1
|
Dong H, Li S, Peng Y, Zhang X, Zheng J, Xue C, Zheng Y, Yu Y, Lu X, Hu Z, Cui H. Durvalumab‑induced type 1 diabetes mellitus in lung adenocarcinoma: A case report and literature review. Oncol Lett 2025; 29:277. [PMID: 40247987 PMCID: PMC12005073 DOI: 10.3892/ol.2025.15023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
Immune checkpoint inhibitor-induced type 1 diabetes mellitus (ICI-T1DM) is a rare adverse reaction associated with durvalumab. Among the adverse reactions to durvalumab, the incidence of new-onset diabetes is relatively rare, occurring in ~0.2% of cases. The present study reports the case of a 62-year-old woman who developed ICI-T1DM following two cycles of durvalumab, presenting with thirst, polydipsia and polyuria. Laboratory examinations (glycated hemoglobin and glutamic acid decarboxylase antibody), along with consultations from an endocrinologist, led to the patient being diagnosed with ICI-T1DM. Immunotherapy was discontinued, and insulin replacement therapy was initiated. Blood glucose levels were closely monitored using a subcutaneous meter. The onset of diabetic ketoacidosis (DKA) was prevented due to timely treatment. In conclusion, medical oncologists need to be aware that durvalumab, an immunotherapy agent, can induce ICI-T1DM. Therefore, regular monitoring of blood glucose levels and collaborative consultations with endocrinologists are essential for an accurate diagnosis when elevated blood sugar levels are detected. The prompt diagnosis of ICI-T1DM is crucial to prevent the occurrence of DKA.
Collapse
Affiliation(s)
- Huijing Dong
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Shengfu Li
- Department of Tuberculosis, Tai Yuan Fourth Peoples (Tuberculosis) Hospital, Taiyuan, Shanxi 030053, P.R. China
| | - Yanmei Peng
- Department of Oncology, Fangshan Hospital Beijing University of Chinese Medicine, Beijing 102400, P.R. China
| | - Xu Zhang
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Jiabin Zheng
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Chongxiang Xue
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yumin Zheng
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yixuan Yu
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xingyu Lu
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Zixin Hu
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Huijuan Cui
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
2
|
Rajak P. Immune checkpoint inhibitors: From friend to foe. Toxicol Rep 2025; 14:102033. [PMID: 40353246 PMCID: PMC12063143 DOI: 10.1016/j.toxrep.2025.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 05/14/2025] Open
Abstract
Immune checkpoints are crucial in regulating the activation of cell-mediated and humoral immune responses. However, cancer cells hijack this mechanism to evade the immune surveillance and anti-cancer response. Typically, receptors like PD-1 and CTLA4, expressed on immune cells, prevent the activation and differentiation of T cells. They also inhibit the development of autoimmune reactions. However, ligands such as PD-L1 for the receptor PD-1 are also expressed on the surface of cancer cells that help prevent the activation of anti-cancer immune responses by blocking the signalling pathways mediated by PD-1 and CTLA4. Immune checkpoint inhibitors (ICIs) have promising therapeutic efficacy for treating several cancers by activating T cells and their differentiation into effector cells against tumours. Nonetheless, hyperactivated immune cells usually contribute to detrimental issues, also known as immune-related adverse effects (IrAE). IrAEs have been observed in multiple organs, leading to neurological issues, colitis, endocrine dysfunction, renal issues, hepatitis, pneumonitis, and dermatitis. The interplay between hyperactivated T cells and Treg cells helps in orchestrating the development of autoimmunity. Moreover, the crosstalk between proinflammatory interleukins and the development of autoantibodies also mediates the multiorgan effects of ICIs in cancer patients. IrAEs are generally managed by terminating the ICI therapy, reducing the ICI dose, and by using corticosteroids to subvert inflammation. Therefore, the present review aims to delineate the impacts of ICIs on the development of autoimmune diseases and inflammatory outcomes in cancer patients. In addition, mechanistic insight involving immune cells, cytokines, and autoantibodies for ICI-mediated IrAEs will also be discussed with updated findings in this field.
Collapse
Affiliation(s)
- Prem Rajak
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
3
|
Quandt Z, Perdigoto A, Anderson MS, Herold KC. Checkpoint Inhibitor-Induced Autoimmune Diabetes: An Autoinflammatory Disease. Cold Spring Harb Perspect Med 2025; 15:a041603. [PMID: 39038853 PMCID: PMC11917379 DOI: 10.1101/cshperspect.a041603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Immunomodulatory agents targeting immune checkpoints are now the state-of-the-art for the treatment of many cancers, but at the same time have led to autoimmune side effects, including autoimmune diabetes: immune checkpoint inhibitor-induced diabetes (CPI-DM). Emerging research shows the importance of preexisting autoimmune disease risk that has been identified through genetics, and autoantibodies. Key associated clinical findings also include increased levels of lipase before diagnosis suggesting that the inflammatory process in the pancreas extends beyond the islets of Langerhans. There is selectivity for the blockade of programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) for this adverse event, consistent with the role of this checkpoint in maintaining tolerance to autoimmune diabetes.
Collapse
Affiliation(s)
- Zoe Quandt
- Department of Internal Medicine and Diabetes Center, University of California San Francisco, San Francisco, California 94115, USA
| | - Ana Perdigoto
- Department of Internal Medicine, Yale University, New Haven, Connecticut 06510, USA
- Veterans Administration Hospital, West Haven, Connecticut 06516, USA
| | - Mark S Anderson
- Department of Internal Medicine and Diabetes Center, University of California San Francisco, San Francisco, California 94115, USA
| | - Kevan C Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, Connecticut 06510, USA
| |
Collapse
|
4
|
Zhu J, Wang WJ. Tislelizumab-induced type 1 diabetic ketoacidosis in a patient with small cell lung cancer: a case report. Front Oncol 2025; 15:1498701. [PMID: 40115026 PMCID: PMC11922710 DOI: 10.3389/fonc.2025.1498701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
This report presented a case of 71-year-old man diagnosed with extensive-stage small cell lung cancer (ES-SCLC) who developed type 1 diabetic ketoacidosis (DKA) after 3 cycles of tislelizumab plus chemotherapy for the first time. The patient had no history of diabetes mellitus (DM). According to medical history and laboratory examination, the case was definitely diagnosed new-onset type 1 diabetic ketoacidosis induced by tislelizumab, a kind of immune checkpoint inhibitor. Despite the incidence of immune checkpoint inhibitor-induced type 1 diabetes mellitus (ICI-T1DM) is rare, the development of ICI-T1DM, especially type 1 diabetic ketoacidosis is life-threating without blood glucose monitoring and insulin therapy. Early identification of hyperglycemia and C-peptide depletion, as well as routine blood glucose monitoring during ICI treatment is essential to avoid lethal endocrine immune-related adverse event (irAE).
