1
|
Fang Y, Tan C, Zheng Z, Yang J, Tang J, Guo R, Silli EK, Chen Z, Chen J, Ge R, Liu Y, Wen X, Liang J, Zhu Y, Jin Y, Li Q, Wang Y. The function of microRNA related to cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Biochem Pharmacol 2025; 236:116849. [PMID: 40056941 DOI: 10.1016/j.bcp.2025.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignant tumor characterized by a poor prognosis. A prominent feature of PDAC is the rich and dense stroma present in the tumor microenvironment (TME), which significantly hinders drug penetration. Cancer-associated fibroblasts (CAFs), activated fibroblasts originating from various cell sources, including pancreatic stellate cells (PSCs) and mesenchymal stem cells (MSCs), play a critical role in PDAC progression and TME formation. MicroRNAs (miRNAs) are small, single-stranded non-coding RNA molecules that are frequently involved in tumorigenesis and progression, exhibiting either oncolytic or oncogenic activity. Increasing evidence suggests that aberrant expression of miRNAs can mediate interactions between cancer cells and CAFs, thereby providing novel therapeutic targets for PDAC treatment. In this review, we will focus on the potential roles of miRNAs that target CAFs or CAFs-derived exosomes in PDAC progression, highlighting the feasibility of therapeutic strategies aimed at restoring aberrantly expressed miRNAs associated with CAFs, offering new pathways for the clinical management of PDAC.
Collapse
Affiliation(s)
- Yaohui Fang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chunlu Tan
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenjiang Zheng
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianchen Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jiali Tang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ruizhe Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Epiphane K Silli
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zhe Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jia Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ruyu Ge
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yuquan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiuqi Wen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jingdan Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yunfei Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yutong Jin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Qian Li
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ying Wang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
2
|
Wang H, Ciccocioppo R, Terai S, Shoeibi S, Carnevale G, De Marchi G, Tsuchiya A, Ishii S, Tonouchi T, Furuyama K, Yang Y, Mito M, Abe H, Di Tinco R, Cardinale V. Targeted animal models for preclinical assessment of cellular and gene therapies in pancreatic and liver diseases: regulatory and practical insights. Cytotherapy 2025; 27:259-278. [PMID: 39755978 PMCID: PMC12068232 DOI: 10.1016/j.jcyt.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 01/07/2025]
Abstract
Cellular and gene therapy (CGT) products have emerged as a popular approach in regenerative medicine, showing promise in treating various pancreatic and liver diseases in numerous clinical trials. Before these therapies can be tested in human clinical trials, it is essential to evaluate their safety and efficacy in relevant animal models. Such preclinical testing is often required to obtain regulatory approval for investigational new drugs. However, there is a lack of detailed guidance on selecting appropriate animal models for CGT therapies targeting specific pancreatic and liver conditions, such as pancreatitis and chronic liver diseases. In this review, the gastrointestinal committee for the International Society for Cell and Gene Therapy provides a summary of current recommendations for animal species and disease model selection, as outlined by the US Food and Drug Administration, with references to EU EMA and Japan PMDA. We discuss a range of small and large animal models, as well as humanized models, that are suitable for preclinical testing of CGT products aimed at treating pancreatic and liver diseases. For each model, we cover the associated pathophysiology, commonly used metrics for assessing disease status, the pros and limitations of the models, and the relevance of these models to human conditions. We also summarize the use and application of humanized mouse and other animal models in evaluating the safety and efficacy of CGT products. This review aims to provide comprehensive guidance for selecting appropriate animal species and models to help bridge the gap between the preclinical research and clinical trials using CGT therapies for specific pancreatic and liver diseases.
Collapse
Affiliation(s)
- Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph H Johnson Veteran Medical Center, Charleston, South Carolina, USA.
| | - Rachele Ciccocioppo
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sara Shoeibi
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia De Marchi
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Soichi Ishii
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takafumi Tonouchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kaito Furuyama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuan Yang
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Mito
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Vincenzo Cardinale
- Department of Translational and Precision Medicine, University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Layton E, Goldsworthy S, Yang E, Ong WY, Sutherland TE, Bancroft AJ, Thompson S, Au VB, Griffiths-Jones S, Grencis RK, Fairhurst AM, Roberts IS. An optimised faecal microRNA sequencing pipeline reveals fibrosis in Trichuris muris infection. Nat Commun 2025; 16:1589. [PMID: 39939598 PMCID: PMC11822213 DOI: 10.1038/s41467-025-56698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
The intestine is a site of diverse functions including digestion, nutrient absorption, immune surveillance, and microbial symbiosis. Intestinal microRNAs (miRNAs) are detectable in faeces and regulate barrier integrity, host-microbe interactions and the immune response, potentially offering valuable non-invasive tools to study intestinal health. However, current experimental methods are suboptimal and heterogeneity in study design limits the utility of faecal miRNA data. Here, we develop an optimised protocol for faecal miRNA detection and report a reproducible murine faecal miRNA profile in healthy mice. We use this pipeline to study faecal miRNAs during infection with the gastrointestinal helminth, Trichuris muris, revealing roles for miRNAs in fibrosis and wound healing. Intestinal fibrosis was confirmed in vivo using Hyperion® imaging mass cytometry, demonstrating the efficacy of this approach. Further applications of this optimised pipeline to study host-microbe interactions and intestinal disease will enable the generation of hypotheses and therapeutic strategies in diverse contexts.
