08/2023]
Abstract
In the past decade, there has been a shift in research, clinical development, and commercial activity to exploit the many physiological roles of RNA for use in medicine. With the rapid success in the development of lipid-RNA nanoparticles for mRNA vaccines against COVID-19 and with several approved RNA-based drugs, RNA has catapulted to the forefront of drug research. With diverse functions beyond the role of mRNA in producing antigens or therapeutic proteins, many classes of RNA serve regulatory roles in cells and tissues. These RNAs have potential as new therapeutics, with RNA itself serving as either a drug or a target. Here, based on the CAS Content Collection, we provide a landscape view of the current state and outline trends in RNA research in medicine across time, geography, therapeutic pipelines, chemical modifications, and delivery mechanisms.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Barbara J. B. Ambrose
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Rumiana Tenchov
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Ruchira S. Datta
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Matthew T. Basel
- College
of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Robert K. DeLong
- Nanotechnology
Innovation Center Kansas State, Kansas State
University, Manhattan, Kansas 66506, United States
| | - Qiongqiong Angela Zhou
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
33
|
Packer MS, Chowdhary V, Lung G, Cheng LI, Aratyn-Schaus Y, Leboeuf D, Smith S, Shah A, Chen D, Zieger M, Cafferty BJ, Yan B, Ciaramella G, Gregoire FM, Mueller C. Evaluation of cytosine base editing and adenine base editing as a potential treatment for alpha-1 antitrypsin deficiency. Mol Ther 2022; 30:1396-1406. [PMID: 35121111 PMCID: PMC9077367 DOI: 10.1016/j.ymthe.2022.01.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/06/2021] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a rare autosomal codominant disease caused by mutations within the SERPINA1 gene. The most prevalent variant in patients is PiZ SERPINA1, containing a single G > A transition mutation. PiZ alpha-1 antitrypsin (AAT) is prone to misfolding, leading to the accumulation of toxic aggregates within hepatocytes. In addition, the abnormally low level of AAT secreted into circulation provides insufficient inhibition of neutrophil elastase within the lungs, eventually causing emphysema. Cytosine and adenine base editors enable the programmable conversion of C⋅G to T⋅A and A⋅T to G⋅C base pairs, respectively. In this study, two different base editing approaches were developed: use of a cytosine base editor to install a compensatory mutation (p.Met374Ile) and use of an adenine base editor to mediate the correction of the pathogenic PiZ mutation. After treatment with lipid nanoparticles formulated with base editing reagents, PiZ-transgenic mice exhibited durable editing of SERPINA1 in the liver, increased serum AAT, and improved liver histology. These results indicate that base editing has the potential to address both lung and liver disease in AATD.
Collapse
Affiliation(s)
| | - Vivek Chowdhary
- Gene Therapy Department, UMass Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Genesis Lung
- Beam Therapeutics, 238 Main Street, Cambridge, MA 02142, USA
| | - Lo-I Cheng
- Beam Therapeutics, 238 Main Street, Cambridge, MA 02142, USA
| | | | | | - Sarah Smith
- Beam Therapeutics, 238 Main Street, Cambridge, MA 02142, USA
| | - Aalok Shah
- Beam Therapeutics, 238 Main Street, Cambridge, MA 02142, USA
| | - Delai Chen
- Beam Therapeutics, 238 Main Street, Cambridge, MA 02142, USA
| | - Marina Zieger
- Gene Therapy Department, UMass Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | - Bo Yan
- Beam Therapeutics, 238 Main Street, Cambridge, MA 02142, USA
| | | | | | - Christian Mueller
- Gene Therapy Department, UMass Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| |
Collapse
|
34
|
