1
|
Furie R, Steffgen J, Fagan N, Romero-Diaz J, Avihingsanon Y, Boumpas DT, Noppakun K, Wu J, Revollo I, Jayne DR. Two-year treatment experience with BI 655064, an antagonistic anti-CD40 antibody, in patients with active lupus nephritis: An exploratory, phase II maintenance trial. Lupus 2025; 34:460-473. [PMID: 40104960 PMCID: PMC12008471 DOI: 10.1177/09612033251326990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
ObjectiveTo evaluate the long-term efficacy and safety of different doses of BI 655064 versus placebo added to standard of care during maintenance treatment for lupus nephritis (LN).Methods1293.13 was an exploratory, phase II maintenance trial. Patients were eligible for entry if they had completed 1 year of randomised treatment with BI 655064 (120, 180 or 240 mg) or placebo in the 1293.10 trial, responded to treatment at Year 1 (complete renal response [CRR], partial renal response or urinary protein/creatinine ratio ≤1) and consented to continue treatment. The primary endpoint was the proportion of patients with CRR without renal flares at Year 2. Secondary endpoints included change from baseline in Safety of Estrogens in Lupus Erythematosus National Assessment-Systemic Lupus Erythematosus Disease Activity Index (SELENA-SLEDAI) scores and safety/tolerability.Results69/121 patients (57.0%) from the 1293.10 trial entered 1293.13. The adjusted proportion of patients with CRR decreased in all groups between Year 1 (BI 655064: 53.4%-72.7%; placebo: 71.4%) and Year 2 (BI 655064: 48.2%-59.5%; placebo: 57.5%). At Year 2, mean decreases in total SELENA-SLEDAI scores were greatest with BI 655064 240 mg (-10.6 points), followed by 120 mg (-8.9 points), 180 mg (-7.2 points) and placebo (-5.3 points). SELENA-SLEDAI non-renal scores decreased at Year 1 (BI 655064: -3.0 to -3.4; placebo: -1.8); this pattern remained with BI 655064 during Year 2 (-2.4 to -4.1), whereas placebo returned to near-baseline scores (-0.4). Over 2 years of treatment, almost all patients (97.1%) experienced ≥1 adverse event (AE). Compared with the other groups, higher rates of serious AEs (42.9% vs 23.1%-33.3%)-mainly driven by serious infections (23.8% vs 7.7%-14.3%)-and severe AEs (47.6% vs 13.3%-28.6%) were reported with BI 655064 240 mg.ConclusionsThis exploratory, phase II maintenance trial failed to demonstrate the benefits of BI 655064 on renal outcomes in the treatment of LN. However, some benefits in total and non-renal SELENA-SLEDAI scores were observed.
Collapse
Affiliation(s)
- Richard Furie
- Division of Rheumatology, Northwell Health and Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| | - Jürgen Steffgen
- TA Inflammation Medicine, Boehringer Ingelheim International GmbH, Biberach, Germany
| | - Nora Fagan
- Global Biostatistics & Data Sciences, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Juanita Romero-Diaz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Dimitrios T Boumpas
- Department of Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kajohnsak Noppakun
- Department of Internal Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jing Wu
- Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Ivette Revollo
- Global Patient Safety & Pharmacovigilance, Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - David R Jayne
- Lupus and Vasculitis, Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Uzzo M, Schumacher H, Steffgen J, Deutschel S, Jayne D, Bajema I. Outcome of Patients With Lupus Nephritis Treated With an Anti-CD40 Monoclonal Antibody According to Kidney Biopsy Features. Arthritis Rheumatol 2024. [PMID: 39648337 DOI: 10.1002/art.43076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/29/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE A phase 2 trial tested different doses of the anti-CD40 monoclonal antibody BI 655064 as an add-on therapy to the standard of care in patients with class III or IV lupus nephritis (LN) with active disease. A post hoc analysis showed a potential benefit of the higher tested doses (180 and 240 mg) versus a low dose (120 mg) or placebo. We investigated whether the treatment effect of BI 655064 on kidney outcomes may be modified by the presence of glomerular monocytes, a target for this drug with a well-known role in LN pathogenesis. METHODS One hundred one renal biopsies of patients with LN enrolled in the BI 655064 trial were scored centrally. The estimated glomerular filtration rate (eGFR), spot urine protein/urine creatinine ratio (UP/UC), and complete renal response (CRR) were evaluated over 52 weeks. Patients were divided according to a "better" or "worse" performance than the average of all patients in the cohort, predicted by a mixed model for repeated measurements. Logistic regression models adjusted for potential confounders were used to assess the association between different treatment doses and outcomes according to the presence or absence of monocytes. RESULTS A higher BI 655064 dose (180 or 240 mg) was associated with better outcomes of UP/UC and CRR when glomerular monocytes were present in kidney biopsy samples (odds ratio [OR] 3.66 [95% confidence interval (CI) 1.09-12.3], P = 0.04; OR 4.58 [95% CI 1.24-16.9], P = 0.02). A trend toward improved eGFR was also observed in these patients (at 52 weeks, P = 0.08). CONCLUSION In LN kidney biopsy samples with glomerular monocytes, high-dose BI 655064 treatment improved proteinuria at 52 weeks and resulted in a higher CRR compared to biopsy samples without glomerular monocytes. Histologic features may guide the choice of treatment for individual patients with LN.
Collapse
Affiliation(s)
- Martina Uzzo
- University of Milano-Bicocca, Monza, Italy, and University of Groningen, University Medical Center, Groningen, The Netherlands
| | | | | | | | - David Jayne
- University of Cambridge, Cambridge, United Kingdom
| | - Ingeborg Bajema
- University of Groningen, University Medical Center, Groningen, The Netherlands
| |
Collapse
|
3
|
Jayne DR, Steffgen J, Romero-Diaz J, Bajema I, Boumpas DT, Noppakun K, Amano H, Gomez HM, Satirapoj B, Avihingsanon Y, Chawanasuntorapoj R, Madero M, Naumnik B, Recto R, Fagan N, Revollo I, Wu J, Visvanathan S, Furie R. Clinical and Biomarker Responses to BI 655064, an Antagonistic Anti-CD40 Antibody, in Patients With Active Lupus Nephritis: A Randomized, Double-Blind, Placebo-Controlled, Phase II Trial. Arthritis Rheumatol 2023; 75:1983-1993. [PMID: 37192040 DOI: 10.1002/art.42557] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 05/18/2023]
Abstract
OBJECTIVE To characterize its dose-response relationship, BI 655064 (an anti-CD40 monoclonal antibody) was tested as an add-on to mycophenolate and glucocorticoids in patients with active lupus nephritis (LN). METHODS A total of 121 patients were randomized (2:1:1:2) to receive placebo or BI 655064 120, 180, or 240 mg and received a weekly loading dose for 3 weeks followed by dosing every 2 weeks for the 120 and 180 mg groups, and 120 mg weekly for the 240 mg group. The primary endpoint was complete renal response (CRR) at week 52. Secondary endpoints included CRR at week 26. RESULTS A dose-response relationship with CRR at week 52 was not shown (BI 655064 120 mg, 38.3%; 180 mg, 45.0%; 240 mg, 44.6%; placebo, 48.3%). At week 26, 28.6% (120 mg), 50.0% (180 mg), 35.0% (240 mg), and 37.5% (placebo) achieved CRR. The unexpected high placebo response prompted a post hoc analysis evaluating confirmed CRR (cCRR, at weeks 46 and 52). cCRR was achieved in 22.5% (120 mg), 44.3% (180 mg), 38.2% (240 mg), and 29.1% (placebo) of patients. Most patients reported ≥1 adverse event (BI 655064, 85.7-95.0%; placebo, 97.5%), most frequently infections and infestations (BI 655064 61.9-75.0%; placebo 60%). Compared with other groups, higher rates of serious (20% vs. 7.5-10%) and severe infections (10% vs. 4.8-5.0%) were reported with 240 mg BI 655064. CONCLUSION The trial failed to demonstrate a dose-response relationship for the primary CRR endpoint. Post hoc analyses suggest a potential benefit of BI 655064 180 mg in patients with active LN.
Collapse
Affiliation(s)
- David R Jayne
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Juanita Romero-Diaz
- Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubiran", Mexico City, Mexico
| | - Ingeborg Bajema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Dimitrios T Boumpas
- Department of Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Hirofumi Amano
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Bancha Satirapoj
- Division of Nephrology, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand
| | | | | | - Magdalena Madero
- National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico
| | - Beata Naumnik
- Department of Nephrology and Transplantation with Dialysis Unit, Medical University of Bialystok, Bialystok, Poland
| | - Rhona Recto
- Mary Mediatrix Medical Center, Lipa City, Philippines
| | - Nora Fagan
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | - Ivette Revollo
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Jing Wu
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | | | - Richard Furie
- Northwell Health and Zucker School of Medicine at Hofstra/Northwell, Great Neck, New York
| |
Collapse
|
4
|
Slight-Webb S, Thomas K, Smith M, Wagner CA, Macwana S, Bylinska A, Donato M, Dvorak M, Chang SE, Kuo A, Cheung P, Kalesinskas L, Ganesan A, Dermadi D, Guthridge CJ, DeJager W, Wright C, Foecke MH, Merrill JT, Chakravarty E, Arriens C, Maecker HT, Khatri P, Utz PJ, James JA, Guthridge JM. Ancestry-based differences in the immune phenotype are associated with lupus activity. JCI Insight 2023; 8:e169584. [PMID: 37606045 PMCID: PMC10543734 DOI: 10.1172/jci.insight.169584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/10/2023] [Indexed: 08/23/2023] Open
Abstract
Systemic lupus erythematosus (SLE) affects 1 in 537 Black women, which is >2-fold more than White women. Black patients develop the disease at a younger age, have more severe symptoms, and have a greater chance of early mortality. We used a multiomics approach to uncover ancestry-associated immune alterations in patients with SLE and healthy controls that may contribute biologically to disease disparities. Cell composition, signaling, epigenetics, and proteomics were evaluated by mass cytometry; droplet-based single-cell transcriptomics and proteomics; and bead-based multiplex soluble mediator levels in plasma. We observed altered whole blood frequencies and enhanced activity in CD8+ T cells, B cells, monocytes, and DCs in Black patients with more active disease. Epigenetic modifications in CD8+ T cells (H3K27ac) could distinguish disease activity level in Black patients and differentiate Black from White patient samples. TLR3/4/7/8/9-related gene expression was elevated in immune cells from Black patients with SLE, and TLR7/8/9 and IFN-α phospho-signaling and cytokine responses were heightened even in immune cells from healthy Black control patients compared with White individuals. TLR stimulation of healthy immune cells recapitulated the ancestry-associated SLE immunophenotypes. This multiomic resource defines ancestry-associated immune phenotypes that differ between Black and White patients with SLE, which may influence the course and severity of SLE and other diseases.
