1
|
Franciosi AN, Gupta N, Murphy DJ, Wikenheiser-Brokamp KA, McCarthy C. Diffuse Cystic Lung Disease: A Clinical Guide to Recognition and Management. Chest 2025; 167:529-547. [PMID: 39168181 DOI: 10.1016/j.chest.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/10/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024] Open
Abstract
TOPIC IMPORTANCE Diffuse cystic lung diseases (DCLDs) represent a group of pathophysiologically heterogeneous entities that share a common radiologic phenotype of multiple thin-walled pulmonary cysts. DCLDs differ from the typical fibroinflammatory interstitial lung diseases in their epidemiology, clinical presentation, molecular pathogenesis, and therapeutic approaches, making them worthy of a distinct classification. The importance of timely and accurate identification of DCLDs is heightened by the impact on patient management including recent discoveries of targeted therapeutic approaches for some disorders. REVIEW FINDINGS This article offers a practical framework for evaluating patients with DCLD, indicating the most appropriate and current diagnostic and management approaches. We focus on the DCLDs that are most likely to be encountered by practicing pulmonologists: lymphangioleiomyomatosis, pulmonary Langerhans cell histiocytosis, Birt-Hogg-Dubé syndrome, and lymphoid interstitial pneumonia. Chest CT scan is the most informative noninvasive diagnostic modality to identify DCLDs. Thereafter, instituting a structured approach to high-yield associated factors (eg, medical, social, and family history; renal and dermatologic findings) increases the likelihood of identifying DCLDs and achieving a diagnosis. SUMMARY Although the individual diseases that comprise the DCLD family are rare, taken together, DCLDs can be encountered more frequently in clinical practice than commonly perceived. An increased eagerness among general pulmonary physicians to recognize these entities, coupled with a practical and systematic clinical approach to examinations and investigations, is required to improve case findings, allow earlier intervention, and reduce morbidity and mortality.
Collapse
Affiliation(s)
- Alessandro N Franciosi
- Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Nishant Gupta
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, OH
| | - David J Murphy
- School of Medicine, University College Dublin, Dublin, Ireland; Department of Radiology, St. Vincent's University Hospital, Dublin, Ireland
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pathology & Laboratory Medicine, Division of Pulmonary Medicine, and Perinatal Institute Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - Cormac McCarthy
- Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Huang L, Xiao Y, Yang L, Ren S. The development for emerging biomarkers of lymphangioleiomyomatosis. Orphanet J Rare Dis 2024; 19:445. [PMID: 39614360 PMCID: PMC11605962 DOI: 10.1186/s13023-024-03455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare, slowly progressing, low-grade metastatic tumor primarily affecting women. Currently, vascular endothelial growth factor-D (VEGF-D) is the only validated diagnostic biomarker, enabling diagnosis of LAM without the need for lung biopsy in appropriate clinical settings. However, VEGF-D concentrations are normal in about 30% of patients, rendering it insufficient for diagnosing all cases of LAM. There remains a need to identify more non-invasive, safe, sensitive, and specific biomarkers associated with LAM. Therefore, it is imperative to explore novel non-invasive, safe, and specific diagnostic methods for LAM. This article aims to review biomarkers associated with LAM, including potential biomarkers newly discovered or showing advancements in classical biomarkers widely used in LAM, and discuss their application in LAM diagnosis, assessment of disease severity, prediction of treatment response, and prognosis. (LAM) 、,。,-D (VEGF-D) , LAM。, 30% VEGF-D , LAM 。 LAM 、、。,、 LAM 。 LAM , LAM , LAM 、、。.
Collapse
Affiliation(s)
- Liting Huang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China
| | - Ying Xiao
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China
| | - Lulu Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China
| | - Siying Ren
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, 410011, China.
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
3
|
Johnson SR, Shaw DE, Avoseh M, Soomro I, Pointon KS, Kokosi M, Nicholson AG, Desai SR, George PM. Diagnosis of cystic lung diseases: a position statement from the UK Cystic Lung Disease Rare Disease Collaborative Network. Thorax 2024; 79:366-377. [PMID: 38182428 DOI: 10.1136/thorax-2022-219738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/15/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Rare cystic lung diseases are increasingly recognised due the wider application of CT scanning making cystic lung disease management a growing part of respiratory care. Cystic lung diseases tend to have extrapulmonary features that can both be diagnostic but also require surveillance and treatment in their own right. As some of these diseases now have specific treatments, making a precise diagnosis is crucial. While Langerhans cell histiocytosis, Birt-Hogg-Dubé syndrome, lymphoid interstitial pneumonia and lymphangioleiomyomatosis are becoming relatively well-known diseases to respiratory physicians, a targeted and thorough workup improves diagnostic accuracy and may suggest other ultrarare diseases such as light chain deposition disease, cystic pulmonary amyloidosis, low-grade metastatic neoplasms or infections. In many cases, diagnostic information is overlooked leaving uncertainty over the disease course and treatments. AIMS This position statement from the Rare Disease Collaborative Network for cystic lung diseases will review how clinical, radiological and physiological features can be used to differentiate between these diseases. NARRATIVE We highlight that in many cases a multidisciplinary diagnosis can be made without the need for lung biopsy and discuss where tissue sampling is necessary when non-invasive methods leave diagnostic doubt. We suggest an initial workup focusing on points in the history which identify key disease features, underlying systemic and familial diseases and a clinical examination to search for connective tissue disease and features of genetic causes of lung cysts. All patients should have a CT of the thorax and abdomen to characterise the pattern and burden of lung cysts and extrapulmonary features and also spirometry, gas transfer and a 6 min walk test. Discussion with a rare cystic lung disease centre is suggested before a surgical biopsy is undertaken. CONCLUSIONS We suggest that this focused workup should be performed in all people with multiple lung cysts and would streamline referral pathways, help guide early treatment, management decisions, improve patient experience and reduce overall care costs. It could also potentially catalyse a national research database to describe these less well-understood and unidentified diseases, categorise disease phenotypes and outcomes, potentially leading to better prognostic data and generating a stronger platform to understand specific disease biology.