Collapse
Affiliation(s)
- Emma Layton
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sian Goldsworthy
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - EnJun Yang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wei Yee Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Microbiology and Immunology Department, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tara E Sutherland
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Allison J Bancroft
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Seona Thompson
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Veonice Bijin Au
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sam Griffiths-Jones
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard K Grencis
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- The Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| | - Anna-Marie Fairhurst
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.
| | - Ian S Roberts
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Nazir A, Uwishema O, Shariff S, Franco WXG, El Masri N, Ayele ND, Munyangaju I, Alzain FE, Wojtara M. A Thorough Navigation of miRNA's Blueprint in Crafting Cardiovascular Fate. Health Sci Rep 2024; 7:e70136. [PMID: 39502130 PMCID: PMC11535861 DOI: 10.1002/hsr2.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Cardiovascular diseases contribute significantly to global morbidity and mortality. MicroRNAs are crucial in the development and progression of these diseases by regulating gene expression in various cells and tissues. Their roles in conditions like atherosclerosis, heart failure, myocardial infarction, and arrhythmias have been widely researched. Materials and Methods The present study provides an overview of existing evidence regarding miRNAs' role in cardiovascular disease pathogenesis. Furthermore, the study examines current state-of-the-art technologies used in the study of miRNAs in cardiovascular disease. As a final point, we examine how miRNAs may serve as disease biomarkers, therapeutic targets, and prognostic indicators. Results In cardiology, microRNAs, small noncoding RNA molecules, are crucial to the posttranscriptional regulation of genes. Their role in regulating cardiac cell differentiation and maturation is critical during the development of the heart. They maintain the cardiac function of an adult heart by contributing to its electrical and contractile activity. By binding to messenger RNA molecules, they inhibit protein translation or degrade mRNA. Several cardiovascular diseases are associated with dysregulation of miRNAs, including arrhythmias, hypertension, atherosclerosis, and heart failure. miRNAs can be used as biomarkers to diagnose and predict diseases as well as therapeutic targets. A variety of state-of-the-art technologies have aided researchers in discovering, profiling, and analyzing miRNAs, including microarray analysis, next-generation sequencing, and others. Conclusion Developing new diagnostics and therapeutic approaches is becoming more feasible as researchers refine their understanding of miRNA function. Ultimately, this will reduce the burden of cardiovascular disease around the world.
Collapse
Affiliation(s)
- Abubakar Nazir
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineKing Edward Medical UniversityPakistan
| | - Olivier Uwishema
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
| | - Sanobar Shariff
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineYerevan State Medical UniversityYerevanArmenia
| | - William Xochitun Gopar Franco
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineUniversity of GuadalajaraGuadalajaraMexico
| | - Noha El Masri
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Faculty of MedicineBeirut Arab UniversityLebanon
| | - Nitsuh Dejene Ayele
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of Internal Medicine, Faculty of MedicineWolkite UniversityWolkiteEthiopia
| | - Isabelle Munyangaju
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Barcelona Institute for Global Health—Hospital ClínicUniversitat de Barcelona
| | - Fatima Esam Alzain
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineCollege of Medicine and General Surgery—Sudan University of Science and Technology
| | - Magda Wojtara
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
5
|
Huang K, Li S, Yang M, Teng Z, Xu B, Wang B, Chen J, Zhao L, Wu H. The epigenetic mechanism of metabolic risk in bipolar disorder. Obes Rev 2024; 25:e13816. [PMID: 39188090 DOI: 10.1111/obr.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Bipolar disorder (BD) is a complex and severe mental illness that causes significant suffering to patients. In addition to the burden of depressive and manic symptoms, patients with BD are at an increased risk for metabolic syndrome (MetS). MetS includes factors associated with an increased risk of atherosclerotic cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM), which may increase the mortality rate of patients with BD. Several studies have suggested a link between BD and MetS, which may be explained at an epigenetic level. We have focused on epigenetic mechanisms to review the causes of metabolic risk in BD.