Collapse
Affiliation(s)
- Samantha Slight-Webb
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Kevin Thomas
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Miles Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Catriona A. Wagner
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Susan Macwana
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Aleksandra Bylinska
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michele Donato
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine; and
| | - Mai Dvorak
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine; and
| | | | - Alex Kuo
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Peggie Cheung
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Laurynas Kalesinskas
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine; and
| | - Ananthakrishnan Ganesan
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine; and
| | - Denis Dermadi
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine; and
| | - Carla J. Guthridge
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Wade DeJager
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Christian Wright
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Mariko H. Foecke
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Joan T. Merrill
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Eliza Chakravarty
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Cristina Arriens
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine; and
| | - Paul J. Utz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Judith A. James
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joel M. Guthridge
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
5
|
Telesford KM, Smith C, Mettlen M, Davis MB, Cowell L, Kittles R, Vartanian T, Monson N. Neuron-binding antibody responses are associated with Black ethnicity in multiple sclerosis during natalizumab treatment. Brain Commun 2023; 5:fcad218. [PMID: 37601407 PMCID: PMC10433937 DOI: 10.1093/braincomms/fcad218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/28/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
Multiple sclerosis is an inflammatory degenerative condition of the central nervous system that may result in debilitating disability. Several studies over the past twenty years suggest that multiple sclerosis manifests with a rapid, more disabling disease course among individuals identifying with Black or Latin American ethnicity relative to those of White ethnicity. However, very little is known about immunologic underpinnings that may contribute to this ethnicity-associated discordant clinical severity. Given the importance of B cells to multiple sclerosis pathophysiology, and prior work showing increased antibody levels in the cerebrospinal fluid of Black-identifying, compared to White-identifying multiple sclerosis patients, we conducted a cohort study to determine B cell subset dynamics according to both self-reported ethnicity and genetic ancestry over time. Further, we determined relationships between ethnicity, ancestry, and neuron-binding IgG levels. We found significant associations between Black ethnicity and elevated frequencies of class-switched B cell subsets, including memory B cells; double negative two B cells; and antibody-secreting cells. The frequencies of these subsets positively correlated with West African genetic ancestry. We also observed significant associations between Black ethnicity and increased IgG binding to neurons. Our data suggests significantly heightened T cell-dependent B cell responses exhibiting increased titres of neuron-binding antibodies among individuals with multiple sclerosis identifying with the Black African diaspora. Factors driving this immunobiology may promote the greater demyelination, central nervous system atrophy and disability more often experienced by Black-, and Latin American-identifying individuals with multiple sclerosis.
Collapse
Affiliation(s)
- Kiel M Telesford
- Weill Cornell Medicine, Brain and Mind Research Institute, New York, NY 10065, USA
| | - Chad Smith
- University of Texas Southwestern Medical Center, O’Donnell Brain Institute, Dallas, TX 75390, USA
| | - Marcel Mettlen
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, TX 75390, USA
| | - Melissa B Davis
- Morehouse School of Medicine, Department of Community Health and Preventative Medicine, Atlanta, GA 30310, USA
| | - Lindsay Cowell
- University of Texas Southwestern Medical Center, Peter O-Donnell Jr. School of Public Health, Dallas, TX 75390, USA
| | - Rick Kittles
- Morehouse School of Medicine, Institute of Genomic Medicine, Atlanta, GA 30310, USA
| | - Timothy Vartanian
- Weill Cornell Medicine, Brain and Mind Research Institute, New York, NY 10065, USA
| | - Nancy Monson
- University of Texas Southwestern Medical Center, O’Donnell Brain Institute, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Abstract
Autoimmune diseases are a diverse group of conditions characterized by aberrant B cell and T cell reactivity to normal constituents of the host. These diseases occur widely and affect individuals of all ages, especially women. Among these diseases, the most prominent immunological manifestation is the production of autoantibodies, which provide valuable biomarkers for diagnosis, classification and disease activity. Although T cells have a key role in pathogenesis, they are technically more difficult to assay. In general, autoimmune disease results from an interplay between a genetic predisposition and environmental factors. Genetic predisposition to autoimmunity is complex and can involve multiple genes that regulate the function of immune cell populations. Less frequently, autoimmunity can result from single-gene mutations that affect key regulatory pathways. Infection seems to be a common trigger for autoimmune disease, although the microbiota can also influence pathogenesis. As shown in seminal studies, patients may express autoantibodies many years before the appearance of clinical or laboratory signs of disease - a period called pre-clinical autoimmunity. Monitoring autoantibody expression in at-risk populations may therefore enable early detection and the initiation of therapy to prevent or attenuate tissue damage. Autoimmunity may not be static, however, and remission can be achieved by some patients treated with current agents.
Collapse
Affiliation(s)
- David S Pisetsky
- Duke University Medical Center, Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC, USA.
| |
Collapse
|
7
|
Telesford KM, Amezcua L, Tardo L, Horton L, Lund BT, Reder AT, Vartanian T, Monson NL. Understanding humoral immunity and multiple sclerosis severity in Black, and Latinx patients. Front Immunol 2023; 14:1172993. [PMID: 37215103 PMCID: PMC10196635 DOI: 10.3389/fimmu.2023.1172993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
People identified with Black/African American or Hispanic/Latinx ethnicity are more likely to exhibit a more severe multiple sclerosis disease course relative to those who identify as White. While social determinants of health account for some of this discordant severity, investigation into contributing immunobiology remains sparse. The limited immunologic data stands in stark contrast to the volume of clinical studies describing ethnicity-associated discordant presentation, and to advancement made in our understanding of MS immunopathogenesis over the past several decades. In this perspective, we posit that humoral immune responses offer a promising avenue to better understand underpinnings of discordant MS severity among Black/African American, and Hispanic/Latinx-identifying patients.
Collapse
Affiliation(s)
- Kiel M. Telesford
- Department of Neurology, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Lilyana Amezcua
- Multiple Sclerosis Comprehensive Care Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauren Tardo
- Department of Neurology, University of Texas Southwestern Medical Center (UT), Dallas, TX, United States
| | - Lindsay Horton
- Department of Neurology, University of Texas Southwestern Medical Center (UT), Dallas, TX, United States
| | - Brett T. Lund
- Multiple Sclerosis Comprehensive Care Center, University of Southern California, Los Angeles, CA, United States
| | - Anthony T. Reder
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | - Timothy Vartanian
- Department of Neurology, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Nancy L. Monson
- Department of Neurology, University of Texas Southwestern Medical Center (UT), Dallas, TX, United States
| |
Collapse
|
8
|
Venturelli V, Isenberg DA. Targeted Therapy for SLE-What Works, What Doesn't, What's Next. J Clin Med 2023; 12:3198. [PMID: 37176637 PMCID: PMC10179673 DOI: 10.3390/jcm12093198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
For many years, the failure of randomized controlled trials (RCTs) has prevented patients with systemic lupus erythematosus (SLE) from benefiting from biological drugs that have proved to be effective in other rheumatological diseases. Only two biologics are approved for SLE, however they can only be administered to a restricted proportion of patients. Recently, several phase II RCTs have evaluated the efficacy and safety of new biologics in extra-renal SLE and lupus nephritis. Six drug trials have reported encouraging results, with an improvement in multiple clinical and serological outcome measures. The possibility of combining B-cell depletion and anti-BLyS treatment has also been successfully explored.
Collapse
Affiliation(s)
- Veronica Venturelli
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara, Azienda Ospedaliero-Universitaria S. Anna, 44124 Cona, Italy
| | - David Alan Isenberg
- Centre for Rheumatology, Department of Medicine, University College London, London WC1E 6JF, UK
| |
Collapse
|
9
|
Edigin E, Trang A, Ojemolon PE, Eseaton PO, Shaka H, Kichloo A, Bazuaye EM, Okobia NO, Okobia RI, Sandhu V, Manadan A. Longitudinal trends of systemic lupus erythematous hospitalizations in the United States: a two-decade population-based study. Clin Rheumatol 2023; 42:695-701. [PMID: 36287285 DOI: 10.1007/s10067-022-06418-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Longitudinal data are limited on systemic lupus erythematosus (SLE) hospitalizations. We aim to study longitudinal trends of SLE hospitalizations in the last 2 decades in the United States (U.S). METHODS Data were obtained from the National Inpatient Sample database (NIS). We performed a 21-year longitudinal trend analysis of NIS 1998-2018. We searched for hospitalizations for adult patients with a "principal" diagnosis of SLE (SLE flare group) and those with "any" diagnosis of SLE (all SLE hospitalization group) using ICD codes. All non-SLE hospitalizations for adult patients were used as the control. Multivariable logistic and linear regression were used appropriately to calculate adjusted p-trend for the outcomes of interest. RESULTS Incidence of SLE flare hospitalization reduced from 4.1 to 3.2 per 100,000 U.S persons from 1998 to 2018 (adjusted p-trend < 0.0001). The proportion of all hospitalized patients with SLE admitted principally for SLE reduced from 11.3% in 1998 to 5.7% in 2018 (adjusted p-tend < 0.0001). The proportion of hospitalized blacks in the SLE flare and all SLE hospitalization groups increased from 37.7% and 26.9% in 1998 to 44.7% and 30.7% in 2018 respectively (adjusted p-trend < 0.0001). The proportion of hospitalized Hispanics and Asians disproportionally increased in SLE flare hospitalizations compared to the control group. CONCLUSION The incidence of hospitalization for SLE flare has reduced in the last 2 decades in the U.S. The proportion of hospitalized patients with SLE admitted principally for SLE has reduced significantly over time. However, the burden of SLE hospitalizations among ethnic minorities has increased over time. Key Points • The incidence of hospitalization for SLE flare has reduced in the last 2 decades in the U.S. • The proportion of hospitalized patients with SLE admitted principally for SLE has reduced significantly over time. • The burden of SLE hospitalizations among ethnic minorities such as blacks has increased over time.
