1
|
Bonfield TL, Lazarus HM. Human mesenchymal stem cell therapy: Potential advances for reducing cystic fibrosis infection and organ inflammation. Best Pract Res Clin Haematol 2025; 38:101602. [PMID: 40274338 DOI: 10.1016/j.beha.2025.101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 04/26/2025]
Abstract
Innovation in cystic fibrosis (CF) supportive care, including implementing new antimicrobial agents, improved physiotherapy, and highly effective modulators therapy, has advanced patient survival into the 4th and 5th decades of life. However, even with these remarkable improvements in therapy, CF patients continue to suffer from pulmonary infection and other visceral organ complications associated with long-term deficient cystic fibrosis transmembrane conductance regulator (CFTR) expression. Human mesenchymal stem cells (MSCs) have been utilized in tissue engineering based upon their capacity to provide structural components of mesenchymal tissues. An alternative role of MSCs, however is their versatile utilization as cell-based infusion powerhouses due to the unique capacity to deliver milieu specific soluble biologic factors, promoting immune supportive antimicrobial and anti-inflammatory potency. MSCs derived from umbilical cord blood, bone marrow, adipose and other tissues can be expanded in ex vivo using good manufacturing procedure facilities for a safe, unique therapeutic to reduce and limit CF infection and facilitate the resolution of multi-organ inflammation. In our efforts, we conducted extensive preclinical development and validation of an allogeneic derived bone marrow derived MSC product in preparation for a clinical trial in CF. In this process, potency models were developed to ensure the functional capacity of the MSC product to provide clinical benefit. In vitro, murine in vivo and patient tissue ex vivo potency models were utilized to follow MSC anti-infective and anti-inflammatory potency associated with the CFTR deficient environment. We showed in our "First in CF" clinical trial that the allogeneic MSCs obtained from healthy volunteer bone marrow samples were safe. The advent of improved CF care measures and exciting new small molecules has changed the survival and morbidity phenotype of patients with CF, however, there are CF patients who cannot tolerate or have genotypes that are non-responsive to modulators. Additionally, even with the small molecule therapy, CF patients are living longer, but without genetic correction, with the CF disease manifestation aggravated by the continuance of pre-existing CFTR-associated clinical issues such as ongoing inflammation. MSCs secrete bio-active factors that enhance and protect tissue function and can promote "self-immune" regulation. These properties can provide therapeutic support for the traditional and changing face of CF disease clinical complications. Further, MSC-derived bio-active factors can directly mitigate colonizing pathogens' survival by producing antimicrobial peptides (AMPs) which change the pathogen surface and increase host recognition, elimination, and sensitivity to antibiotics. Herein, we review the potential of MSC therapeutics for treating many facets of CF, emphasizing the potential for providing great additive therapeutics for managing morbidity and quality of life.
Collapse
Affiliation(s)
- Tracey L Bonfield
- Genetics and Genome Sciences, National Center for Regenerative Medicine, Pediatrics and Pathology, Case Western Reserve University, Cleveland, Ohio, 44106, USA.