The Relationship between Plasma Alpha-1-Antitrypsin Polymers and Lung or Liver Function in ZZ Alpha-1-Antitrypsin-Deficient Patients. Biomolecules 2022; 12:biom12030380. [PMID: 35327571 PMCID: PMC8945708 DOI: 10.3390/biom12030380] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Alpha-1-Antitrypsin (AAT) is a protein of the SERPINA1 gene. A single amino acid mutation (Lys342Glu) results in an expression of misfolded Z-AAT protein, which has a high propensity to intra- and extra-cellular polymerization. Here, we asked whether levels of circulating Z-AAT polymers are associated with the severity of lung disease, liver disease, or both. We obtained cross sectional data from the Dutch part of the Alpha1 International Registry of 52 ZZ-AAT patients who performed a pulmonary function test and donated a blood sample on the same day. From the Alpha-1 Liver Aachen Registry, we obtained a cohort of 40 ZZ-AAT patients with available data on their liver function. The levels of plasma Z-AAT polymers were determined using a LG96 monoclonal antibody-based sandwich ELISA. In a Dutch cohort, the median plasma level of Z-AAT polymers of patients diagnosed for pulmonary disease was 947.5 µg/mL (733.6−1218 µg/mL (95% CI)), which did not correlate with airflow obstruction or gas transfer value. In the Alpha-1 liver patient cohort, the median polymer level was 1245.9 µg/mL (753−2034 µg/mL (95% CI)), which correlated with plasma gamma-glutamyl transferase (GGT, rs = 0.57, p = 0.001), glutamate dehydrogenase (GLDH, rs = 0.48, p = 0.002) and triglycerides (TG, rs = 0.48, p = 0.0046). A Wilcoxon rank test showed higher Z-AAT polymer values for the liver over the lung group (p < 0.0001). These correlations support a possible link between plasma Z-AAT polymers and the liver function.
Collapse
|
35
|
A Review of Alpha-1 Antitrypsin Binding Partners for Immune Regulation and Potential Therapeutic Application. Int J Mol Sci 2022; 23:ijms23052441. [PMID: 35269582 PMCID: PMC8910375 DOI: 10.3390/ijms23052441] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Alpha-1 antitrypsin (AAT) is the canonical serine protease inhibitor of neutrophil-derived proteases and can modulate innate immune mechanisms through its anti-inflammatory activities mediated by a broad spectrum of protein, cytokine, and cell surface interactions. AAT contains a reactive methionine residue that is critical for its protease-specific binding capacity, whereby AAT entraps the protease on cleavage of its reactive centre loop, neutralises its activity by key changes in its tertiary structure, and permits removal of the AAT-protease complex from the circulation. Recently, however, the immunomodulatory role of AAT has come increasingly to the fore with several prominent studies focused on lipid or protein-protein interactions that are predominantly mediated through electrostatic, glycan, or hydrophobic potential binding sites. The aim of this review was to investigate the spectrum of AAT molecular interactions, with newer studies supporting a potential therapeutic paradigm for AAT augmentation therapy in disorders in which a chronic immune response is strongly linked.
Collapse
|
36
|
Hakim A, Moll M, Qiao D, Liu J, Lasky‐Su JA, Silverman EK, Vilarinho S, Jiang ZG, Hobbs BD, Cho MH. Heterozygosity of the Alpha 1-Antitrypsin Pi*Z Allele and Risk of Liver Disease. Hepatol Commun 2021; 5:1348-1361. [PMID: 34430780 PMCID: PMC8369947 DOI: 10.1002/hep4.1718] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/29/2021] [Accepted: 03/01/2021] [Indexed: 02/04/2023] Open
Abstract
The serpin family A member 1 (SERPINA1) Z allele is present in approximately one in 25 individuals of European ancestry. Z allele homozygosity (Pi*ZZ) is the most common cause of alpha 1-antitrypsin deficiency and is a proven risk factor for cirrhosis. We examined whether heterozygous Z allele (Pi*Z) carriers in United Kingdom (UK) Biobank, a population-based cohort, are at increased risk of liver disease. We replicated findings in Massachusetts General Brigham Biobank, a hospital-based cohort. We also examined variants associated with liver disease and assessed for gene-gene and gene-environment interactions. In UK Biobank, we identified 1,493 cases of cirrhosis, 