1
|
Udutha S, Taglang C, Batsios G, Gillespie AM, Tran M, Hoeve JT, Graeber TG, Viswanath P. Combined inhibition of de novo glutathione and nucleotide biosynthesis is synthetically lethal in glioblastoma. Cell Rep 2025; 44:115596. [PMID: 40253695 DOI: 10.1016/j.celrep.2025.115596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/15/2024] [Accepted: 03/30/2025] [Indexed: 04/22/2025] Open
Abstract
Understanding the mechanisms by which oncogenic events alter metabolism will help identify metabolic weaknesses that can be targeted for therapy. Telomerase reverse transcriptase (TERT) is essential for telomere maintenance in most cancers. Here, we show that TERT acts via the transcription factor forkhead box O1 (FOXO1) to upregulate glutamate-cysteine ligase (GCLC), the rate-limiting enzyme for de novo biosynthesis of glutathione (GSH, reduced) in multiple cancer models, including glioblastoma (GBM). Genetic ablation of GCLC or pharmacological inhibition using buthionine sulfoximine (BSO) reduces GSH synthesis from [U-13C]-glutamine in GBMs. However, GCLC inhibition drives de novo pyrimidine nucleotide biosynthesis by upregulating the glutamine-utilizing enzymes glutaminase (GLS) and carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotatase (CAD) in an MYC-driven manner. Combining BSO with the glutamine antagonist JHU-083 is synthetically lethal in vitro and in vivo and significantly extends the survival of mice bearing intracranial GBM xenografts. Collectively, our studies advance our understanding of oncogene-induced metabolic vulnerabilities in GBMs.
Collapse
Affiliation(s)
- Suresh Udutha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Céline Taglang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Meryssa Tran
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Johanna Ten Hoeve
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, Los Angeles, CA, USA; UCLA Metabolomics Center, Los Angeles, CA, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, Los Angeles, CA, USA; UCLA Metabolomics Center, Los Angeles, CA, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Rodella G, Ma Z, Ucakar B, Joudiou N, Préat V, Gallez B, Malfanti A. Repurposing Chemotherapeutics in a Hyaluronic Acid-conjugate Combination Treatment Approach for the Local Immunomodulation of the Glioblastoma Microenvironment. Int J Pharm 2025; 676:125612. [PMID: 40252866 DOI: 10.1016/j.ijpharm.2025.125612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
The immunosuppressive tumor immune microenvironment (TIME) renders glioblastoma (GBM) refractory to current chemo-immunotherapeutics. We sought to explore a novel approach for local GBM-associated TIME immunomodulation based on a synergistic combination of the repurposed chemotherapeutic drugs doxorubicin (DOX), which acts to induce immunogenic cell death (ICD) and gemcitabine (GEM), which depletes immunosuppressive myeloid-derived suppressor cells (MDSCs). We conjugated DOX and GEM to hyaluronic acid (HA) to improve efficacy, given this polymer's ability to target CD44 which are overexpressed on cancer cells. The HA-DOX and HA-GEM polymer-drug conjugates provided synergistic cytotoxic effects and maintained ICD-related properties in GBM cells compared to a combination of free drugs. HA-DOX and HA-GEM also reverted the immunosuppressive GBM-associated TIME in orthotopic GL261 tumor-bearing mice by selectively depleting MDSCs and reprogramming M2-like macrophages towards a pro-inflammatory M1-like state, resulting in controlled tumor growth. Local HA-DOX and HA-GEM delivery also increased median survival and controlled tumor growth in an immune refractory SB28-GBM orthotopic mouse GBM model. These findings highlight the potential of repurposing clinically applicable chemotherapeutics in the context of polymer-drug combination treatments for novel immunomodulation strategies in unresectable GBM, which may open new avenues for developing innovative therapies.
Collapse
Affiliation(s)
- Giulia Rodella
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium; UCLouvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance, Avenue Mounier 73 B1.73.08, 1200 Brussels, Belgium
| | - Zhanjun Ma
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium
| | - Bernard Ucakar
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium
| | - Nicolas Joudiou
- UCLouvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance, Avenue Mounier 73 B1.73.08, 1200 Brussels, Belgium
| | - Véronique Préat
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium
| | - Bernard Gallez
- UCLouvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance, Avenue Mounier 73 B1.73.08, 1200 Brussels, Belgium.
| | - Alessio Malfanti
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium; Departement of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, 35131 Padova, Italy.