Collapse
Affiliation(s)
- Ehizogie Edigin
- Division of Rheumatology, Loma Linda University Health, Loma Linda, CA, USA.
| | - Amy Trang
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Pius E Ojemolon
- Department of Anatomical Sciences, St. George's University, St. George's, West Indies , Grenada
| | | | - Hafeez Shaka
- Department of Internal Medicine, John H. Stroger Hospital of Cook County, Chicago, IL, USA
| | - Asim Kichloo
- Department of Internal Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Efosa M Bazuaye
- Department of Internal Medicine, Hurley Medical Center, Flint, MI, USA
| | | | | | - Vaneet Sandhu
- Division of Rheumatology, Loma Linda University Health, Loma Linda, CA, USA
| | - Augustine Manadan
- Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
10
|
Allen PC, Smith S, Wilson RC, Wirth JR, Wilson NH, Baker Frost D, Flume J, Gilkeson GS, Cunningham MA, Langefeld CD, Absher DM, Ramos PS. Distinct genome-wide DNA methylation and gene expression signatures in classical monocytes from African American patients with systemic sclerosis. Clin Epigenetics 2023; 15:25. [PMID: 36803404 PMCID: PMC9938585 DOI: 10.1186/s13148-023-01445-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is a multisystem autoimmune disorder that has an unclear etiology and disproportionately affects women and African Americans. Despite this, African Americans are dramatically underrepresented in SSc research. Additionally, monocytes show heightened activation in SSc and in African Americans relative to European Americans. In this study, we sought to investigate DNA methylation and gene expression patterns in classical monocytes in a health disparity population. METHODS Classical monocytes (CD14+ + CD16-) were FACS-isolated from 34 self-reported African American women. Samples from 12 SSc patients and 12 healthy controls were hybridized on MethylationEPIC BeadChip array, while RNA-seq was performed on 16 SSc patients and 18 healthy controls. Analyses were computed to identify differentially methylated CpGs (DMCs), differentially expressed genes (DEGs), and CpGs associated with changes in gene expression (eQTM analysis). RESULTS We observed modest DNA methylation and gene expression differences between cases and controls. The genes harboring the top DMCs, the top DEGs, as well as the top eQTM loci were enriched for metabolic processes. Genes involved in immune processes and pathways showed a weak upregulation in the transcriptomic analysis. While many genes were newly identified, several other have been previously reported as differentially methylated or expressed in different blood cells from patients with SSc, supporting for their potential dysregulation in SSc. CONCLUSIONS While contrasting with results found in other blood cell types in largely European-descent groups, the results of this study support that variation in DNA methylation and gene expression exists among different cell types and individuals of different genetic, clinical, social, and environmental backgrounds. This finding supports the importance of including diverse, well-characterized patients to understand the different roles of DNA methylation and gene expression variability in the dysregulation of classical monocytes in diverse populations, which might help explaining the health disparities.
Collapse
Affiliation(s)
- Peter C Allen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Sarah Smith
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Robert C Wilson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jena R Wirth
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Nathan H Wilson
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - DeAnna Baker Frost
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jonathan Flume
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Gary S Gilkeson
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Melissa A Cunningham
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Devin M Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Paula S Ramos
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
11
|
Manolakou T, Nikolopoulos D, Gkikas D, Filia A, Samiotaki M, Stamatakis G, Fanouriakis A, Politis P, Banos A, Alissafi T, Verginis P, Boumpas DT. ATR-mediated DNA damage responses underlie aberrant B cell activity in systemic lupus erythematosus. SCIENCE ADVANCES 2022; 8:eabo5840. [PMID: 36306362 PMCID: PMC9616496 DOI: 10.1126/sciadv.abo5840] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
B cells orchestrate autoimmune responses in patients with systemic lupus erythematosus (SLE), but broad-based B cell-directed therapies show only modest efficacy while blunting humoral immune responses to vaccines and inducing immunosuppression. Development of more effective therapies targeting pathogenic clones is a currently unmet need. Here, we demonstrate enhanced activation of the ATR/Chk1 pathway of the DNA damage response (DDR) in B cells of patients with active SLE disease. Treatment of B cells with type I IFN, a key driver of immunity in SLE, induced expression of ATR via binding of interferon regulatory factor 1 to its gene promoter. Pharmacologic targeting of ATR in B cells, via a specific inhibitor (VE-822), attenuated their immunogenic profile, including proinflammatory cytokine secretion, plasmablast formation, and antibody production. Together, these findings identify the ATR-mediated DDR axis as the orchestrator of the type I IFN-mediated B cell responses in SLE and as a potential novel therapeutic target.
Collapse
Affiliation(s)
- Theodora Manolakou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Corresponding author. (T.M.); (P.V.); (D.T.B.)
| | - Dionysis Nikolopoulos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Dimitrios Gkikas
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 115 27, Athens, Greece
| | - Anastasia Filia
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Vari, Attica, Greece
- Centre of New Biotechnologies and Precision Medicine (CNBPM) School of Medicine, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | - George Stamatakis
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Vari, Attica, Greece
- Centre of New Biotechnologies and Precision Medicine (CNBPM) School of Medicine, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | | | - Panagiotis Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 115 27, Athens, Greece
- School of Medicine, European University Cyprus, 1516, Nicosia, Cyprus
| | - Aggelos Banos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Themis Alissafi
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 115 27, Athens, Greece
- Laboratory of Biology, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| | - Panayotis Verginis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 700 13 Heraklion, Greece
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, 700 13 Heraklion, Greece
- Corresponding author. (T.M.); (P.V.); (D.T.B.)
| | - Dimitrios T. Boumpas
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
- Joint Rheumatology Program, 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
- Corresponding author. (T.M.); (P.V.); (D.T.B.)
| |
Collapse
|
12
|
Chaturvedi S, Antun AG, Farland AM, Woods R, Metjian A, Park YA, de Ridder G, Gibson B, Kasthuri RS, Liles DK, Akwaa F, Clover T, Baumann Kreuziger L, Sadler JE, Sridharan M, Go RS, McCrae KR, Upreti HV, Liu A, Lim MY, Gangaraju R, Zheng XL, Raval JS, Masias C, Cataland SR, Johnson A, Davis E, Evans MD, Mazepa MA. Race, rituximab, and relapse in TTP. Blood 2022; 140:1335-1344. [PMID: 35797471 PMCID: PMC9710186 DOI: 10.1182/blood.2022016640] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/24/2022] [Indexed: 01/02/2023] Open
Abstract
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is characterized by recurring episodes of thrombotic microangiopathy, causing ischemic organ impairment. Black patients are overrepresented in iTTP cohorts in the United States, but racial disparities in iTTP outcome and response to therapy have not been studied. Using the United States Thrombotic Microangiopathies Consortium iTTP Registry, we evaluated the impact of race on mortality and relapse-free survival (RFS) in confirmed iTTP in the United States from 1995 to 2020. We separately examined the impact of rituximab therapy and presentation with newly diagnosed (de novo) or relapsed iTTP on RFS by race. A total of 645 participants with 1308 iTTP episodes were available for analysis. Acute iTTP mortality did not differ by race. When all episodes of iTTP were included, Black race was associated with shorter RFS (hazard ratio [HR], 1.60; 95% CI, 1.16-2.21); the addition of rituximab to corticosteroids improved RFS in White (HR, 0.37; 95% CI, 0.18-0.73) but not Black patients (HR, 0.96; 95% CI, 0.71-1.31). In de novo iTTP, rituximab delayed relapse, but Black patients had shorter RFS than White patients, regardless of treatment. In relapsed iTTP, rituximab significantly improved RFS in White but not Black patients. Race affects overall relapse risk and response to rituximab in iTTP. Black patients may require closer monitoring, earlier retreatment, and alternative immunosuppression after rituximab treatment. How race, racism, and social determinants of health contribute to the disparity in relapse risk in iTTP deserves further study.
Collapse
Affiliation(s)
| | - Ana G. Antun
- Department of Medicine, Emory University, Atlanta, GA
| | | | - Ryan Woods
- Department of Medicine, Wake Forest University, Winston-Salem, NC
| | - Ara Metjian
- Department of Medicine, University of Colorado, Denver, CO
| | - Yara A. Park
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Gustaaf de Ridder
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Geisinger Medical Laboratories, Danville, PA
| | - Briana Gibson
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Raj S. Kasthuri
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Darla K. Liles
- Department of Medicine, East Carolina University, Greenville, NC
| | - Frank Akwaa
- Department of Medicine, University of Rochester, Rochester, NY
| | | | - Lisa Baumann Kreuziger
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - J. Evan Sadler
- Department of Medicine, Washington University, St Louis, MO
| | | | - Ronald S. Go
- Department of Medicine, Mayo Clinic, Rochester, MN
| | | | - Harsh Vardhan Upreti
- Department of Medicine, Johns Hopkins University, Baltimore, MD
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Angela Liu
- Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Ming Y. Lim
- Department of Medicine, University of Utah, Salt Lake City, UT
| | | | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Jay S. Raval
- Department of Pathology, University of New Mexico, Albuquerque, NM
| | | | | | | | - Elizabeth Davis
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Michael D. Evans
- Clinical & Translational Science Institute, University of Minnesota, Minneapolis, MN
| | | | - for the United States Thrombotic Microangiopathies Consortium
- Department of Medicine, Johns Hopkins University, Baltimore, MD
- Department of Medicine, Emory University, Atlanta, GA
- Department of Medicine, Wake Forest University, Winston-Salem, NC
- Department of Medicine, University of Colorado, Denver, CO
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Geisinger Medical Laboratories, Danville, PA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Medicine, East Carolina University, Greenville, NC
- Department of Medicine, University of Rochester, Rochester, NY
- St Charles Healthcare, Bend, OR
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
- Department of Medicine, Washington University, St Louis, MO
- Department of Medicine, Mayo Clinic, Rochester, MN
- Department of Medicine, Cleveland Clinic, Cleveland, OH
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Medicine, University of Utah, Salt Lake City, UT
- Department of Medicine, University of Alabama at Birmingham
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology, University of New Mexico, Albuquerque, NM
- Baptist Health South Florida, Miami, FL
- Department of Medicine, The Ohio State University, Columbus, OH
- Department of Laboratory Medicine and Pathology
- Department of Medicine, University of Minnesota, Minneapolis, MN
- Clinical & Translational Science Institute, University of Minnesota, Minneapolis, MN
| |
Collapse
|
13
|
Kumánovics A, Sadighi Akha AA. Flow cytometry for B-cell subset analysis in immunodeficiencies. J Immunol Methods 2022; 509:113327. [DOI: 10.1016/j.jim.2022.113327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
|
14
|
Faster B-cell repletion after anti-CD20 infusion in Black patients compared to white patients with neurologic diseases. Mult Scler Relat Disord 2022; 63:103830. [PMID: 35490448 DOI: 10.1016/j.msard.2022.103830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/03/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022]
Abstract
This retrospective, single-center study aimed to characterize and compare the kinetics of B-cell reemergence following anti-CD20 infusion (anti-CD20i) in African American (AA) and white patients with MS or NMOSD. In a logistic regression model that included race, time since anti-CD20i, body mass index, and diagnosis, only AA race (p=0.01) and time since anti-CD20i (p=0.0003) were significant predictors of B-cell repletion. However, B-cell subset composition was similar between AA and white patients with detectable CD19+ B-cell counts. These findings highlight the importance of including a diverse study population in future studies of anti-CD20 therapies.