12,603 Z allele heterozygotes, and 129 Z allele homozygotes among 312,671 unrelated white British participants. Heterozygous carriage of the Z allele was associated with cirrhosis compared to noncarriage (odds ratio [OR], 1.53; P = 1.1×10-04); homozygosity of the Z allele also increased the risk of cirrhosis (OR, 11.8; P = 1.8 × 10-09). The OR for cirrhosis of the Z allele was comparable to that of well-established genetic variants, including patatin-like phospholipase domain containing 3 (PNPLA3) I148M (OR, 1.48; P = 1.1 × 10-22) and transmembrane 6 superfamily member 2 (TM6SF2) E167K (OR, 1.34; P = 2.6 × 10-06). In heterozygotes compared to noncarriers, the Z allele was associated with higher alanine aminotransferase (ALT; P = = 4.6 × 10-46), aspartate aminotransferase (AST; P = 2.2 × 10-27), alkaline phosphatase (P = 3.3 × 10-43), gamma-glutamyltransferase (P = 1.2 × 10-05), and total bilirubin (P = 6.4 × 10-06); Z allele homozygotes had even greater elevations in liver biochemistries. Body mass index (BMI) amplified the association of the Z allele for ALT (P interaction = 0.021) and AST (P interaction = 0.0040), suggesting a gene-environment interaction. Finally, we demonstrated genetic interactions between variants in PNPLA3, TM6SF2, and hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13); there was no evidence of epistasis between the Z allele and these variants. Conclusion: SERPINA1 Z allele heterozygosity is an important risk factor for liver disease; this risk is amplified by increasing BMI.
Collapse
Affiliation(s)
- Aaron Hakim
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMAUSA
- Division of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterBostonMAUSA
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMAUSA
| | - Matthew Moll
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMAUSA
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalBostonMAUSA
| | - Dandi Qiao
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMAUSA
| | - Jiangyuan Liu
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMAUSA
| | - Jessica A. Lasky‐Su
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMAUSA
| | - Edwin K. Silverman
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMAUSA
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalBostonMAUSA
| | - Silvia Vilarinho
- Department of Internal MedicineSection of Digestive DiseasesYale School of MedicineNew HavenCTUSA
- Department of PathologyYale School of MedicineNew HavenCTUSA
| | - Z. Gordon Jiang
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMAUSA
- Division of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterBostonMAUSA
| | - Brian D. Hobbs
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMAUSA
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalBostonMAUSA
| | - Michael H. Cho
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMAUSA
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMAUSA
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalBostonMAUSA
| |
Collapse
|
37
|
Remih K, Amzou S, Strnad P. Alpha1-antitrypsin deficiency: New therapies on the horizon. Curr Opin Pharmacol 2021; 59:149-156. [PMID: 34256305 DOI: 10.1016/j.coph.2021.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/07/2021] [Indexed: 10/20/2022]
Abstract
Alpha1-antitrypsin deficiency (AATD) is caused by mutations in the SERPINA1 gene, coding for alpha1-antitrypsin (AAT). AAT is synthesised mainly in the liver and is released into bloodstream to protect tissues (particularly lung) with its antiprotease activity. The homozygous Pi∗Z mutation (Pi∗ZZ genotype) is the predominant cause of severe AATD. It interferes with AAT secretion thereby leading to AAT accumulation in the liver and lack of AAT in the circulation and the lung. Accordingly, Pi∗ZZ individuals are strongly predisposed to lung and liver injury. The former is treated by a weekly AAT augmentation therapy, but not medicinal products exist for the liver. Our review summarises the current approaches silencing AAT production, improving protein folding and secretion or promoting AAT degradation.