Collapse
Affiliation(s)
- Simon R Johnson
- Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Dominick E Shaw
- Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Michael Avoseh
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Irshad Soomro
- Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Kate S Pointon
- Department of Radiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Maria Kokosi
- Interstitial Lung Disease Unit, Department of Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | | | - Sujal R Desai
- Radiology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Peter M George
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
Gibbons E, Minor BMN, Hammes SR. Lymphangioleiomyomatosis: where endocrinology, immunology and tumor biology meet. Endocr Relat Cancer 2023; 30:e230102. [PMID: 37410387 PMCID: PMC10529736 DOI: 10.1530/erc-23-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
Abstract Lymphangioleiomyomatosis (LAM) is a cystic lung disease found almost exclusively in genetic females and caused by small clusters of smooth muscle cell tumors containing mutations in one of the two tuberous sclerosis genes (TSC1 or TSC2). Significant advances over the past 2-3 decades have allowed researchers and clinicians to more clearly understand the pathophysiology of LAM, and therefore better diagnose and treat patients with this disease. Despite substantial progress, only one proven treatment for LAM is used in practice: mechanistic target of rapamycin complex 1 (mTORC1) inhibition with medications such as sirolimus. While mTORC1 inhibition effectively slows LAM progression in many patients, it is not curative, is not effective in all patients, and can be associated with significant side effects. Furthermore, the presence of established and accurate biomarkers to follow LAM progression is limited. That said, discovering additional diagnostic and treatment options for LAM is paramount. This review will describe recent advances in LAM research, centering on the origin and nature of the LAM cell, the role of estrogen in LAM progression, the significance of melanocytic marker expression in LAM cells, and the potential roles of the microenvironment in promoting LAM tumor growth. By appreciating these processes in more detail, researchers and caregivers may be afforded novel approaches to aid in the treatment of patients with LAM.
Collapse
Affiliation(s)
- Erin Gibbons
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Briaunna M. N. Minor
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Stephen R Hammes
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
5
|
Elia D, Cassandro R, Caminati A, Luisi F, Harari S. Lymphangioleiomyomatosis. Presse Med 2023; 52:104173. [PMID: 37696446 DOI: 10.1016/j.lpm.2023.104173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM) is an ultra-rare, slowly progressive neoplastic cystic disease, belonging to the group of PEComas. It can occur sporadically or associated to tuberous sclerosis complex disease and affects mainly women in child-birth age. Dyspnoea is the most frequent symptom referred to the time of diagnosis, however spontaneous pneumothorax may be a typical presentation associated to extrathoracic manifestations, such as renal angiomyolipomas. In the last decade, important advances in understanding molecular mechanisms underlying the LAM pathogenesis have been reached. It has allowed to obtain improvements in the research of novel biomarkers, treatment and a better management of the disease.
Collapse
Affiliation(s)
- Davide Elia
- UO di Pneumologia e Terapia Semi-Intensiva Respiratoria - Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, MultiMedica IRCCS, Via San Vittore 12, 20123 Milan, Italy
| | - Roberto Cassandro
- UO di Pneumologia e Terapia Semi-Intensiva Respiratoria - Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, MultiMedica IRCCS, Via San Vittore 12, 20123 Milan, Italy
| | - Antonella Caminati
- UO di Pneumologia e Terapia Semi-Intensiva Respiratoria - Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, MultiMedica IRCCS, Via San Vittore 12, 20123 Milan, Italy
| | - Francesca Luisi
- UO di Pneumologia e Terapia Semi-Intensiva Respiratoria - Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, MultiMedica IRCCS, Via San Vittore 12, 20123 Milan, Italy
| | - Sergio Harari
- UO di Pneumologia e Terapia Semi-Intensiva Respiratoria - Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, MultiMedica IRCCS, Via San Vittore 12, 20123 Milan, Italy; Department of Clinical Sciences and Community Health, - Università degli Studi di Milano, 20123 Milan, Italy.