Collapse
Affiliation(s)
- Kexin Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Baoyan Xu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, Hebei Provincial Mental Health Center, Hebei Key Laboratory of Major Mental and Behavioral Disorders, The Sixth Clinical Medical College of Hebei University, Baoding, Hebei, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liping Zhao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Lin Y, Lu Y, Wang Y, Lv C, Chen J, Luo Y, Quan H, Yu W, Chen L, Huang Z, Hao Y, Wang Q, Luo Q, Yan J, Li Y, Zhang W, Du M, He J, Ren F, Guo H. The Regeneration of Intestinal Stem Cells Is Driven by miR-29-Induced Metabolic Reprogramming. ENGINEERING 2024; 42:39-58. [DOI: 10.1016/j.eng.2024.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
7
|
Xue X, Li Y, Zhang S, Yao Y, Peng C, Li Y. Hydroxysafflor yellow A exerts anti-fibrotic and anti-angiogenic effects through miR-29a-3p/PDGFRB axis in liver fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155830. [PMID: 38959553 DOI: 10.1016/j.phymed.2024.155830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Liver fibrosis is a prevalent pathological process in chronic liver diseases characterized by excessive extracellular matrix (ECM) deposition and abnormal angiogenesis. Notably, hepatic stellate cells (HSCs) are the primary source of ECM. Activated HSCs not only secrete numerous pro-fibrotic cytokines but also are endowed with a pro-angiogenic phenotype to promote pathological angiogenesis. Therefore, targeted modulation of HSCs has emerged as a pivotal strategy for addressing liver fibrosis. Hydroxysafflor yellow A (HSYA) is a homology of medicine and food colourant with good pharmacological activity. However, the precise mechanisms of HSYA against liver fibrosis remain unclear. PURPOSE The objective of this study was to elucidate the impact of HSYA on liver fibrosis and pathological angiogenesis, as well as the underlying mechanisms in vitro and in vivo studies. METHODS The efficacy and mechanisms of HSYA on TGF-β1-induced HSCs and VEGFA-induced endothelial cells were investigated by MTT assay, EdU cell proliferation assay, cell scratch assay, Elisa assay, immunofluorescence assay, molecular docking, cell transfection assay, western blot analysis and RT-qPCR analysis. In CCl4-induced liver fibrosis mice model, H&E, Masson, and Sirius red staining were used to observe histopathology. Serum transaminase activity and liver biochemical indexes were tested by biochemical kit. Immunohistochemical, fluorescence in situ hybridization (FISH), western blot analysis and RT-qPCR analysis were implemented to determine the mechanism of HSYA in vivo. RESULTS Herein, our findings confirmed that HSYA inhibited the proliferation, migration and activation of HSCs, as evidenced by a reduction in cell viability, relative migration rate, EdU staining intensity, and pro-fibrotic mRNAs and proteins expression in vitro. Mechanistically, HSYA played an anti-fibrotic and anti-angiogenic role by partially silencing PDGFRB in activated HSCs, thereby disrupting PDGFRB/MEK/ERK signal transduction and inhibiting the expression of HIF-1α, VEGFA and VEGFR2 proteins. Importantly, PDGFRB was a target gene of miR-29a-3p. Treatment with HSYA reversed the down-regulation of miR-29a-3p and antagonized PDGFRB signaling pathway in TGF-β1-induced HSCs transfected with miR-29a-3p inhibitor. Consistent with our in vitro study, HSYA exhibited a good hepatoprotective effect in CCl4-induced liver fibrosis mice by reducing serum ALT and AST levels, decreasing the contents of four fibrosis indicators (HA, PIIIP, ColIV and LN) and hydroxyproline, and inhibiting the TGF-β1/TGFBR signaling pathway. In terms of mechanisms, HSYA alleviated pathological angiogenesis in fibrotic liver by deactivating PDGFRB signaling pathway and impairing the positive expression of CD31. Subsequently, FISH results further corroborated HSYA affected the activation of HSCs and angiogenesis achieved by the concurrent upregulation of miR-29a-3p and downregulation of α-SMA and VEGFA. Additionally, treatment with HSYA also forged a link between HSCs and endothelial cells, as supported by inhibiting the aberrant proliferation of endothelial cells. CONCLUSION Fundamentally, the current study has illustrated that HSYA ameliorates liver fibrosis by repressing HSCs-mediated pro-fibrotic and pro-angiogenic processes, which is contingent upon the regulatory effect of HSYA on the miR-29a-3p/PDGFRB axis. These findings provide compelling evidence bolstering the potential of HSYA as a therapeutic agent in liver fibrosis.
Collapse
Affiliation(s)
- Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shenglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxin Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
Wang Z, Dong S, Zhou W. Pancreatic stellate cells: Key players in pancreatic health and diseases (Review). Mol Med Rep 2024; 30:109. [PMID: 38695254 PMCID: PMC11082724 DOI: 10.3892/mmr.2024.13233] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
As a pluripotent cell, activated pancreatic stellate cells (PSCs) can differentiate into various pancreatic parenchymal cells and participate in the secretion of extracellular matrix and the repair of pancreatic damage. Additionally, PSCs characteristics allow them to contribute to pancreatic inflammation and carcinogenesis. Moreover, a detailed study of the pathogenesis of activated PSCs in pancreatic disease can offer promise for the development of innovative therapeutic strategies and improved patient prognoses. Therefore, the present study review aimed to examine the involvement of activated PSCs in pancreatic diseases and elucidate the underlying mechanisms to provide a viable therapeutic strategy for the management of pancreas‑related diseases.
Collapse
Affiliation(s)
- Zhengfeng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shi Dong
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wence Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
9
|
Ryu S, Lee EK. The Pivotal Role of Macrophages in the Pathogenesis of Pancreatic Diseases. Int J Mol Sci 2024; 25:5765. [PMID: 38891952 PMCID: PMC11171839 DOI: 10.3390/ijms25115765] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The pancreas is an organ with both exocrine and endocrine functions, comprising a highly organized and complex tissue microenvironment composed of diverse cellular and non-cellular components. The impairment of microenvironmental homeostasis, mediated by the dysregulation of cell-to-cell crosstalk, can lead to pancreatic diseases such as pancreatitis, diabetes, and pancreatic cancer. Macrophages, key immune effector cells, can dynamically modulate their polarization status between pro-inflammatory (M1) and anti-inflammatory (M2) modes, critically influencing the homeostasis of the pancreatic microenvironment and thus playing a pivotal role in the pathogenesis of the pancreatic disease. This review aims to summarize current findings and provide detailed mechanistic insights into how alterations mediated by macrophage polarization contribute to the pathogenesis of pancreatic disorders. By analyzing current research comprehensively, this article endeavors to deepen our mechanistic understanding of regulatory molecules that affect macrophage polarity and the intricate crosstalk that regulates pancreatic function within the microenvironment, thereby facilitating the development of innovative therapeutic strategies that target perturbations in the pancreatic microenvironment.