Collapse
Affiliation(s)
- Katharina Remih
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Samira Amzou
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany; Coordinating Centre for Alpha1-Antitrypsin Deficiency-related Liver Disease of the European Reference Network (ERN) "Rare Liver" and The European Association for the Study of the Liver (EASL) Registry Group "Alpha1-Liver", Germany.
| |
Collapse
|
38
|
Franciosi AN, Fraughen D, Carroll TP, McElvaney NG. Alpha-1 antitrypsin deficiency: clarifying the role of the putative protective threshold. Eur Respir J 2021; 59:13993003.01410-2021. [PMID: 34172471 DOI: 10.1183/13993003.01410-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 11/05/2022]
Abstract
AATD is the only readily identifiable monogenic cause of COPD. To date the only condition-specific treatment for AATD-associated COPD is weekly administration of intravenous purified pooled human AAT (IV-AAT). Uncertainties regarding which AATD genotypes should benefit from IV-AAT persist. IV-AAT is costly and involves weekly administration of a plasma product. Much of the risk stratification has been centred around the long-accepted hypothesis of a "putative protective threshold" of 11 µM (0.57 g·L-1) in serum. This hypothesis has become central to the paradigm of AATD care, though its derivation and accuracy for defining risk of disease remain unclear.We review the literature and examine the association between the 11 µM threshold and clinical outcomes to provide context and insight into the issues surrounding this topic.We found no data which demonstrates an increased risk of COPD dependent on the 11 µM threshold. Moreover, an abundance of recent clinical data examining this threshold refutes the hypothesis. Conversely, the use of 11 µM as a treatment target in appropriate ZZ individuals is supported by clinical evidence, although more refined dosing regimens are being explored.Continued use of the 11 µM threshold as a determinant of clinical risk is questionable, perpetuates inappropriate AAT-augmentation practices, may drive increased healthcare expenditure and should not be used as an indicator for commencing treatment.Genotype represents a more proven indicator of risk, with ZZ and rare ZZ-equivalent genotypes independently associated with COPD. New and better risk assessment models are needed to provide individuals diagnosed with AATD with reliable risk estimation and optimised treatment goals.
Collapse
Affiliation(s)
- Alessandro N Franciosi
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.,University of British Columbia, Vancouver, BC, Canada.,Share first authorship.,Performed the literature review and jointly prepared the manuscript
| | - Daniel Fraughen
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Medicine, Beaumont Hospital, Dublin, Ireland.,Share first authorship.,Performed the literature review and jointly prepared the manuscript
| | - Tomás P Carroll
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland .,Alpha-1 Foundation Ireland, Royal College of Surgeons in Ireland, Dublin, Ireland.,Provided data from the Irish National Targeted Detection Programme, edited the manuscript, and is the corresponding author
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Medicine, Beaumont Hospital, Dublin, Ireland.,Senior author and edited the final manuscript
| |
Collapse
|
39
|
Vaillant A. HBsAg, Subviral Particles, and Their Clearance in Establishing a Functional Cure of Chronic Hepatitis B Virus Infection. ACS Infect Dis 2021; 7:1351-1368. [PMID: 33302622 DOI: 10.1021/acsinfecdis.0c00638] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In diverse viral infections, the production of excess viral particles containing only viral glycoproteins (subviral particles or SVP) is commonly observed and is a commonly evolved mechanism for immune evasion. In hepatitis B virus (HBV) infection, spherical particles contain the hepatitis B surface antigen, outnumber infectious virus 10 000-100 000 to 1, and have diverse inhibitory effects on the innate and adaptive immune response, playing a major role in the chronic nature of HBV infection. The current goal of therapies in development for HBV infection is a clinical outcome called functional cure, which signals a persistent and effective immune control of the infection. Although removal of spherical SVP (and the HBsAg they carry) is an important milestone in achieving functional cure, this outcome is rarely achieved with current therapies due to distinct mechanisms for assembly, secretion, and persistence of SVP, which are poorly targeted by direct acting antivirals or immunotherapies. In this Review, the current understanding of the distinct mechanisms involved in the production and persistence of spherical SVP in chronic HBV infection and their immunoinhibitory activity will be reviewed as well as current therapies in development with the goal of clearing spherical SVP and achieving functional cure.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, Quebec H8Y 3E6, Canada
| |
Collapse
|
40
|
Bianchera A, Alomari E, Bruno S. Augmentation therapy with alpha 1-antitrypsin: present and future of production, formulation, and delivery. Curr Med Chem 2021; 29:385-410. [PMID: 34036902 DOI: 10.2174/0929867328666210525161942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
Alpha 1-antitrypsin is one of the first protein therapeutics introduced on the market - more than 30 years ago - and, to date, it is indicated only for the treatment of the severe forms of a genetic condition known as alpha-1 antitrypsin deficiency. The only approved preparations are derived from plasma, posing potential problems associated with its limited supply and high processing costs. Moreover, augmentation therapy with alpha 1-antitrypsin is still limited to intravenous infusions, a cumbersome regimen for patients. Here, we review the recent literature on its possible future developments, focusing on i) the recombinant alternatives to the plasma-derived protein, ii) novel formulations, and iii) novel administration routes. Regulatory issues and the still unclear noncanonical functions of alpha 1-antitrypsin - possibly associated with the glycosylation pattern found only in the plasma-derived protein - have hindered the introduction of new products. However, potentially new therapeutic indications other than the treatment of alpha-1 antitrypsin deficiency might open the way to new sources and new formulations.