| |
Collapse
|
6
|
Johnson J, Stewart I, Johnson SR. Disease monitoring using lung function trajectory in lymphangioleiomyomatosis: assessment in two national cohorts. Thorax 2023; 78:61-68. [PMID: 35710743 DOI: 10.1136/thoraxjnl-2021-217809] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 05/23/2022] [Indexed: 02/07/2023]
Abstract
STUDY QUESTION In lymphangioleiomyomatosis, airflow obstruction and impairment of gas transfer progress at variable rates and serial lung function is recommended for disease monitoring. As these measurements are variable, recognising subjects needing treatment can be difficult. We used two prospective national cohorts to study change over time and variation in FEV1 to inform clinical decision making. PATIENTS AND METHODS Clinical and lung function data for 141 UK and 148 American subjects were studied. Multilevel mixed effects modelling, route mean square analysis of errors and Bland-Altman analysis were used to analyse variability in lung function over time. RESULTS At baseline assessment, DLCO was reduced to a greater degree than FEV1. In untreated patients, FEV1 and DLCO declined at proportionately similar rates independent of initial lung function. In mechanistic target of rapamycin (mTOR) inhibitor treated patients, FEV1 stabilised but DLCO continued to decline. FEV1/DLCO per cent predicted ratio was 1.37 (0.43) at baseline and increased to 1.41 (0.50) after 42 (24) months (p=0.0002). At least five measurements were required before >70% of individuals had estimates of rate of FEV1 loss within 50 mL/year and DLCO loss within 0.1 mmol/min/kPa/year of the final values. CONCLUSIONS While FEV1 and DLCO fall proportionately in most, in early disease and during mTOR inhibitor treatment, DLCO should also be monitored as it may fall independent of FEV1. Since at least five observations over many months are required to make confident estimates of FEV1 and DLCO trajectories, new strategies are needed to measure disease activity and target early treatment appropriately.
Collapse
Affiliation(s)
- Jan Johnson
- Centre for Respiratory Research, University of Nottingham Faculty of Medicine and Health Sciences, Nottingham, UK
| | - Iain Stewart
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Simon R Johnson
- NIHR BRC and Biodiscovery Institute, University of Nottingham Faculty of Medicine and Health Sciences, Nottingham, UK
| |
Collapse
|
7
|
Warrior K, Dilling DF. Lung transplantation for lymphangioleiomyomatosis. J Heart Lung Transplant 2023; 42:40-52. [PMID: 36334961 DOI: 10.1016/j.healun.2022.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 12/23/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare cystic lung disease, associated with respiratory symptoms of dyspnea and spontaneous pneumothorax, along with various extra-thoracic manifestations. Often a progressive disease, albeit slowly, patients can develop chronic and severe respiratory failure and require supplemental oxygen. Lung transplantation (LTX) can offer improved duration and quality of life for patients with end-stage lung disease due to LAM. There are several unique considerations for LTX in LAM patients, and disease-specific complications of LAM prior to LTX can affect management decisions. Furthermore, there are several possible post-transplant issues specific to LAM. In this review, we discuss evaluation and management, disease-specific complications (both pre- and post-transplant), and outcomes for LAM patients undergoing lung transplantation.
Collapse
Affiliation(s)
- Krishnan Warrior
- Division of Pulmonary and Critical Care, Loyola University Chicago, Stritch School of Medicine, Maywood, IL
| | - Daniel F Dilling
- Division of Pulmonary and Critical Care, Loyola University Chicago, Stritch School of Medicine, Maywood, IL.
| |
Collapse
|
8
|
Tang Y, Kwiatkowski DJ, Henske EP. Midkine expression by stem-like tumor cells drives persistence to mTOR inhibition and an immune-suppressive microenvironment. Nat Commun 2022; 13:5018. [PMID: 36028490 PMCID: PMC9418323 DOI: 10.1038/s41467-022-32673-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
mTORC1 is hyperactive in multiple cancer types1,2. Here, we performed integrative analysis of single cell transcriptomic profiling, paired T cell receptor (TCR) sequencing, and spatial transcriptomic profiling on Tuberous Sclerosis Complex (TSC) associated tumors with mTORC1 hyperactivity, and identified a stem-like tumor cell state (SLS) linked to T cell dysfunction via tumor-modulated immunosuppressive macrophages. Rapamycin and its derivatives (rapalogs) are the primary treatments for TSC tumors, and the stem-like tumor cells showed rapamycin resistance in vitro, reminiscent of the cytostatic effects of these drugs in patients. The pro-angiogenic factor midkine (MDK) was highly expressed by the SLS population, and associated with enrichment of endothelial cells in SLS-dominant samples. Inhibition of MDK showed synergistic benefit with rapamycin in reducing the growth of TSC cell lines in vitro and in vivo. In aggregate, this study suggests an autocrine rapamycin resistance mechanism and a paracrine tumor survival mechanism via immune suppression adopted by the stem-like state tumor cells with mTORC1 hyperactivity.