Collapse
Affiliation(s)
- Jie Zhu
- Department of Oncology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Wen-Jie Wang
- Department of Radio-Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
5
|
Kikuchi S, Odashima K, Yasui T, Torii S, Hosaka M, Gomi H. Dominant Expression of Chromogranin B in Pituitary Corticotrophs and Its Putative Role in Interaction With Secretogranin III. J Histochem Cytochem 2025; 73:29-53. [PMID: 39791490 PMCID: PMC11719422 DOI: 10.1369/00221554241311965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
SummaryPrevious studies have suggested that chromogranin A (CgA) is a partner molecule of secretogranin III (SgIII). In mouse pituitary corticotroph-derived AtT-20 cells, SgIII plays a role in sorting CgA/hormone aggregates into secretory granules (SGs). Although CgA expression is equivocal, CgB is clearly detectable in the rat pituitary corticotrophs. Therefore, we hypothesized that CgB shares a function with CgA in pituitary corticotrophs. In the binding assays, CgB, similar to CgA, showed binding activity to SgIII under weakly acidic conditions and in the presence of Ca2+. Considering the differences in animal species, the different abilities of antibodies, and the conditions of tissue fixation and thin sectioning in immunofluorescence histochemistry, we found that CgA was expressed in a small population (approximately 10%), and its expression intensity was weaker than that of CgB (>98%) in rodent pituitary corticotrophs. In addition, similar to CgA, CgB and SgIII were colocalized in adrenocorticotropic hormone (ACTH) granules. The labeling of CgA and CgB was not completely consistent, and CgB colocalized with SgIII in many granules. These results suggest that there are multiple sorting systems for ACTH granules in pituitary corticotrophs and that the SgIII/CgB complex behaves more dominantly than the SgIII/CgA complex, which has somewhat different properties.
Collapse
Affiliation(s)
- Shota Kikuchi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Koki Odashima
- Laboratory of Molecular Life Sciences, Department of Biotechnology, Akita Prefectural University, Akita, Japan
| | - Tadashi Yasui
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Seiji Torii
- Center for Food Science and Wellness, Gunma University, Maebashi, Japan
| | - Masahiro Hosaka
- Laboratory of Molecular Life Sciences, Department of Biotechnology, Akita Prefectural University, Akita, Japan
| | - Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
6
|
Chen HC, Wang HH, Kohn LA, Sailer D, Zhang S, McCarthy E, Seyedsadr M, Zhou Z, Yin X, Wilkinson N, Ortega J, Lechner MG, Hugo W, Su MA. UTX Epigenetically Imposes a Cytolytic Effector Program in Autoreactive Stem-like CD8+ T cell Progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628206. [PMID: 39763836 PMCID: PMC11702527 DOI: 10.1101/2024.12.12.628206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Type 1 Diabetes Mellitus (T1D) is an autoimmune disease caused by unremitting immune attack on pancreas insulin-producing beta cells. Persistence of the autoimmune response is mediated by TCF1+ Ly108+ progenitor CD8+ T (Tprog) cells, a stem-like population that gives rise to exhausted effectors with limited cytolytic function in chronic virus infection and cancer. What paradoxically drives Tprog conversion to highly cytolytic effectors in T1D, however, remains unclear. Here, we show that the epigenetic regulator UTX controls diabetogenic CD8+ Tprog differentiation by poising chromatin for transition to a cytolytic effector state. Indeed, deletion of UTX function in T cells impairs conversion of Tprog to autoimmune effectors and protects mice from spontaneous diabetes, as well as an aggressive form of autoimmune diabetes induced by anti-PD1 cancer immunotherapy. Furthermore, short-term treatment with UTX inhibitor GSKJ4 similarly protects from T1D, highlighting the therapeutic potential of targeting UTX-mediated mechanisms to break unremitting autoimmune responses.
Collapse
Affiliation(s)
- Ho-Chung Chen
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Hsing Hui Wang
- Department of Pediatrics, UNC Chapel Hill, Chapel Hill, NC, 27599
| | - Lisa A. Kohn
- Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - David Sailer
- Department of Pediatrics, UNC Chapel Hill, Chapel Hill, NC, 27599
| | - Shirley Zhang
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Ethan McCarthy
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Maryam Seyedsadr
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Zikang Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Xihui Yin
- Department of Biology, Massachusetts Institute of Technology, Boston, MA 02139
| | - Nicole Wilkinson
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Jessica Ortega
- Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Melissa G. Lechner
- Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Willy Hugo
- Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Maureen A. Su
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
- Department of Pediatrics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
- Lead contact
| |
Collapse
|
7
|
Huang N, Ortega J, Kimbrell K, Lee J, Scott LN, Peluso EM, Wang SJ, Kao E, Kim K, Olay J, Quandt Z, Angell TE, Su MA, Lechner MG. Polyfunctional IL-21 + IFNG + T follicular helper cells contribute to checkpoint inhibitor diabetes mellitus and can be targeted by JAK inhibitor therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625710. [PMID: 39677814 PMCID: PMC11642801 DOI: 10.1101/2024.11.27.625710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized cancer therapy, but their use is limited by the development of autoimmunity in healthy tissues as a side effect of treatment. Such immune-related adverse events (IrAE) contribute to hospitalizations, cancer treatment interruption and even premature death. ICI-induced autoimmune diabetes mellitus (ICI-T1DM) is a life-threatening IrAE that presents with rapid pancreatic beta-islet cell destruction leading to hyperglycemia and life-long insulin dependence. While prior reports have focused on CD8+ T cells, the role for CD4+ T cells in ICI-T1DM is less understood. Here, we identify expansion CD4+ T follicular helper (Tfh) cells expressing interleukin 21 (IL-21) and interferon gamma (IFNG) as a hallmark of ICI-T1DM. Furthermore, we show that both IL-21 and IFNG are critical cytokines for autoimmune attack in ICI-T1DM. Because IL-21 and IFNG both signal through JAK-STAT pathways, we reasoned that JAK inhibitors (JAKi) may protect against ICI-T1DM. Indeed, JAKi provide robust in vivo protection against ICI-T1DM in a mouse model that is associated with decreased islet-infiltrating Tfh cells. Moreover, JAKi therapy impaired Tfh cell differentiation in patients with ICI-T1DM. These studies highlight CD4+ Tfh cells as underrecognized but critical mediators of ICI-T1DM that may be targeted with JAKi to prevent this grave IrAE.
