1
|
Gogna N, Pinkney J, Stone L, Khorzom MM, Zhao F, Collin GB, Naggert JK, Krebs MP, Nishina PM. A biometric survey of known and prospective murine models of posterior microphthalmia-nanophthalmia. Exp Eye Res 2025; 255:110335. [PMID: 40154727 DOI: 10.1016/j.exer.2025.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 04/01/2025]
Abstract
Posterior microphthalmia and nanophthalmia are related genetic conditions that disrupt ocular growth. Here, we conducted a biometric analysis of mouse models to assess shared features of these diseases. Three known microphthalmia alleles (Mfrprd6, Prss56glcr4, and Adipor1tm1Dgen) and two prospective alleles (C1qtnf5tm1.1(KOMP)Vlcg and Prss56em2(IMPC)J) were introgressed onto the C57BL/6J (B6) genetic background and compared to B6 mice at 1 through 12 months of age. Biometric parameters obtained using optical coherence tomography were analyzed statistically to identify strain differences. Fundus imaging and histological analyses were performed to assess ocular morphology. Mfrprd6, Prss56glcr4, and Prss56em2(IMPC)J mice had significantly shorter axial and posterior lengths, and longer anterior chamber depth compared to controls at all ages studied. Adipor1tm1Dgen mice exhibited similar, but less severe, biometric changes. Axial length was not significantly changed in C1qtnf5tm1.1(KOMP)Vlcg mice, but reduced anterior chamber depth and increased lens thickness were observed at one month of age. Lens and corneal thicknesses were otherwise unchanged in the models as compared to B6 controls. Corneal radius of curvature, examined at 4 months of age, was significantly decreased in all models relative to controls. Micropthalmia was observed independent of retinal degeneration (Mfrprd6, Adipor1tm1Dgen) or retinal thickening (Prss56 mutants). Prss56 mutants developed retinal folds that were absent from other mutants and controls. We conclude that, in mice, Mfrp, Prss56, and Adipor1 mutations yield similar microphthalmia phenotypes involving both the anterior and posterior eye. Changes to anterior chamber depth, lens thickness, and corneal curvature in C1qtnf5tm1.1(KOMP)Vlcg mice suggest a role of C1qtnf5 in anterior ocular growth.
Collapse
Affiliation(s)
- Navdeep Gogna
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Jai Pinkney
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Lisa Stone
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | | | - Fuxin Zhao
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Gayle B Collin
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | | | - Mark P Krebs
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - Patsy M Nishina
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| |
Collapse
|
2
|
Lindfors S, Schmotz C, Lewandowski D, Hau A, Saikko L, Lehtonen E, Majaniemi V, Karhe M, Naams JB, Nisen H, Tienari J, Saleem MA, Pfeil K, Bugger H, Pietiläinen KH, Mirtti T, Palczewski K, Lehtonen S. Integrin Trafficking, Fibronectin Architecture, and Glomerular Injury upon Adiponectin Receptor 1 Depletion. J Am Soc Nephrol 2025; 36:825-844. [PMID: 39874092 PMCID: PMC12059104 DOI: 10.1681/asn.0000000611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Key Points Glomerular expression of adiponectin receptor 1 (AdipoR1) was lower in people with type 2 diabetes and correlates with podocyte loss. AdipoR1 knockout induced glomerular injury and fibrosis in mice, predominantly in males. AdipoR1 knockdown podocytes showed impaired trafficking of active integrin β 1, fibronectin accumulation, impaired adhesion, and increased apoptosis. Background Deficiency of adiponectin and its downstream signaling may contribute to the pathogenesis of kidney injury in type 2 diabetes. Adiponectin activates intracellular signaling using adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2, but the role of adiponectin receptor–mediated signaling in glomerular injury in type 2 diabetes remains unknown. Methods The expression of AdipoR1 in the kidneys of people with type 2 diabetes and the expression of podocyte proteins or injury markers in the kidneys of AdipoR1 knockout (AdipoR1-KO) mice and immortalized AdipoR1-deficient human podocytes were investigated by immunohistochemistry and immunoblotting. The functional role of AdipoR1 was studied in AdipoR1-deficient podocytes by performing assays for apoptosis, cytokine secretion, mechanical stress, adhesion, and endocytic trafficking. Results Glomerular AdipoR1 expression was lower in type 2 diabetes and associated kidney disease, correlating with higher body mass index and podocyte loss. Male AdipoR1-KO mice showed typical signs of early diabetic kidney disease, including albuminuria, glomerular structural abnormalities, and lower expression of central podocyte proteins; females were less affected. Podocyte apoptosis increased in female and male AdipoR1-KO mice, and excessive podocyte loss, potentially due to detachment, was detected in males. AdipoR1 deficiency impaired the yes-associated protein–mediated mechanoresponse and induced accumulation of the extracellular matrix (ECM) protein fibronectin in the glomeruli in vivo and podocytes in vitro . Functionally, AdipoR1 deficiency impaired endocytosis of the ECM receptor active integrin β 1, disturbed focal adhesion turnover, and remodulated podocyte-derived ECM, thereby reducing podocyte adhesion. Conclusions AdipoR1 deficiency in mice resulted in the development of kidney injury predominantly in males. Mechanistically, AdipoR1 loss in podocytes impaired endocytosis of active integrin β 1, which plausibly compromised focal adhesion dynamics, disturbed fibronectin matrix turnover, and hindered podocyte adhesion.
Collapse
Affiliation(s)
- Sonja Lindfors
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Constanze Schmotz
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Dominik Lewandowski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, California
| | - Annika Hau
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Leena Saikko
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eero Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Ville Majaniemi
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minna Karhe
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jette-Britt Naams
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harry Nisen
- Abdominal Center, Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jukka Tienari
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Moin A. Saleem
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Katharina Pfeil
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Heiko Bugger
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Kirsi H. Pietiläinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Obesity Research Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Healthy Weight Hub, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tuomas Mirtti
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, California
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California
- Department of Chemistry, University of California, Irvine, Irvine, California
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Sanna Lehtonen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Tworak A, Smidak R, Rodrigues Menezes C, Du SW, Suh S, Choi EH, Imanishi SS, Dong Z, Lewandowski D, Fong KE, Grigorean G, Pinto AFM, Xu Q, Skowronska-Krawczyk D, Blackshaw S, Imanishi Y, Palczewski K. MFRP is a molecular hub that organizes the apical membrane of RPE cells by engaging in interactions with specific proteins and lipids. Proc Natl Acad Sci U S A 2025; 122:e2425523122. [PMID: 40249779 PMCID: PMC12036977 DOI: 10.1073/pnas.2425523122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/17/2025] [Indexed: 04/20/2025] Open
Abstract
Membrane frizzled-related protein (MFRP), present in the retinal pigment epithelium (RPE), is an integral membrane protein essential for ocular development and the normal physiology of the retina. Mutations in MFRP are associated with autosomal recessive nonsyndromic nanophthalmos, leading to severe hyperopia and early-onset retinitis pigmentosa. While several preclinical gene-augmentation and gene-editing trials hold promise for future therapies aimed at stopping degeneration and restoring retinal function, the molecular mechanisms involved in MFRP biology are still not well understood. Here, we studied the biochemical properties of MFRP and the molecular consequences of its loss of function in the retinal degeneration 6 (rd6) mouse model. Using transcriptomic and lipidomic approaches, we observed that accumulation of docosahexaenoic acid (DHA) constitutes a primary defect in the MFRP-deficient RPE. In biochemical assays, we showed that MFRP undergoes extensive glycosylation, and it preferentially binds lipids of several classes, including phosphatidylserine and phosphatidylinositol-4-phosphate; as well as binding to several transmembrane proteins, notably adiponectin receptor 1 (ADIPOR1) and inward rectifier potassium channel 13 (KCNJ13). Moreover, MFRP determines the subcellular localization of ADIPOR1 and KCNJ13 in the RPE in vivo. This feature is altered by MFRP deficiency and can be restored by gene-therapy approaches. Overall, our observations suggest that MFRP constitutes an important interaction hub within the apical membrane of RPE cells, coordinating protein trafficking and subcellular localization within the RPE, and lipid homeostasis within the entire retina.