Collapse
Affiliation(s)
- Yan Tang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David J Kwiatkowski
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Clements D, Miller S, Babaei-Jadidi R, Adam M, Potter SS, Johnson SR. Cross talk between LAM cells and fibroblasts may influence alveolar epithelial cell behavior in lymphangioleiomyomatosis. Am J Physiol Lung Cell Mol Physiol 2022; 322:L283-L293. [PMID: 34936509 DOI: 10.1152/ajplung.00351.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a female-specific cystic lung disease in which tuberous sclerosis complex 2 (TSC2)-deficient LAM cells, LAM-associated fibroblasts (LAFs), and other cell types infiltrate the lungs. LAM lesions can be associated with type II alveolar epithelial (AT2) cells. We hypothesized that the behavior of AT2 cells in LAM is influenced locally by LAFs. We tested this hypothesis in the patient samples and in vitro. In human LAM lung, nodular AT2 cells show enhanced proliferation when compared with parenchymal AT2 cells, demonstrated by increased Ki67 expression. Furthermore, nodular AT2 cells express proteins associated with epithelial activation in other disease states including matrix metalloproteinase 7, and fibroblast growth factor 7 (FGF7). In vitro, LAF-conditioned medium is mitogenic and positively chemotactic for epithelial cells, increases the rate of epithelial repair, and protects against apoptosis. In vitro, LAM patient-derived TSC2 null cells cocultured with LAFs upregulate LAF expression of the epithelial chemokine and mitogen FGF7, a potential mediator of fibroblast-epithelial cross talk, in a mechanistic target of rapamycin (mTOR)-dependent manner. In a novel in vitro model of LAM, ex vivo cultured LAM lung-derived microtissues promote both epithelial migration and adhesion. Our findings suggest that AT2 cells in LAM display a proliferative, activated phenotype and fibroblast accumulation following LAM cell infiltration into the parenchyma contributes to this change in AT2 cell behavior. Fibroblast-derived FGF7 may contribute to the cross talk between LAFs and hyperplastic epithelium in vivo, but does not appear to be the main driver of the effects of LAFs on epithelial cells in vitro.
Collapse
Affiliation(s)
- Debbie Clements
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Suzanne Miller
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Roya Babaei-Jadidi
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Simon R Johnson
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- NIHR Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- National Centre for Lymphangioleiomyomatosis, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| |
Collapse
|
10
|
McCarthy C, Gupta N, Johnson SR, Yu JJ, McCormack FX. Lymphangioleiomyomatosis: pathogenesis, clinical features, diagnosis, and management. THE LANCET. RESPIRATORY MEDICINE 2021; 9:1313-1327. [PMID: 34461049 DOI: 10.1016/s2213-2600(21)00228-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 01/15/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a slowly progressive, low-grade, metastasising neoplasm of women, characterised by infiltration of the lung parenchyma with abnormal smooth muscle-like cells, resulting in cystic lung destruction. The invading cell in LAM arises from an unknown source and harbours mutations in tuberous sclerosis complex (TSC) genes that result in constitutive activation of the mechanistic target of rapamycin (mTOR) pathway, dysregulated cellular proliferation, and a programme of frustrated lymphangiogenesis, culminating in disordered lung remodelling and respiratory failure. Over the past two decades, all facets of LAM basic and clinical science have seen important advances, including improved understanding of molecular mechanisms, novel diagnostic and prognostic biomarkers, effective treatment strategies, and comprehensive clinical practice guidelines. Further research is needed to better understand the natural history of LAM; develop more powerful diagnostic, prognostic, and predictive biomarkers; optimise the use of inhibitors of mTOR complex 1 in the treatment of LAM; and explore novel approaches to the development of remission-inducing therapies.
Collapse
Affiliation(s)
- Cormac McCarthy
- Department of Respiratory Medicine, St Vincent's University Hospital, University College Dublin, Dublin, Ireland.
| | - Nishant Gupta
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Simon R Johnson
- Division of Respiratory Medicine, University of Nottingham, NIHR Respiratory Biomedical Research Centre, Nottingham, UK
| | - Jane J Yu
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Francis X McCormack
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
11
|
Chernbumroong S, Johnson J, Gupta N, Miller S, McCormack FX, Garibaldi JM, Johnson SR. Machine learning can predict disease manifestations and outcomes in lymphangioleiomyomatosis. Eur Respir J 2021; 57:13993003.03036-2020. [PMID: 33303533 DOI: 10.1183/13993003.03036-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/17/2020] [Indexed: 11/05/2022]
Abstract
BACKGROUND Lymphangioleiomyomatosis (LAM) is a rare multisystem disease with variable clinical manifestations and differing rates of progression that make management decisions and giving prognostic advice difficult. We used machine learning to identify clusters of associated features which could be used to stratify patients and predict outcomes in individuals. PATIENTS AND METHODS Using unsupervised machine learning we generated patient clusters using data from 173 women with LAM from the UK and 186 replication subjects from the US National Heart, Lung, and Blood Institute (NHLBI) LAM registry. Prospective outcomes were associated with cluster results. RESULTS Two- and three-cluster models were developed. A three-cluster model separated a large group of subjects presenting with dyspnoea or pneumothorax from a second cluster with a high prevalence of angiomyolipoma symptoms (p=0.0001) and tuberous sclerosis complex (TSC) (p=0.041). Patients in the third cluster were older, never presented with dyspnoea or pneumothorax (p=0.0001) and had better lung function. Similar clusters were reproduced in the NHLBI cohort. Assigning patients to clusters predicted prospective outcomes: in a two-cluster model the future risk of pneumothorax was 3.3 (95% CI 1.7-5.6)-fold greater in cluster 1 than cluster 2 (p=0.0002). Using the three-cluster model, the need for intervention for angiomyolipoma was lower in clusters 2 and 3 than cluster 1 (p<0.00001). In the NHLBI cohort, the incidence of death or lung transplant was much lower in clusters 2 and 3 (p=0.0045). CONCLUSIONS Machine learning has identified clinically relevant clusters associated with complications and outcome. Assigning individuals to clusters could improve decision making and prognostic information for patients.