Collapse
Affiliation(s)
- Nicole Huang
- Division of Endocrinology, Diabetes, and Metabolism, University of California Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA 90095
| | | | - Kyleigh Kimbrell
- Division of Endocrinology, Diabetes, and Metabolism, University of California Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA 90095
| | - Joah Lee
- Division of Endocrinology, Diabetes, and Metabolism, University of California Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA 90095
| | | | - Esther M. Peluso
- UCLA/California Institute of Technology Medical Scientist Training Program, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
| | - Sarah J. Wang
- Division of Endocrinology, Diabetes, and Metabolism, University of California Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA 90095
| | - Ellie Kao
- California State Polytechnic University, Pomona, CA 91768
| | - Kristy Kim
- Division of Endocrinology, Diabetes, and Metabolism, University of California Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA 90095
| | - Jarod Olay
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
| | - Zoe Quandt
- Division of Endocrinology and Metabolism, University of California San Francisco Medical School, San Francisco, CA 94143
| | - Trevor E. Angell
- Division of Endocrinology and Diabetes, University of Southern California Keck School of Medicine; Los Angeles, CA 90033
| | - Maureen A. Su
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Division of Pediatric Endocrinology, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Melissa G. Lechner
- Division of Endocrinology, Diabetes, and Metabolism, University of California Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA 90095
| |
Collapse
|
8
|
Cao Z, Wang X, Liu H, Yang Z, Zeng Z. Gut microbiota mediate the alleviation effect of Xiehuo-Guzheng granules on β cell dedifferentiation in type 2 diabetes mellitus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156151. [PMID: 39437686 DOI: 10.1016/j.phymed.2024.156151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a worldwide public health problem characterized by a progressive decline in β cell function. In traditional Chinese medicine (TCM) theory, 'fire' and 'healthy qi deficiency' are important pathogeneses of T2DM, and purging 'fire' and reinforcing the 'healthy qi' (Pinyin name: Xiehuo-Guzheng, XHGZ) are important method of treatment. Over the years, we have observed its benefit for diabetes. However, the underlying mechanisms remain unclear. PURPOSE To investigate the mechanism of XHGZ granules against β cell dedifferentiation in T2DM based on gut microbiota. METHODS Rats with T2DM, induced by intraperitoneal injection of streptozotocin after eight weeks of high-fat diet, were randomly allocated to receive XHGZ granules, metformin, or distilled water for eight consecutive weeks. Changes in metabolic parameters, β cell dedifferentiation, inflammatory cytokines, gut microbiota, and microbial metabolites (lipopolysaccharide (LPS) and short-chain fatty acids (SCFAs)), were detected. Furthermore, faecal microbiota transplantation (FMT) was performed to confirm the anti-diabetic effect of XHGZ granule-regulated gut microbiota in pseudo-germ-free T2DM rats. RESULTS XHGZ granules significantly ameliorated hyperglycaemia, improved islet function and pathology, and reduced β cell dedifferentiation and pro-inflammatory cytokines in T2DM rats. 16S rRNA sequencing revealed that XHGZ granules decreased the LPS-containing microbiota (e.g., Colidextribacter, Desulfovibrionaceae, and Morganella) and increased the SCFAs-producing bacteria (e.g., Prevotella, Alloprevotella, and Muribaculaceae) and Lactobacillus_intestinalis. Correspondingly, it strengthened intestinal barrier, lowered LPS, and elevated acetic and butyric acids. Tax4Fun analysis indicated that XHGZ granules restored abnormal metabolism, lipopolysaccharide biosynthesis, and pantothenate and CoA biosynthesis. Moreover, the XHGZ granule-regulated microbiota also exhibited the effects of anti-diabetes, anti-β cell dedifferentiation, and anti-inflammation along with the reduction of LPS and the increase of SCFAs in pseudo-germ-free T2DM rats. CONCLUSION Our results show that XHGZ granules alleviate β cell dedifferentiation via regulating gut microbiota and their metabolites in T2DM, suggesting its potential as a promising complementary treatment for T2DM. As far as we know, there are very few studies on the alleviation of β cell dedifferentiation by TCM, and investigations into the mechanism from the perspective of intestinal flora and microbial metabolites are yet to be reported.
Collapse
Affiliation(s)
- Zebiao Cao
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Postdoctoral Research Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Xianzhe Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huijun Liu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; Huangshi Hospital of Traditional Chinese Medicine, Huangshi, Hubei 435000, China
| | - Zhaojun Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Zhili Zeng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; Postdoctoral Research Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
9
|
Ciftel E, Mercantepe F, Mercantepe T, Akyildiz K, Yilmaz A, Ciftel S. Comparative Analysis of Epigallocatechin-3-Gallate and TNF-Alpha Inhibitors in Mitigating Cisplatin-Induced Pancreatic Damage Through Oxidative Stress and Apoptosis Pathways. Biol Trace Elem Res 2024; 202:5190-5207. [PMID: 38776022 PMCID: PMC11442533 DOI: 10.1007/s12011-024-04239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 10/01/2024]
Abstract
Oxidative stress and inflammation caused by cisplatin, which is frequently used in the treatment of many cancers, damage healthy tissues as well as cancer cells. In this study, we aimed to investigate the effect of epigallocatechin-3-gallate (EGCG) and infliximab (INF) administration on pancreatic endocrine cells in rats treated with systemic cisplatin (CDDP). The rats were randomly divided into 6 groups: group 1 (control group), group 2 (EGCG group), group 3 (CDDP group), group 4 (EGCG + CDDP group), group 5 (CDDP + INF group), and group 6 (EGCG + CDDP + INF group). The study's findings demonstrated that EGCG and INF effectively reduced the cellular damage induced by CDDP in histopathologic investigations of the pancreas. EGCG and INF, whether used individually or in combination, demonstrated a significant reduction in malondialdehyde (MDA) levels and an increase in glutathione (GSH) levels in the rat pancreas compared to the CDDP group. Immunohistochemically, the enhanced presence of insulin and glucagon positivity in the EGCG and INF groups, along with the absence of TUNEL immunopositivity, indicate that both treatments reduced CDDP-induced apoptosis. Furthermore, the observed lack of immunopositivity in TNF-α and 8-OHdG in the groups treated with EGCG and INF, compared to those treated with CDDP, indicates that these substances can inhibit inflammation. EGCG and INF, whether provided alone or together, can potentially reduce the damage caused to pancreatic islet cells by cisplatin. This effect is achieved through their anti-inflammatory and antioxidant properties during the early stages of the condition.
Collapse
Affiliation(s)
- Enver Ciftel
- Department of Endocrinology and Metabolism, Sivas Numune Hospital, Sivas, Turkey
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, 53010, Turkey.