| | - Hillard M Lazarus
- Department of Medicine, Hematology and National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| |
Collapse
|
2
|
Montresor A, D'Ulivo B, Preato S, Farinazzo A, Pintani E, Chiara ED, Torroni L, Verlato G, Boscia S, Pisano L, Mangone G, Ricci S, Azzari C, Taccetti G, Terlizzi V, Cipolli M, Melotti P, Sorio C, Laudanna C. Real-Life Experience with CFTR Modulators Shows Correction of LAD-IV Phenotype in Cystic Fibrosis. Am J Respir Cell Mol Biol 2024; 71:495-498. [PMID: 39352210 DOI: 10.1165/rcmb.2024-0136le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Affiliation(s)
| | | | | | | | - Emily Pintani
- Azienda Ospedaliera Universitaria Integrata Verona Verona, Italy
| | | | | | | | - Silvia Boscia
- Meyer Children's Hospital IRCCS Florence, Italy
- University of Florence Florence, Italy
| | - Laura Pisano
- Meyer Children's Hospital IRCCS Florence, Italy
- University of Florence Florence, Italy
| | - Giusi Mangone
- Meyer Children's Hospital IRCCS Florence, Italy
- University of Florence Florence, Italy
| | - Silvia Ricci
- Meyer Children's Hospital IRCCS Florence, Italy
- University of Florence Florence, Italy
| | - Chiara Azzari
- Meyer Children's Hospital IRCCS Florence, Italy
- University of Florence Florence, Italy
| | | | | | - Marco Cipolli
- Azienda Ospedaliera Universitaria Integrata Verona Verona, Italy
| | - Paola Melotti
- Azienda Ospedaliera Universitaria Integrata Verona Verona, Italy
| | | | | |
Collapse
|
3
|
Zhang X, Chen R, Huo Z, Li W, Jiang M, Su G, Liu Y, Cai Y, Huang W, Xiong Y, Wang S. Blood-based molecular and cellular biomarkers of early response to neoadjuvant PD-1 blockade in patients with non-small cell lung cancer. Cancer Cell Int 2024; 24:225. [PMID: 38951894 PMCID: PMC11218110 DOI: 10.1186/s12935-024-03412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Despite the improved survival observed in PD-1/PD-L1 blockade therapy, a substantial proportion of cancer patients, including those with non-small cell lung cancer (NSCLC), still lack a response. METHODS Transcriptomic profiling was conducted on a discovery cohort comprising 100 whole blood samples, as collected multiple times from 48 healthy controls (including 43 published data) and 31 NSCLC patients that under treatment with a combination of anti-PD-1 Tislelizumab and chemotherapy. Differentially expressed genes (DEGs), simulated immune cell subsets, and germline DNA mutational markers were identified from patients achieved a pathological complete response during the early treatment cycles. The predictive values of mutational markers were further validated in an independent immunotherapy cohort of 1661 subjects, and then confirmed in genetically matched lung cancer cell lines by a co-culturing model. RESULTS The gene expression of hundreds of DEGs (FDR p < 0.05, fold change < -2 or > 2) distinguished responders from healthy controls, indicating the potential to stratify patients utilizing early on-treatment features from blood. PD-1-mediated cell abundance changes in memory CD4 + and regulatory T cell subset were more significant or exclusively observed in responders. A panel of top-ranked genetic alterations showed significant associations with improved survival (p < 0.05) and heightened responsiveness to anti-PD-1 treatment in patient cohort and co-cultured cell lines. CONCLUSION This study discovered and validated peripheral blood-based biomarkers with evident predictive efficacy for early therapy response and patient stratification before treatment for neoadjuvant PD-1 blockade in NSCLC patients.
Collapse
Affiliation(s)
- Xi Zhang
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 710069, Shaanxi, Xi'an, China.
| | - Rui Chen
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zirong Huo
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wenqing Li
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Mengju Jiang
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Guodong Su
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yuru Liu
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yu Cai
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wuhao Huang
- Department of Lung Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, 300060, China
| | - Yuyan Xiong
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 710069, Shaanxi, Xi'an, China
| | - Shengguang Wang
- Department of Lung Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, 300060, China.
| |
Collapse
|
4
|
Wu M, Chen JH. CFTR dysfunction leads to defective bacterial eradication on cystic fibrosis airways. Front Physiol 2024; 15:1385661. [PMID: 38699141 PMCID: PMC11063615 DOI: 10.3389/fphys.2024.1385661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel by genetic mutations causes the inherited disease cystic fibrosis (CF). CF lung disease that involves multiple disorders of epithelial function likely results from loss of CFTR function as an anion channel conducting chloride and bicarbonate ions and its function as a cellular regulator modulating the activity of membrane and cytosol proteins. In the absence of CFTR activity, abundant mucus accumulation, bacterial infection and inflammation characterize CF airways, in which inflammation-associated tissue remodeling and damage gradually destroys the lung. Deciphering the link between CFTR dysfunction and bacterial infection in CF airways may reveal the pathogenesis of CF lung disease and guide the development of new treatments. Research efforts towards this goal, including high salt, low volume, airway surface liquid acidosis and abnormal mucus hypotheses are critically reviewed.