Collapse
|
15
|
HLA Homozygosity and Likelihood of Sensitization in Kidney Transplant Candidates. Transplant Direct 2022; 8:e1312. [PMID: 35415215 PMCID: PMC8989785 DOI: 10.1097/txd.0000000000001312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background. Homozygosity for HLAs has been associated with adverse outcomes after viral infection as well as pregnancy-induced HLA sensitization. We sought to assess the relationship between HLA locus homozygosity and the level of HLA antibody sensitization. Methods. We measured sensitization using the calculated panel reactive antibody value for a large cohort of 147 461 patients added to the US OPTN/United Network for Organ Sharing kidney transplant waitlist between December 2014 and December 2019. We used multinomial logistic modeling to compare 62 510 sensitized patients to 84 955 unsensitized controls. Results. We found that the number of homozygous HLA loci was strongly associated with the level of sensitization. Within mildly, highly, or extremely sensitized candidates, women displayed a higher relative abundance of HLA homozygosity at multiple HLA loci as compared with men, with attenuation of this effect in Black candidates. In a multivariable logistic model, the number of homozygous HLA loci interacted with female sex but not with other factors associated with sensitization, including recipient ethnicity and a history of prior kidney transplant. Conclusions. This study shows that HLA homozygosity is an innate genetic factor that affects the likelihood of HLA sensitization. Further research is needed to identify the immunologic mechanisms that underlie this observation.
Collapse
|
16
|
Owen KA, Grammer AC, Lipsky PE. Deconvoluting the heterogeneity of SLE: The contribution of ancestry. J Allergy Clin Immunol 2021; 149:12-23. [PMID: 34857396 DOI: 10.1016/j.jaci.2021.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/23/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multiorgan autoimmune disorder with a prominent genetic component. Evidence has shown that individuals of non-European ancestry experience the disease more severely, exhibiting an increased incidence of cardiovascular disease, renal involvement, and tissue damage compared with European ancestry populations. Furthermore, there seems to be variability in the response of individuals within different ancestral groups to standard medications, including cyclophosphamide, mycophenolate, rituximab, and belimumab. Although the widespread application of candidate gene, Immunochip, and genome-wide association studies has contributed to our understanding of the link between genetic variation (typically single nucleotide polymorphisms) and SLE, despite decades of research it is still unclear why ancestry remains a key determinant of poorer outcome in non-European-ancestry patients with SLE. Here, we will discuss the impact of ancestry on SLE disease burden in patients from diverse backgrounds and highlight how research efforts using novel bioinformatic and pathway-based approaches have begun to disentangle the complex genetic architecture linking ancestry to SLE susceptibility. Finally, we will illustrate how genomic and gene expression analyses can be combined to help identify novel molecular pathways and drug candidates that might uniquely impact SLE among different ancestral populations.
Collapse
|
17
|
Yavuz S, Lipsky PE. Current Status of the Evaluation and Management of Lupus Patients and Future Prospects. Front Med (Lausanne) 2021; 8:682544. [PMID: 34124113 PMCID: PMC8193052 DOI: 10.3389/fmed.2021.682544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022] Open
Abstract
The vastly diverse nature of systemic lupus erythematosus (SLE) poses great challenges to clinicians and patients, as well as to research and drug development efforts. Precise management of lupus patients would be advanced by the ability to identify specific abnormalities operative in individual patients at the time of encounter with the clinician. Advances in new technologies and bioinformatics have greatly improved the understanding of the pathophysiology of SLE. Recent research has focused on the discovery and classification of sensitive and specific markers that could aid early accurate diagnosis, better monitoring of disease and identification of appropriate therapy choices based on specific dysregulated molecular pathways. Here, we summarize some of the advances and discuss the challenges in moving toward precise patient-centric management modalities in SLE.
Collapse
Affiliation(s)
- Sule Yavuz
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Peter E Lipsky
- Ampel BioSolutions and Re-Imagine Lupus Investigation, Treatment and Education Research Institute, Charlottesville, VA, United States
| |
Collapse
|
18
|
Stewart A, Ng JCF, Wallis G, Tsioligka V, Fraternali F, Dunn-Walters DK. Single-Cell Transcriptomic Analyses Define Distinct Peripheral B Cell Subsets and Discrete Development Pathways. Front Immunol 2021; 12:602539. [PMID: 33815362 PMCID: PMC8012727 DOI: 10.3389/fimmu.2021.602539] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Separation of B cells into different subsets has been useful to understand their different functions in various immune scenarios. In some instances, the subsets defined by phenotypic FACS separation are relatively homogeneous and so establishing the functions associated with them is straightforward. Other subsets, such as the “Double negative” (DN, CD19+CD27-IgD-) population, are more complex with reports of differing functionality which could indicate a heterogeneous population. Recent advances in single-cell techniques enable an alternative route to characterize cells based on their transcriptome. To maximize immunological insight, we need to match prior data from phenotype-based studies with the finer granularity of the single-cell transcriptomic signatures. We also need to be able to define meaningful B cell subsets from single cell analyses performed on PBMCs, where the relative paucity of a B cell signature means that defining B cell subsets within the whole is challenging. Here we provide a reference single-cell dataset based on phenotypically sorted B cells and an unbiased procedure to better classify functional B cell subsets in the peripheral blood, particularly useful in establishing a baseline cellular landscape and in extracting significant changes with respect to this baseline from single-cell datasets. We find 10 different clusters of B cells and applied a novel, geometry-inspired, method to RNA velocity estimates in order to evaluate the dynamic transitions between B cell clusters. This indicated the presence of two main developmental branches of memory B cells. A T-independent branch that involves IgM memory cells and two DN subpopulations, culminating in a population thought to be associated with Age related B cells and the extrafollicular response. The other, T-dependent, branch involves a third DN cluster which appears to be a precursor of classical memory cells. In addition, we identify a novel DN4 population, which is IgE rich and closely linked to the classical/precursor memory branch suggesting an IgE specific T-dependent cell population.
Collapse
Affiliation(s)
- Alexander Stewart
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Joseph Chi-Fung Ng
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Gillian Wallis
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Vasiliki Tsioligka
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | | |
Collapse
|
19
|
Booth JS, Toapanta FR. B and T Cell Immunity in Tissues and Across the Ages. Vaccines (Basel) 2021; 9:vaccines9010024. [PMID: 33419014 PMCID: PMC7825307 DOI: 10.3390/vaccines9010024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
B and T cells are key components of the adaptive immune system and coordinate multiple facets of immunity including responses to infection, vaccines, allergens, and the environment. In humans, B- and T-cell immunity has been determined using primarily peripheral blood specimens. Conversely, human tissues have scarcely been studied but they host multiple adaptive immune cells capable of mounting immune responses to pathogens and participate in tissue homeostasis. Mucosal tissues, such as the intestines and respiratory track, are constantly bombarded by foreign antigens and contain tissue-resident memory T (TRM) cells that exhibit superior protective capacity to pathogens. Also, tissue-resident memory B (BRM) cells have been identified in mice but whether humans have a similar population remains to be confirmed. Moreover, the immune system evolves throughout the lifespan of humans and undergoes multiple changes in its immunobiology. Recent studies have shown that age-related changes in tissues are not necessarily reflected in peripheral blood specimens, highlighting the importance of tissue localization and subset delineation as essential determinants of functional B and T cells at different life stages. This review describes our current knowledge of the main B- and T-cell subsets in peripheral blood and tissues across age groups.
Collapse
Affiliation(s)
- Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21075, USA;
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Franklin R. Toapanta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21075, USA;
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
20
|
Slight-Webb S, Smith M, Bylinska A, Macwana S, Guthridge C, Lu R, Merrill JT, Chakravarty E, Arriens C, Munroe ME, Maecker HT, Utz PJ, Guthridge JM, James JA. Autoantibody-positive healthy individuals with lower lupus risk display a unique immune endotype. J Allergy Clin Immunol 2020; 146:1419-1433. [PMID: 32446964 PMCID: PMC7680268 DOI: 10.1016/j.jaci.2020.04.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autoimmune diseases comprise a spectrum of illnesses and are on the rise worldwide. Although antinuclear antibodies (ANAs) are detected in many autoimmune diseases, up to 20% of healthy women are ANA-positive (ANA+) and most will never develop clinical symptoms. Furthermore, disease transition is higher among ANA+ African Americans compared with ANA+ European Americans. OBJECTIVE We sought to determine the immune features that might define and prevent transition to clinical autoimmunity in ANA+ healthy individuals. METHODS We comprehensively phenotyped immune profiles of African Americans and European Americans who are ANA-negative (ANA-) healthy, ANA+ healthy, or have SLE using single cell mass cytometry, next-generation RNA-sequencing, multiplex cytokine profiling, and phospho-signaling analyses. RESULTS We found that, compared with both ANA- and ANA+ healthy individuals, patients with SLE of both races displayed T-cell expansion and elevated expression of type I and II interferon pathways. We discovered a unique immune signature that suggests a suppressive immune phenotype and reduced CD11C+ autoimmunity-associated B cells in healthy ANA+ European Americans that is absent in their SLE or even healthy ANA- counterparts, or among African American cohorts. In contrast, ANA+ healthy African Americans exhibited elevated expression of T-cell activation markers and higher plasma levels of IL-6 than did healthy ANA+ European Americans. CONCLUSIONS We propose that this novel immune signature identified in ANA+ healthy European Americans may protect them from T-cell expansion, heightened activation of interferon pathways, and disease transition.