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Kerimali Akyildiz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Serpil Ciftel
- Department of Endocrinology and Metabolism, Erzurum Education and Research Hospital, Erzurum, Turkey
| |
Collapse
|
10
|
Keam S, Turner N, Kugeratski FG, Rico R, Colunga-Minutti J, Poojary R, Alekseev S, Patel AB, Li YJ, Sheshadri A, Loghin ME, Woodman K, Aaroe AE, Hamidi S, Iyer PC, Palaskas NL, Wang Y, Nurieva R. Toxicity in the era of immune checkpoint inhibitor therapy. Front Immunol 2024; 15:1447021. [PMID: 39247203 PMCID: PMC11377343 DOI: 10.3389/fimmu.2024.1447021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) reinvigorate anti-tumor immune responses by disrupting co-inhibitory immune checkpoint molecules such as programmed cell death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4). Although ICIs have had unprecedented success and have become the standard of care for many cancers, they are often accompanied by off-target inflammation that can occur in any organ system. These immune related adverse events (irAEs) often require steroid use and/or cessation of ICI therapy, which can both lead to cancer progression. Although irAEs are common, the detailed molecular and immune mechanisms underlying their development are still elusive. To further our understanding of irAEs and develop effective treatment options, there is pressing need for preclinical models recapitulating the clinical settings. In this review, we describe current preclinical models and immune implications of ICI-induced skin toxicities, colitis, neurological and endocrine toxicities, pneumonitis, arthritis, and myocarditis along with their management.
Collapse
Affiliation(s)
- Synat Keam
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Naimah Turner
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fernanda G Kugeratski
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rene Rico
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jocelynn Colunga-Minutti
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center University of Texas Health (UTHealth) Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| | | | - Sayan Alekseev
- College of Sciences, The University of Texas at San Antonio, San Antonio, TX, United States
- The Cancer Prevention and Research Institute of Texas (CPRIT)-CURE Summer Undergraduate Program, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anisha B Patel
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuanteng Jeff Li
- Department of General Internal Medicine, Section of Rheumatology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Monica E Loghin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Karin Woodman
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ashley E Aaroe
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sarah Hamidi
- Department of Endocrine Neoplasia and HD, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priyanka Chandrasekhar Iyer
- Department of Endocrine Neoplasia and HD, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicolas L Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Roza Nurieva
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center University of Texas Health (UTHealth) Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| |
Collapse
|
11
|
Nishihama K, Okano Y, Inoue C, Maki K, Eguchi K, Tanaka S, Takeshita A, Uemura M, Yasuma T, Suzuki T, Gabazza EC, Yano Y. A case of rapidly progressive insulin-dependent diabetes mellitus without islet autoantibodies developed over two years after the first dose of nivolumab. Diabetol Int 2024; 15:583-588. [PMID: 39101192 PMCID: PMC11291771 DOI: 10.1007/s13340-024-00703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/15/2024] [Indexed: 08/06/2024]
Abstract
The case was an 80-year-old Japanese man. He was diagnosed with right renal cell carcinoma when he was 74. After laparoscopic radical nephrectomy, the patient received interferon, sorafenib, axitinib, and nivolumab therapy. The patient developed rapid progressive insulin-dependent diabetes mellitus (DM) after 46 courses of nivolumab monotherapy (772 days from the first nivolumab treatment). Glutamic acid decarboxylase antibody, islet cell cytoplasmic antibody, islet cell antigen-2 antibody, insulin antibody, and zinc transporter 8 antibody were all negative. Human leukocyte antigen (HLA) typing showed DRB1*09:01, DRB1 *13:02, DQB1*03:03, and DQB1 *06:04. Multiple daily insulin injections were started. However, controlling his blood glucose by standard multiple daily insulin injection treatments was difficult. The patient survived more than two years after the onset of immune checkpoint inhibitor-associated DM (ICI-DM). This is a valuable report of late-onset ICI-DM with a detailed patient background and clinical course over two years after the first dose of nivolumab.
Collapse
Affiliation(s)
- Kota Nishihama
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Yuko Okano
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Chisa Inoue
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Kanako Maki
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Kazuhito Eguchi
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Soichiro Tanaka
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Atsuro Takeshita
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Mei Uemura
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Taro Yasuma
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Toshinari Suzuki
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yutaka Yano
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| |
Collapse
|
12
|
Wang G, Wang J, Dong S, Zhang Z, Zhang W, Zhao J. Immune checkpoint inhibitor‑associated diabetes mellitus in patients with HCC: Report of three cases and literature review. Exp Ther Med 2024; 27:198. [PMID: 38544557 PMCID: PMC10966655 DOI: 10.3892/etm.2024.12486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 01/16/2025] Open
Abstract
Treatment with immune checkpoint inhibitors (ICIs) is steadily becoming the standard of care for hepatocellular carcinoma (HCC), with an increasing number of immune-related adverse events (irAEs). However, only a small number of reports on the occurrence of diabetes mellitus (DM) in patients with HCC treated with ICIs have been published. In the present study, the clinical manifestations, laboratory findings, treatment and prognosis of three patients with advanced HCC were reported, who suffered immune-related DM when receiving treatment with ICIs. Furthermore, the relevant literature was reviewed in order to summarize clinical manifestations, possible mechanisms, diagnosis, prognosis of rechallenge and recommended management options, as well as clinical treatment suggestions. ICI-induced diabetes is rare but irAEs are potentially fatal, as diabetic ketoacidosis (DKA) is often the first manifestation. The incidence of immune-related DM is 0.86% and among those cases, the incidence of DKA is 59%. The combination of two ICIs markedly increases the risk. The human leukocyte antigen genotype, islet autoantibodies and autoreactive T cell-mediated β-cell destruction may be linked to the occurrence of immune-related DM. Patient education and clinicians' awareness of ICI-related DM are good management options. Adequate clinical judgment, close monitoring and early detection are also needed to decide whether to continue immunotherapy or to rechallenge it, so as to achieve the maximum benefit of clinical treatment.