Collapse
Affiliation(s)
- Aleksander Tworak
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| | - Roman Smidak
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| | | | - Samuel W. Du
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697
| | - Susie Suh
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| | - Elliot H. Choi
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| | - Sanae S. Imanishi
- Department of Ophthalmology, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
| | - Zhiqian Dong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| | - Dominik Lewandowski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| | - Kristen E. Fong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| | - Gabriela Grigorean
- Proteomics Core Facility, Genome Center, University of California, Davis, CA95616
| | - Antonio F. M. Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Qianlan Xu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| | | | - Seth Blackshaw
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD21205
- Department of Neurology, Institute for Cell Engineering, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD21205
| | - Yoshikazu Imanishi
- Department of Ophthalmology, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697
| |
Collapse
|
4
|
Taylor OB, DeGroff N, El-Hodiri HM, Gao C, Fischer AJ. Sphingosine-1-phosphate signaling regulates the ability of Müller glia to become neurogenic, proliferating progenitor-like cells. eLife 2025; 13:RP102151. [PMID: 40047533 PMCID: PMC11884796 DOI: 10.7554/elife.102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
The purpose of these studies is to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, dedifferentiation of Müller glia (MG), reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs in the chick retina. We found that S1P-related genes are highly expressed by retinal neurons and glia, and levels of expression were dynamically regulated following retinal damage. Drug treatments that activate S1P receptor 1 (S1PR1) or increase levels of S1P suppressed the formation of MGPCs. Conversely, treatments that inhibit S1PR1 or decrease levels of S1P stimulated the formation of MGPCs. Inhibition of S1P receptors or S1P synthesis significantly enhanced the neuronal differentiation of the progeny of MGPCs. We report that S1P-related gene expression in MG is modulated by microglia and inhibition of S1P receptors or S1P synthesis partially rescues the loss of MGPC formation in damaged retinas missing microglia. Finally, we show that TGFβ/Smad3 signaling in the resting retina maintains S1PR1 expression in MG. We conclude that the S1P signaling is dynamically regulated in MG and MGPCs in the chick retina, and activation of S1P signaling depends, in part, on signals produced by reactive microglia.
Collapse
Affiliation(s)
- Olivia B Taylor
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
- Neuroscience Graduate Program, The Ohio State UniversityColumbusUnited States
| | - Nicholas DeGroff
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Heithem M El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Chengyu Gao
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics Facility, The Ohio State UniversityColumbusUnited States
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
| |
Collapse
|
5
|
Singh A, Ratnapriya R. Integration of multiomic data identifies core-module of inherited-retinal diseases. Hum Mol Genet 2025; 34:454-465. [PMID: 39797395 DOI: 10.1093/hmg/ddaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Human diseases with similar phenotypes can be interconnected through shared biological pathways, genes, or molecular mechanisms. Inherited retinal diseases (IRDs) cause photoreceptor dysfunction due to mutations in approximately 300 genes, affecting visual transduction, photoreceptor morphogenesis, and transcription factors, suggesting common pathobiological mechanisms. This study examined the functional relationship between known IRDs genes by integrating binding sites and gene expression data from the key photoreceptor transcription factors (TFs), Crx and Nrl. We show that the targets of these TFs were enriched in IRDs causal genes. Co-expression network analysis revealed that IRD-centric networks were disrupted when Crx and Nrl were knocked out. Finally, we identified a highly connected core module comprising 14 IRD and 39 target genes, of which 29 were dysregulated in the rod photoreceptors of the four IRD mouse models. These findings offer a network-based interpretation of IRDs, aiding in the identification of common mechanisms, prioritizing genes for novel disease gene identification, and informing the development of gene-agnostic therapies for IRDs.
Collapse
Affiliation(s)
- Ajeet Singh
- Department of Ophthalmology, Baylor College of Medicine, 6565 Fannin St, NC205, Houston, TX 77030 United States
| | - Rinki Ratnapriya
- Department of Ophthalmology, Baylor College of Medicine, 6565 Fannin St, NC205, Houston, TX 77030 United States
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 6565 Fannin St, NC205, Houston, TX 77030 United States
| |
Collapse
|
6
|
Taylor O, DeGroff N, El-Hodiri H, Gao C, Fischer AJ. Sphingosine-1-phosphate signaling regulates the ability of Müller glia to become neurogenic, proliferating progenitor-like cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.06.606815. [PMID: 39149287 PMCID: PMC11326190 DOI: 10.1101/2024.08.06.606815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The purpose of these studies is to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, dedifferentiation of Müller glia (MG), reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs in the chick retina. We found that S1P-related genes are highly expressed by retinal neurons and glia, and levels of expression were dynamically regulated following retinal damage. Drug treatments that activate S1P receptor 1 (S1PR1) or increase levels of S1P suppressed the formation of MGPCs. Conversely, treatments that inhibit S1PR1 or decrease levels of S1P stimulated the formation of MGPCs. Inhibition of S1P receptors or S1P synthesis significantly enhanced the neuronal differentiation of the progeny of MGPCs. We report that S1P-related gene expression in MG is modulated by microglia and inhibition of S1P receptors or S1P synthesis partially rescues the loss of MGPC formation in damaged retinas missing microglia. Finally, we show that TGFβ/Smad3 signaling in the resting retina maintains S1PR1 expression in MG. We conclude that the S1P signaling is dynamically regulated in MG and MGPCs in the chick retina, and activation of S1P signaling depends, in part, on signals produced by reactive microglia.
Collapse
Affiliation(s)
- Olivia Taylor
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Nick DeGroff
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Heithem El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Chengyu Gao
- Campus Chemical Instrument Center, Mass Spectrometry & Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Andy J. Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Hołubowicz R, Du SW, Felgner J, Smidak R, Choi EH, Palczewska G, Menezes CR, Dong Z, Gao F, Medani O, Yan AL, Hołubowicz MW, Chen PZ, Bassetto M, Risaliti E, Salom D, Workman JN, Kiser PD, Foik AT, Lyon DC, Newby GA, Liu DR, Felgner PL, Palczewski K. Safer and efficient base editing and prime editing via ribonucleoproteins delivered through optimized lipid-nanoparticle formulations. Nat Biomed Eng 2025; 9:57-78. [PMID: 39609561 PMCID: PMC11754100 DOI: 10.1038/s41551-024-01296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Delivering ribonucleoproteins (RNPs) for in vivo genome editing is safer than using viruses encoding for Cas9 and its respective guide RNA. However, transient RNP activity does not typically lead to optimal editing outcomes. Here we show that the efficiency of delivering RNPs can be enhanced by cell-penetrating peptides (covalently fused to the protein or as excipients) and that lipid nanoparticles (LNPs) encapsulating RNPs can be optimized for enhanced RNP stability, delivery efficiency and editing potency. Specifically, after screening for suitable ionizable cationic lipids and by optimizing the concentration of the synthetic lipid DMG-PEG 2000, we show that the encapsulation, via microfluidic mixing, of adenine base editor and prime editor RNPs within LNPs using the ionizable lipid SM102 can result in in vivo editing-efficiency enhancements larger than 300-fold (with respect to the delivery of the naked RNP) without detectable off-target edits. We believe that chemically defined LNP formulations optimized for RNP-encapsulation stability and delivery efficiency will lead to safer genome editing.