Collapse
Affiliation(s)
- Samantha Slight-Webb
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Okla
| | - Miles Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Okla
| | - Aleksandra Bylinska
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Okla
| | - Susan Macwana
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Okla
| | - Carla Guthridge
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Okla
| | - Rufei Lu
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Okla; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Joan T Merrill
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Okla
| | - Eliza Chakravarty
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Okla
| | - Cristina Arriens
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Okla; Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Okla; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Melissa E Munroe
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Okla
| | - Holden T Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif
| | - Paul J Utz
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, Calif
| | - Joel M Guthridge
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Okla; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Judith A James
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Okla; Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Okla; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla.
| |
Collapse
|
21
|
Perry DJ, Titov AA, Sobel ES, Brusko TM, Morel L. Immunophenotyping reveals distinct subgroups of lupus patients based on their activated T cell subsets. Clin Immunol 2020; 221:108602. [PMID: 33007439 PMCID: PMC8173542 DOI: 10.1016/j.clim.2020.108602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study performed an integrated analysis of the cellular and transcriptional differences in peripheral immune cells between patients with Systemic Lupus Erythematosus (SLE) and healthy controls (HC). METHODS Peripheral blood was analyzed using standardized flow cytometry panels. Transcriptional analysis of CD4+ T cells was performed by microarrays and Nanostring assays. RESULTS SLE CD4+ T cells showed an increased expression of oxidative phosphorylation and immunoregulatory genes. SLE patients presented higher frequencies of activated CD38+HLA-DR+ T cells than HC. Hierarchical clustering identified a group of SLE patients among which African Americans were overrepresented, with highly activated T cells, and higher frequencies of Th1, Tfh, and plasmablast cells. T cell activation was positively correlated with metabolic gene expression in SLE patients but not in HC. CONCLUSIONS SLE subjects presenting with activated T cells and a hyperactive metabolic signature may represent an opportunity to correct aberrant immune activation through targeted metabolic inhibitors.
Collapse
Affiliation(s)
- Daniel J. Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Anton A. Titov
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Eric S. Sobel
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
22
|
Woodruff MC, Ramonell RP, Nguyen DC, Cashman KS, Saini AS, Haddad NS, Ley AM, Kyu S, Howell JC, Ozturk T, Lee S, Suryadevara N, Case JB, Bugrovsky R, Chen W, Estrada J, Morrison-Porter A, Derrico A, Anam FA, Sharma M, Wu HM, Le SN, Jenks SA, Tipton CM, Staitieh B, Daiss JL, Ghosn E, Diamond MS, Carnahan RH, Crowe JE, Hu WT, Lee FEH, Sanz I. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol 2020; 21:1506-1516. [PMID: 33028979 PMCID: PMC7739702 DOI: 10.1038/s41590-020-00814-z] [Citation(s) in RCA: 528] [Impact Index Per Article: 105.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling.
Collapse
Affiliation(s)
- Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Richard P Ramonell
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Doan C Nguyen
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Kevin S Cashman
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Ankur Singh Saini
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Natalie S Haddad
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
- MicroB-plex, Atlanta, GA, USA
| | - Ariel M Ley
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Shuya Kyu
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | | | - Tugba Ozturk
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Saeyun Lee
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | | | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Regina Bugrovsky
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Weirong Chen
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Jacob Estrada
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Andrea Morrison-Porter
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Andrew Derrico
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Fabliha A Anam
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Monika Sharma
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Henry M Wu
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, USA
| | - Sang N Le
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Scott A Jenks
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Christopher M Tipton
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Bashar Staitieh
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | | | - Eliver Ghosn
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William T Hu
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA.
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA.
| |
Collapse
|
23
|
Owen KA, Price A, Ainsworth H, Aidukaitis BN, Bachali P, Catalina MD, Dittman JM, Howard TD, Kingsmore KM, Labonte AC, Marion MC, Robl RD, Zimmerman KD, Langefeld CD, Grammer AC, Lipsky PE. Analysis of Trans-Ancestral SLE Risk Loci Identifies Unique Biologic Networks and Drug Targets in African and European Ancestries. Am J Hum Genet 2020; 107:864-881. [PMID: 33031749 PMCID: PMC7675009 DOI: 10.1016/j.ajhg.2020.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disorder with a prominent genetic component. Individuals of African ancestry (AA) experience the disease more severely and with an increased co-morbidity burden compared to European ancestry (EA) populations. We hypothesize that the disparities in disease prevalence, activity, and response to standard medications between AA and EA populations is partially conferred by genomic influences on biological pathways. To address this, we applied a comprehensive approach to identify all genes predicted from SNP-associated risk loci detected with the Immunochip. By combining genes predicted via eQTL analysis, as well as those predicted from base-pair changes in intergenic enhancer sites, coding-region variants, and SNP-gene proximity, we were able to identify 1,731 potential ancestry-specific and trans-ancestry genetic drivers of SLE. Gene associations were linked to upstream and downstream regulators using connectivity mapping, and predicted biological pathways were mined for candidate drug targets. Examination of trans-ancestral pathways reflect the well-defined role for interferons in SLE and revealed pathways associated with tissue repair and remodeling. EA-dominant genetic drivers were more often associated with innate immune and myeloid cell function pathways, whereas AA-dominant pathways mirror clinical findings in AA subjects, suggesting disease progression is driven by aberrant B cell activity accompanied by ER stress and metabolic dysfunction. Finally, potential ancestry-specific and non-specific drug candidates were identified. The integration of all SLE SNP-predicted genes into functional pathways revealed critical molecular pathways representative of each population, underscoring the influence of ancestry on disease mechanism and also providing key insight for therapeutic selection.
Collapse
MESH Headings
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Black People
- Bortezomib/therapeutic use
- DNA, Intergenic/genetics
- DNA, Intergenic/immunology
- Enhancer Elements, Genetic
- Gene Expression
- Gene Ontology
- Gene Regulatory Networks
- Genetic Predisposition to Disease
- Genome, Human
- Genome-Wide Association Study
- Heterocyclic Compounds/therapeutic use
- Humans
- Interferons/genetics
- Interferons/immunology
- Isoquinolines/therapeutic use
- Lactams
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/ethnology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Molecular Sequence Annotation
- Polymorphism, Single Nucleotide
- Protein Array Analysis
- Quantitative Trait Loci
- Quantitative Trait, Heritable
- White People
Collapse
Affiliation(s)
| | - Andrew Price
- AMPEL BioSolutions LLC, Charlottesville, VA 22902, USA
| | | | | | | | | | | | | | | | | | | | - Robert D Robl
- AMPEL BioSolutions LLC, Charlottesville, VA 22902, USA
| | - Kip D Zimmerman
- Wake Forest School of Medicine, Winston-Salem, NC 27109, USA
| | | | | | | |
Collapse
|
24
|
Ramanujam M, Steffgen J, Visvanathan S, Mohan C, Fine JS, Putterman C. Phoenix from the flames: Rediscovering the role of the CD40-CD40L pathway in systemic lupus erythematosus and lupus nephritis. Autoimmun Rev 2020; 19:102668. [PMID: 32942031 DOI: 10.1016/j.autrev.2020.102668] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
Abstract
Lupus nephritis (LN) is a significant complication of systemic lupus erythematosus (SLE), increasing its morbidity and mortality. Although the current standard of care helps suppress disease activity, it is associated with toxicity and ultimately does not cure SLE. At present, there are no therapies specifically indicated for the treatment of LN and there is an unmet need in this disease where treatment remains a challenge. The CD40-CD40L pathway is central to SLE pathogenesis and the generation of autoantibodies and their deposition in the kidneys, resulting in renal injury in patients with LN. CD40 is expressed on immune cells (including B cells, monocytes and dendritic cells) and also non-haematopoietic cells. Interactions between CD40L on T cells and CD40 on B cells in the renal interstitium are critical for the local expansion of naive B cells and autoantibody-producing B cells in LN. CD40L-mediated activation of myeloid cells and resident kidney cells, including endothelial cells, proximal tubular epithelial cells, podocytes and mesangial cells, further amplifies the inflammatory milieu in the interstitium and the glomeruli. Several studies have highlighted the upregulated expression of CD40 in LN kidney biopsies, and preclinical data have demonstrated the importance of the CD40-CD40L pathway in murine SLE and LN. Blocking this pathway is expected to ameliorate inflammation driven by infiltrating immune cells and resident kidney cells. Initial experimental therapeutic interventions targeting the CD40-CD40L pathway, based on CD40L antibodies, were associated with an increased incidence of thrombosis. However, this safety issue has not been observed with second-generation CD40/CD40L antibodies that have been engineered to prevent platelet activation. With these advancements, together with recent preclinical and clinical findings, it is anticipated that selective blockade of the CD40-CD40L pathway may address the unmet treatment needs in SLE, LN and other autoimmune diseases.
Collapse
Affiliation(s)
- Meera Ramanujam
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA; Institute of Infection, Immunity and Inflammation, University of Glasgow, UK.
| | - Jürgen Steffgen
- TA Inflammation Medicine, Boehringer Ingelheim, International GmbH, Biberach, Germany; Department of Nephrology and Rheumatology, Georg-August University of Göttingen, Göttingen, Germany
| | - Sudha Visvanathan
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Jay S Fine
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Chaim Putterman
- Albert Einstein College of Medicine, Bronx, NY, USA; Azrieli School of Medicine, Bar-Ilan Universtiy, Zefat, Israel; Research Institute, Galilee Medical Center, Nahariya, Israel.
| |
Collapse
|
25
|
Catalina MD, Bachali P, Yeo AE, Geraci NS, Petri MA, Grammer AC, Lipsky PE. Patient ancestry significantly contributes to molecular heterogeneity of systemic lupus erythematosus. JCI Insight 2020; 5:140380. [PMID: 32759501 PMCID: PMC7455079 DOI: 10.1172/jci.insight.140380] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Gene expression signatures can stratify patients with heterogeneous diseases, such as systemic lupus erythematosus (SLE), yet understanding the contributions of ancestral background to this heterogeneity is not well understood. We hypothesized that ancestry would significantly influence gene expression signatures and measured 34 gene modules in 1566 SLE patients of African ancestry (AA), European ancestry (EA), or Native American ancestry (NAA). Healthy subject ancestry-specific gene expression provided the transcriptomic background upon which the SLE patient signatures were built. Although standard therapy affected every gene signature and significantly increased myeloid cell signatures, logistic regression analysis determined that ancestral background significantly changed 23 of 34 gene signatures. Additionally, the strongest association to gene expression changes was found with autoantibodies, and this also had etiology in ancestry: the AA predisposition to have both RNP and dsDNA autoantibodies compared with EA predisposition to have only anti-dsDNA. A machine learning approach was used to determine a gene signature characteristic to distinguish AA SLE and was most influenced by genes characteristic of the perturbed B cell axis in AA SLE patients. Transcriptional profiling of lupus patients and healthy controls reveals ancestry-related differences and transcriptional heterogeneity among lupus patients.