Collapse
Affiliation(s)
- Gaocheng Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
- The Second Clinical Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Jingjing Wang
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Shuilin Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Wanguang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
13
|
Ciftel S, Tumkaya L, Saral S, Mercantepe T, Akyildiz K, Yilmaz A, Mercantepe F. The impact of apelin-13 on cisplatin-induced endocrine pancreas damage in rats: an in vivo study. Histochem Cell Biol 2024:10.1007/s00418-024-02269-x. [PMID: 38368592 DOI: 10.1007/s00418-024-02269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Apelin-13 is a peptide hormone that regulates pancreatic endocrine functions, and its benefits on the endocrine pancreas are of interest. This study aims to investigate the potential protective effects of apelin-13 in cisplatin-induced endocrine pancreatic damage. Twenty-four rats were divided into four groups: control, apelin-13, cisplatin, and cisplatin + apelin-13. Caspase-3, TUNEL, and Ki-67 immunohistochemical staining were used as markers of apoptosis and mitosis. NF-κB/p65 and TNFα were used to show inflammation. β-cells and α-cells were also evaluated with insulin and glucagon staining in the microscopic examination. Pancreatic tissue was subjected to biochemical analyses of glutathione (GSH) and malondialdehyde (MDA). Apelin-13 ameliorated cisplatin-induced damage in the islets of Langerhans. The immunopositivity of apelin-13 on β-cells and α-cells was found to be increased compared to the cisplatin group (p = 0.001, p = 0.001). Mitosis and apoptosis were significantly higher in the cisplatin group (p = 0.001). Apelin-13 reduced TNFα, NF-κB/p65 positivity, and apoptosis caused by cisplatin (p = 0.001, p = 0.001, p = 0.001). While cisplatin caused a significant increase in MDA levels (p = 0.001), apelin caused a significant decrease in MDA levels (p = 0.001). The results demonstrated a significant decrease in pancreatic tissue GSH levels following cisplatin treatment (p = 0.001). Nevertheless, apelin-13 significantly enhanced cisplatin-induced GSH reduction (p = 0.001). On the other hand, the serum glucose level, which was measured as 18.7 ± 2.5 mmol/L in the cisplatin group, decreased to 13.8 ± 0.7 mmol/L in the cisplatin + apelin-13 group (p = 0.001). The study shows that apelin-13 ameliorated cisplatin-induced endocrine pancreas damage by reducing oxidative stress and preventing apoptosis.
Collapse
Affiliation(s)
- Serpil Ciftel
- Department of Endocrinology and Metabolism, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Sinan Saral
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Kerimali Akyildiz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism, Faculty of Medicine Recep, Tayyip Erdogan University, 53010, Rize, Turkey.
| |
Collapse
|
14
|
Ning P, Liu S, Cao H. Rare, late onset of immune checkpoint inhibitor-induced type 1 diabetes mellitus in a patient with small-cell lung cancer treated with serplulimab: a case report and review of the literature. J Med Case Rep 2024; 18:51. [PMID: 38247005 PMCID: PMC10801956 DOI: 10.1186/s13256-023-04248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/07/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND As a newly approved immune checkpoint inhibitor in China, serplulimab has been widely used in the immunotherapy of tumors. However, the immune-related adverse events of immune checkpoint inhibitors should not be ignored. Although immune checkpoint inhibitor-induced type 1 diabetes mellitus is a rare complication, it may cause diabetic ketoacidosis and endanger the lives of patients. CASE PRESENTATION This case report describes a 55-year-old male of Han nationality from China diagnosed with small-cell lung cancer with multiple metastases who experienced an adverse event of type 1 diabetes mellitus 68 weeks after receiving serplulimab therapy. The patient presented with typical symptoms of diabetic ketoacidosis, including severe thirst, nausea, vomiting, deep respirations, and stupor. Despite the absence of diabetes-related autoantibodies, the patient had extremely low levels of insulin and C-peptide release. Other potential causes of diabetes were ruled out, confirming the condition as serplulimab-induced immune checkpoint inhibitor-induced type 1 diabetes mellitus. After aggressive treatment to correct diabetic ketoacidosis, the patient's blood glucose levels stabilized and symptoms of diabetes improved significantly, although long-term insulin maintenance therapy was necessary. CONCLUSION This case highlights a rare, late-onset adverse event of immune checkpoint inhibitor-induced type 1 diabetes mellitus that may be overlooked during treatment with serplulimab. The monitoring of blood glucose levels and early signs and symptoms of diabetes cannot be relaxed at the late stage of treatment, even if patients do not have elevated blood glucose levels before and during the middle stage of treatment.
Collapse
Affiliation(s)
- Peng Ning
- Department of Endocrine and Metabolism, Chengdu Fifth People's Hospital, Cancer Prevention and Treatment Institute of Chengdu (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Shilan Liu
- Respiratory and Critical Care Medicine, Chengdu Fifth People's Hospital, Cancer Prevention and Treatment Institute of Chengdu (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Hongyi Cao
- Department of Endocrine and Metabolism, Chengdu Fifth People's Hospital, Cancer Prevention and Treatment Institute of Chengdu (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China.
| |
Collapse
|
15
|
Wang Z, You T, Su Q, Deng W, Li J, Hu S, Shi S, Zou Z, Xiao J, Duan X. Laser-Activatable In Situ Vaccine Enhances Cancer-Immunity Cycle. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307193. [PMID: 37951210 DOI: 10.1002/adma.202307193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/05/2023] [Indexed: 11/13/2023]
Abstract
The immune response in cancer reflects a series of carefully regulated events; however, current tumor immunotherapies typically address a single key aspect to enhance anti-tumor immunity. In the present study, a nanoplatform (Fe3 O4 @IR820@CpG)-based immunotherapy strategy that targets the multiple key steps in cancer-immunity cycle is developed: 1) promotes the release of tumor-derived proteins (TDPs), including tumor-associated antigens and pro-immunostimulatory factors), in addition to the direct killing effect, by photothermal (PTT) and photodynamic therapy (PDT); 2) captures the released TDPs and delivers them, together with CpG (a Toll-like receptor 9 agonist) to antigen-presenting cells (APCs) to promote antigen presentation and T cell activation; 3) enhances the tumor-killing ability of T cells by combining with anti-programmed death ligand 1 antibody (α-PD-L1), which collectively advances the outstanding of the anti-tumor effects on colorectal, liver and breast cancers. The broad-spectrum anti-tumor activity of Fe3 O4 @IR820@CpG with α-PD-L1 demonstrates that optimally manipulating anti-cancer immunity not singly but as a group provides promising clinical strategies.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Department of Burns and Wound Repairing, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tingting You
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Blood Transfusion, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Qianyi Su
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenjia Deng
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - JiaBao Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Saixiang Hu
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shengjun Shi
- Department of Burns and Wound Repairing, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhaowei Zou
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jisheng Xiao
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaopin Duan
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
16
|
Fujiwara M, Shimizu M, Okano T, Maejima Y, Shimomura K. Successful treatment of nivolumab and ipilimumab triggered type 1 diabetes by using sodium-glucose transporter 2 inhibitor: a case report and systematic review. Front Public Health 2023; 11:1264056. [PMID: 38106883 PMCID: PMC10725247 DOI: 10.3389/fpubh.2023.1264056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/31/2023] [Indexed: 12/19/2023] Open
Abstract
Objective Checkpoint inhibitors (CPIs) can trigger complications related to the autoimmune process such as CPI-triggered diabetes mellitus. The typical treatment for CPI-triggered diabetes is insulin, but a detailed therapeutic method has not yet been established. To prevent severe symptoms and mortality of diabetic ketoacidosis in advanced-stage cancer patients, the establishment of effective treatment of CPI-triggered diabetes, other than insulin therapy, is required. Methods We present a case of a 76-year-old man with CPI-triggered diabetes who was treated with nivolumab and ipilimumab for lung cancer. We also conducted a systematic review of 48 case reports of type 1 diabetes associated with nivolumab and ipilimumab therapy before June 2023. Results The patient's hyperglycemia was not sufficiently controlled by insulin therapy, and after the remission of ketoacidosis, the addition of a sodium-glucose transporter (SGLT) 2 inhibitor, dapagliflozin, improved glycemic control. Most of the reported nivolumab/ipilimumab-induced type 1 diabetes was treatable with insulin, but very few cases required additional oral anti-diabetic agents to obtain good glucose control. Conclusion Although SGLT2 inhibitors have been reported to have adverse effects on ketoacidosis, recent studies indicate that the occurrence of ketoacidosis is relatively rare. Considering the pathological mechanism of CPI-triggered diabetes, SGLT2 inhibitors could be an effective choice if they are administered while carefully monitoring the patient's ketoacidosis.