Collapse
Grants
- F30 EY033642 NEI NIH HHS
- FENG.02.01-IP.05-T005/23 Fundacja na rzecz Nauki Polskiej (Foundation for Polish Science)
- R01 EY032948 NEI NIH HHS
- R01EY032948, R21NS113264 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- RM1 HG009490 NHGRI NIH HHS
- R00 HL163805 NHLBI NIH HHS
- R21 NS113264 NINDS NIH HHS
- R01 EY030873 NEI NIH HHS
- U01 AI142756 NIAID NIH HHS
- UG3AI150551, U01AI142756, R35GM118062, RM1HG009490 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R01 EY034501 NEI NIH HHS
- N66001-21-C-4013 United States Department of Defense | Defense Threat Reduction Agency (DTRA)
- T32GM008620, F30EY033642 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- T32GM148383 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- P30EY034070 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- I01BX004939 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- UG3 AI150551 NIAID NIH HHS
- 75N93022C00054 NIAID NIH HHS
- R01EY009339, R01EY030873, P30EY034070, P30CA062203 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R01 EY009339 NEI NIH HHS
- P30 EY034070 NEI NIH HHS
- T32 GM008620 NIGMS NIH HHS
- R00HL163805 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- I01 BX004939 BLRD VA
- R35 GM118062 NIGMS NIH HHS
- T32 GM148383 NIGMS NIH HHS
- P30 CA062203 NCI NIH HHS
- 2022/47/B/NZ5/03023, 2020/39/D/NZ4/01881, 2019/34/E/NZ5/00434 Narodowe Centrum Nauki (National Science Centre)
- Knights Templar Eye Foundation (Knights Templar Eye Foundation, Inc.)
- Howard Hughes Medical Institute (HHMI)
Collapse
Affiliation(s)
- Rafał Hołubowicz
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Samuel W Du
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Jiin Felgner
- Adeline Yen Mah Vaccine Center, Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Roman Smidak
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Elliot H Choi
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Grazyna Palczewska
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Carolline Rodrigues Menezes
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Zhiqian Dong
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Fangyuan Gao
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Omar Medani
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Alexander L Yan
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Program in Neuroscience, Amherst College, Amherst, MA, USA
| | - Maria W Hołubowicz
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Paul Z Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marco Bassetto
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
- Research Service, Tibor Rubin VA Long Beach Medical Center, Long Beach, CA, USA
| | - Eleonora Risaliti
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - David Salom
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - J Noah Workman
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Philip D Kiser
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
- Research Service, Tibor Rubin VA Long Beach Medical Center, Long Beach, CA, USA
- Department of Clinical Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Andrzej T Foik
- International Centre for Translational Eye Research (ICTER), Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - David C Lyon
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| | - Philip L Felgner
- Adeline Yen Mah Vaccine Center, Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA.
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
8
|
Tahia F, Ma D, Stephenson DJ, Basu SK, Del Mar NA, Lenchik N, Kochat H, Brown K, Chalfant CE, Mandal N. Inhibiting De Novo Biosynthesis of Ceramide by L-Cycloserine Can Prevent Light-Induced Retinal Degeneration in Albino BALB/c Mice. Int J Mol Sci 2024; 25:13389. [PMID: 39769156 PMCID: PMC11676690 DOI: 10.3390/ijms252413389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Retinal degenerative diseases lead to irreversible vision loss due to photoreceptor cell death, driven by complex genetic and environmental factors. Ceramide, a sphingolipid metabolite, emerges as a critical mediator in the apoptotic cascade associated with retinal degeneration. Our previous work demonstrated L-Cycloserine's ability to protect photoreceptor-derived cells from oxidative stress by inhibiting the de novo ceramide pathway and thus prompting further investigation on its effect in the in vivo retina. This study investigates the potential of L-Cycloserine to protect albino BALB/c mice against light-induced retinal degeneration (LIRD). L-Cycloserine, in an optimal dose, administered systemically 30 min before LIRD, was found to prevent photoreceptor cell death significantly from light-induced degeneration. We further determined the retinal bioavailability and pharmacokinetic behavior of L-Cycloserine, its effect on sphingolipid profile, expression of sphingolipid biosynthetic, and cell death-promoting genes and proteins from the retina to understand the underlying mechanisms. This study lays the groundwork for further preclinical and clinical investigations into L-Cycloserine's potential as a novel therapeutic in treating retinal degenerative diseases.
Collapse
Affiliation(s)
- Faiza Tahia
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (F.T.); (D.M.)
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.B.); (N.A.D.M.); (N.L.)
| | - Dejian Ma
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (F.T.); (D.M.)
| | - Daniel J. Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (D.J.S.); (C.E.C.)
| | - Sandip K. Basu
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.B.); (N.A.D.M.); (N.L.)
| | - Nobel A. Del Mar
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.B.); (N.A.D.M.); (N.L.)
| | - Nataliya Lenchik
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.B.); (N.A.D.M.); (N.L.)
| | - Harry Kochat
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (H.K.); (K.B.)
| | - Kennard Brown
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (H.K.); (K.B.)
| | - Charles E. Chalfant
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (D.J.S.); (C.E.C.)
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA 23298, USA
| | - Nawajes Mandal
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (F.T.); (D.M.)
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.B.); (N.A.D.M.); (N.L.)
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Memphis VA Medical Center, Memphis, TN 38104, USA
| |
Collapse
|
9
|
Xu JW, Chen FF, Qv YH, Sun CC, Zhang D, Guo Z, Wang YJ, Wang JF, Liu T, Dong L, Qi Q. Unleashing AdipoRon's Potential: A Fresh Approach to Tackle Pseudomonas aeruginosa Infections in Bronchiectasis via Sphingosine Metabolism Modulation. J Inflamm Res 2024; 17:7653-7674. [PMID: 39469062 PMCID: PMC11514707 DOI: 10.2147/jir.s483689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Purpose Bronchiectasis patients are prone to Pseudomonas aeruginosa infection due to decreased level of sphingosine in airway. Adiponectin receptor agonist AdipoRon activates the intrinsic ceramidase activity of adiponectin receptor 1 (AdipoR1) and positively regulates sphingosine metabolism. This study aimed to investigate the potential therapeutic benefit of AdipoRon against Pseudomonas aeruginosa infection. Methods A mouse model of Pseudomonas aeruginosa lung infection and a co-culture model of human bronchial epithelial cells with Pseudomonas aeruginosa were established to explore the protective effect of AdipoRon. Liquid chromatography-mass spectrometry was used to detect the effect of AdipoRon on sphingosine level in lung of Pseudomonas aeruginosa-infected mouse models. Results The down-regulation of adiponectin and AdipoR1 in airway of bronchiectasis patients was linked to Pseudomonas aeruginosa infection. By activating AdipoR1, AdipoRon reduced Pseudomonas aeruginosa adherence on bronchial epithelial cells and protected cilia from damage in vitro. With the treatment of AdipoRon, the load of Pseudomonas aeruginosa in lung significantly decreased, and peribronchial inflammatory cell infiltration was lessened in vivo. The reduced level of sphingosine in the airway of Pseudomonas aeruginosa infected mice was replenished by AdipoRon, thus playing a protective role in the airway. Moreover, AdipoRon activated P-AMPKα/PGC1α, inhibited TLR4/P-NF-κB p65, and reduced expression of pro-apoptotic bax. However, the protective effect of AdipoRon on resisting Pseudomonas aeruginosa infection was weakened when AdipoR1 was knocked down. Conclusion AdipoRon protects bronchial epithelial cells and lung by enhancing their resistance to Pseudomonas aeruginosa infection. The mechanism might be modulating sphingosine metabolism and activating P-AMPKα/PGC1α while inhibiting TLR4/P-NF-κB p65.