Collapse
Affiliation(s)
- Michelle D Catalina
- AMPEL BioSolutions LLC & RILITE Research Institute, Charlottesville, Virginia, USA.,EMD Serono Research & Development Institute, Billerica, Massachusetts, USA
| | - Prathyusha Bachali
- AMPEL BioSolutions LLC & RILITE Research Institute, Charlottesville, Virginia, USA
| | | | - Nicholas S Geraci
- AMPEL BioSolutions LLC & RILITE Research Institute, Charlottesville, Virginia, USA
| | - Michelle A Petri
- Division of Rheumatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amrie C Grammer
- AMPEL BioSolutions LLC & RILITE Research Institute, Charlottesville, Virginia, USA
| | - Peter E Lipsky
- AMPEL BioSolutions LLC & RILITE Research Institute, Charlottesville, Virginia, USA
| |
Collapse
|
26
|
Robinson GA, Peng J, Dönnes P, Coelewij L, Naja M, Radziszewska A, Wincup C, Peckham H, Isenberg DA, Ioannou Y, Pineda-Torra I, Ciurtin C, Jury EC. Disease-associated and patient-specific immune cell signatures in juvenile-onset systemic lupus erythematosus: patient stratification using a machine-learning approach. THE LANCET. RHEUMATOLOGY 2020; 2:e485-e496. [PMID: 32818204 PMCID: PMC7425802 DOI: 10.1016/s2665-9913(20)30168-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Juvenile-onset systemic lupus erythematosus (SLE) is a rare autoimmune rheumatic disease characterised by more severe disease manifestations, earlier damage accrual, and higher mortality than in adult-onset SLE. We aimed to use machine-learning approaches to characterise the immune cell profile of patients with juvenile-onset SLE and investigate links with the disease trajectory over time. METHODS This study included patients who attended the University College London Hospital (London, UK) adolescent rheumatology service, had juvenile-onset SLE according to the 1997 American College of Rheumatology revised classification criteria for lupus or the 2012 Systemic Lupus International Collaborating Clinics criteria, and were diagnosed before 18 years of age. Blood donated by healthy age-matched and sex-matched volunteers who were taking part in educational events in the Centre for Adolescent Rheumatology Versus Arthritis at University College London (London, UK) was used as a control. Immunophenotyping profiles (28 immune cell subsets) of peripheral blood mononuclear cells from patients with juvenile-onset SLE and healthy controls were determined by flow cytometry. We used balanced random forest (BRF) and sparse partial least squares-discriminant analysis (sPLS-DA) to assess classification and parameter selection, and validation was by ten-fold cross-validation. We used logistic regression to test the association between immune phenotypes and k-means clustering to determine patient stratification. Retrospective longitudinal clinical data, including disease activity and medication, were related to the immunological features identified. FINDINGS Between Sept 5, 2012, and March 7, 2018, peripheral blood was collected from 67 patients with juvenile-onset SLE and 39 healthy controls. The median age was 19 years (IQR 13-25) for patients with juvenile-onset SLE and 18 years (16-25) for healthy controls. The BRF model discriminated patients with juvenile-onset SLE from healthy controls with 90·9% prediction accuracy. The top-ranked immunological features from the BRF model were confirmed using sPLS-DA and logistic regression, and included total CD4, total CD8, CD8 effector memory, and CD8 naive T cells, Bm1, and unswitched memory B cells, total CD14 monocytes, and invariant natural killer T cells. Using these markers patients were clustered into four distinct groups. Notably, CD8 T-cell subsets were important in driving patient stratification, whereas B-cell markers were similarly expressed across the cohort of patients with juvenile-onset SLE. Patients with juvenile-onset SLE and elevated CD8 effector memory T-cell frequencies had more persistently active disease over time, as assessed by the SLE disease activity index 2000, and this was associated with increased treatment with mycophenolate mofetil and an increased prevalence of lupus nephritis. Finally, network analysis confirmed the strong association between immune phenotype and differential clinical features. INTERPRETATION Machine-learning models can define potential disease-associated and patient-specific immune characteristics in rare disease patient populations. Immunological association studies are warranted to develop data-driven personalised medicine approaches for treatment of patients with juvenile-onset SLE. FUNDING Lupus UK, The Rosetrees Trust, Versus Arthritis, and UK National Institute for Health Research University College London Hospital Biomedical Research Centre.
Collapse
Affiliation(s)
- George A Robinson
- Centre for Rheumatology Research, Department of Medicine, University College London, London, UK,Centre for Adolescent Rheumatology Versus Arthritis, Department of Medicine, University College London, London, UK
| | - Junjie Peng
- Centre for Rheumatology Research, Department of Medicine, University College London, London, UK,Centre for Adolescent Rheumatology Versus Arthritis, Department of Medicine, University College London, London, UK
| | - Pierre Dönnes
- Centre for Rheumatology Research, Department of Medicine, University College London, London, UK,SciCross AB, Skövde, Sweden
| | - Leda Coelewij
- Centre for Rheumatology Research, Department of Medicine, University College London, London, UK,Centre for Cardiometabolic and Vascular Science, Department of Medicine, University College London, London, UK
| | - Meena Naja
- Centre for Adolescent Rheumatology Versus Arthritis, Department of Medicine, University College London, London, UK
| | - Anna Radziszewska
- Centre for Adolescent Rheumatology Versus Arthritis, Department of Medicine, University College London, London, UK
| | - Chris Wincup
- Centre for Rheumatology Research, Department of Medicine, University College London, London, UK
| | - Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis, Department of Medicine, University College London, London, UK
| | - David A Isenberg
- Centre for Rheumatology Research, Department of Medicine, University College London, London, UK,Centre for Adolescent Rheumatology Versus Arthritis, Department of Medicine, University College London, London, UK
| | - Yiannis Ioannou
- Centre for Adolescent Rheumatology Versus Arthritis, Department of Medicine, University College London, London, UK,UCB Pharma, Immunology Translational Medicine, Slough, UK
| | - Ines Pineda-Torra
- Centre for Cardiometabolic and Vascular Science, Department of Medicine, University College London, London, UK
| | - Coziana Ciurtin
- Centre for Rheumatology Research, Department of Medicine, University College London, London, UK,Centre for Adolescent Rheumatology Versus Arthritis, Department of Medicine, University College London, London, UK
| | - Elizabeth C Jury
- Centre for Rheumatology Research, Department of Medicine, University College London, London, UK,Correspondence to: Prof Elizabeth C Jury, Centre for Rheumatology Research, Department of Medicine, University College London, London WC1E 6JF, UK
| |
Collapse
|
27
|
Ambegaonkar AA, Kwak K, Sohn H, Manzella-Lapeira J, Brzostowski J, Pierce SK. Expression of inhibitory receptors by B cells in chronic human infectious diseases restricts responses to membrane-associated antigens. SCIENCE ADVANCES 2020; 6:eaba6493. [PMID: 32754637 PMCID: PMC7380957 DOI: 10.1126/sciadv.aba6493] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/11/2020] [Indexed: 05/10/2023]
Abstract
Chronic human infectious diseases, including malaria, are associated with a large expansion of a phenotypically and transcriptionally distinct subpopulation of B cells distinguished by their high expression of a variety of inhibitory receptors including FcγRIIB. Because these B cells, termed atypical memory B cells (MBCs), are unable to respond to soluble antigens, it was suggested that they contributed to the poor acquisition of immunity in chronic infections. Here, we show that the high expression of FcγRIIB restricts atypical MBC responses to membrane-associated antigens that function to actively exclude FcγRIIB from the B cell immune synapse and include the co-receptor CD19, allowing B cell antigen receptor signaling and differentiation toward plasma cells. Thus, chronic infectious diseases result in the expansion of B cells that robustly respond to antigens that associate with cell surfaces, such as antigens in immune complexes, but are unable to respond to fully soluble antigens, such as self-antigens.
Collapse
|
28
|
Yan H, Fernandez M, Wang J, Wu S, Wang R, Lou Z, Moroney JB, Rivera CE, Taylor JR, Gan H, Zan H, Kolvaskyy D, Liu D, Casali P, Xu Z. B Cell Endosomal RAB7 Promotes TRAF6 K63 Polyubiquitination and NF-κB Activation for Antibody Class-Switching. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1146-1157. [PMID: 31932498 PMCID: PMC7033007 DOI: 10.4049/jimmunol.1901170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022]
Abstract
Upon activation by CD40 or TLR signaling, B lymphocytes activate NF-κB to induce activation-induced cytidine deaminase and, therefore, Ig class switch DNA recombination, as central to the maturation of the Ab and autoantibody responses. In this study, we show that NF-κB activation is boosted by colocalization of engaged immune receptors, such as CD40, with RAB7 small GTPase on mature endosomes, in addition to signals emanating from the receptors localized on the plasma membrane, in mouse B cells. In mature endosomes, RAB7 directly interacts with TRAF6 E3 ubiquitin ligase, which catalyzes K63 polyubiquitination for NF-κB activation. RAB7 overexpression in Cd19+/creRosa26fl-STOP-fl-Rab7 mouse B cells upregulates K63 polyubiquitination activity of TRAF6, enhances NF-κB activation and activation-induced cytidine deaminase induction, and boosts IgG Ab and autoantibody levels. This, together with the extensive intracellular localization of CD40 and the strong correlation of RAB7 expression with NF-κB activation in mouse lupus B cells, shows that RAB7 is an integral component of the B cell NF-κB activation machinery, likely through interaction with TRAF6 for the assembly of "intracellular membrane signalosomes."