| |
Collapse
|
3
|
Espinoza FI, Tankov S, Chliate S, Pereira Couto J, Marinari E, Vermeil T, Lecoultre M, El Harane N, Dutoit V, Migliorini D, Walker PR. Targeting HIF-2α in glioblastoma reshapes the immune infiltrate and enhances response to immune checkpoint blockade. Cell Mol Life Sci 2025; 82:119. [PMID: 40095115 PMCID: PMC11914682 DOI: 10.1007/s00018-025-05642-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/31/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor with dismal clinical prognosis and resistance to current therapies. GBM progression is facilitated by the tumor microenvironment (TME), with an immune infiltrate dominated by tumor-associated microglia/macrophages (TAMs) and regulatory T cells (Tregs). The TME is also characterized by hypoxia and the expression of hypoxia-inducible factors (HIFs), with HIF-2α emerging as a potential regulator of tumor progression. However, its role in GBM immunosuppression remains unknown. Here, we investigate HIF-2α and the use of the HIF-2α inhibitor PT2385 to modulate the TME in the immunocompetent GL261 mouse GBM model. PT2385 administration in vivo decreased tumor volume and prolonged survival of tumor-bearing mice, without affecting GL261 viability in vitro. Notably, HIF-2α inhibition alleviated the immunosuppressive TME and synergized with immune checkpoint blockade (ICB) using αPD-1 and αTIM-3 antibodies to promote long-term survival. Comprehensive analysis of the immune infiltrate through single-cell RNA sequencing and flow cytometry revealed that combining PT2385 with ICB reduced numbers of pro-tumoral macrophages and Tregs while increasing numbers of microglia, with a corresponding transcriptional modulation towards an anti-tumoral profile of these TAMs. In vitro, deletion of HIF-2α in microglia impeded their polarization towards a pro-tumoral M2-like profile, and its inhibition impaired Treg migration. Our results show that targeting HIF-2α can switch an immunosuppressive TME towards one that favors a robust and sustained response to ICB based immunotherapy. These findings establish that clinically relevant HIF-2α inhibitors should be explored not only in malignancies with defects in the HIF-2α axis, but also in those exhibiting an immunosuppressive TME that limits immunotherapy responsiveness.
Collapse
Affiliation(s)
- Felipe I Espinoza
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Stoyan Tankov
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Sylvie Chliate
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Joana Pereira Couto
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Eliana Marinari
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Thibaud Vermeil
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Marc Lecoultre
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Nadia El Harane
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Valérie Dutoit
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Denis Migliorini
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Paul R Walker
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland.
| |
Collapse
|
4
|
Chen R, Zou J, Zhong X, Li J, Kang R, Tang D. HMGB1 in the interplay between autophagy and apoptosis in cancer. Cancer Lett 2024; 581:216494. [PMID: 38007142 DOI: 10.1016/j.canlet.2023.216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023]
Abstract
Lysosome-mediated autophagy and caspase-dependent apoptosis are dynamic processes that maintain cellular homeostasis, ensuring cell health and functionality. The intricate interplay and reciprocal regulation between autophagy and apoptosis are implicated in various human diseases, including cancer. High-mobility group box 1 (HMGB1), a nonhistone chromosomal protein, plays a pivotal role in coordinating autophagy and apoptosis levels during tumor initiation, progression, and therapy. The regulation of autophagy machinery and the apoptosis pathway by HMGB1 is influenced by various factors, including the protein's subcellular localization, oxidative state, and interactions with binding partners. In this narrative review, we provide a comprehensive overview of the structure and function of HMGB1, with a specific focus on the interplay between autophagic degradation and apoptotic death in tumorigenesis and cancer therapy. Gaining a comprehensive understanding of the significance of HMGB1 as a biomarker and its potential as a therapeutic target in tumor diseases is crucial for advancing our knowledge of cell survival and cell death.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ju Zou
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiao Zhong
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jie Li
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Begagić E, Pugonja R, Bečulić H, Čeliković A, Tandir Lihić L, Kadić Vukas S, Čejvan L, Skomorac R, Selimović E, Jaganjac B, Juković-Bihorac F, Jusić A, Pojskić M. Molecular Targeted Therapies in Glioblastoma Multiforme: A Systematic Overview of Global Trends and Findings. Brain Sci 2023; 13:1602. [PMID: 38002561 PMCID: PMC10669565 DOI: 10.3390/brainsci13111602] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
This systematic review assesses current molecular targeted therapies for glioblastoma multiforme (GBM), a challenging condition with limited treatment options. Using PRISMA methodology, 166 eligible studies, involving 2526 patients (61.49% male, 38.51% female, with a male-to-female ratio of 1.59/1), were analyzed. In laboratory studies, 52.52% primarily used human glioblastoma cell cultures (HCC), and 43.17% employed animal samples (mainly mice). Clinical participants ranged from 18 to 100 years, with 60.2% using combined therapies and 39.8% monotherapies. Mechanistic categories included Protein Kinase Phosphorylation (41.6%), Cell Cycle-Related Mechanisms (18.1%), Microenvironmental Targets (19.9%), Immunological Targets (4.2%), and Other Mechanisms (16.3%). Key molecular targets included Epidermal Growth Factor Receptor (EGFR) (10.8%), Mammalian Target of Rapamycin (mTOR) (7.2%), Vascular Endothelial Growth Factor (VEGF) (6.6%), and Mitogen-Activated Protein Kinase (MEK) (5.4%). This review provides a comprehensive assessment of molecular therapies for GBM, highlighting their varied efficacy in clinical and laboratory settings, ultimately impacting overall and progression-free survival in GBM management.