Collapse
Affiliation(s)
- Makoto Fujiwara
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Diabetes, Endocrinology and Metabolism, Tsukuba Medical Center, Ibaraki, Japan
| | - Masaru Shimizu
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Neurology, Matsumura General Hospital, Fukushima, Japan
| | - Tatsuya Okano
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
17
|
Cho YK, Jung CH. Immune-Checkpoint Inhibitors-Induced Type 1 Diabetes Mellitus: From Its Molecular Mechanisms to Clinical Practice. Diabetes Metab J 2023; 47:757-766. [PMID: 37482654 PMCID: PMC10695719 DOI: 10.4093/dmj.2023.0072] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/22/2023] [Indexed: 07/25/2023] Open
Abstract
With the increasing use of immune-checkpoint inhibitors (ICIs), such as anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and anti-programmed cell death-1 (PD-1), for the treatment of malignancies, cases of ICI-induced type 1 diabetes mellitus (ICI-T1DM) have been reported globally. This review focuses on the features and pathogenesis of this disease. T1DM is an immune-related adverse event that occurs following the administration of anti-PD-1 or anti-programmed death ligand-1 (PDL1) alone or in combination with anti-CTLA-4. More than half of the reported cases presented as abrupt-onset diabetic ketoacidosis. The primary mechanism of ICI-T1DM is T-cell stimulation, which results from the loss of interaction between PD-1 and PD-L1 in pancreatic islet. The similarities and differences between ICI-T1DM and classical T1DM may provide insights into this disease entity. ICI-T1DM is a rare but often life-threatening medical emergency that healthcare professionals and patients need to be aware of. Early detection of and screening for this disease is imperative. At present, the only known treatment for ICI-T1DM is insulin injection. Further research into the mechanisms and risk factors associated with ICI-T1DM development may contribute to a better understanding of this disease entity and the identification of possible preventive strategies.
Collapse
Affiliation(s)
- Yun Kyung Cho
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Korea
| | - Chang Hee Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Korea
| |
Collapse
|
18
|
Gao Y, Zhong M, Gan L, Xiang C, Li L, Yan Y. Immune checkpoint inhibitor- and phosphatidylinositol-3-kinase inhibitor-related diabetes induced by antineoplastic drugs: two case reports and a literature review. Front Endocrinol (Lausanne) 2023; 14:1236946. [PMID: 37732122 PMCID: PMC10509015 DOI: 10.3389/fendo.2023.1236946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
Immune checkpoint inhibitor (ICI)- and phosphatidylinositol-3-kinase inhibitor (PI3Ki)-related diabetes mellitus are common side effects of anti-tumor drug use that present mainly as hyperglycemia. Here, we present two case reports of diabetes mellitus caused by the use of tremelimumab and apalutamide, respectively, in cancer treatment, and a comprehensive, comparative review of the literature on these forms of diabetes. Case 1 presented with diabetic ketoacidosis and was diagnosed with ICI-related diabetes mellitus and treated with insulin. Case 2 was diagnosed with PI3Ki-related diabetes mellitus, and her blood glucose level returned to normal with the use of metformin and dapagliflozin. We systematically searched the PubMed database for articles on ICI- and PI3Ki-related diabetes mellitus and characterized the differences in clinical features and treatment between these two forms of diabetes.
Collapse
Affiliation(s)
- Yue Gao
- Department of Endocrinology, Xiaogan Hospital Affiliated with Wuhan University of Science and Technology, The Central Hospital of Xiaogan, Xiaogan, Hubei, China
- Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Mingyao Zhong
- Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Lulu Gan
- Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Cheng Xiang
- Department of Endocrinology, Xiaogan Hospital Affiliated with Wuhan University of Science and Technology, The Central Hospital of Xiaogan, Xiaogan, Hubei, China
| | - Ling Li
- Department of Endocrinology, Xiaogan Hospital Affiliated with Wuhan University of Science and Technology, The Central Hospital of Xiaogan, Xiaogan, Hubei, China
| | - Yimin Yan
- Department of Endocrinology, Xiaogan Hospital Affiliated with Wuhan University of Science and Technology, The Central Hospital of Xiaogan, Xiaogan, Hubei, China
- Medical College, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Cina ML, Venegas J, Young A. Stocking the toolbox-Using preclinical models to understand the development and treatment of immune checkpoint inhibitor-induced immune-related adverse events. Immunol Rev 2023; 318:110-137. [PMID: 37565407 PMCID: PMC10529261 DOI: 10.1111/imr.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 08/12/2023]
Abstract
Cancer patients treated with immune checkpoint inhibitors (ICIs) are susceptible to a broad and variable array of immune-related adverse events (irAEs). With increasing clinical use of ICIs, defining the mechanism for irAE development is more critical than ever. However, it currently remains challenging to predict when these irAEs occur and which organ may be affected, and for many of the more severe irAEs, inaccessibility to the tissue site hampers mechanistic insight. This lack of understanding of irAE development in the clinical setting emphasizes the need for greater use of preclinical models that allow for improved prediction of biomarkers for ICI-initiated irAEs or that validate treatment options that inhibit irAEs without hampering the anti-tumor immune response. Here, we discuss the utility of preclinical models, ranging from exploring databases to in vivo animal models, focusing on where they are most useful and where they could be improved.