Collapse
Affiliation(s)
- Annalisa Bianchera
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| | - Esraa Alomari
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| |
Collapse
|
41
|
Zaydman AM, Strokova EL, Pahomova NY, Gusev AF, Mikhaylovskiy MV, Shevchenko AI, Zaidman MN, Shilo AR, Subbotin VM. Etiopathogenesis of adolescent idiopathic scoliosis: Review of the literature and new epigenetic hypothesis on altered neural crest cells migration in early embryogenesis as the key event. Med Hypotheses 2021; 151:110585. [PMID: 33932710 DOI: 10.1016/j.mehy.2021.110585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/28/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) affects 2-3% of children. Numerous hypotheses on etiologic/causal factors of AIS were investigated, but all failed to identify therapeutic targets and hence failed to offer a cure. Therefore, currently there are only two options to minimize morbidity of the patients suffering AIS: bracing and spinal surgery. From the beginning of 1960th, spinal surgery, both fusion and rod placement, became the standard of management for progressive adolescent idiopathic spine deformity. However, spinal surgery is often associated with complications. These circumstances motivate AIS scientific community to continue the search for new etiologic and causal factors of AIS. While the role of the genetic factors in AIS pathogenesis was investigated intensively and universally recognized, these studies failed to nominate mutation of a particular gene or genes combination responsible for AIS development. More recently epigenetic factors were suggested to play causal role in AIS pathogenesis. Sharing this new approach, we investigated scoliotic vertebral growth plates removed during vertebral fusion (anterior surgery) for AIS correction. In recent publications we showed that cells from the convex side of human scoliotic deformities undergo normal chondrogenic/osteogenic differentiation, while cells from the concave side acquire a neuronal phenotype. Based on these facts we hypothesized that altered neural crest cell migration in early embryogenesis can be the etiological factor of AIS. In particular, we suggested that neural crest cells failed to migrate through the anterior half of somites and became deposited in sclerotome, which in turn produced chondrogenic/osteogenic-insufficient vertebral growth plates. To test this hypothesis we conducted experiments on chicken embryos with arrest neural crest cell migration by inhibiting expression of Paired-box 3 (Pax3) gene, a known enhancer and promoter of neural crest cells migration and differentiation. The results showed that chicken embryos treated with Pax3 siRNA (microinjection into the neural tube, 44 h post-fertilization) progressively developed scoliotic deformity during maturation. Therefore, this analysis suggests that although adolescent idiopathic scoliosis manifests in children around puberty, the real onset of the disease is of epigenetic nature and takes place in early embryogenesis and involves altered neural crest cells migration. If these results confirmed and further elaborated, the hypothesis may shed new light on the etiology and pathogenesis of AIS.