Collapse
Affiliation(s)
- Emir Begagić
- Department of General Medicine, School of Medicine, Unversity of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
| | - Ragib Pugonja
- Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
- Department of General Medicine, Primary Health Care Center, Nikole Šubića Zrinjskog bb., 72260 Busovača, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of General Medicine, Primary Health Care Center, Nikole Šubića Zrinjskog bb., 72260 Busovača, Bosnia and Herzegovina
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Amila Čeliković
- Department of General Medicine, School of Medicine, Unversity of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
| | - Lejla Tandir Lihić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Samra Kadić Vukas
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Lejla Čejvan
- Department of General Medicine, School of Medicine, Unversity of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
| | - Rasim Skomorac
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
- Department of Surgery, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Edin Selimović
- Department of Surgery, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Belma Jaganjac
- Department of Histology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (B.J.)
| | - Fatima Juković-Bihorac
- Department of Histology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (B.J.)
- Department of Pathology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
- Department of Pathology, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Aldin Jusić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany
| |
Collapse
|
6
|
Dong S, Liu X, Bi Y, Wang Y, Antony A, Lee D, Huntoon K, Jeong S, Ma Y, Li X, Deng W, Schrank BR, Grippin AJ, Ha J, Kang M, Chang M, Zhao Y, Sun R, Sun X, Yang J, Chen J, Tang SK, Lee LJ, Lee AS, Teng L, Wang S, Teng L, Kim BYS, Yang Z, Jiang W. Adaptive design of mRNA-loaded extracellular vesicles for targeted immunotherapy of cancer. Nat Commun 2023; 14:6610. [PMID: 37857647 PMCID: PMC10587228 DOI: 10.1038/s41467-023-42365-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
The recent success of mRNA therapeutics against pathogenic infections has increased interest in their use for other human diseases including cancer. However, the precise delivery of the genetic cargo to cells and tissues of interest remains challenging. Here, we show an adaptive strategy that enables the docking of different targeting ligands onto the surface of mRNA-loaded small extracellular vesicles (sEVs). This is achieved by using a microfluidic electroporation approach in which a combination of nano- and milli-second pulses produces large amounts of IFN-γ mRNA-loaded sEVs with CD64 overexpressed on their surface. The CD64 molecule serves as an adaptor to dock targeting ligands, such as anti-CD71 and anti-programmed cell death-ligand 1 (PD-L1) antibodies. The resulting immunogenic sEVs (imsEV) preferentially target glioblastoma cells and generate potent antitumour activities in vivo, including against tumours intrinsically resistant to immunotherapy. Together, these results provide an adaptive approach to engineering mRNA-loaded sEVs with targeting functionality and pave the way for their adoption in cancer immunotherapy applications.
Collapse
Affiliation(s)
- Shiyan Dong
- School of Life Science, Jilin University, Changchun, 130012, China
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xuan Liu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Chemical Engineering, Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Ye Bi
- Practice Training Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Abin Antony
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seongdong Jeong
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yifan Ma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Xuefeng Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weiye Deng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Benjamin R Schrank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Adam J Grippin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - JongHoon Ha
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Minjeong Kang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mengyu Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yarong Zhao
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Rongze Sun
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Xiangshi Sun
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Jie Yang
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Jiayi Chen
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Sarah K Tang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - L James Lee
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Spot Biosystems Ltd., Palo Alto, CA, 94305, USA
| | - Andrew S Lee
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518055, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Lirong Teng
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Shengnian Wang
- Chemical Engineering, Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA.
| | - Lesheng Teng
- School of Life Science, Jilin University, Changchun, 130012, China.