Collapse
Affiliation(s)
| | - Jeng-Haur Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
5
|
Hu Y, Bojanowski CM, Britto CJ, Wellems D, Song K, Scull C, Jennings S, Li J, Kolls JK, Wang G. Aberrant immune programming in neutrophils in cystic fibrosis. J Leukoc Biol 2024; 115:420-434. [PMID: 37939820 DOI: 10.1093/jleuko/qiad139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
Cystic fibrosis is a life-shortening genetic disorder, caused by mutations in the gene that encodes cystic fibrosis transmembrane-conductance regulator, a cAMP-activated chloride and bicarbonate channel. Persistent neutrophilic inflammation is a major contributor to cystic fibrosis lung disease. However, how cystic fibrosis transmembrane-conductance regulator loss of function leads to excessive inflammation and its clinical sequela remains incompletely understood. In this study, neutrophils from F508del-CF and healthy control participants were compared for gene transcription. We found that cystic fibrosis circulating neutrophils have a prematurely primed basal state with significantly higher scores for activation, chemotaxis, immune signaling, and pattern recognition. Such an irregular basal state appeared not related to the blood environment and was also observed in neutrophils derived from the F508del-CF HL-60 cell line, indicating an innate characteristic of the phenotype. Lipopolysaccharides (LPS) stimulation drastically shifted the transcriptional landscape of healthy control neutrophils toward a robust immune response; however, cystic fibrosis neutrophils were immune-exhausted, reflected by abnormal cell aging and fate determination in gene programming. Moreover, cystic fibrosis sputum neutrophils differed significantly from cystic fibrosis circulating neutrophils in gene transcription with increased inflammatory response, aging, apoptosis, and necrosis, suggesting additional environmental influences on the neutrophils in cystic fibrosis lungs. Taken together, our data indicate that loss of cystic fibrosis transmembrane-conductance regulator function has intrinsic effects on neutrophil immune programming, leading to premature priming and dysregulated response to challenge.
Collapse
Affiliation(s)
- Yawen Hu
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 631, 533 Bolivar Street, New Orleans, LA 70112, United States
| | - Christine M Bojanowski
- Department of Medicine, Tulane University School of Medicine, JBJ 257A, 333 S. Liberty Street, New Orleans, LA 70112, United States
| | - Clemente J Britto
- Department of Internal Medicine, Yale University School of Medicine, TAC S419, 300 Cedar Street, New Haven, CT 06513, United States
| | - Dianne Wellems
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 631, 533 Bolivar Street, New Orleans, LA 70112, United States
| | - Kejing Song
- Departments of Medicine and Pediatrics, Tulane University School of Medicine, JBJ 372, 333 S. Liberty Street, New Orleans, LA 70112, United States
| | - Callie Scull
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 631, 533 Bolivar Street, New Orleans, LA 70112, United States
| | - Scott Jennings
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 631, 533 Bolivar Street, New Orleans, LA 70112, United States
| | - Jianxiong Li
- High Performance Computing, Louisiana State University, Frey 349, 407 Tower Drive, Baton Rouge, LA 70803, United States
| | - Jay K Kolls
- Departments of Medicine and Pediatrics, Tulane University School of Medicine, JBJ 372, 333 S. Liberty Street, New Orleans, LA 70112, United States
| | - Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 631, 533 Bolivar Street, New Orleans, LA 70112, United States
| |
Collapse
|
6
|
Wellems D, Hu Y, Jennings S, Wang G. Loss of CFTR function in macrophages alters the cell transcriptional program and delays lung resolution of inflammation. Front Immunol 2023; 14:1242381. [PMID: 38035088 PMCID: PMC10687418 DOI: 10.3389/fimmu.2023.1242381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the CF Transmembrane-conductance Regulator (CFTR) gene. The most severe pathologies of CF occur in the lung, manifesting as chronic bacterial infection, persistent neutrophilic inflammation, and mucopurulent airway obstruction. Despite increasing knowledge of the CF primary defect and the resulting clinical sequelae, the relationship between the CFTR loss of function and the neutrophilic inflammation remains incompletely understood. Here, we report that loss of CFTR function in macrophages causes extended lung inflammation. After intratracheal inoculation with Pseudomonas aeruginosa, mice with a macrophage-specific Cftr-knockout (Mac-CF) were able to mount an effective host defense to clear the bacterial infection. However, three days post-inoculation, Mac-CF lungs demonstrated significantly more neutrophil infiltration and higher levels of inflammatory cytokines, suggesting that Mac-CF mice had a slower resolution of inflammation. Single-cell RNA sequencing revealed that absence of CFTR in the macrophages altered the cell transcriptional program, affecting the cell inflammatory and immune responses, antioxidant system, and mitochondrial respiration. Thus, loss of CFTR function in macrophages influences cell homeostasis, leading to a dysregulated cellular response to infection that may exacerbate CF lung disease.