Collapse
Affiliation(s)
- Alla M Zaydman
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Elena L Strokova
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Nataliya Y Pahomova
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Arkady F Gusev
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Mikhail V Mikhaylovskiy
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Alexander I Shevchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences", Novosibirsk, Russia
| | | | - Andrey R Shilo
- Novosibirsk Zoo named after R.A. Shilo, Novosibirsk, Russia
| | - Vladimir M Subbotin
- Arrowhead Pharmaceuticals Inc., Madison WI, USA; University of Pittsburgh, Pittsburgh PA, USA; University of Wisconsin, Madison WI, USA.
| |
Collapse
|
42
|
Liu R, Zuo R, Hudalla GA. Harnessing molecular recognition for localized drug delivery. Adv Drug Deliv Rev 2021; 170:238-260. [PMID: 33484737 PMCID: PMC8274479 DOI: 10.1016/j.addr.2021.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
A grand challenge in drug delivery is providing the right dose, at the right anatomic location, for the right duration of time to maximize therapeutic efficacy while minimizing off-target toxicity and other deleterious side-effects. Two general modalities are receiving broad attention for localized drug delivery. In the first, referred to as "targeted accumulation", drugs or drug carriers are engineered to have targeting moieties that promote their accumulation at a specific tissue site from circulation. In the second, referred to as "local anchoring", drugs or drug carriers are inserted directly into the tissue site of interest where they persist for a specified duration of time. This review surveys recent advances in harnessing molecular recognition between proteins, peptides, nucleic acids, lipids, and carbohydrates to mediate targeted accumulation and local anchoring of drugs and drug carriers.
Collapse
Affiliation(s)
- Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ran Zuo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
43
|
Pye A, Khan S, Whitehouse T, Turner AM. Personalizing liver targeted treatments and transplantation for patients with alpha-1 antitrypsin deficiency. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2021.1862648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Anita Pye
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sheeba Khan
- University Hospital Birmingham NHS FT, Birmingham, UK
| | | | - Alice M Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
44
|
Lechowicz U, Rudzinski S, Jezela-Stanek A, Janciauskiene S, Chorostowska-Wynimko J. Post-Translational Modifications of Circulating Alpha-1-Antitrypsin Protein. Int J Mol Sci 2020; 21:E9187. [PMID: 33276468 PMCID: PMC7731214 DOI: 10.3390/ijms21239187] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Alpha-1-antitrypsin (AAT), an acute-phase protein encoded by the SERPINA1 gene, is a member of the serine protease inhibitor (SERPIN) superfamily. Its primary function is to protect tissues from enzymes released during inflammation, such as neutrophil elastase and proteinase 3. In addition to its antiprotease activity, AAT interacts with numerous other substances and has various functions, mainly arising from the conformational flexibility of normal variants of AAT. Therefore, AAT has diverse biological functions and plays a role in various pathophysiological processes. This review discusses major molecular forms of AAT, including complex, cleaved, glycosylated, oxidized, and S-nitrosylated forms, in terms of their origin and function.
Collapse
Affiliation(s)
- Urszula Lechowicz
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| | - Stefan Rudzinski
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| | - Sabina Janciauskiene
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
- Member of the German Center for Lung Research DZL, Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover BREATH, 30625 Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| |
Collapse
|
45
|
Implications of a Change of Paradigm in Alpha1 Antitrypsin Deficiency Augmentation Therapy: From Biochemical to Clinical Efficacy. J Clin Med 2020; 9:jcm9082526. [PMID: 32764414 PMCID: PMC7465600 DOI: 10.3390/jcm9082526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
Ever since the first studies, restoring proteinase imbalance in the lung has traditionally been considered as the main goal of alpha1 antitrypsin (AAT) replacement therapy. This strategy was therefore based on ensuring biochemical efficacy, identifying a protection threshold, and evaluating different dosage regimens. Subsequently, the publication of the results of the main clinical trials showing a decrease in the progression of pulmonary emphysema has led to a debate over a possible change in the main objective of treatment, from biochemical efficacy to clinical efficacy in terms of lung densitometry deterioration prevention. This new paradigm has produced a series controversies and unanswered questions which face clinicians managing AAT deficiency. In this review, the concepts that led to the approval of AAT replacement therapy are reviewed and discussed under a new prism of achieving clinical efficacy, with the reduction of lung deterioration as the main objective. Here, we propose the use of current knowledge and clinical experience to face existing challenges in different clinical scenarios, in order to help clinicians in decision-making, increase interest in the disease, and stimulate research in this field.
Collapse
|