Collapse
Affiliation(s)
- Morgan L Cina
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jessica Venegas
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Arabella Young
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
20
|
Singh N, Hocking AM, Buckner JH. Immune-related adverse events after immune check point inhibitors: Understanding the intersection with autoimmunity. Immunol Rev 2023; 318:81-88. [PMID: 37493210 DOI: 10.1111/imr.13247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023]
Abstract
Immune checkpoint inhibitor therapies act through blockade of inhibitory molecules involved in the regulation of T cells, thus releasing tumor specific T cells to destroy their tumor targets. However, immune checkpoint inhibitors (ICI) can also lead to a breach in self-tolerance resulting in immune-related adverse events (irAEs) that include tissue-specific autoimmunity. This review addresses the question of whether the mechanisms that drive ICI-induced irAEs are shared or distinct with those driving spontaneous autoimmunity, focusing on ICI-induced diabetes, ICI-induced arthritis, and ICI-induced thyroiditis due to the wealth of knowledge about the development of autoimmunity in type 1 diabetes, rheumatoid arthritis, and Hashimoto's thyroiditis. It reviews current knowledge about role of genetics and autoantibodies in the development of ICI-induced irAEs and presents new studies utilizing single-cell omics approaches to identify T-cell signatures associated with ICI-induced irAEs. Collectively, these studies indicate that there are similarities and differences between ICI-induced irAEs and autoimmune disease and that studying them in parallel will provide important insight into the mechanisms critical for maintaining immune tolerance.
Collapse
Affiliation(s)
- Namrata Singh
- Division of Rheumatology, University of Washington, Seattle, Washington, USA
| | - Anne M Hocking
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| |
Collapse
|
21
|
Venkat A, Bhaskar D, Krishnaswamy S. Multiscale geometric and topological analyses for characterizing and predicting immune responses from single cell data. Trends Immunol 2023; 44:551-563. [PMID: 37301677 DOI: 10.1016/j.it.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023]
Abstract
Single cell genomics has revolutionized our ability to map immune heterogeneity and responses. With the influx of large-scale data sets from diverse modalities, the resolution achieved has supported the long-held notion that immune cells are naturally organized into hierarchical relationships, characterized at multiple levels. Such a multigranular structure corresponds to key geometric and topological features. Given that differences between an effective and ineffective immunological response may not be found at one level, there is vested interest in characterizing and predicting outcomes from such features. In this review, we highlight single cell methods and principles for learning geometric and topological properties of data at multiple scales, discussing their contributions to immunology. Ultimately, multiscale approaches go beyond classical clustering, revealing a more comprehensive picture of cellular heterogeneity.
Collapse
Affiliation(s)
- Aarthi Venkat
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
| | | | - Smita Krishnaswamy
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA; Department of Genetics, Yale University, New Haven, CT, USA; Department of Computer Science, Yale University, New Haven, CT, USA.
| |
Collapse
|
22
|
Zhang Z, Sharma R, Hamad LA, Riebandt GC, Attwood KM. Incidence of Diabetes Mellitus in patients treated with immune checkpoint inhibitors (ICI) therapy - A Comprehensive Cancer Center experience. Diabetes Res Clin Pract 2023:110776. [PMID: 37311494 DOI: 10.1016/j.diabres.2023.110776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment and more patients are receiving ICIs than before. Although this has improved cancer care but so has the increase in the incidence of immune-related adverse events (irAEs) including endocrinopathies. ICI-induced diabetes mellitus (DM) is a rare irAE with an approximate incidence of 1%. Due to paucity of data in literature about ICI-induced DM, we conducted a study to report the incidence and characteristics of new onset and worsening of DM in patients treated with ICIs. METHODS We conducted a retrospective review of patients who received ICIs during 10-year period. We identified patients with newly diagnosed DM and worsening of preexisting DM. FINDINGS Among 2,477 patients who received one or multiple ICIs, 14 patients developed new onset DM and 11 patients experienced worsening of pre-existing DM. Median time to new onset or worsening DM from ICI treatment initiation was ∼12 weeks. Median hemoglobin A1c was 6·2% at baseline and 8·5% at the onset of ICI-induced DM. Seven patients presented with diabetes ketoacidosis (DKA), all in the new onset group. (p= 0·02) No significant difference was observed between two groups regarding personal history of autoimmune disorder or family history of DM. (p>0·05) Positive autoantibodies were found in three patients [two with Glutamic Acid Decarboxylase (GAD65) antibodies and one with insulin autoantibodies (IAA)]. INTERPRETATION The incidence of new onset and worsening DM in patients treated with ICIs was 1·01%.
Collapse
Affiliation(s)
- Zhen Zhang
- Division of Endocrinology, Diabetes and Metabolism, Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY 14203, USA
| | - Rajeev Sharma
- Division of Endocrinology, Diabetes and Metabolism, Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY 14203, USA.
| | - Lamya A Hamad
- Division of Endocrinology, Diabetes and Metabolism, Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY 14203, USA
| | - Grazyna C Riebandt
- Division of Endocrinology, Diabetes and Metabolism, Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY 14203, USA
| | - Kristopher M Attwood
- Division of Endocrinology, Diabetes and Metabolism, Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY 14203, USA
| |
Collapse
|
23
|
Wu L, Tsang V, Menzies AM, Sasson SC, Carlino MS, Brown DA, Clifton-Bligh R, Gunton JE. Risk Factors and Characteristics of Checkpoint Inhibitor-Associated Autoimmune Diabetes Mellitus (CIADM): A Systematic Review and Delineation From Type 1 Diabetes. Diabetes Care 2023; 46:1292-1299. [PMID: 37220262 DOI: 10.2337/dc22-2202] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/27/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Checkpoint inhibitor-associated autoimmune diabetes mellitus (CIADM) is a distinct form of autoimmune diabetes that is a rare complication of immune checkpoint inhibitor therapy. Data regarding CIADM are limited. PURPOSE To systematically review available evidence to identify presentation characteristics and risk factors for early or severe presentations of adult patients with CIADM. DATA SOURCES MEDLINE and PubMed databases were reviewed. STUDY SELECTION English full text articles from 2014 to April 2022 were identified with a predefined search strategy. Patients meeting diagnostic criteria for CIADM with evidence of hyperglycemia (blood glucose level >11 mmol/L or HbA1c ≥6.5%) and insulin deficiency (C-peptide <0.4 nmol/L and/or diabetic ketoacidosis [DKA]) were included for analysis. DATA EXTRACTION With the search strategy we identified 1,206 articles. From 146 articles, 278 patients were labeled with "CIADM," with 192 patients meeting our diagnostic criteria and included in analysis. DATA SYNTHESIS Mean ± SD age was 63.4 ± 12.4 years. All but one patient (99.5%) had prior exposure to either anti-PD1 or anti-PD-L1 therapy. Of the 91 patients tested (47.3%), 59.3% had susceptibility haplotypes for type 1 diabetes (T1D). Median time to CIADM onset was 12 weeks (interquartile range 6-24). DKA occurred in 69.7%, and initial C-peptide was low in 91.6%. T1D autoantibodies were present in 40.4% (73 of 179) and were significantly associated with DKA (P = 0.0009) and earlier time to CIADM onset (P = 0.02). LIMITATIONS Reporting of follow-up data, lipase, and HLA haplotyping was limited. CONCLUSIONS CIADM commonly presents in DKA. While T1D autoantibodies are only positive in 40.4%, they associate with earlier, more severe presentations.