Collapse
Affiliation(s)
- Seungyeon Ryu
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
10
|
Li D, Yang W, Pang J, Yu G. Differential DNA methylation landscape of miRNAs genes in mice liver fibrosis. Mol Biol Rep 2024; 51:475. [PMID: 38553662 DOI: 10.1007/s11033-024-09416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Patients with chronic liver disease were found nearly all to have liver fibrosis, which is characterized by excess accumulation of extracellular matrix (ECM) proteins. While ECM accumulation can prevent liver infection and injury, it can destroy normal liver function and architecture. miRNA's own regulation was involved in DNA methylation change. The purpose of this study is to detect DNA methylation landscape of miRNAs genes in mice liver fibrosis tissues. METHODS Male mice (10-12 weeks) were injected CCl4 from abdominal cavity to induced liver fibrosis. 850 K BeadChips were used to examine DNA methylation change in whole genome. The methylation change of 16 CpG dinucleotides located in promoter regions of 4 miRNA genes were detected by bisulfite sequencing polymerase chain reaction (BSP) to verify chip data accuracy, and these 4 miRNA genes' expressions were detected by RT-qPCR methods. RESULTS There are 769 differential methylation sites (DMS) in total between fibrotic liver tissue and normal mice liver tissue, which were related with 148 different miRNA genes. Chips array data were confirmed by bisulfite sequencing polymerase chain reaction (R = 0.953; P < 0.01). GO analysis of the target genes of 2 miRNA revealed that protein binding, cytoplasm and chromatin binding activity were commonly enriched; KEGG pathway enrichment analysis displayed that TGF-beta signaling pathway was commonly enriched. CONCLUSION The DNA of 148 miRNA genes was found to have methylation change in liver fibrosis tissue. These discoveries in miRNA genes are beneficial to future miRNA function research in liver fibrosis.
Collapse
Affiliation(s)
- Deming Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Wentong Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Jiaojiao Pang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
11
|
Akkaya-Ulum YZ, Sen B, Akbaba TH, Balci-Peynircioglu B. InflammamiRs in focus: Delivery strategies and therapeutic approaches. FASEB J 2024; 38:e23528. [PMID: 38441434 DOI: 10.1096/fj.202302028r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/22/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
microRNAs (miRNAs) are small non-protein-coding RNAs which are essential regulators of host genome expression at the post-transcriptional level. There is evidence of dysregulated miRNA expression patterns in a wide variety of diseases, such as autoimmune and inflammatory conditions. These miRNAs have been termed "inflammamiRs." When working with miRNAs, the method followed, the approach to treat or diagnosis, and the selected biological material are very crucial. Demonstration of the role of miRNAs in particular disease phenotypes facilitates their evaluation as potential and effective therapeutic tools. A growing number of reports suggest the significant utility of miRNAs and other small RNA drugs in clinical medicine. Most miRNAs seem promising therapeutic options, but some features associated with miRNA therapy like off-target effect, effective dosage, or differential delivery methods, mainly caused by the short target's sequence, make miRNA therapies challenging. In this review, we aim to discuss some of the inflammamiRs in diseases associated with inflammatory pathways and the challenge of identifying the most potent therapeutic candidates and provide a perspective on achieving safe and targeted delivery of miRNA therapeutics. We also discuss the status of inflammamiRs in clinical trials.
Collapse
Affiliation(s)
- Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Basak Sen
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Tayfun Hilmi Akbaba
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
12
|
Yang F, Xiong WQ, Li CZ, Wu MJ, Zhang XZ, Ran CX, Li ZH, Cui Y, Liu BY, Zhao DW. Extracellular vesicles derived from mesenchymal stem cells mediate extracellular matrix remodeling in osteoarthritis through the transport of microRNA-29a. World J Stem Cells 2024; 16:191-206. [PMID: 38455098 PMCID: PMC10915956 DOI: 10.4252/wjsc.v16.i2.191] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/18/2023] [Accepted: 01/30/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a common orthopedic condition with an uncertain etiology, possibly involving genetics and biomechanics. Factors like changes in chondrocyte microenvironment, oxidative stress, inflammation, and immune responses affect KOA development. Early-stage treatment options primarily target symptom relief. Mesenchymal stem cells (MSCs) show promise for treatment, despite challenges. Recent research highlights microRNAs (miRNAs) within MSC-released extracellular vesicles that can potentially promote cartilage regeneration and hinder KOA progression. This suggests exosomes (Exos) as a promising avenue for future treatment. While these findings emphasize the need for effective KOA progression management, further safety and efficacy validation for Exos is essential. AIM To explore miR-29a's role in KOA, we'll create miR-29a-loaded vesicles, testing for early treatment in rat models. METHODS Extraction of bone marrow MSC-derived extracellular vesicles, preparation of engineered vesicles loaded with miR-29a using ultrasonication, and identification using