Collapse
Affiliation(s)
- Jia-wei Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Fang-fang Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Ying-hui Qv
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Cong-cong Sun
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Dong Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Zhi Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Yu-jiao Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Jun-fei Wang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
| | - Tian Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
| | - Liang Dong
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Qian Qi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| |
Collapse
|
10
|
Wang Y, Becker S, Finkelstein S, Dyka FM, Liu H, Eminhizer M, Hao Y, Brush RS, Spencer WJ, Arshavsky VY, Ash JD, Du J, Agbaga MP, Vinberg F, Ellis JM, Lobanova ES. Acyl-CoA synthetase 6 controls rod photoreceptor function and survival by shaping the phospholipid composition of retinal membranes. Commun Biol 2024; 7:1027. [PMID: 39169121 PMCID: PMC11339274 DOI: 10.1038/s42003-024-06691-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
The retina is light-sensitive neuronal tissue in the back of the eye. The phospholipid composition of the retina is unique and highly enriched in polyunsaturated fatty acids, including docosahexaenoic fatty acid (DHA). While it is generally accepted that a high DHA content is important for vision, surprisingly little is known about the mechanisms of DHA enrichment in the retina. Furthermore, the biological processes controlled by DHA in the eye remain poorly defined as well. Here, we combined genetic manipulations with lipidomic analysis in mice to demonstrate that acyl-CoA synthetase 6 (Acsl6) serves as a regulator of the unique composition of retinal membranes. Inactivation of Acsl6 reduced the levels of DHA-containing phospholipids, led to progressive loss of light-sensitive rod photoreceptor neurons, attenuated the light responses of these cells, and evoked distinct transcriptional response in the retina involving the Srebf1/2 (sterol regulatory element binding transcription factors 1/2) pathway. This study identifies one of the major enzymes responsible for DHA enrichment in the retinal membranes and introduces a model allowing an evaluation of rod functioning and pathology caused by impaired DHA incorporation/retention in the retina.
Collapse
Affiliation(s)
- Yixiao Wang
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Silke Becker
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| | | | - Frank M Dyka
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Eminhizer
- Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Ying Hao
- Department of Ophthalmology, Duke University, Durham, NC, USA
| | - Richard S Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center and Dean McGee Eye Institute, Oklahoma City, OK, USA
| | - William J Spencer
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - John D Ash
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianhai Du
- Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Martin-Paul Agbaga
- Department of Ophthalmology, University of Oklahoma Health Sciences Center and Dean McGee Eye Institute, Oklahoma City, OK, USA
| | - Frans Vinberg
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| | | | | |
Collapse
|
11
|
Fu C, Yang N, Chuang JZ, Nakajima N, Iraha S, Roy N, Wu Z, Jiang Z, Otsu W, Radu RA, Yang HH, Lee MP, Worgall TS, Xiong WC, Sung CH. Mutant mice with rod-specific VPS35 deletion exhibit retinal α-synuclein pathology-associated degeneration. Nat Commun 2024; 15:5970. [PMID: 39043666 PMCID: PMC11266608 DOI: 10.1038/s41467-024-50189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Vacuolar protein sorting 35 (VPS35), the core component of the retromer complex which regulates endosomal trafficking, is genetically linked with Parkinson's disease (PD). Impaired vision is a common non-motor manifestation of PD. Here, we show mouse retinas with VPS35-deficient rods exhibit synapse loss and visual deficit, followed by progressive degeneration concomitant with the emergence of Lewy body-like inclusions and phospho-α-synuclein (P-αSyn) aggregation. Ultrastructural analyses reveal VPS35-deficient rods accumulate aggregates in late endosomes, deposited as lipofuscins bound to P-αSyn. Mechanistically, we uncover a protein network of VPS35 and its interaction with HSC70. VPS35 deficiency promotes sequestration of HSC70 and P-αSyn aggregation in late endosomes. Microglia which engulf lipofuscins and P-αSyn aggregates are activated, displaying autofluorescence, observed as bright dots in fundus imaging of live animals, coinciding with pathology onset and progression. The Rod∆Vps35 mouse line is a valuable tool for further mechanistic investigation of αSyn lesions and retinal degenerative diseases.
Collapse
Affiliation(s)
- Cheng Fu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nan Yang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nobuyuki Nakajima
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Urology, Tokai University School of Medicipne, Tokyo, Japan
| | - Satoshi Iraha
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University; Department of Ophthalmology, National Sanatorium Kikuchi Keifuen, Kumamoto, Japan
| | - Neeta Roy
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Zhenquan Wu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Zhichun Jiang
- UCLA Stein Eye Institute, and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Wataru Otsu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Roxana A Radu
- UCLA Stein Eye Institute, and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Howard Hua Yang
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maxwell Ping Lee
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tilla S Worgall
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
12
|
Leinonen H, Zhang J, Occelli LM, Seemab U, Choi EH, L P Marinho LF, Querubin J, Kolesnikov AV, Galinska A, Kordecka K, Hoang T, Lewandowski D, Lee TT, Einstein EE, Einstein DE, Dong Z, Kiser PD, Blackshaw S, Kefalov VJ, Tabaka M, Foik A, Petersen-Jones SM, Palczewski K. A combination treatment based on drug repurposing demonstrates mutation-agnostic efficacy in pre-clinical retinopathy models. Nat Commun 2024; 15:5943. [PMID: 39009597 PMCID: PMC11251169 DOI: 10.1038/s41467-024-50033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Inherited retinopathies are devastating diseases that in most cases lack treatment options. Disease-modifying therapies that mitigate pathophysiology regardless of the underlying genetic lesion are desirable due to the diversity of mutations found in such diseases. We tested a systems pharmacology-based strategy that suppresses intracellular cAMP and Ca2+ activity via G protein-coupled receptor (GPCR) modulation using tamsulosin, metoprolol, and bromocriptine coadministration. The treatment improves cone photoreceptor function and slows degeneration in Pde6βrd10 and RhoP23H/WT retinitis pigmentosa mice. Cone degeneration is modestly mitigated after a 7-month-long drug infusion in PDE6A-/- dogs. The treatment also improves rod pathway function in an Rpe65-/- mouse model of Leber congenital amaurosis but does not protect from cone degeneration. RNA-sequencing analyses indicate improved metabolic function in drug-treated Rpe65-/- and rd10 mice. Our data show that catecholaminergic GPCR drug combinations that modify second messenger levels via multiple receptor actions provide a potential disease-modifying therapy against retinal degeneration.