Collapse
Affiliation(s)
- Saisakul Chernbumroong
- Nottingham Molecular Pathology Node, Nottingham, UK.,Advanced Data Analysis Centre, University of Nottingham, Nottingham, UK
| | - Janice Johnson
- Respiratory Medicine and NIHR Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Nishant Gupta
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Suzanne Miller
- Respiratory Medicine and NIHR Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Francis X McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jonathan M Garibaldi
- Advanced Data Analysis Centre, University of Nottingham, Nottingham, UK.,School of Computer Science, University of Nottingham, Nottingham, UK
| | - Simon R Johnson
- Nottingham Molecular Pathology Node, Nottingham, UK .,Respiratory Medicine and NIHR Biomedical Research Centre, University of Nottingham, Nottingham, UK.,National Centre for Lymphangioleiomyomatosis, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
12
|
Guo M, Yu JJ, Perl AK, Wikenheiser-Brokamp KA, Riccetti M, Zhang EY, Sudha P, Adam M, Potter A, Kopras EJ, Giannikou K, Potter SS, Sherman S, Hammes SR, Kwiatkowski DJ, Whitsett JA, McCormack FX, Xu Y. Single-Cell Transcriptomic Analysis Identifies a Unique Pulmonary Lymphangioleiomyomatosis Cell. Am J Respir Crit Care Med 2020; 202:1373-1387. [PMID: 32603599 PMCID: PMC7667901 DOI: 10.1164/rccm.201912-2445oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/29/2020] [Indexed: 01/14/2023] Open
Abstract
Rationale: Lymphangioleiomyomatosis (LAM) is a metastatic neoplasm of reproductive-age women associated with mutations in tuberous sclerosis complex genes. LAM causes cystic remodeling of the lung and progressive respiratory failure. The sources and cellular characteristics of LAM cells underlying disease pathogenesis remain elusive.Objectives: Identification and characterization of LAM cells in human lung and uterus using a single-cell approach.Methods: Single-cell and single-nuclei RNA sequencing on LAM (n = 4) and control (n = 7) lungs, immunofluorescence confocal microscopy, ELISA, and aptamer proteomics were used to identify and validate LAMCORE cells and secreted biomarkers, predict cellular origins, and define molecular and cellular networks in LAM.Measurements and Main Results: A unique cell type termed LAMCORE was identified, which was distinct from, but closely related to, lung mesenchymal cells. LAMCORE cells expressing signature genes included known LAM markers such as PMEL, FIGF, CTSK, and MLANA and novel biomarkers validated by aptamer screening, ELISA, and immunofluorescence microscopy. LAM cells in lung and uterus are morphologically indistinguishable and share similar gene expression profiles and biallelic TSC2 mutations, supporting a potential uterine origin for the LAMCORE cell. Effects of LAM on resident pulmonary cell types indicated recruitment and activation of lymphatic endothelial cells.Conclusions: A unique population of LAMCORE cells was identified in lung and uterus of patients with LAM, sharing close transcriptomic identity. LAM cell selective markers, secreted biomarkers, and the predicted cellular molecular features provide new insights into the signaling and transcriptional programs that may serve as diagnostic markers and therapeutic targets to influence the pathogenesis of LAM.
Collapse
Affiliation(s)
- Minzhe Guo
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
| | - Jane J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine
| | - Anne Karina Perl
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Department of Pediatrics
| | - Kathryn A. Wikenheiser-Brokamp
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Division of Pathology and Laboratory Medicine, and
- Department of Pathology and Laboratory Medicine, and
| | - Matt Riccetti
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Erik Y. Zhang
- Division of Pulmonary, Critical Care and Sleep Medicine
| | - Parvathi Sudha
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Andrew Potter
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | | | - Krinio Giannikou
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - S. Steven Potter
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics
| | | | - Stephen R. Hammes
- Division of Endocrinology and Metabolism, University of Rochester, Rochester, New York
| | - David J. Kwiatkowski
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jeffrey A. Whitsett
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Department of Pediatrics
| | | | - Yan Xu
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Department of Pediatrics
- Department of Biomedical Informatics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| |
Collapse
|
13
|
Han F, Dellacecca ER, Barse LW, Cosgrove C, Henning SW, Ankney CM, Jaishankar D, Yemelyanov A, Krymskaya VP, Dilling DF, Le Poole IC. Adoptive T-Cell Transfer to Treat Lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 2020; 62:793-804. [PMID: 32078336 DOI: 10.1165/rcmb.2019-0117oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Patients with lymphangioleiomyomatosis (LAM) develop pulmonary cysts associated with neoplastic, smooth muscle-like cells that feature neuroendocrine cell markers. The disease preferentially affects premenopausal women. Existing therapeutics do not cure LAM. As gp100 is a diagnostic marker expressed by LAM lesions, we proposed to target this immunogenic glycoprotein using TCR transgenic T cells. To reproduce the genetic mutations underlying LAM, we cultured Tsc2-/- kidney tumor cells from aged Tsc2 heterozygous mice and generated a stable gp100-expressing cell line by lentiviral transduction. T cells were isolated from major histocompatibility complex-matched TCR transgenic pmel-1 mice to measure cytotoxicity in vitro, and 80% cytotoxicity was observed within 48 hours. Antigen-specific cytotoxicity was likewise observed using pmel-1 TCR-transduced mouse T cells, suggesting that transgenic T cells may likewise be useful to treat LAM in vivo. On intravenous injection, slow-growing gp100+ LAM-like cells formed lung nodules that were readily detectable in severe combined immunodeficient/beige mice. Adoptive transfer of gp100-reactive but not wild-type T cells into mice significantly shrunk established lung tumors, even in the absence of anti-PD-1 therapy. These results demonstrate the treatment potential of adoptively transferred T cells to eliminate pulmonary lesions in LAM.