quantitative reverse transcription polymerase chain reaction; after establishing a rat model of KOA, rats were randomly divided into three groups: Blank control group injected with saline, normal extracellular vesicle group injected with normal extracellular vesicle suspension, and engineered extracellular vesicle group injected with engineered extracellular vesicle suspension. The three groups were subjected to general behavioral observation analysis, imaging evaluation, gross histological observation evaluation, histological detection, and immunohistochemical detection to compare and evaluate the progress of various forms of arthritis. RESULTS General behavioral observation results showed that the extracellular vesicle group and engineered extracellular vesicle group had better performance in all four indicators of pain, gait, joint mobility, and swelling compared to the blank control group. Additionally, the engineered extracellular vesicle group had better pain relief at 4 wk and better knee joint mobility at 8 wk compared to the normal extracellular vesicle group. Imaging examination results showed that the blank control group had the fastest progression of arthritis, the normal extracellular vesicle group had a relatively slower progression, and the engineered extracellular vesicle group had the slowest progression. Gross histological observation results showed that the blank control group had the most obvious signs of arthritis, the normal extracellular vesicle group showed signs of arthritis, and the engineered extracellular vesicle group showed no significant signs of arthritis. Using the Pelletier gross score evaluation, the engineered extracellular vesicle group had the slowest progression of arthritis. Results from two types of staining showed that the articular cartilage of rats in the normal extracellular vesicle and engineered extracellular vesicle groups was significantly better than that of the blank control group, and the engineered extracellular vesicle group had the best cartilage cell and joint surface condition. Immunohistochemical detection of type II collagen and proteoglycan showed that the extracellular matrix of cartilage cells in the normal extracellular vesicle and engineered extracellular vesicle groups was better than that of the blank control group. Compared to the normal extracellular vesicle group, the engineered extracellular vesicle group had a better regulatory effect on the extracellular matrix of cartilage cells. CONCLUSION Engineered Exos loaded with miR-29a can exert anti-inflammatory effects and maintain extracellular matrix stability, thereby protecting articular cartilage, and slowing the progression of KOA.
Collapse
Affiliation(s)
- Fan Yang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Wan-Qi Xiong
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Chen-Zhi Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Ming-Jian Wu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Xiu-Zhi Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Chun-Xiao Ran
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Zhen-Hao Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Yan Cui
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Bao-Yi Liu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China.
| | - De-Wei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| |
Collapse
|
13
|
Xu Y, Zhang C, Cai D, Zhu R, Cao Y. Exosomal miR-155-5p drives widespread macrophage M1 polarization in hypervirulent Klebsiella pneumoniae-induced acute lung injury via the MSK1/p38-MAPK axis. Cell Mol Biol Lett 2023; 28:92. [PMID: 37953267 PMCID: PMC10641976 DOI: 10.1186/s11658-023-00505-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Hypervirulent Klebsiella pneumoniae (hvKp) infection-induced sepsis-associated acute lung injury (ALI) has emerged as a significant clinical challenge. Increasing evidence suggests that activated inflammatory macrophages contribute to tissue damage in sepsis. However, the underlying causes of widespread macrophage activation remain unclear. METHODS BALB/c mice were intravenously injected with inactivated hvKp (iHvKp) to observe lung tissue damage, inflammation, and M1 macrophage polarization. In vitro, activated RAW264.7 macrophage-derived exosomes (iHvKp-exo) were isolated and their role in ALI formation was investigated. RT-PCR was conducted to identify changes in exosomal miRNA. Bioinformatics analysis and dual-luciferase reporter assays were performed to validate MSK1 as a direct target of miR-155-5p. Further in vivo and in vitro experiments were conducted to explore the specific mechanisms involved. RESULTS iHvKp successfully induced ALI in vivo and upregulated the expression of miR-155-5p. In vivo, injection of iHvKp-exo induced inflammatory tissue damage and macrophage M1 polarization. In vitro, iHvKp-exo was found to promote macrophage inflammatory response and M1 polarization through the activation of the p38-MAPK pathway. RT-PCR revealed exposure time-dependent increased levels of miR-155-5p in iHvKp-exo. Dual-luciferase reporter assays confirmed the functional role of miR-155-5p in mediating iHvKp-exo effects by targeting MSK1. Additionally, inhibition of miR-155-5p reduced M1 polarization of lung macrophages in vivo, resulting in decreased lung injury and inflammation induced by iHvKp-exo or iHvKp. CONCLUSIONS The aforementioned results indicate that exosomal miR-155-5p drives widespread macrophage inflammation and M1 polarization in hvKp-induced ALI through the MSK1/p38-MAPK Axis.