Collapse
Affiliation(s)
| | | | | | - Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
7
|
Vaillancourt M, Galdino ACM, Limsuwannarot SP, Celedonio D, Dimitrova E, Broerman M, Bresee C, Doi Y, Lee JS, Parks WC, Jorth P. A compensatory RNase E variation increases Iron Piracy and Virulence in multidrug-resistant Pseudomonas aeruginosa during Macrophage infection. PLoS Pathog 2023; 19:e1010942. [PMID: 37027441 PMCID: PMC10115287 DOI: 10.1371/journal.ppat.1010942] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/19/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
During chronic cystic fibrosis (CF) infections, evolved Pseudomonas aeruginosa antibiotic resistance is linked to increased pulmonary exacerbations, decreased lung function, and hospitalizations. However, the virulence mechanisms underlying worse outcomes caused by antibiotic resistant infections are poorly understood. Here, we investigated evolved aztreonam resistant P. aeruginosa virulence mechanisms. Using a macrophage infection model combined with genomic and transcriptomic analyses, we show that a compensatory mutation in the rne gene, encoding RNase E, increased pyoverdine and pyochelin siderophore gene expression, causing macrophage ferroptosis and lysis. We show that iron-bound pyochelin was sufficient to cause macrophage ferroptosis and lysis, however, apo-pyochelin, iron-bound pyoverdine, or apo-pyoverdine were insufficient to kill macrophages. Macrophage killing could be eliminated by treatment with the iron mimetic gallium. RNase E variants were abundant in clinical isolates, and CF sputum gene expression data show that clinical isolates phenocopied RNase E variant functions during macrophage infection. Together these data show how P. aeruginosa RNase E variants can cause host damage via increased siderophore production and host cell ferroptosis but may also be targets for gallium precision therapy.
Collapse
Affiliation(s)
- Mylene Vaillancourt
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Anna Clara Milesi Galdino
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Sam P. Limsuwannarot
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Diana Celedonio
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Elizabeth Dimitrova
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Matthew Broerman
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Catherine Bresee
- Biostatistics Core, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Janet S. Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William C. Parks
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Peter Jorth
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| |
Collapse
|
8
|
Scull CE, Luo M, Jennings S, Taylor CM, Wang G. Cftr deletion in mouse epithelial and immune cells differentially influence the intestinal microbiota. Commun Biol 2022; 5:1130. [PMID: 36289287 PMCID: PMC9605958 DOI: 10.1038/s42003-022-04101-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Cystic fibrosis (CF) is a life-threatening genetic disorder, caused by mutations in the CF transmembrane-conductance regulator gene (cftr) that encodes CFTR, a cAMP-activated chloride and bicarbonate channel. Clinically, CF lung disease dominates the adult patient population. However, its gastrointestinal illness claims the early morbidity and mortality, manifesting as intestinal dysbiosis, inflammation and obstruction. As CF is widely accepted as a disease of epithelial dysfunction, it is unknown whether CFTR loss-of-function in immune cells contributes to these clinical outcomes. Using cftr genetic knockout and bone marrow transplantation mouse models, we performed 16S rRNA gene sequencing of the intestinal microbes. Here we show that cftr deletion in both epithelial and immune cells collectively influence the intestinal microbiota. However, the immune defect is a major factor determining the dysbiosis in the small intestine, while the epithelial defect largely influences that in the large intestine. This finding revises the current concept by suggesting that CF epithelial defect and immune defect play differential roles in CF intestinal disease.
Collapse
Affiliation(s)
- Callie E Scull
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Scott Jennings
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|