Collapse
Affiliation(s)
- Henri Leinonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland.
| | - Jianye Zhang
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Laurence M Occelli
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Umair Seemab
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland
| | - Elliot H Choi
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | | | - Janice Querubin
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Alexander V Kolesnikov
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Anna Galinska
- International Centre for Translational Eye Research, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kordecka
- International Centre for Translational Eye Research, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Thanh Hoang
- Department of Ophthalmology, Department of Cell & Developmental Biology, Ann Arbor, MI, 48105, USA
| | - Dominik Lewandowski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Timothy T Lee
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Elliott E Einstein
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - David E Einstein
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Zhiqian Dong
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Philip D Kiser
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
- Department of Physiology and Biophysics, School of Medicine, University of California - Irvine, Irvine, CA, 92697, USA
- Department of Clinical Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of California - Irvine, Irvine, CA, 92697, USA
- Research Service, VA Long Beach Healthcare System, Long Beach, California, 90822, USA
| | - Seth Blackshaw
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vladimir J Kefalov
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
- Department of Physiology and Biophysics, School of Medicine, University of California - Irvine, Irvine, CA, 92697, USA
| | - Marcin Tabaka
- International Centre for Translational Eye Research, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Foik
- International Centre for Translational Eye Research, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Krzysztof Palczewski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA.
- Department of Physiology and Biophysics, School of Medicine, University of California - Irvine, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California-Irvine, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, 92697, USA.
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
13
|
Zheng J, Zhang W, Xu R, Liu L. The role of adiponectin and its receptor signaling in ocular inflammation-associated diseases. Biochem Biophys Res Commun 2024; 717:150041. [PMID: 38710142 DOI: 10.1016/j.bbrc.2024.150041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Ocular inflammation-associated diseases are leading causes of global visual impairment, with limited treatment options. Adiponectin, a hormone primarily secreted by adipose tissue, binds to its receptors, which are widely distributed throughout the body, exerting powerful physiological regulatory effects. The protective role of adiponectin in various inflammatory diseases has gained increasing attention in recent years. Previous studies have confirmed the presence of adiponectin and its receptors in the eyes. Furthermore, adiponectin and its analogs have shown potential as novel drugs for the treatment of inflammatory eye diseases. This article summarizes the evidence for the interplay between adiponectin and inflammatory eye diseases and provides new perspectives on the diagnostic and therapeutic possibilities of adiponectin.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Du SW, Komirisetty R, Lewandowski D, Choi EH, Panas D, Suh S, Tabaka M, Radu RA, Palczewski K. Conditional deletion of miR-204 and miR-211 in murine retinal pigment epithelium results in retinal degeneration. J Biol Chem 2024; 300:107344. [PMID: 38705389 PMCID: PMC11140208 DOI: 10.1016/j.jbc.2024.107344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024] Open
Abstract
MicroRNAs (miRs) are short, evolutionarily conserved noncoding RNAs that canonically downregulate expression of target genes. The miR family composed of miR-204 and miR-211 is among the most highly expressed miRs in the retinal pigment epithelium (RPE) in both mouse and human and also retains high sequence identity. To assess the role of this miR family in the developed mouse eye, we generated two floxed conditional KO mouse lines crossed to the RPE65-ERT2-Cre driver mouse line to perform an RPE-specific conditional KO of this miR family in adult mice. After Cre-mediated deletion, we observed retinal structural changes by optical coherence tomography; dysfunction and loss of photoreceptors by retinal imaging; and retinal inflammation marked by subretinal infiltration of immune cells by imaging and immunostaining. Single-cell RNA sequencing of diseased RPE and retinas showed potential miR-regulated target genes, as well as changes in noncoding RNAs in the RPE, rod photoreceptors, and Müller glia. This work thus highlights the role of miR-204 and miR-211 in maintaining RPE function and how the loss of miRs in the RPE exerts effects on the neural retina, leading to inflammation and retinal degeneration.
Collapse
Affiliation(s)
- Samuel W Du
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA.
| | - Ravikiran Komirisetty
- Department of Ophthalmology and UCLA Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Dominik Lewandowski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Elliot H Choi
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Damian Panas
- International Centre for Translational Eye Research, Warsaw, Poland; Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Susie Suh
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Marcin Tabaka
- International Centre for Translational Eye Research, Warsaw, Poland; Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Roxana A Radu
- Department of Ophthalmology and UCLA Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA; Department of Chemistry, University of California, Irvine, Irvine, California, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA.
| |
Collapse
|
15
|
Bassetto M, Kolesnikov AV, Lewandowski D, Kiser JZ, Halabi M, Einstein DE, Choi EH, Palczewski K, Kefalov VJ, Kiser PD. Dominant role for pigment epithelial CRALBP in supplying visual chromophore to photoreceptors. Cell Rep 2024; 43:114143. [PMID: 38676924 PMCID: PMC11211020 DOI: 10.1016/j.celrep.2024.114143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
Cellular retinaldehyde-binding protein (CRALBP) supports production of 11-cis-retinaldehyde and its delivery to photoreceptors. It is found in the retinal pigment epithelium (RPE) and Müller glia (MG), but the relative functional importance of these two cellular pools is debated. Here, we report RPE- and MG-specific CRALBP knockout (KO) mice and examine their photoreceptor and visual cycle function. Bulk visual chromophore regeneration in RPE-KO mice is 15-fold slower than in controls, accounting for their delayed rod dark adaptation and protection against retinal phototoxicity, whereas MG-KO mice have normal bulk visual chromophore regeneration and retinal light damage susceptibility. Cone pigment regeneration is significantly impaired in RPE-KO mice but mildly affected in MG-KO mice, disclosing an unexpectedly strong reliance of cone photoreceptors on the RPE-based visual cycle. These data reveal a dominant role for RPE-CRALBP in supporting rod and cone function and highlight the importance of RPE cell targeting for CRALBP gene therapies.
Collapse
Affiliation(s)
- Marco Bassetto
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, USA; Research Service, Tibor Rubin VA Long Beach Medical Center, Long Beach, CA 90822, USA; Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
| | - Alexander V Kolesnikov
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
| | - Dominik Lewandowski
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
| | - Jianying Z Kiser
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, USA; Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
| | - Maximilian Halabi
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, USA
| | - David E Einstein
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, USA; Research Service, Tibor Rubin VA Long Beach Medical Center, Long Beach, CA 90822, USA
| | - Elliot H Choi
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
| | - Krzysztof Palczewski
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, USA; Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA; Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Vladimir J Kefalov
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, USA; Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
| | - Philip D Kiser
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, USA; Research Service, Tibor Rubin VA Long Beach Medical Center, Long Beach, CA 90822, USA; Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA; Department of Clinical Pharmacy Practice, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
16
|
Lewandowski D, Gao F, Imanishi S, Tworak A, Bassetto M, Dong Z, Pinto AFM, Tabaka M, Kiser PD, Imanishi Y, Skowronska-Krawczyk D, Palczewski K. Restoring retinal polyunsaturated fatty acid balance and retina function by targeting ceramide in AdipoR1-deficient mice. J Biol Chem 2024; 300:107291. [PMID: 38636661 PMCID: PMC11107370 DOI: 10.1016/j.jbc.2024.107291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Mutations in the adiponectin receptor 1 gene (AdipoR1) lead to retinitis pigmentosa and are associated with age-related macular degeneration. This study explores the effects of AdipoR1 gene deficiency in mice, revealing a striking decline in ω3 polyunsaturated fatty acids (PUFA), an increase in ω6 fatty acids, and elevated ceramides in the retina. The AdipoR1 deficiency impairs peroxisome proliferator-activated receptor α signaling, which is crucial for FA metabolism, particularly affecting proteins associated with FA transport and oxidation in the retina and retinal pigmented epithelium. Our lipidomic and proteomic analyses indicate changes that could affect membrane composition and viscosity through altered ω3 PUFA transport and synthesis, suggesting a potential influence of AdipoR1 on these properties. Furthermore, we noted a reduction in the Bardet-Biedl syndrome proteins, which are crucial for forming and maintaining photoreceptor outer segments that are PUFA-enriched ciliary structures. Diminution in Bardet-Biedl syndrome-proteins content combined with our electron microscopic observations raises the possibility that AdipoR1 deficiency might impair ciliary function. Treatment with inhibitors of ceramide synthesis led to substantial elevation of ω3 LC-PUFAs, alleviating photoreceptor degeneration and improving retinal function. These results serve as the proof of concept for a ceramide-targeted strategy to treat retinopathies linked to PUFA deficiency, including age-related macular degeneration.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA.