Collapse
Affiliation(s)
- Yihan Xu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China
| | - Chunying Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China
| | - Danni Cai
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China
| | - Rongping Zhu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|
14
|
Peng K, Biao C, Zhao YY, Jun LC, Wei W, A Bu Li Zi YLNYZ, Song L. Long non-coding RNA MM2P suppresses M1-polarized macrophages-mediated excessive inflammation to prevent sodium taurocholate-induced acute pancreatitis by blocking SHP2-mediated STAT3 dephosphorylation. Clin Exp Med 2023; 23:3589-3603. [PMID: 37486591 DOI: 10.1007/s10238-023-01126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
M1 macrophage-mediated excessive inflammatory response plays a key role in the onset and progression of acute pancreatitis (AP), and this study aimed to investigate the role and underlying mechanisms by which the macrophage polarization-related long noncoding RNA (lncRNA) MM2P participated in the regulation of AP progression. By performing quantitative reverse-transcription PCR (qRT-PCR) assay, lncRNA MM2P was found to be downregulated in both sodium taurocholate-induced AP model mice tissues and lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and gain-of-function experiments confirmed that overexpression of lncRNA MM2P counteracted inflammatory responses, reduced macrophage infiltration and facilitated M1-to-M2 transformation of macrophages to ameliorate AP development in vitro and in vivo. Further mechanical experiments revealed that lncRNA MM2P inhibited Src homology 2 containing protein tyrosine phosphatase 2 (SHP2)-mediated signal transducer and activator of transcription 3 (STAT3) dephosphorylation to activate the STAT3 signaling, and silencing of SHP2 suppressed M1 type skewing in LPS-induced RAW264.7 cells. Interestingly, our rescuing experiments verified that lncRNA MM2P-induced suppressing effects on M1-polarization of LPS-treated RAW264.7 cells were abrogated by co-treating cells with STAT3 inhibitor stattic. Collectively, our data for the first time revealed that lncRNA MM2P suppressed M1-polarized macrophages to attenuate the progression of sodium taurocholate-induced AP, and lncRNA MM2P might be an ideal biomarker for AP diagnosis and treatment.
Collapse
Affiliation(s)
- Kang Peng
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | - Chen Biao
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | - Yin Yong Zhao
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | - Li Chao Jun
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | - Wang Wei
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | | | - Lin Song
- General Surgery Department, The First People's Hospital of Urumqi (Children's Hospital of Urumqi), Jiankang Road No. 1, Tianshan District, Urumqi, 830002, Xinjiang, China.
| |
Collapse
|
15
|
Kattner N. Immune cell infiltration in the pancreas of type 1, type 2 and type 3c diabetes. Ther Adv Endocrinol Metab 2023; 14:20420188231185958. [PMID: 37529508 PMCID: PMC10387691 DOI: 10.1177/20420188231185958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/16/2023] [Indexed: 08/03/2023] Open
Abstract
The different types of diabetes differ in disease pathogenesis but share the impairment or loss of β-cell function leading to chronic hyperglycaemia. While immune cells are present throughout the whole pancreas in normality, their number and activation is increased in diabetes. Different patterns and composition of inflammation could be observed in type 1, type 2 and type 3c diabetes. Immune cells, pancreatic stellate cells and fibrosis were present in the islet microenvironment and could add to β-cell dysfunction and therefore development and progression of diabetes. First studies investigating the use of anti-inflammatory drugs demonstrate their ability to rescue remaining β-cell function and their potential benefit in diabetes treatment. This article provides an overview of immune cell infiltrates in different types of diabetes, highlights the knowledge of their impact on β-cell function and introduces the potential of immunomodulatory strategies.
Collapse
Affiliation(s)
- Nicole Kattner
- Translational and Clinical Research Institute, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne, UK
| |
Collapse
|
16
|
Yang YL, Huang YH, Wang FS, Tsai MC, Chen CH, Lian WS. MicroRNA-29a Compromises Hepatic Adiposis and Gut Dysbiosis in High Fat Diet-Fed Mice via Downregulating Inflammation. Mol Nutr Food Res 2023; 67:e2200348. [PMID: 37118999 DOI: 10.1002/mnfr.202200348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/19/2023] [Indexed: 04/30/2023]
Abstract
SCOPE miR-29a expression patterns influence numerous physiological phenomena. Of note, upregulation of miR-29a ameliorates high-fat diet (HFD)-induced liver dysfunctions in mice. However, the miR-29a effect on gut microbiome composition and HFD-induced gut microbiota changes during metabolic disturbances remains unclear. The study provides compelling evidence for the protective role of miR-29a in gut barrier dysfunction and steatohepatitis. METHODS AND RESULTS miR-29a overexpressed mice (miR-29aTg) are bred to characterize intestinal, serum biochemical, and fecal microbiota profiling features compared to wild-type mice (WT). Mice are fed an HFD for 8 months to induce steatohepatitis, and intestinal dysfunction is determined via histopathological analysis. miR-29aTg has better lipid metabolism capability that decreases total cholesterol and triglyceride levels in serum than WT of the same age. The study further demonstrates that miR-29aTg contributes to intestinal integrity by maintaining periodic acid Schiff positive cell numbers and diversity of fecal microorganisms. HFD-induced bacterial community disturbance and steatohepatitis result in more severe WT than miR-29aTg. Gut microorganism profiling reveals Lactobacillus, Ruminiclostridium_9, and Lachnoclostridium enrichment in miR-29aTg and significantly decreases interleukin-6 expression in the liver and intestinal tract. CONCLUSION This study provides new evidence that sheds light on the host genetic background of miR-29a, which protects against steatohepatitis and other intestinal disorders.