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Zhaogang Yang
- School of Life Science, Jilin University, Changchun, 130012, China.
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Maeoka R, Ouji Y, Nakazawa T, Matsuda R, Morimoto T, Yokoyama S, Yamada S, Nishimura F, Nakagawa I, Park YS, Yoshikawa M, Nakase H. Local administration of shikonin improved the overall survival in orthotopic murine glioblastoma models with temozolomide resistance. Biomed Pharmacother 2023; 166:115296. [PMID: 37557011 DOI: 10.1016/j.biopha.2023.115296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Glioblastoma is a type of intracranial malignancy. Shikonin, a Chinese traditional medicine, has been shown to have anti-tumor efficacy toward human glioblastoma cells in vitro. However, shikonin cannot easily cross the blood-brain barrier. To address this issue, we evaluated the anti-tumor effects of direct intracranial infusion of shikonin in in vivo orthotopic syngeneic murine glioblastoma models using C57BL/6 mice. MATERIALS AND METHODS The cytotoxic effects of shikonin against murine glioblastoma cells, SB28 and CT-2A, were reported resistance to temozolomide, were evaluated using an allophycocyanin-conjugated annexin V and propidium iodide assay with flow cytometry. Impedance-based real-time cell analysis (RTCA) was used to analyze the inhibitory effects of shikonin on growth and proliferation. To evaluate the anti-tumor activity of shikonin in vivo, we used orthotopic syngeneic murine glioblastoma models with SB28 and CT-2A cells. RESULTS In flow cytometry-based cytotoxic assays, shikonin induced apoptosis. RTCA indicated that shikonin decreased the cell index of murine glioblastoma cells, SB28 and CT-2A, in a dose-dependent manner (p < 0.0001 for both cell lines), while temozolomide did not (p = 0.91 and 0.82, respectively). In murine glioblastoma models, SB28 and CT-2A, direct intracranial infusion of shikonin, as a local chemotherapy, improved the overall survival of mice in a dose-dependent manner compared with control groups (p < 0.0001 and p = 0.02, respectively). While temozolomide did not (p = 0.48 and 0.52, respectively). CONCLUSIONS The direct intracranial infusion of shikonin has potential as a local therapy for patients with glioblastoma.
Collapse
Affiliation(s)
- Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan.
| | - Yukiteru Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan; Grandsoul Research Institute for Immunology, Inc., Uda, Nara, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Shohei Yokoyama
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Masahide Yoshikawa
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
8
|
Pu Y, Zhou G, Zhao K, Chen Y, Shen S. Immunotherapy for Recurrent Glioma-From Bench to Bedside. Cancers (Basel) 2023; 15:3421. [PMID: 37444531 DOI: 10.3390/cancers15133421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is the most aggressive malignant tumor of the central nervous system, and most patients suffer from a recurrence. Unfortunately, recurrent glioma often becomes resistant to established chemotherapy and radiotherapy treatments. Immunotherapy, a rapidly developing anti-tumor therapy, has shown a potential value in treating recurrent glioma. Multiple immune strategies have been explored. The most-used ones are immune checkpoint blockade (ICB) antibodies, which are barely effective in monotherapy. However, when combined with other immunotherapy, especially with anti-angiogenesis antibodies, ICB has shown encouraging efficacy and enhanced anti-tumor immune response. Oncolytic viruses and CAR-T therapies have shown promising results in recurrent glioma through multiple mechanisms. Vaccination strategies and immune-cell-based immunotherapies are promising in some subgroups of patients, and multiple new tumor antigenic targets have been discovered. In this review, we discuss current applicable immunotherapies and related mechanisms for recurrent glioma, focusing on multiple preclinical models and clinical trials in the last 5 years. Through reviewing the current combination of immune strategies, we would like to provide substantive thoughts for further novel therapeutic regimes treating recurrent glioma.