| | - Fangyuan Gao
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Sanae Imanishi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aleksander Tworak
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Marco Bassetto
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Zhiqian Dong
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Antonio F M Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Marcin Tabaka
- International Centre for Translational Eye Research, Warsaw, Poland; Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Philip D Kiser
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA; Department of Clinical Pharmacy Practice, University of California, Irvine, California, USA; Research Service, Veterans Affairs Long Beach Healthcare System, Long Beach, California, USA
| | - Yoshikazu Imanishi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dorota Skowronska-Krawczyk
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA; Department of Chemistry, and Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA.
| |
Collapse
|
17
|
Tahia F, Basu SK, Prislovsky A, Mondal K, Ma D, Kochat H, Brown K, Stephenson DJ, Chalfant CE, Mandal N. Sphingolipid biosynthetic inhibitor L-Cycloserine prevents oxidative-stress-mediated death in an in vitro model of photoreceptor-derived 661W cells. Exp Eye Res 2024; 242:109852. [PMID: 38460719 PMCID: PMC11089890 DOI: 10.1016/j.exer.2024.109852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Oxidative stress plays a pivotal role in the pathogenesis of several neurodegenerative diseases. Retinal degeneration causes irreversible death of photoreceptor cells, ultimately leading to vision loss. Under oxidative stress, the synthesis of bioactive sphingolipid ceramide increases, triggering apoptosis in photoreceptor cells and leading to their death. This study investigates the effect of L-Cycloserine, a small molecule inhibitor of ceramide biosynthesis, on sphingolipid metabolism and the protection of photoreceptor-derived 661W cells from oxidative stress. The results demonstrate that treatment with L-Cycloserine, an inhibitor of Serine palmitoyl transferase (SPT), markedly decreases bioactive ceramide and associated sphingolipids in 661W cells. A nontoxic dose of L-Cycloserine can provide substantial protection of 661W cells against H2O2-induced oxidative stress by reversing the increase in ceramide level observed under oxidative stress conditions. Analysis of various antioxidant, apoptotic and sphingolipid pathway genes and proteins also confirms the ability of L-Cycloserine to modulate these pathways. Our findings elucidate the generation of sphingolipid mediators of cell death in retinal cells under oxidative stress and the potential of L-Cycloserine as a therapeutic candidate for targeting ceramide-induced degenerative diseases by inhibiting SPT. The promising therapeutic prospect identified in our findings lays the groundwork for further validation in in-vivo and preclinical models of retinal degeneration.
Collapse
Affiliation(s)
- Faiza Tahia
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sandip K Basu
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Amanda Prislovsky
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Memphis VA Medical Center, Memphis, TN, 38104, USA
| | - Koushik Mondal
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Dejian Ma
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Harry Kochat
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Kennard Brown
- Office of Executive Vice Chancellor and Chief Operations Officer, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Daniel J Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Charles E Chalfant
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA; Research Service, Richmond Veterans Administration Medical Center, Richmond VA, 23298, USA
| | - Nawajes Mandal
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Memphis VA Medical Center, Memphis, TN, 38104, USA; Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
18
|
Wang Y, Liu Y, Fang J, Xing X, Wang H, Shi X, Liu X, Niu T, Liu K. Small-molecule agonist AdipoRon alleviates diabetic retinopathy through the AdipoR1/AMPK/EGR4 pathway. J Transl Med 2024; 22:2. [PMID: 38166990 PMCID: PMC10759471 DOI: 10.1186/s12967-023-04783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a progressive disease that involves multiple organs due to increased blood glucose, and diabetic retinopathy (DR) is the main complication of DM in the eyes and causes irreversible vision loss. In the pathogenesis of diabetic vascular disease, oxidative stress caused by hyperglycemia plays an important role in Müller cell impairment. In recent years, AdipoRon, an adiponectin analog that demonstrated important physiological functions in obesity, diabetes, inflammation, and cardiovascular diseases, demonstrated cellular protection from apoptosis and reduced inflammatory damage through a receptor-dependent mechanism. Here, we investigated how AdipoRon reduced oxidative stress and apoptosis in Müller glia in a high glucose environment. RESULTS By binding to adiponectin receptor 1 on Müller glia, AdipoRon activated 5' adenosine monophosphate-activated protein kinase (AMPK)/acetyl-CoA carboxylase phosphorylation downstream, thereby alleviating oxidative stress and eventual apoptosis of cells and tissues. Transcriptome sequencing revealed that AdipoRon promoted the synthesis and expression of early growth response factor 4 (EGR4) and inhibited the cellular protective effects of AdipoRon in a high-glucose environment by reducing the expression of EGR4. This indicated that AdipoRon played a protective role through the EGR4 and classical AMPK pathways. CONCLUSIONS This provides a new target for the early treatment of DR.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
- Department of Ophthalmology, Shanghai Renji Hospital, School of Medicine, Shanghai, 200127, China
| | - Yujuan Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Xindan Xing
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Hanying Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Xin Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Xinyi Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Tian Niu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China.
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China.
| |
Collapse
|
19
|
El Safadi D, Lebeau G, Turpin J, Lefebvre d’Hellencourt C, Diotel N, Viranaicken W, Krejbich-Trotot P. The Antiviral Potential of AdipoRon, an Adiponectin Receptor Agonist, Reveals the Ability of Zika Virus to Deregulate Adiponectin Receptor Expression. Viruses 2023; 16:24. [PMID: 38257725 PMCID: PMC10820441 DOI: 10.3390/v16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Zika virus (ZIKV) is a pathogenic member of the flavivirus family, with several unique characteristics. Unlike any other arbovirus, ZIKV can be transmitted sexually and maternally, and thus produce congenital syndromes (CZS) due to its neurotropism. This challenges the search for safe active molecules that can protect pregnant women and their fetuses. In this context, and in the absence of any existing treatment, it seemed worthwhile to test whether the known cytoprotective properties of adiponectin and its pharmacological analog, AdipoRon, could influence the outcome of ZIKV infection. We showed that both AdipoRon and adiponectin could significantly reduce the in vitro infection of A549 epithelial cells, a well-known cell model for flavivirus infection studies. This effect was particularly observed when a pre-treatment was carried out. Conversely, ZIKV revealed an ability to downregulate adiponectin receptor expression and thereby limit adiponectin signaling.
Collapse
Affiliation(s)
- Daed El Safadi
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (G.L.); (J.T.)
| | - Grégorie Lebeau
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (G.L.); (J.T.)
| | - Jonathan Turpin
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (G.L.); (J.T.)
- UMR 1188 Diabète Athérothombose Réunion Océan Indien (DéTROI), Campus Santé Université de la Réunion, Université de La Réunion, INSERM, 77 Avenue du Docteur Jean-Marie Dambreville, 97410 Saint-Pierre, La Réunion, France; (C.L.d.); (N.D.)
| | - Christian Lefebvre d’Hellencourt
- UMR 1188 Diabète Athérothombose Réunion Océan Indien (DéTROI), Campus Santé Université de la Réunion, Université de La Réunion, INSERM, 77 Avenue du Docteur Jean-Marie Dambreville, 97410 Saint-Pierre, La Réunion, France; (C.L.d.); (N.D.)
| | - Nicolas Diotel
- UMR 1188 Diabète Athérothombose Réunion Océan Indien (DéTROI), Campus Santé Université de la Réunion, Université de La Réunion, INSERM, 77 Avenue du Docteur Jean-Marie Dambreville, 97410 Saint-Pierre, La Réunion, France; (C.L.d.); (N.D.)
| | - Wildriss Viranaicken
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (G.L.); (J.T.)