Collapse
Affiliation(s)
- Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
| | - Ying-Hsien Huang
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital Chang, Kaohsiung, 833, Taiwan
| | - Feng-Sheng Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
- Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Ming-Chao Tsai
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Chien-Hung Chen
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Wei-Shiung Lian
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
- Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| |
Collapse
|
17
|
Xiang DD, Liu JT, Zhong ZB, Xiong Y, Kong HY, Yu HJ, Peng T, Huang JQ. MicroRNA-29a-3p Prevents Drug-Induced Acute Liver Failure through Inflammation-Related Pyroptosis Inhibition. Curr Med Sci 2023:10.1007/s11596-023-2734-5. [PMID: 37115401 DOI: 10.1007/s11596-023-2734-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/24/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVE Little is known about the role of microRNA-29a-3p (miR-29a-3p) in inflammation-related pyroptosis, especially in drug-induced acute liver failure (DIALF). This study aimed to identify the relationship between miR-29a-3p and inflammation-related pyroptosis in DIALF and confirm its underlying mechanisms. METHODS Thioacetamide (TAA)- and acetaminophen (APAP)-induced ALF mouse models were established, and human samples were collected. The expression levels of miR-29a-3p and inflammation and pyroptosis markers were measured by quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, or immunochemical staining in miR-29a-3p knock-in transgenic mouse (MIR29A(KI/KI)) DIALF models. In addition, RNA sequencing was conducted to explore the mechanisms. RESULTS MiR-29a-3p levels were decreased in TAA- and APAP-induced DIALF models. MiR-29a-3p prevented DIALF caused by TAA and APAP. RNA sequencing and further experiments showed that the protective effect of miR-29a-3p on DIALF was mainly achieved through inhibition of inflammation-related pyroptosis, and the inhibition was dependent on activation of the PI3K/AKT pathway. In addition, miR-29a-3p levels were reduced, and pyroptosis was activated in both peripheral blood mononuclear cells and liver tissues of DIALF patients. CONCLUSION The study supports the idea that miR-29a-3p inhibits pyroptosis by activating the PI3K/AKT pathway to prevent DIALF. MiR-29a-3p may be a promising therapeutic target for DIALF.
Collapse
Affiliation(s)
- Dan-Dan Xiang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing-Tao Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zi-Biao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China
| | - Yan Xiong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China
| | - Hong-Yan Kong
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hai-Jing Yu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Peng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jia-Quan Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
Patel HR, Diaz Almanzar VM, LaComb JF, Ju J, Bialkowska AB. The Role of MicroRNAs in Pancreatitis Development and Progression. Int J Mol Sci 2023; 24:1057. [PMID: 36674571 PMCID: PMC9862468 DOI: 10.3390/ijms24021057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Pancreatitis (acute and chronic) is an inflammatory disease associated with significant morbidity, including a high rate of hospitalization and mortality. MicroRNAs (miRs) are essential post-transcriptional modulators of gene expression. They are crucial in many diseases' development and progression. Recent studies have demonstrated aberrant miRs expression patterns in pancreatic tissues obtained from patients experiencing acute and chronic pancreatitis compared to tissues from unaffected individuals. Increasing evidence showed that miRs regulate multiple aspects of pancreatic acinar biology, such as autophagy, mitophagy, and migration, impact local and systemic inflammation and, thus, are involved in the disease development and progression. Notably, multiple miRs act on pancreatic acinar cells and regulate the transduction of signals between pancreatic acinar cells, pancreatic stellate cells, and immune cells, and provide a complex interaction network between these cells. Importantly, recent studies from various animal models and patients' data combined with advanced detection techniques support their importance in diagnosing and treating pancreatitis. In this review, we plan to provide an up-to-date summary of the role of miRs in the development and progression of pancreatitis.
Collapse
Affiliation(s)
- Hetvi R. Patel
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Vanessa M. Diaz Almanzar
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F. LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B. Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
19
|
Khajuria DK, Nowak I, Leung M, Karuppagounder V, Imamura Y, Norbury CC, Kamal F, Elbarbary RA. Transcript shortening via alternative polyadenylation promotes gene expression during fracture healing. Bone Res 2023; 11:5. [PMID: 36596777 PMCID: PMC9810729 DOI: 10.1038/s41413-022-00236-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 10/12/2022] [Indexed: 01/04/2023] Open
Abstract
Maturation of the 3' end of almost all eukaryotic messenger RNAs (mRNAs) requires cleavage and polyadenylation. Most mammalian mRNAs are polyadenylated at different sites within the last exon, generating alternative polyadenylation (APA) isoforms that have the same coding region but distinct 3' untranslated regions (UTRs). The 3'UTR contains motifs that regulate mRNA metabolism; thus, changing the 3'UTR length via APA can significantly affect gene expression. Endochondral ossification is a central process in bone healing, but the impact of APA on gene expression during this process is unknown. Here, we report the widespread occurrence of APA, which impacts multiple pathways that are known to participate in bone healing. Importantly, the progression of endochondral ossification involves global 3'UTR shortening, which is coupled with an increased abundance of shortened transcripts relative to other transcripts; these results highlight the role of APA in promoting gene expression during endochondral bone formation. Our mechanistic studies of transcripts that undergo APA in the fracture callus revealed an intricate regulatory network in which APA enhances the expression of the collagen, type I, alpha 1 (Col1a1) and Col1a2 genes, which encode the 2 subunits of the abundantly expressed protein collagen 1. APA exerts this effect by shortening the 3'UTRs of the Col1a1 and Col1a2 mRNAs, thus removing the binding sites of miR-29a-3p, which would otherwise strongly promote the degradation of both transcripts. Taken together, our study is the first to characterize the crucial roles of APA in regulating the 3'UTR landscape and modulating gene expression during fracture healing.