Collapse
Affiliation(s)
- Yi Pu
- Laboratory of Mitochondria and Metabolism, Department of Burn and Reconstructive Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guanyu Zhou
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kejia Zhao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaohui Chen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shensi Shen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Muzyka L, Goff NK, Choudhary N, Koltz MT. Systematic Review of Molecular Targeted Therapies for Adult-Type Diffuse Glioma: An Analysis of Clinical and Laboratory Studies. Int J Mol Sci 2023; 24:10456. [PMID: 37445633 DOI: 10.3390/ijms241310456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Gliomas are the most common brain tumor in adults, and molecularly targeted therapies to treat gliomas are becoming a frequent topic of investigation. The current state of molecular targeted therapy research for adult-type diffuse gliomas has yet to be characterized, particularly following the 2021 WHO guideline changes for classifying gliomas using molecular subtypes. This systematic review sought to characterize the current state of molecular target therapy research for adult-type diffuse glioma to better inform scientific progress and guide next steps in this field of study. A systematic review was conducted in accordance with PRISMA guidelines. Studies meeting inclusion criteria were queried for study design, subject (patients, human cell lines, mice, etc.), type of tumor studied, molecular target, respective molecular pathway, and details pertaining to the molecular targeted therapy-namely the modality, dose, and duration of treatment. A total of 350 studies met the inclusion criteria. A total of 52 of these were clinical studies, 190 were laboratory studies investigating existing molecular therapies, and 108 were laboratory studies investigating new molecular targets. Further, a total of 119 ongoing clinical trials are also underway, per a detailed query on clinicaltrials.gov. GBM was the predominant tumor studied in both ongoing and published clinical studies as well as in laboratory analyses. A few studies mentioned IDH-mutant astrocytomas or oligodendrogliomas. The most common molecular targets in published clinical studies and clinical trials were protein kinase pathways, followed by microenvironmental targets, immunotherapy, and cell cycle/apoptosis pathways. The most common molecular targets in laboratory studies were also protein kinase pathways; however, cell cycle/apoptosis pathways were the next most frequent target, followed by microenvironmental targets, then immunotherapy pathways, with the wnt/β-catenin pathway arising in the cohort of novel targets. In this systematic review, we examined the current evidence on molecular targeted therapy for adult-type diffuse glioma and discussed its implications for clinical practice and future research. Ultimately, published research falls broadly into three categories-clinical studies, laboratory testing of existing therapies, and laboratory identification of novel targets-and heavily centers on GBM rather than IDH-mutant astrocytoma or oligodendroglioma. Ongoing clinical trials are numerous in this area of research as well and follow a similar pattern in tumor type and targeted pathways as published clinical studies. The most common molecular targets in all study types were protein kinase pathways. Microenvironmental targets were more numerous in clinical studies, whereas cell cycle/apoptosis were more numerous in laboratory studies. Immunotherapy pathways are on the rise in all study types, and the wnt/β-catenin pathway is increasingly identified as a novel target.
Collapse
Affiliation(s)
- Logan Muzyka
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nicolas K Goff
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nikita Choudhary
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Michael T Koltz
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| |
Collapse
|
10
|
Challenges and Opportunities for Immunotherapeutic Intervention against Myeloid Immunosuppression in Glioblastoma. J Clin Med 2022; 11:jcm11041069. [PMID: 35207340 PMCID: PMC8880446 DOI: 10.3390/jcm11041069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common and deadly brain cancer, exemplifies the paradigm that cancers grow with help from an immunosuppressive tumor microenvironment (TME). In general, TME includes a large contribution from various myeloid lineage-derived cell types, including (in the brain) altered pathogenic microglia as well as monocyte-macrophages (Macs), myeloid-derived suppressor cells (MDSC) and dendritic cell (DC) populations. Each can have protective roles, but has, by definition, been coopted by the tumor in patients with progressive disease. However, evidence demonstrates that myeloid immunosuppressive activities can be reversed in different ways, leading to enthusiasm for this therapeutic approach, both alone and in combination with potentially synergistic immunotherapeutic and other strategies. Here, we review the current understanding of myeloid cell immunosuppression of anti-tumor responses as well as potential targets, challenges, and developing means to reverse immunosuppression with various therapeutics and their status. Targets include myeloid cell colony stimulating factors (CSFs), insulin-like growth factor 1 (IGF1), several cytokines and chemokines, as well as CD40 activation and COX2 inhibition. Approaches in clinical development include antibodies, antisense RNA-based drugs, cell-based combinations, polarizing cytokines, and utilizing Macs as a platform for Chimeric Antigen Receptors (CAR)-based tumor targeting, like with CAR-T cells. To date, promising clinical results have been reported with several of these approaches.
Collapse
|