Collapse
Affiliation(s)
- Hui Yan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Maria Fernandez
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Jingwei Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Shuai Wu
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Rui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Zheng Lou
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Justin B Moroney
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Carlos E Rivera
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Julia R Taylor
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Huoqun Gan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Hong Zan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Dmytro Kolvaskyy
- Greehey Children's Cancer Research Institute, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Paolo Casali
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229;
| | - Zhenming Xu
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229;
| |
Collapse
|
29
|
Almaani S, Rovin BH. B-cell therapy in lupus nephritis: an overview. Nephrol Dial Transplant 2019; 34:22-29. [PMID: 30165690 DOI: 10.1093/ndt/gfy267] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/13/2018] [Indexed: 12/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune multisystem disease that commonly affects the kidneys. It is characterized by persistent autoantibody production that targets a multitude of self-antigens. B-cells, plasmablasts and plasma cells, as the source of these autoantibodies, play a major role in the development of lupus nephritis (LN), and are therefore promising therapeutic targets. To date, however, randomized clinical trials of B-cell therapies in LN have not lived up to expectations, whereas uncontrolled cohort and observational studies of B-cell antagonists have been more promising. In this article, we will review the current experience with B-cell therapy in LN and highlight the pitfalls that may have limited their success. We will conclude by suggesting B-cell-centric approaches to the management of LN based on what has been learned from the overall B-cell experience in SLE.
Collapse
Affiliation(s)
- Salem Almaani
- Division of Nephrology, Department of Internal Medicine and Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, USA
| | - Brad H Rovin
- Division of Nephrology, Department of Internal Medicine and Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, USA
| |
Collapse
|
30
|
Telesford KM, Kaunzner UW, Perumal J, Gauthier SA, Wu X, Diaz I, Kruse-Hoyer M, Engel C, Marcille M, Vartanian T. Black African and Latino/a identity correlates with increased plasmablasts in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 7:7/1/e634. [PMID: 31672834 PMCID: PMC6865850 DOI: 10.1212/nxi.0000000000000634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 09/05/2019] [Indexed: 11/20/2022]
Abstract
Objective To determine the influence of self-reported Black African and Latin American identity on peripheral blood antibody-secreting cell (ASC) frequency in the context of relapsing-remitting MS. Methods In this cross-sectional study, we recruited 74 subjects with relapsing-remitting MS and 24 age-, and self-reported ethno-ancestral identity-matched healthy donors (HDs) to provide peripheral blood study samples. Subjects with MS were either off therapy at the time of study draw or on monthly natalizumab therapy infusions. Using flow cytometry, we assessed peripheral blood mononuclear cells for antibody-secreting B-cell subsets. Results When stratified by self-reported ethno-ancestry, we identified significantly elevated frequencies of circulating plasmablasts among individuals with MS identifying as Black African or Latin American relative to those of Caucasian ancestry. Ethno-ancestry–specific differences in ASC frequency were observed only among individuals with MS. By contrast, this differential was not observed among HDs. ASCs linked with poorer MS prognosis and active disease, including IgM+- and class-switched CD138+ subsets, were among those significantly increased. Conclusion The enhanced peripheral blood plasmablast signature revealed among Black African or Latin American subjects with MS points to distinct underlying mechanisms associated with MS immunopathogenesis. This dysregulation may contribute to the disease disparity experienced by patient populations of Black African or Latin American ethno-ancestry.
Collapse
Affiliation(s)
- Kiel M Telesford
- From the Brain and Mind Research Institute (K.M.T., T.V.), Weill Cornell Medicine; Department of Neurology (K.M.T., U.W.K., J.P., S.A.G., M.K.-H., C.E., M.M., T.V.), Weill Cornell Medicine; and Department of Healthcare Policy and Research (X.W., I.D.), Weill Cornell Medicine, New York.
| | - Ulrike W Kaunzner
- From the Brain and Mind Research Institute (K.M.T., T.V.), Weill Cornell Medicine; Department of Neurology (K.M.T., U.W.K., J.P., S.A.G., M.K.-H., C.E., M.M., T.V.), Weill Cornell Medicine; and Department of Healthcare Policy and Research (X.W., I.D.), Weill Cornell Medicine, New York
| | - Jai Perumal
- From the Brain and Mind Research Institute (K.M.T., T.V.), Weill Cornell Medicine; Department of Neurology (K.M.T., U.W.K., J.P., S.A.G., M.K.-H., C.E., M.M., T.V.), Weill Cornell Medicine; and Department of Healthcare Policy and Research (X.W., I.D.), Weill Cornell Medicine, New York
| | - Susan A Gauthier
- From the Brain and Mind Research Institute (K.M.T., T.V.), Weill Cornell Medicine; Department of Neurology (K.M.T., U.W.K., J.P., S.A.G., M.K.-H., C.E., M.M., T.V.), Weill Cornell Medicine; and Department of Healthcare Policy and Research (X.W., I.D.), Weill Cornell Medicine, New York
| | - Xian Wu
- From the Brain and Mind Research Institute (K.M.T., T.V.), Weill Cornell Medicine; Department of Neurology (K.M.T., U.W.K., J.P., S.A.G., M.K.-H., C.E., M.M., T.V.), Weill Cornell Medicine; and Department of Healthcare Policy and Research (X.W., I.D.), Weill Cornell Medicine, New York
| | - Ivan Diaz
- From the Brain and Mind Research Institute (K.M.T., T.V.), Weill Cornell Medicine; Department of Neurology (K.M.T., U.W.K., J.P., S.A.G., M.K.-H., C.E., M.M., T.V.), Weill Cornell Medicine; and Department of Healthcare Policy and Research (X.W., I.D.), Weill Cornell Medicine, New York
| | - Mason Kruse-Hoyer
- From the Brain and Mind Research Institute (K.M.T., T.V.), Weill Cornell Medicine; Department of Neurology (K.M.T., U.W.K., J.P., S.A.G., M.K.-H., C.E., M.M., T.V.), Weill Cornell Medicine; and Department of Healthcare Policy and Research (X.W., I.D.), Weill Cornell Medicine, New York
| | - Casey Engel
- From the Brain and Mind Research Institute (K.M.T., T.V.), Weill Cornell Medicine; Department of Neurology (K.M.T., U.W.K., J.P., S.A.G., M.K.-H., C.E., M.M., T.V.), Weill Cornell Medicine; and Department of Healthcare Policy and Research (X.W., I.D.), Weill Cornell Medicine, New York
| | - Melanie Marcille
- From the Brain and Mind Research Institute (K.M.T., T.V.), Weill Cornell Medicine; Department of Neurology (K.M.T., U.W.K., J.P., S.A.G., M.K.-H., C.E., M.M., T.V.), Weill Cornell Medicine; and Department of Healthcare Policy and Research (X.W., I.D.), Weill Cornell Medicine, New York
| | - Timothy Vartanian
- From the Brain and Mind Research Institute (K.M.T., T.V.), Weill Cornell Medicine; Department of Neurology (K.M.T., U.W.K., J.P., S.A.G., M.K.-H., C.E., M.M., T.V.), Weill Cornell Medicine; and Department of Healthcare Policy and Research (X.W., I.D.), Weill Cornell Medicine, New York.
| |
Collapse
|
31
|
Sanz I, Wei C, Jenks SA, Cashman KS, Tipton C, Woodruff MC, Hom J, Lee FEH. Challenges and Opportunities for Consistent Classification of Human B Cell and Plasma Cell Populations. Front Immunol 2019; 10:2458. [PMID: 31681331 PMCID: PMC6813733 DOI: 10.3389/fimmu.2019.02458] [Citation(s) in RCA: 366] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
The increasingly recognized role of different types of B cells and plasma cells in protective and pathogenic immune responses combined with technological advances have generated a plethora of information regarding the heterogeneity of this human immune compartment. Unfortunately, the lack of a consistent classification of human B cells also creates significant imprecision on the adjudication of different phenotypes to well-defined populations. Additional confusion in the field stems from: the use of non-discriminatory, overlapping markers to define some populations, the extrapolation of mouse concepts to humans, and the assignation of functional significance to populations often defined by insufficient surface markers. In this review, we shall discuss the current understanding of human B cell heterogeneity and define major parental populations and associated subsets while discussing their functional significance. We shall also identify current challenges and opportunities. It stands to reason that a unified approach will not only permit comparison of separate studies but also improve our ability to define deviations from normative values and to create a clean framework for the identification, functional significance, and disease association with new populations.
Collapse
Affiliation(s)
- Ignacio Sanz
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Chungwen Wei
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Scott A Jenks
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Kevin S Cashman
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Christopher Tipton
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Matthew C Woodruff
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Jennifer Hom
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - F Eun-Hyung Lee
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
32
|
Wang R, Zeng Y, Qin H, Lu Y, Huang H, Lei M, Tan T, Huang Y, Luo H, Lan Y, Wei Y. Association of interleukin 22 gene polymorphisms and serum IL-22 level with risk of systemic lupus erythematosus in a Chinese population. Clin Exp Immunol 2018; 193:143-151. [PMID: 29603203 PMCID: PMC6046499 DOI: 10.1111/cei.13133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to investigate the association between the single-nucleotide polymorphisms (SNPs) of the interleukin 22 (IL-22) gene and systemic lupus erythematosus (SLE) in a Chinese population. Three IL-22 SNPs (rs2227485, rs2227513 and rs2227491) were genotyped using SNaPshot SNP genotyping assays and identified by sequencing in 314 SLE patients and 411 healthy controls. The IL-22 level of serum was assessed by enzyme-linked immunosorbent assay (ELISA) kits. Data were analysed by spss version 17.0 software. We found that rs2227513 was associated with an increased risk of SLE [AG versus AA: adjusted odds ratio (aOR) = 2·24, 95% confidence interval (CI) = 1·22-4·12, P = 0·010; G versus· A: adjusted OR = 2·18, 95% CI = 1·20-3·97, P = 0·011]. Further analysis in patients with SLE showed that the AG genotype and G allele were associated with an increased risk of renal disorder in SLE (G versus A: aOR = 3·09, 95% CI = 1·30-7·33, P = 0·011; AG versus· AA: aOR = 3·25, 95% CI = 1·35-7·85, P = 0·009). In addition, the concentration of IL-22 was significantly lower in the rs2227513 AG genotype compared with AA genotype (P = 0·028). These results suggest that rs2227513 polymorphism might contribute to SLE susceptibility, probably by decreasing the expression of IL-22.