- UMR 1188 Diabète Athérothombose Réunion Océan Indien (DéTROI), Campus Santé Université de la Réunion, Université de La Réunion, INSERM, 77 Avenue du Docteur Jean-Marie Dambreville, 97410 Saint-Pierre, La Réunion, France; (C.L.d.); (N.D.)
| | - Pascale Krejbich-Trotot
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (G.L.); (J.T.)
| |
Collapse
|
20
|
Engfer ZJ, Lewandowski D, Dong Z, Palczewska G, Zhang J, Kordecka K, Płaczkiewicz J, Panas D, Foik AT, Tabaka M, Palczewski K. Distinct mouse models of Stargardt disease display differences in pharmacological targeting of ceramides and inflammatory responses. Proc Natl Acad Sci U S A 2023; 120:e2314698120. [PMID: 38064509 PMCID: PMC10723050 DOI: 10.1073/pnas.2314698120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/25/2023] [Indexed: 12/17/2023] Open
Abstract
Mutations in many visual cycle enzymes in photoreceptors and retinal pigment epithelium (RPE) cells can lead to the chronic accumulation of toxic retinoid byproducts, which poison photoreceptors and the underlying RPE if left unchecked. Without a functional ATP-binding cassette, sub-family A, member 4 (ABCA4), there is an elevation of all-trans-retinal and prolonged buildup of all-trans-retinal adducts, resulting in a retinal degenerative disease known as Stargardt-1 disease. Even in this monogenic disorder, there is significant heterogeneity in the time to onset of symptoms among patients. Using a combination of molecular techniques, we studied Abca4 knockout (simulating human noncoding disease variants) and Abca4 knock-in mice (simulating human misfolded, catalytically inactive protein variants), which serve as models for Stargardt-1 disease. We compared the two strains to ascertain whether they exhibit differential responses to agents that affect cytokine signaling and/or ceramide metabolism, as alterations in either of these pathways can exacerbate retinal degenerative phenotypes. We found different degrees of responsiveness to maraviroc, a known immunomodulatory CCR5 antagonist, and to the ceramide-lowering agent AdipoRon, an agonist of the ADIPOR1 and ADIPOR2 receptors. The two strains also display different degrees of transcriptional deviation from matched WT controls. Our phenotypic comparison of the two distinct Abca4 mutant-mouse models sheds light on potential therapeutic avenues previously unexplored in the treatment of Stargardt disease and provides a surrogate assay for assessing the effectiveness for genome editing.
Collapse
Affiliation(s)
- Zachary J. Engfer
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
| | - Dominik Lewandowski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Zhiqian Dong
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Grazyna Palczewska
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Jianye Zhang
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Katarzyna Kordecka
- Ophthalmic Biology Group, International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Jagoda Płaczkiewicz
- Ophthalmic Biology Group, International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Damian Panas
- International Centre for Translational Eye Research, Warsaw01-224, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Andrzej T. Foik
- Ophthalmic Biology Group, International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Marcin Tabaka
- International Centre for Translational Eye Research, Warsaw01-224, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697
| |
Collapse
|
21
|
Fagian Pansani V, Dolfini Celim LB, Amorim Oliveira G, Rosa Degasperi G. Adiponectin: A "Friendly adipokine" in Diabetic Retinopathy? Semin Ophthalmol 2023; 38:602-609. [PMID: 37157861 DOI: 10.1080/08820538.2023.2205929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE Adiponectin has also been associated with diabetic retinopathy, a diabetic microvascular complication. However, the mechanism of action of adiponectin in retinopathy is still under investigation. This review summarizes emerging evidence on the association with diabetic retinopathy in type 2 diabetes. METHODS We reviwed papers from 2004 to 2022 and included studies related to retinopathy and its association with blood and intraocular adiponectin in type 2 diabetes. RESULTS Most of the studies analyzed in this review suggested an association between the diabetic retinopathy progression and intraocular, serum, or plasma adiponectin levels. Increased levels of adiponectin contributed to the development of the disease in diabetic patients. In a minority of studies, it was indicated an inversely proportional relationship between adiponectin concentration and diabetic retinopathy severity. CONCLUSION The high levels of adiponectin in diabetic patients may be related to the decrease in renal clearance. Under this situation, if the predominant isoform is globular adiponectin, this may explain the retinopathy progression, considering a pro-inflammatory response induced by this isoform. However, the actions of adiponectin in diabetic retinopathy pathophysiology are still controversial.
Collapse
Affiliation(s)
- Victor Fagian Pansani
- Centro de Ciências da Saúde, Faculdade de Medicina, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, SP, Brazil
| | | | | | | |
Collapse
|
22
|
Pan X, Giustarini D, Lang F, Rossi R, Wieder T, Köberle M, Ghashghaeinia M. Desipramine induces eryptosis in human erythrocytes, an effect blunted by nitric oxide donor sodium nitroprusside and N-acetyl-L-cysteine but enhanced by Calcium depletion. Cell Cycle 2023; 22:1827-1853. [PMID: 37522842 PMCID: PMC10599211 DOI: 10.1080/15384101.2023.2234177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Desipramine a representative of tricyclic antidepressants (TCAs) promotes recovery of depressed patients by inhibition of reuptake of neurotransmitters serotonin (SER) and norepinephrine (NE) in the presynaptic membrane by directly blocking their respective transporters SERT and NET.Aims: To study the effect of desipramine on programmed erythrocyte death (eryptosis) and explore the underlying mechanisms.Methods: Phosphatidylserine (PS) exposure on the cell surface as marker of cell death was estimated from annexin-V-binding, cell volume from forward scatter in flow cytometry. Hemolysis was determined photometrically, and intracellular glutathione [GSH]i from high performance liquid chromatography.Results: Desipramine dose-dependently significantly enhanced the percentage of annexin-V-binding cells and didn´t impact glutathione (GSH) synthesis. Desipramine-induced eryptosis was significantly reversed by pre-treatment of erythrocytes with either nitric oxide (NO) donor sodium nitroprusside (SNP) or N-acetyl-L-cysteine (NAC). The highest inhibitory effect was obtained by using both inhibitors together. Calcium (Ca2+) depletion aggravated desipramine-induced eryptosis. Changing the order of treatment, i.e. desipramine first followed by inhibitors, could not influence the inhibitory effect of SNP or NAC.Conclusion: Antidepressants-caused intoxication can be treated by SNP and NAC, respectively. B) Patients with chronic hypocalcemia should not be treated with tricyclic anti-depressants or their dose should be noticeably reduced.