Collapse
Affiliation(s)
- Fei Han
- Lurie Comprehensive Cancer Center
| | | | | | | | | | - Christian M Ankney
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| | | | - Alexander Yemelyanov
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Vera P Krymskaya
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Daniel F Dilling
- Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | - I Caroline Le Poole
- Lurie Comprehensive Cancer Center.,Department of Dermatology, Microbiology, and Immunology, Northwestern University, Chicago, Illinois
| |
Collapse
|
14
|
Liu H, Osterburg AR, Flury J, Swank Z, McGraw DW, Gupta N, Wikenheiser-Brokamp KA, Kumar A, Tazi A, Inoue Y, Hirose M, McCormack FX, Borchers MT. MAPK mutations and cigarette smoke promote the pathogenesis of pulmonary Langerhans cell histiocytosis. JCI Insight 2020; 5:132048. [PMID: 31961828 DOI: 10.1172/jci.insight.132048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary Langerhans cell histiocytosis (PLCH) is a rare smoking-related lung disease characterized by dendritic cell (DC) accumulation, bronchiolocentric nodule formation, and cystic lung remodeling. Approximately 50% of patients with PLCH harbor somatic BRAF-V600E mutations in cells of the myeloid/monocyte lineage. However, the rarity of the disease and lack of animal models have impeded the study of PLCH pathogenesis. Here, we establish a cigarette smoke-exposed (CS-exposed) BRAF-V600E-mutant mouse model that recapitulates many hallmark characteristics of PLCH. We show that CD11c-targeted expression of BRAF-V600E increases DC responsiveness to stimuli, including the chemokine CCL20, and that mutant cell accumulation in the lungs of CS-exposed mice is due to both increased cellular viability and enhanced recruitment. Moreover, we report that the chemokine CCL7 is secreted from DCs and human peripheral blood monocytes in a BRAF-V600E-dependent manner, suggesting a possible mechanism for recruitment of cells known to dominate PLCH lesions. Inflammatory lesions and airspace dilation in BRAF-V600E mice in response to CS are attenuated by transitioning animals to filtered air and treatment with a BRAF-V600E inhibitor, PLX4720. Collectively, this model provides mechanistic insights into the role of myelomonocytic cells and the BRAF-V600E mutation and CS exposure in PLCH pathogenesis and provides a platform to develop biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Huan Liu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andrew R Osterburg
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jennifer Flury
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Zulma Swank
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Dennis W McGraw
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Nishant Gupta
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pathology and Laboratory Medicine and.,Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ashish Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Abdellatif Tazi
- INSERM UMR-S 976, University Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Yoshikazu Inoue
- National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Masaki Hirose
- National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Francis X McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Michael T Borchers
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
15
|
Immunotherapy for Lymphangioleiomyomatosis and Tuberous Sclerosis: Progress and Future Directions. Chest 2019; 156:1062-1067. [PMID: 31437431 DOI: 10.1016/j.chest.2019.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/24/2019] [Accepted: 08/04/2019] [Indexed: 01/19/2023] Open
Abstract
Pulmonary lymphangioleiomyomatosis (LAM) is a rare genetic multisystem disease characterized by the nodular proliferation of smooth muscle-like LAM cells, progressive cystic changes of the lung, lymphatic abnormalities, and renal angiomyolipomas (AMLs). LAM can arise sporadically or in women with the autosomal dominant disorder, tuberous sclerosis complex (TSC), in which hamartomatous tumors of brain, heart, skin, kidney, and lung are found. LAM and TSC are caused by mutations in the TSC1 or TSC2 tumor suppressor genes leading to elevated mechanistic/mammalian target of rapamycin complex activity. Recent data indicate that T cells within LAM nodules and renal AMLs exhibit features of T-cell exhaustion, with coinhibitory receptor programmed cell death protein 1 (PD-1) expression on tumor-infiltrating T cells. Treatment of animal models of TSC and LAM with anti-PD-1 antibodies or with the combination of anti-PD-1 and anti-CTLA4 antibodies has led to remarkable results, suppressing TSC2-null tumor growth and inducing tumor rejection. Here we review our current knowledge about the potential for immunotherapy for the treatment of LAM and TSC and highlight critical unknowns and key next steps.