Collapse
Affiliation(s)
- R. Wang
- Clinical Medical School, Youjiang Medical University for NationalitiesBaiseGuangxiChina
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Y.‐L. Zeng
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - H.‐M. Qin
- Clinical Medical School, Youjiang Medical University for NationalitiesBaiseGuangxiChina
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Y.‐L. Lu
- Clinical Medical School, Youjiang Medical University for NationalitiesBaiseGuangxiChina
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - H.‐T. Huang
- Clinical Medical School, Youjiang Medical University for NationalitiesBaiseGuangxiChina
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - M. Lei
- Clinical Medical School, Youjiang Medical University for NationalitiesBaiseGuangxiChina
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - T. Tan
- Clinical Medical School, Youjiang Medical University for NationalitiesBaiseGuangxiChina
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Y.‐Y. Huang
- Clinical Medical School, Youjiang Medical University for NationalitiesBaiseGuangxiChina
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - H.‐C. Luo
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Y. Lan
- Department of Dermatologythe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Y.‐S. Wei
- Department of Laboratory Medicinethe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| |
Collapse
|
33
|
Cho S, Lee HM, Yu IS, Choi YS, Huang HY, Hashemifar SS, Lin LL, Chen MC, Afanasiev ND, Khan AA, Lin SW, Rudensky AY, Crotty S, Lu LF. Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nat Commun 2018; 9:2757. [PMID: 30013024 PMCID: PMC6048122 DOI: 10.1038/s41467-018-05196-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/22/2018] [Indexed: 11/24/2022] Open
Abstract
Reciprocal interactions between B and follicular T helper (Tfh) cells orchestrate the germinal center (GC) reaction, a hallmark of humoral immunity. Abnormal GC responses could lead to the production of pathogenic autoantibodies and the development of autoimmunity. Here we show that miR-146a controls GC responses by targeting multiple CD40 signaling pathway components in B cells; by contrast, loss of miR-146a in T cells does not alter humoral responses. However, specific deletion of both miR-146a and its paralog, miR-146b, in T cells increases Tfh cell numbers and enhanced GC reactions. Thus, our data reveal differential cell-intrinsic regulations of GC B and Tfh cells by miR-146a and miR-146b. Together, members of the miR-146 family serve as crucial molecular brakes to coordinately control GC reactions to generate protective humoral responses without eliciting unwanted autoimmunity. In the germinal center (GC), B and T cells interact to induce the production of protective antibodies against threats. Here the authors show that microRNA miR-146a modulates CD40 signaling in GC B cells, while both miR-146a and miR-146b synergize to control GC T cell responses, thereby implicating intricate controls of GC response by miR-146.
Collapse
Affiliation(s)
- Sunglim Cho
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Hyang-Mi Lee
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Youn Soo Choi
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.,Department of Medicine, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - Hsi-Yuan Huang
- Department of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | | | - Ling-Li Lin
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Mei-Chi Chen
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Nikita D Afanasiev
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | | | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan-Kettering Cancer Center, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.,Division of Infectious Diseases, Department of Medicine, University of California, La Jolla, San Diego, CA, 92037, USA
| | - Li-Fan Lu
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA. .,Moores Cancer Center, University of California, La Jolla, San Diego, CA, 92093, USA. .,Center for Microbiome Innovation, University of California, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
34
|
Wang R, Lu YL, Huang HT, Qin HM, Lan Y, Wang JL, Wang CF, Wei YS. Association of interleukin 13 gene polymorphisms and plasma IL 13 level with risk of systemic lupus erythematosus. Cytokine 2018; 104:92-97. [DOI: 10.1016/j.cyto.2017.09.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 02/08/2023]
|
35
|
Iwamoto T, Dorschner J, Jolly M, Huang X, Niewold TB. Associations between type I interferon and antiphospholipid antibody status differ between ancestral backgrounds. Lupus Sci Med 2018; 5:e000246. [PMID: 29387437 PMCID: PMC5786906 DOI: 10.1136/lupus-2017-000246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The type I interferon pathway is activated in many patients with systemic lupus erythematosus (SLE), and anti-double-stranded DNA (dsDNA) and anti-RNA binding protein autoantibodies are correlated with high interferon-α (IFNα) activity. We studied whether antiphospholipid (APL) antibodies, which should not stimulate Toll-like receptors, are also associated with high levels of IFNα activity. METHODS Serum IFNα activity was measured in patients with SLE using the WISH cell bioassay. IgG APL, anti-RBP and anti-dsDNA antibodies were measured in the clinical laboratory, and standard clinical cut-offs were used to define the positive results. RESULTS High IFNα activity was associated with anti-RBP and anti-dsDNA antibodies in all three ancestral backgrounds. Strikingly, African-American subjects with a positive APL antibody test had higher IFNα activity than those without IgG APL antibodies. This was not shared with other ancestral backgrounds. This finding was independent of other autoantibody profiles, and clinical features did not differ between IgG APL antibody positive versus negative African-American patients. CONCLUSION The difference in association between IFNα activity and IgG APL status between ancestral backgrounds supports differences in molecular pathogenesis. This may suggest B cell hyperactivity in the setting of type I IFN in African-Americans and could suggest ways to individualise therapy.
Collapse
Affiliation(s)
- Taro Iwamoto
- Department of Medicine and Pathology, Colton Center for Autoimmunity, New York University School of Medicine, New York, USA
| | - Jessica Dorschner
- Department of Immunology, Division of Rheumatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Meenakshi Jolly
- Division of Rheumatology, Rush University Medical Center, Chicago, Illinois, USA
| | - Xiangyang Huang
- Department of Rheumatology, The Second Xiangya Hosptal, Central South University, Changsha, Hunan 410011, China
| | - Timothy B Niewold
- Department of Medicine and Pathology, Colton Center for Autoimmunity, New York University School of Medicine, New York, USA
| |
Collapse
|
36
|
Yu X, Zhang N, Lin W, Wang C, Gu W, Ling C, Feng Y, Su Y. Regulatory effects of four ginsenoside monomers in humoral immunity of systemic lupus erythematosus. Exp Ther Med 2017; 15:2097-2103. [PMID: 29434811 DOI: 10.3892/etm.2017.5657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022] Open
Abstract
Ginsenosides Rb1, Rh1, Rg1 and Rg3 are known as the main active components extracted from the roots of the Panax ginseng C.A. Meyer, and were reported to have immunoregulatory effects. Disruption of B-cell immune regulation during the pathogenesis of systemic lupus erythematosus (SLE) may lead to the production of large amounts of antibodies. The present study investigated the effects of the four ginsenoside monomers on B-cell immune regulation and observed that they inhibited the proliferation and secretion of B cells induced by LPS, caused an upregulation of the expression of apoptosis-associated proteins Fas/Fas ligand and caspase-3, the expression of FcγRIIB (CD32) as well as the proportion of inactive B cells (CD19+CD27-). These results indicate that Rb1, Rh1, Rg1 and Rg3 inhibit the humoral immunity of SLE, among which Rh1 exhibited the most obvious inhibitory effect.
Collapse
Affiliation(s)
- Xin Yu
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Na Zhang
- Department of Traditional Chinese Medicine, 401 Hospital of The Chinese People's Liberation Army, Qingdao, Shandong 266071, P.R. China
| | - Wanfu Lin
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Chen Wang
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Wei Gu
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Changquan Ling
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yinglu Feng
- Department of Traditional Chinese Medicine, 401 Hospital of The Chinese People's Liberation Army, Qingdao, Shandong 266071, P.R. China
| | - Yonghua Su
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
37
|
Lenert A, Niewold TB, Lenert P. Spotlight on blisibimod and its potential in the treatment of systemic lupus erythematosus: evidence to date. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:747-757. [PMID: 28331294 PMCID: PMC5357079 DOI: 10.2147/dddt.s114552] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
B cells in general and BAFF (B cell activating factor of the tumor necrosis factor [TNF] family) in particular have been primary targets of recent clinical trials in systemic lupus erythematosus (SLE). In 2011, belimumab, a monoclonal antibody against BAFF, became the first biologic agent approved for the treatment of SLE. Follow-up studies have shown excellent long-term safety and tolerability of belimumab. In this review, we critically analyze blisibimod, a novel BAFF-neutralizing agent. In contrast to belimumab that only blocks soluble BAFF trimer but not soluble 60-mer or membrane BAFF, blisibimod blocks with high affinity all three forms of BAFF. Furthermore, blisibimod has a unique structure built on four high-affinity BAFF-binding peptides fused to the IgG1-Fc carrier. It was tested in phase I and II trials in SLE where it showed safety and tolerability. While it failed to reach the primary endpoint in a recent phase II trial, post hoc analysis demonstrated its efficacy in SLE patients with higher disease activity. Based on these results, blisibimod is currently undergoing phase III trials targeting this responder subpopulation of SLE patients. The advantage of blisibimod, compared to its competitors, lies in its higher avidity for BAFF, but a possible drawback may come from its immunogenic potential and the anticipated loss of efficacy over time.
Collapse
Affiliation(s)
- Aleksander Lenert
- Division of Rheumatology, University of Kentucky, Kentucky Clinic, Lexington, KY
| | - Timothy B Niewold
- Division of Rheumatology and Department of Immunology, Mayo Clinic, Rochester, MN
| | - Petar Lenert
- Division of Immunology, Department of Internal Medicine, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) confers up to a 50-fold increased risk of cardiovascular disease (CVD), and African Americans with SLE experience accelerated damage accrual and doubled cardiovascular risk when compared to their European American counterparts. RECENT FINDINGS Genome-wide association studies have identified a substantial signal at 22q13, now assigned to variation at apolipoprotein L1 (APOL1), which has associated with progressive nondiabetic nephropathy, cardiovascular disease, and many immune-associated renal diseases, including lupus nephritis. We contend that alterations in crucial APOL1 intracellular pathways may underpin associated disease states based on structure-functional differences between variant and ancestral forms. While ancestral APOL1 may be a key driver of autophagy, nonconserved primary structure changes result in a toxic gain of function with attenuation of autophagy and an unsupervised pore-forming feature. Thus, the divergent intracellular biological pathways of ancestral and variant APOL1 may explain a worsened prognosis as demonstrated in SLE.
Collapse
|