Collapse
Affiliation(s)
- Xia Pan
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Daniela Giustarini
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Florian Lang
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ranieri Rossi
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Thomas Wieder
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Martin Köberle
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, München, Germany
| | - Mehrdad Ghashghaeinia
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Swinkels D, Baes M. The essential role of docosahexaenoic acid and its derivatives for retinal integrity. Pharmacol Ther 2023; 247:108440. [PMID: 37201739 DOI: 10.1016/j.pharmthera.2023.108440] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The fatty acid composition of photoreceptor outer segment (POS) phospholipids diverges from other membranes, being highly enriched in polyunsaturated fatty acids (PUFAs). The most abundant PUFA is docosahexaenoic acid (DHA, C22:6n-3), an omega-3 PUFA that amounts to over 50% of the POS phospholipid fatty acid side chains. Interestingly, DHA is the precursor of other bioactive lipids such as elongated PUFAs and oxygenated derivatives. In this review, we present the current view on metabolism, trafficking and function of DHA and very long chain polyunsaturated fatty acids (VLC-PUFAs) in the retina. New insights on pathological features generated from PUFA deficient mouse models with enzyme or transporter defects and corresponding patients are discussed. Not only the neural retina, but also abnormalities in the retinal pigment epithelium are considered. Furthermore, the potential involvement of PUFAs in more common retinal degeneration diseases such as diabetic retinopathy, retinitis pigmentosa and age-related macular degeneration are evaluated. Supplementation treatment strategies and their outcome are summarized.
Collapse
Affiliation(s)
- Daniëlle Swinkels
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
24
|
C. Luu J, Saadane A, Leinonen H, H. Choi E, Gao F, Lewandowski D, Halabi M, L. Sander C, Wu A, Wang JM, Singh R, Gao S, Lessieur EM, Dong Z, Palczewska G, Mullins RF, Peachey NS, Kiser PD, Tabaka M, Kern TS, Palczewski K. Stress resilience-enhancing drugs preserve tissue structure and function in degenerating retina via phosphodiesterase inhibition. Proc Natl Acad Sci U S A 2023; 120:e2221045120. [PMID: 37126699 PMCID: PMC10175720 DOI: 10.1073/pnas.2221045120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/02/2023] [Indexed: 05/03/2023] Open
Abstract
Chronic, progressive retinal diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and retinitis pigmentosa, arise from genetic and environmental perturbations of cellular and tissue homeostasis. These disruptions accumulate with repeated exposures to stress over time, leading to progressive visual impairment and, in many cases, legal blindness. Despite decades of research, therapeutic options for the millions of patients suffering from these disorders remain severely limited, especially for treating earlier stages of pathogenesis when the opportunity to preserve the retinal structure and visual function is greatest. To address this urgent, unmet medical need, we employed a systems pharmacology platform for therapeutic development. Through integrative single-cell transcriptomics, proteomics, and phosphoproteomics, we identified universal molecular mechanisms across distinct models of age-related and inherited retinal degenerations, characterized by impaired physiological resilience to stress. Here, we report that selective, targeted pharmacological inhibition of cyclic nucleotide phosphodiesterases (PDEs), which serve as critical regulatory nodes that modulate intracellular second messenger signaling pathways, stabilized the transcriptome, proteome, and phosphoproteome through downstream activation of protective mechanisms coupled with synergistic inhibition of degenerative processes. This therapeutic intervention enhanced resilience to acute and chronic forms of stress in the degenerating retina, thus preserving tissue structure and function across various models of age-related and inherited retinal disease. Taken together, these findings exemplify a systems pharmacology approach to drug discovery and development, revealing a new class of therapeutics with potential clinical utility in the treatment or prevention of the most common causes of blindness.
Collapse
Affiliation(s)
- Jennings C. Luu
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH44106
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California-Irvine, Irvine, CA92697
| | - Aicha Saadane
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California-Irvine, Irvine, CA92697
| | - Henri Leinonen
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California-Irvine, Irvine, CA92697
- Department of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio70211, Finland
| | - Elliot H. Choi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH44106
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California-Irvine, Irvine, CA92697
| | - Fangyuan Gao
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California-Irvine, Irvine, CA92697
| | - Dominik Lewandowski
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California-Irvine, Irvine, CA92697
| | - Maximilian Halabi
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California-Irvine, Irvine, CA92697
| | - Christopher L. Sander
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH44106
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California-Irvine, Irvine, CA92697
| | - Arum Wu
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California-Irvine, Irvine, CA92697
| | - Jacob M. Wang
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH44195
| | - Rupesh Singh
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH44195
| | - Songqi Gao
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Emma M. Lessieur
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California-Irvine, Irvine, CA92697
| | - Zhiqian Dong
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California-Irvine, Irvine, CA92697
| | - Grazyna Palczewska
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California-Irvine, Irvine, CA92697
| | - Robert F. Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH44195
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH44106
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH44195
| | - Philip D. Kiser
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California-Irvine, Irvine, CA92697
- Department of Physiology & Biophysics, School of Medicine, University of California-Irvine, Irvine, CA92697
- Research Service, VA Long Beach Healthcare System, Long Beach, CA90822
- Department of Clinical Pharmacy Practice, University of California-Irvine, Irvine, CA92697
| | - Marcin Tabaka
- International Centre for Translational Eye Research, Warsaw01224, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01224, Poland
| | - Timothy S. Kern
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California-Irvine, Irvine, CA92697
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California-Irvine, Irvine, CA92697
- Department of Physiology & Biophysics, School of Medicine, University of California-Irvine, Irvine, CA92697
- International Centre for Translational Eye Research, Warsaw01224, Poland
- Department of Chemistry, University of California-Irvine, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA92697
| |
Collapse
|
25
|
Liang Z, Xue C, Chen Q, Li M, Li G, Feng H, Liu Y, Liu X, Ma S. Screening of Prognostic Biomarkers for Stereotactic Body Radiation Therapy in Primary Liver Cancer. Dose Response 2022; 20:15593258221097589. [PMID: 35547468 PMCID: PMC9083052 DOI: 10.1177/15593258221097589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/10/2022] [Indexed: 11/15/2022] Open
Abstract
Objective So far there are still no effective immediate-early markers for assessing the efficacy of Stereotactic Body Radiation Therapy (SBRT). To find effective biomarkers for accurate assessment of the efficacy of SBRT in patients with primary liver cancer, we conducted this study including retrospective part and prospective part. Material and Methods 589 patients with primary liver cancer were included at Ruikang Hospital affiliated to Guangxi Medical University from January 2012 to December 2018. Follow-up was conducted, clinical information and a total of 17 patients with 51 blood samples (before SBRT, before discharge and 2 months after SBRT) were collected. mRNAs profiles on 2 patients with 6 blood samples were detected by high-throughput sequencing, followed by qPCR verification on 15 patients with 45 blood samples. Results The commonly used serum biomarkers such as AFP, CEA, and CA125 shown low prognostic value in distinguishing survival group and death group, indicated by low AUC (less than .7) and Youden indexes (less than .5). Based on high-throughput sequencing of test group and qPCR detection of another verification group, we found 16 up-regulated and 12 downregulated genes after SBRT. Among them, ADIPOR1 and EPB42 showed significantly different between effective and ineffective group after SBRT, ROC suggested that based on the optimal threshold of .5838, ADIPOR1 shown a sensitivity of 100% and a specificity of 83.33% to distinguish effective from ineffective group. And EPB42 had a sensitivity of 75% and a specificity of 100% at the optimal threshold of 1.3817. In addition, GSEA showed that high expression of ADIPOR1 was mainly related to Mismatch repair, Circadian rhythm, Protein processing in endoplasmic reticulum, DNA replication, and Fanconi anemia pathways. Conclusion ADIPOR1 in whole blood is a promising candidate to act as prognostic biomarker for predication of SBRT outcomes in primary liver cancer patients.
Collapse
Affiliation(s)
- Zhenzhen Liang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- NHC Key Laboratory of Radiobiology (Jilin University), Changchun, Jilin, China
| | - Chang Xue
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qing Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengke Li
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guanghui Li
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Feng
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, Zhejiang, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, Zhejiang, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|