Collapse
Affiliation(s)
- Deepak Kumar Khajuria
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Irena Nowak
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Ming Leung
- Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Vengadeshprabhu Karuppagounder
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yuka Imamura
- Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA, 17033, USA
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Christopher C Norbury
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Fadia Kamal
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Reyad A Elbarbary
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
20
|
Chen W, Chen Y, Ren Y, Gao C, Ning C, Deng H, Li P, Ma Y, Li H, Fu L, Tian G, Yang Z, Sui X, Yuan Z, Guo Q, Liu S. Lipid nanoparticle-assisted miR29a delivery based on core-shell nanofibers improves tendon healing by cross-regulation of the immune response and matrix remodeling. Biomaterials 2022; 291:121888. [DOI: 10.1016/j.biomaterials.2022.121888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/28/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022]
|
21
|
Dalgaard LT, Sørensen AE, Hardikar AA, Joglekar MV. The microRNA-29 family - role in metabolism and metabolic disease. Am J Physiol Cell Physiol 2022; 323:C367-C377. [PMID: 35704699 DOI: 10.1152/ajpcell.00051.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The microRNA-29a family members miR-29a-3p, miR-29b-3p and miR-29c-3p are ubiquitously expressed and consistently increased in various tissues and cell types in conditions of metabolic disease; obesity, insulin resistance and type 2 diabetes. In pancreatic beta cells, miR-29a is required for normal exocytosis, but increased levels are associated with impaired beta cell function. Similarly, in liver miR-29 species are higher in models of insulin resistance and type 2 diabetes, and either knock-out or depletion using a microRNA inhibitor improves hepatic insulin resistance. In skeletal muscle, miR-29 upregulation is associated with insulin resistance and altered substrate oxidation, and similarly, in adipocytes over-expression of miR-29a leads to insulin resistance. Blocking miR-29a using nucleic acid antisense therapeutics show promising results in preclinical animal models of obesity and type 2 diabetes, although the widespread expression pattern of miR-29 family members complicates the exploration of single target tissues. However, in fibrotic diseases, such as in late complications of diabetes and metabolic disease (diabetic kidney disease, non-alcoholic steatohepatitis), miR-29 expression is suppressed by TGFβ allowing increased extracellular matrix collagen to form. In the clinical setting circulating levels of miR-29a and miR-29b are consistently increased in type 2 diabetes and in gestational diabetes, and are also possible prognostic markers for deterioration of glucose tolerance. In conclusion, miR-29 plays an essential role in various organs relevant to intermediary metabolism and its upregulation contribute to impaired glucose metabolism, while it suppresses fibrosis development. Thus, a correct balance of miR-29a levels seems important for cellular and organ homeostasis in metabolism.
Collapse
Affiliation(s)
- Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anja E Sørensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
22
|
Khan AA, Gupta V, Mahapatra NR. Key regulatory miRNAs in lipid homeostasis: implications for cardiometabolic diseases and development of novel therapeutics. Drug Discov Today 2022; 27:2170-2180. [PMID: 35550438 DOI: 10.1016/j.drudis.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022]
Abstract
Dysregulation of lipid metabolism is associated with cardiovascular/metabolic diseases, including atherosclerosis, liver diseases and type 2 diabetes mellitus (T2DM). Several miRNAs have been reported as regulators of different stages of lipid homeostasis, including cholesterol/fatty acid biosynthesis, degradation, transport, storage, and low-density (LDL) and high-density lipoprotein (HDL) formation. Indeed, various miRNAs are emerging as attractive therapeutic candidates for metabolic/cardiovascular disease (CVD). Here, we summarize the roles of miR-19b, miR-20a, miR-21, miR-27, miR-29, miR-34a, miR-144, miR-148a, and miR-199a in post-transcriptional regulation of genes involved in lipid metabolism and their therapeutic potential. We also discuss experimental strategies for further development of these miRNAs as novel cardiometabolic therapeutics. Teaser: miRNAs have emerged as crucial regulators of lipid homeostasis. Here, we highlight key miRNAs that regulate lipid metabolism and their therapeutic potential in cardiometabolic disease states.
Collapse
Affiliation(s)
- Abrar A Khan
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Vinayak Gupta
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; Department of Biotechnology, Bennett University, Plot No. 8-11, Techzone II, Greater Noida 201310, Uttar Pradesh, India
| | - Nitish R Mahapatra
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
23
|
New challenges for microRNAs in acute pancreatitis: progress and treatment. J Transl Med 2022; 20:192. [PMID: 35509084 PMCID: PMC9066850 DOI: 10.1186/s12967-022-03338-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/06/2022] [Indexed: 12/17/2022] Open
Abstract
Acute pancreatitis (AP) is a common clinical abdominal emergency, with a high and increasing incidence each year. Severe AP can easily cause systemic inflammatory response syndrome, multiple organ dysfunction and other complications, leading to higher hospitalization rates and mortality. Currently, there is no specific treatment for AP. Thus, we still need to understand the exact AP pathogenesis to effectively cure AP. With the rise of transcriptomics, RNA molecules, such as microRNAs (miRNAs) transcribed from nonprotein-coding regions of biological genomes, have been found to be of great significance in the regulation of gene expression and to be involved in the occurrence and development of many diseases. Increasing evidence has shown that miRNAs, as regulatory RNAs, can regulate pancreatic acinar necrosis and apoptosis and local and systemic inflammation and play an important role in the development and thus potentially the diagnosis and treatment of AP. Therefore, here, the current research on the relationship between miRNAs and AP is reviewed.
Collapse
|