Collapse
Affiliation(s)
- Linda Wu
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore Hospital, Sydney, New South Wales, Australia Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
| | - Venessa Tsang
- University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore Hospital, Sydney, New South Wales, Australia Sydney, New South Wales, Australia
| | - Alexander M Menzies
- University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore Hospital, Sydney, New South Wales, Australia Sydney, New South Wales, Australia
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Mater Hospital, Sydney, New South Wales, Australia
| | - Sarah C Sasson
- University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
- Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia
| | - Matteo S Carlino
- University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Mater Hospital, Sydney, New South Wales, Australia
| | - David A Brown
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
- Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia
| | - Roderick Clifton-Bligh
- University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore Hospital, Sydney, New South Wales, Australia Sydney, New South Wales, Australia
| | - Jenny E Gunton
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Caulfield JI, Aizenbud L, Perdigoto AL, Meffre E, Jilaveanu L, Michalek DA, Rich SS, Aizenbud Y, Adeniran A, Herold KC, Austin MR, Kluger H. Germline genetic variants are associated with development of insulin-dependent diabetes in cancer patients treated with immune checkpoint inhibitors. J Immunother Cancer 2023; 11:jitc-2022-006570. [PMID: 36898736 PMCID: PMC10008335 DOI: 10.1136/jitc-2022-006570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have dramatically improved survival in patients with cancer but are often accompanied by severe immune-related adverse events (irAEs), which can sometimes be irreversible. Insulin-dependent diabetes is a rare, but life-altering irAE. Our purpose was to determine whether recurrent somatic or germline mutations are observed in patients who develop insulin-dependent diabetes as an irAE. METHODS We performed RNA and whole exome sequencing on tumors from 13 patients who developed diabetes due to ICI exposure (ICI-induced diabetes mellitus, ICI-DM) compared with control patients who did not develop diabetes. RESULTS In tumors from ICI-DM patients, we did not find differences in expression of conventional type 1 diabetes autoantigens, but we did observe significant overexpression of ORM1, PLG, and G6PC, all of which have been implicated in type 1 diabetes or are related to pancreas and islet cell function. Interestingly, we observed a missense mutation in NLRC5 in tumors of 9 of the 13 ICI-DM patients that was not observed in the control patients treated with the same drugs for the same cancers. Germline DNA from the ICI-DM patients was sequenced; all NLRC5 mutations were germline. The prevalence of NLRC5 germline variants was significantly greater than the general population (p=5.98×10-6). Although NLRC5 is implicated in development of type 1 diabetes, germline NLRC5 mutations were not found in public databases from patients with type 1 diabetes, suggesting a different mechanism of insulin-dependent diabetes in immunotherapy-treated patients with cancer. CONCLUSIONS Validation of the NLRC5 mutation as a potential predictive biomarker is warranted, as it might improve patient selection for treatment regimens. Furthermore, this genetic alteration suggests potential mechanisms of islet cell destruction in the setting of checkpoint inhibitor therapy.
Collapse
Affiliation(s)
| | - Lilach Aizenbud
- Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ana Luisa Perdigoto
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eric Meffre
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lucia Jilaveanu
- Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dominika A Michalek
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Yariv Aizenbud
- Department of Mathematics, Program in Applied Mathematics, Yale University, New Haven, Connecticut, New Haven, Connecticut, USA
| | - Adebowale Adeniran
- Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kevan C Herold
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Matthew R Austin
- Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Harriet Kluger
- Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
25
|
Pancreatic Islet Cells Response to IFNγ Relies on Their Spatial Location within an Islet. Cells 2022; 12:cells12010113. [PMID: 36611907 PMCID: PMC9818682 DOI: 10.3390/cells12010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Type 1 diabetes (T1D) is an auto-immune disease characterized by the progressive destruction of insulin-producing pancreatic beta cells. While beta cells are the target of the immune attack, the other islet endocrine cells, namely the alpha and delta cells, can also be affected by the inflammatory milieu. Here, using a flow cytometry-based strategy, we compared the impact of IFNγ, one of the main cytokines involved in T1D, on the three endocrine cell subsets isolated from C57BL/6 mouse islets. RNA-seq analyses revealed that alpha and delta cells exposed in vitro to IFNγ display a transcriptomic profile very similar to that of beta cells, with an increased expression of inflammation key genes such as MHC class I molecules, the CXCL10 chemokine and the programmed death-ligand 1 (PD-L1), three hallmarks of IFNγ signaling. Interestingly, at low IFNγ concentration, we observed two beta cell populations (responders and non-responders) based on PD-L1 protein expression. Our data indicate that this differential sensitivity relies on the location of the cells within the islet rather than on the existence of two different beta cells subsets. The same findings were corroborated by the in vivo analysis of pancreatic islets from the non-obese diabetic mouse model of T1D, showing more intense PD-L1 staining on endocrine cells close to immune infiltrate. Collectively, our work demonstrates that alpha and delta cells are as sensitive as beta cells to IFNγ, and suggests a gradual diffusion of the cytokine into an islet. These observations provide novel insights into the in situ inflammatory processes occurring in T1D progression.
Collapse
|
26
|
Zheng Y, Li X, Kuang L, Wang Y. New insights into the characteristics of DRAK2 and its role in apoptosis: From molecular mechanisms to clinically applied potential. Front Pharmacol 2022; 13:1014508. [PMID: 36386181 PMCID: PMC9649744 DOI: 10.3389/fphar.2022.1014508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022] Open
Abstract
As a member of the death-associated protein kinase (DAPK) family, DAP kinase-associated apoptosis-inducing kinase 2 (DRAK2) performs apoptosis-related functions. Compelling evidence suggests that DRAK2 is involved in regulating the activation of T lymphocytes as well as pancreatic β-cell apoptosis in type I diabetes. In addition, DRAK2 has been shown to be involved in the development of related tumor and non-tumor diseases through a variety of mechanisms, including exacerbation of alcoholic fatty liver disease (NAFLD) through SRSF6-associated RNA selective splicing mechanism, regulation of chronic lymphocytic leukemia and acute myeloid leukemia, and progression of colorectal cancer. This review focuses on the structure, function, and upstream pathways of DRAK2 and discusses the potential and challenges associated with the clinical application of DRAK2-based small-molecule inhibitors, with the aim of advancing DRAK2 research.
Collapse
Affiliation(s)
| | | | | | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|