Collapse
|
16
|
Maisel K, Merrilees MJ, Atochina-Vasserman EN, Lian L, Obraztsova K, Rue R, Vasserman AN, Zuo N, Angel LF, Gow AJ, Kang I, Wight TN, Eruslanov E, Swartz MA, Krymskaya VP. Immune Checkpoint Ligand PD-L1 Is Upregulated in Pulmonary Lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 2018; 59:723-732. [PMID: 30095976 PMCID: PMC6293078 DOI: 10.1165/rcmb.2018-0123oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/21/2018] [Indexed: 12/29/2022] Open
Abstract
Pulmonary lymphangioleiomyomatosis (LAM) is a slow-progressing metastatic disease that is driven by mutations in the tumor suppressor tuberous sclerosis complex 1/2 (TSC1/2). Rapamycin inhibits LAM cell proliferation and is the only approved treatment, but it cannot cause the regression of existing lesions and can only stabilize the disease. However, in other cancers, immunotherapies such as checkpoint blockade against PD-1 and its ligand PD-L1 have shown promise in causing tumor regression and even curing some patients. Thus, we asked whether PD-L1 has a role in LAM progression. In vitro, PD-L1 expression in murine Tsc2-null cells is unaffected by mTOR inhibition with torin but can be upregulated by IFN-γ. Using immunohistochemistry and single-cell flow cytometry, we found increased PD-L1 expression both in human lung tissue from patients with LAM and in Tsc2-null lesions in a murine model of LAM. In this model, PD-L1 is highly expressed in the lung by antigen-presenting and stromal cells, and activated T cells expressing PD-1 infiltrate the affected lung. In vivo treatment with anti-PD-1 antibody significantly prolongs mouse survival in the model of LAM. Together, these data demonstrate that PD-1/PD-L1-mediated immunosuppression may occur in LAM, and suggest new opportunities for therapeutic targeting that may provide benefits beyond those of rapamycin.
Collapse
Affiliation(s)
- Katharina Maisel
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Mervyn J. Merrilees
- Department of Anatomy and Medical Imaging, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | | | - Lurong Lian
- Penn Center for Pulmonary Biology, Pulmonary, Allergy and Critical Care Division, and
| | - Kseniya Obraztsova
- Penn Center for Pulmonary Biology, Pulmonary, Allergy and Critical Care Division, and
| | - Ryan Rue
- Penn Center for Pulmonary Biology, Pulmonary, Allergy and Critical Care Division, and
| | | | - Ning Zuo
- Department of Anatomy and Medical Imaging, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Luis F. Angel
- New York University Langone Medical Center, New York, New York
| | - Andrew J. Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey; and
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington
| | - Evgeniy Eruslanov
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Melody A. Swartz
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Vera P. Krymskaya
- Penn Center for Pulmonary Biology, Pulmonary, Allergy and Critical Care Division, and
| |
Collapse
|
17
|
Liu HJ, Henske EP. Vitamin D binding protein: a new biomarker of disease severity in lymphangioleiomyomatosis. Eur Respir J 2018; 52:52/5/1801886. [PMID: 30385604 DOI: 10.1183/13993003.01886-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/21/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Heng-Jia Liu
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Liu H, Osterburg AR, Flury J, Huang S, McCormack FX, Cormier SA, Borchers MT. NKG2D Regulation of Lung Pathology and Dendritic Cell Function Following Respiratory Syncytial Virus Infection. J Infect Dis 2018; 218:1822-1832. [PMID: 29554301 PMCID: PMC6195658 DOI: 10.1093/infdis/jiy151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) is a common cause of respiratory tract infection in vulnerable populations. Natural killer (NK) cells and dendritic cells (DC) are important for the effector functions of both cell types following infection. Methods Wild-type and NKG2D-deficient mice were infected with RSV. Lung pathology was assessed by histology. Dendritic cell function and phenotype were evaluated by enzyme-linked immunosorbent assay and flow cytometry. The expression of NKG2D ligands on lung and lymph node DCs was measured by immunostaining and flow cytometry. Adoptive transfer experiments were performed to assess the importance of NKG2D-dependent DC function in RSV infection. Results NKG2D-deficient mice exhibited greater lung pathology, marked by the accumulation of DCs following RSV infection. Dendritic cells isolated from NKG2D-deficient mice had impaired responses toward Toll-like receptor ligands. Dendritic cells expressed NKG2D ligands on their surface, which was further increased in NKG2D-deficient mice and during RSV infection. Adoptive transfer of DCs isolated from wild-type mice into the airways of NKG2D-deficient mice ameliorated the enhanced inflammation in NKG2D-deficient mice after RSV infection. Conclusion NKG2D-dependent interactions with DCs control the phenotype and function of DCs and play a critical role in pulmonary host defenses against RSV infection.
Collapse
Affiliation(s)
- Huan Liu
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Ohio
| | - Andrew R Osterburg
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Ohio
| | - Jennifer Flury
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Ohio
| | - Shuo Huang
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Ohio
| | - Francis X McCormack
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Ohio
- Cincinnati Veteran’s Affairs Medical Center, Ohio
| | - Stephania A Cormier
- Departments of Pediatrics, Memphis
- Infectious Disease, University of Tennessee, Memphis
| | - Michael T Borchers
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Ohio
- Cincinnati Veteran’s Affairs Medical Center, Ohio
| |
Collapse
|
19
|
Gupta N, Henske EP. Pulmonary manifestations in tuberous sclerosis complex. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:326-337. [PMID: 30055039 DOI: 10.1002/ajmg.c.31638] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022]
Abstract
Tuberous sclerosis complex has manifestations in many organ systems, including brain, heart, kidney, skin, and lung. The primary manifestations in the lung are lymphangioleiomyomatosis (LAM) and multifocal micronodular pneumocyte hyperplasia (MMPH). LAM affects almost exclusively women, and causes cystic lung destruction, pneumothorax, and chylous pleural effusions. LAM can lead to dyspnea, oxygen dependence, and respiratory failure, with more rapid disease progression during the premenopausal years. In contrast, MMPH affects men and women equally, causing small nodular pulmonary deposits of type II pneumocytes that rarely progress to symptomatic disease. Here, we review the clinical features and pathogenesis of LAM and MMPH.
Collapse
Affiliation(s)
- Nishant Gupta
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Elizabeth P Henske
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
20
|
Liu HJ, Lizotte PH, Du H, Speranza MC, Lam HC, Vaughan S, Alesi N, Wong KK, Freeman GJ, Sharpe AH, Henske EP. TSC2-deficient tumors have evidence of T cell exhaustion and respond to anti-PD-1/anti-CTLA-4 immunotherapy. JCI Insight 2018; 3:98674. [PMID: 29669930 DOI: 10.1172/jci.insight.98674] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an incurable multisystem disease characterized by mTORC1-hyperactive tumors. TSC1/2 mutations also occur in other neoplastic disorders, including lymphangioleiomyomatosis (LAM) and bladder cancer. Whether TSC-associated tumors will respond to immunotherapy is unknown. We report here that the programmed death 1 coinhibitory receptor (PD-1) is upregulated on T cells in renal angiomyolipomas (AML) and pulmonary lymphangioleiomyomatosis (LAM). In C57BL/6J mice injected with syngeneic TSC2-deficient cells, anti-PD-1 alone decreased 105K tumor growth by 67% (P < 0.0001); the combination of PD-1 and CTLA-4 blockade was even more effective in suppressing tumor growth. Anti-PD-1 induced complete rejection of TSC2-deficient 105K tumors in 37% of mice (P < 0.05). Double blockade of PD-1 and CTLA-4 induced rejection in 62% of mice (P < 0.01). TSC2 reexpression in TSC2-deficient TMKOC cells enhanced antitumor immunity by increasing T cell infiltration and production of IFN-γ/TNF-α by T cells, suggesting that TSC2 and mTORC1 play specific roles in the induction of antitumor immunity. Finally, 1 month of anti-PD-1 blockade reduced renal tumor burden by 53% (P < 0.01) in genetically engineered Tsc2+/- mice. Taken together, these data demonstrate for the first time to our knowledge that checkpoint blockade may have clinical efficacy for TSC and LAM, and possibly other benign tumor syndromes, potentially yielding complete and durable clinical responses.
Collapse
Affiliation(s)
- Heng-Jia Liu
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick H Lizotte
- Belfer Center for Applied Cancer Science, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Heng Du
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria C Speranza
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Hilaire C Lam
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Spencer Vaughan
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicola Alesi
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kwok-Kin Wong
- Belfer Center for Applied Cancer Science, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Abstract
INTRODUCTION Lymphangioleiomyomatosis (LAM) is a destructive lung disease affecting primarily women. LAM is caused by inactivating mutations in the tuberous sclerosis complex (TSC) genes, resulting in hyperactivation of mechanistic/mammalian target of rapamycin complex 1 (mTORC1). Over the past five years, there have been remarkable advances in the diagnosis and therapy of LAM, including the identification of vascular endothelial growth factor D (VEGF-D) as a diagnostic biomarker and the US Food and Drug Administration approval of sirolimus as therapy for LAM. In appropriate clinical situations VEGF-D testing can make lung biopsy unnecessary to diagnose LAM. However, there remains an urgent unmet need for additional biomarkers of disease activity and/or response to therapy. Areas covered: This work reviews VEGF-D, an established LAM biomarker, and discusses emerging biomarkers, including circulating LAM cells, imaging, lipid, and metabolite biomarkers, focusing on those with the highest potential impact for LAM patients. Expert commentary: Ongoing research priorities include the development of validated biomarkers to 1) noninvasively diagnose LAM in women whose VEGF-D levels are not diagnostic, 2) accurately predict the likelihood of disease progression and 3) quantitatively measure disease activity and LAM cell burden. These biomarkers would enable personalized, precision clinical care and fast-track clinical trial implementation, with high clinical impact.
Collapse
Affiliation(s)
- Julie Nijmeh
- a Pulmonary and Critical Care Medicine, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | - Souheil El-Chemaly
- a Pulmonary and Critical Care Medicine, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | - Elizabeth P Henske
- a Pulmonary and Critical Care Medicine, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| |
Collapse
|